JOHN NORTON

How Einstein found his field equations: 1912-1915

1. INTRODUCTION

By THE MIDDLE of 1913, after less than nine months of collaboration
with his mathematician friend Marcel Grossmann, Einstein had
discovered virtually all the essential features of his general theory of
relativity. For they had succeeded in constructing a gravitation theory
in which the laws of nature could be written in a generally covariant
form, that is in a form which remained unchanged under all coordinate
transformations.! But, as FEinstein confided to Lorentz, their new
theory, the so-called Enmwurf theory, was marred by an "ugly dark
spot."? Its gravitational field equations, its most fundamental equations,
were not generally covariant. It was not until November 1915 that Ein-
stein could present the now familiar generally covariant field equations
of the theory to the Prussian Academy of Science. In all, he had spent
some three troubled years wrestling with the problem of these field
equations.

Some of the highlights of this struggle are now well known. In the
Entwurf paper, Einstein and Grossmann had come within a hair’s
breadth of the generally covariant field equations of the final theory.
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They had considered field equations based on the Ricci tensor—a
choice virtually forced on them by the mathematical requirements of
general covariance. But they discarded these equations on the ground
that they failed to yield the correct Newtonian limit. Shortly after, Ein-
stein came to believe that he had found two proofs for the physical
unacceptability of all generally covariant field equations. The more
notorious of these was his so-called "hole" argument.

Unfortunately it has become common to dismiss these crucial turn-
ing points in Einstein’s work in terms of barely excusable errors, even
as simple mathematical slips by Grossmann or Einstein. The argument
runs as follows. Generally covariant equations hold by definition in all
coordinate systems, whereas the equations of Newtonian gravitation
theory do not. So, in the process of recovering Newtonian theory as a
limiting case from a generally covariant theory, it is necessary to restrict
the set of coordinate systems under consideration. This is usually
achieved through the explicit stipulation of a number of additional
relations—called "coordinate conditions"—that must also be satisfied by
the final solution. But—the argument continues—Einstein and
Grossmann were ignorant of their freedom to apply such coordinate
conditions and so failed to recover the correct Newtonian limit. More-
over, in working out his "hole" argument Einstein is supposed not to
have recognized the elementary fact that a given physical instance of a
gravitational field will be represented by different mathematical func-
tions in different coordinate systems.

My purpose in this paper is twofold. First I will seek to establish
that Einstein was fully aware of his freedom to apply coordinate condi-
tions to generally covariant field equations and knew how the process
could help recover a Newtonian form from such equations. The evi-
dence for this is contained primarily in one of Einstein’s notebooks
from this period and is, I think, irrefutable. Second, I will develop a
more satisfactory account of Einstein’s struggles with his field equations
in these three troubled years. In particular, I will be concerned to show
that Einstein’s difficulties were based on nontrivial misconceptions and
that the path he followed was a thoroughly reasonable one. Stachel was
the first to try to approach the problem in this way.? He has concluded
that:
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in the tensors: Einstein’s struggles with covariance principles 1912-1916," Swudies in history
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FIELD EQUATIONS 255

e Finstein’s understanding of the form of static gravitational fields in 1913
was inconsistent with his final general theory of relativity and, moreover,
with the Ricci tensor as a gravitation tensor. This alone could account for
Einstein and Grossman'’s rejection of the Ricci tensor.

e Einstein’s "hole" argument admits a reading in which it focuses on a serious
physical problem in the relationship between the spacetime manifold and
the gravitational field. This reading alone is consistent with Einstein’s later
resolution of the argument and, in this form, can be seen to contribute
decisively to Einstein’s understanding of spacetime in his new theory.

These two points are essential to the account I offer here of
Einstein’s work on his field equations in the three years ending in
November 1915. In outline, my account runs as follows.

The question whether Einstein was aware of his freedom to apply
coordinate conditions to generally covariant field equations at the time
of the Entwurf paper will be settled by examination of the contents of
- one of his notebooks from this period of his work in Zirich. It will be
clear that Einstein was fully aware of this freedom and even knew of
two different coordinate conditions that could be used to reduce the
Ricci tensor to a Newtonian form. But, I shall argue, Einstein was not
prepared to accept either condition because of a number of related
misconceptions. '

At the heart of these misconceptions lay the problem of the cir-
cumstances under which the ten gravitational potentials of the new
theory would reduce to a more manageable single potential. On the
basis of his earlier work on gravitation and the principle of equivalence,
Einstein believed that there was such a reduction in the case of static
fields. He chose the simplest and most natural weak-field equations and
again found that they led to a similar reduction in the number of gravi-
tational potentials. These and other signposts all pointed in the same
direction. But, unfortunately for Einstein, it was the wrong direction.
Both his assumptions about static fields and about the weak-field equa-
tions were inconsistent with his final theory. In addition he had one
final and puzzling misconception about the form of these weak-field
equations in rotating coordinate systems. Together, these were
sufficient to thwart Einstein’s attempts to construct acceptable generally
covariant field equations from the Ricci tensor.

The suspension of the requirement of general covariance was soon
to follow. Through these same misconceptions, Einstein convinced
himself that if derivatives up to the second order only were considered,
the conservation of energy and momentum led to a unique set of field
equations which were not generally covariant. This formed the sub-
stance of his derivation of the Entwurffield equations and precluded any
further search for generally covariant field equations.
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Now convinced of the fruitlessness of this search, Einstein
developed general arguments against the physical acceptability of all
generally covariant field equations. The first of these was based on the
impossibility of constructing a generally covariant conservation law in
which the energy-momentum of the gravitational field and of other
matter would each be represented by a generally covariant tensor. This
argument was soon eclipsed by what appeared to be a far stronger one,
the notorious "hole" argument. In it, he purported to show that gen-
erally covariant field equations could not uniquely determine the field
generated by certain simple distributions of source masses, in contradic-
tion with the requirement of physical causality.

Contrary to the usual account, the "hole" argument was not based
on the naive misunderstanding that a given gravitational field is
somehow physically changed by the transition to a new coordinate sys-
tem simply because the mathematical functions that represent it have
changed. But it still failed to establish the untenability of generally
covariant field equations. Rather, the argument amounted to a demon-
stration that generally covariant field equations cannot uniquely deter-
mine the field as long as the point events of the spacetime manifold are
incorrectly thought of as individuated independently of the field itself.
More figuratively, it showed that if one could somehow take away the
field, one would not be left with a bare spacetime manifold replete with
individual points. Nothing, not even this, would remain. Einstein did
not interpret his "hole" argument in this way until his return to general
covariance in November 1915.

Einstein’s move from Ziirich to Berlin in April 1914 ended his colla-
boration with Grossmann. But before this, Grossmann was still able to
help Einstein with many of the preliminaries of the task of refining the
mathematical formulation of the Entwurftheory and resolving the ques-
tion of the theory’s exact relation to the generalized principle of rela-
tivity. By means of variational techniques, Einstein developed a general
way of formulating those field equations, which had exactly the max-
imum covariance permitted by his "hole" argument. He believed that
this analysis led uniquely to his original Entwurffield equations, without
any significant use of empirical knowledge of gravitation. Einstein was
especially pleased with this outcome because it clearly demonstrated
that the foundations of his new theory lay in covariance considerations.
But he was unaware that his analysis by no means led uniquely to his
Entwurffield equations. In the last step of his derivation he had made a
mistake, for which I have been unable to find any explanation.

However, it has not generally been noted that Einstein’s work on
this question was not entirely in vain. He was able to use the
mathematical machinery that he developed for it virtually unchanged in
1916 in his analysis of his final generally covariant field equations of
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November 1915. In particular, he developed a device for yielding four
"adapted" coordinate conditions. These conditions had to be satisfied if
the Enrwurf field equations were to hold in a given coordinate system.
With his final generally covariant field equations of November 1915,
this device yielded an important set of identities, now known as the
contracted Bianchi identities, from which the conservation laws could
be derived.

Einstein’s return to the search for generally covariant field equations
towards the end of 1915 came after a period of growing dissatisfaction
with his Entwurf theory. The theory did not account for the known
anomaly in the motion of Mercury and he found, contrary to his earlier
belief, that it was not covariant under transformations to rotating coor-
dinate systems, which he felt was required by the generalized principle
of relativity. His return to this search was precipitated by his discovery
of the mistake in the final step of his derivation of the Enmwurf field
equations in 1914.

But Einstein could not yet proceed directly to his final generally
covariant field equations, for he was still bedevilled by the same virtu-
ally untouched misconceptions about static fields and about the New-
tonian limit as he had had three years earlier. The unravelling of these
misconceptions can be traced in a dramatic series of weekly communi-
cations from Einstein to the Prussian Academy, beginning on
November 4, 1915. Hitherto, the story behind Einstein’s apparently
erratic turns in this final month has-remained untold and was, perhaps,
untellable, without the clues from the Ziirich notebook.

Einstein’s first step-was to return to a set of almost generally covari-
ant field equations that he had considered with Grossmann three years
earlier. Then, however, he had rejected them because he believed that
they failed to yield the required weak-field equations in a rotating coor-
dinate system. A week later he showed how the adoption of the hy-
pothesis that all matter is electromagnetic in nature enabled a
modification of these equations, which at last was generally covariant
and which also satisfied the restrictive requirements of his enduring
misconceptions about static fields and the weak-field equations. But
these were still not the field equations of his final theory. Einstein was
freed from the misconceptions that separated him from these equations
through his successful calculation of the orbit of Mercury, which he
reported the following week. There he was confronted with a static
field in which the ten gravitational potentials did not reduce to a single
potential in the way he had expected for so long.

This freed him to entertain a wide range of generally covariant field
equations and the following week, with a weary tone of finality, he
reported the generally covariant field equations of the final theory to
the Prussian Academy. I argue that Hilbert’s simultaneous discovery of
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these equations played little if any role in Einstein’s final solution,
despite the intense correspondence between them at this time. The
delay in Einstein’s discovery can be explained entirely in terms of the
difficulties outlined here and a natural pathway to the final equations
can be reconstructed for that final week. In addition, there is evidence
that Einstein was unaware of the exact nature of Hilbert’s discovery for
several months.

2. PRELUDE: FROM 1905 TO 1912

In June 1905, while still a patent examiner in Bern, Einstein submit-
ted his famous work on the electrodynamics of moving bodies to the
Annalen der Physik. This work contained his special theory of relativity,
in which he asserted the equivalence of all inertial frames of reference
as a fundamental postulate of physics. The question which then natur-
ally arose, he recalled later, was whether it was possible to extend this
principle of relativity to the more general case of frames of reference in
arbitrary states of motion.* But he could find no workable basis for
such an extension, until he tried to incorporate gravitation into his new
special theory of relativity for a review article in 1907.5 The difficulties
of this task led him to a new principle, later to be called the "principle
of equivalence."

On the basis of the fact that all bodies fall alike in a gravitational
field, Einstein postulated the complete physical equivalence of a homo-
geneous gravitational field and a uniform acceleration of the frame of
reference. This, Einstein noted in his review article, extended the prin-
ciple of relativity to the case of uniform acceleration. It also foreshad-
owed the problem whose complete solution would lead him to his gen-
eral theory of relativity: the construction of a relativistically acceptable
theory of gravitation, based on the principle of equivalence.

Einstein did not publish any further on this question until 1911 and
1912, the years of his stay in Prague. Then he developed his specula-
tions of 1907 into a substantial and innovative theory of static gravita-
tional fields.® His strategy was simple. He would consider a frame of
reference in uniform acceleration. According to his principle of

4. Finstein, "Notes on the origin of the general theory of relativity” (1933), in Ein-
stein, /deas and opinions (London 1973), 285-290, on 286—287.

5. FEinstein, "Uber das Relativititsprinzip und die ausdemselben gezogenen Fol-
gerungen,” Jahrbuch der Radioaktivitdt und Elektronik, 4 (1907), 411-462, and 5 (1908),
98-99.

6. Einstein, "Uber den Einfluss der Schwerkraft auf die Ausbreitung des lichtes,” 4P,
35 (1911), 898-908; "Lichigeschwindigkeit und Statik des Gravitationsfeldes," 4P, 38
(1912). 355-369; and "Zur Theorie des statischen Gravitationsfeldes,” 4P, 38 (1912),
443-458.



FIELD EQUATIONS 259

equivalence, the acceleration yielded a homogeneous gravitational field
whose effect on a given phenomenon could be readily inferred. The
result of this special case could be generalized easily to arbitrary static
fields. He found that clocks were slowed by gravitational fields and that
the now variable speed of light ¢ could stand for the single gravitational
potential of static fields.

During this period, Einstein learned a lesson that would be of
importance in his later search for the field equations of his general
theory of relativity. He found that the conservation laws can cir-
cumscribe the range of admissible field equations very powerfully. In
1912 he sought a field equation that would describe how a given source
distribution would generate the field.” From a natural and simple gen-
eralization of Newtonian gravitation theory, he postulated

Ac = kco

for this equation, where A is the Laplacian operator, o the mass density
and k a constant. But he soon found to his dismay that this equation
was inconsistent with the equality of action and reaction.® In effect, his
field equation was inconsistent with the conservation of energy and
momentum,; it is impossible to construct a gravitational field stress ten-
sor from this field equation and the associated force law. In a pro-
tracted discussion of several possible modifications to his theory, Ein-
stein showed how he was forced to a specific and unpalatable resolution:
his field equation had to be modified by the subtraction of a particular
quantity, (gradc)?/2c, from its left-hand side. He conceded that he
resisted this modification to his field equation, for it required him to
limit his principle of equivalence to infinitely small regions of space.
Since his principle referred only to homogeneous gravitational fields
and uniform acceleration, he found the need for such a limitation very
puzzling.

With his return to Ziirich in August 1912, Einstein took the major
step towards his general theory of relativity. There, as he tells us in the
foreword to the Czech edition of his popular book on relativity, he had
the decisive idea of the analogy with Gauss’ theory of surfaces.® Also,
he began his collaboration with his mathematician friend, Marcel
Grossmann, who assisted him with the unfamiliar mathematics required
by the new theory. The first product of this collaboration was the
Entwurfpaper, which contained virtually all the essential features of the
final general theory of relativity. It was the work of some months only,
for Einstein could write to Paul Ehrenfest late in May 1913 that this

7. Einstein, "Lichtgeschwindigkeit" (ref. 6).
8. Einstein, "Zur Theorie" (ref. 6).
9. EA 23 191.
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new work was to appear within a few weeks.!0

The essence of the new theory lay in the fusion of a number of ear-
lier developments. Earlier in 1912, on the basis of the consideration of
a rotating coordinate system, Einstein had argued that three dimen-
sional space need no longer remain Euclidean once frames of reference
in arbitrary states of motion are introduced.!! Of course, such frames of
reference must be introduced if the principle of relativity is to be
extended. Also, it followed from Minkowski’s work that one could
treat the kinematics of Einstein’s new special theory of relativity in
terms of the geometry of a pseudo-Euclidean four-dimensional space-
time. In particular, this meant that the familiar Pythagorean formula
for the invariant length / in space

dP? = a2+ dy* + dz?

is extended to the pseudo-Euclidean formula for the invariant interval s
in spacetime,

ds? = —dx?— dy*— dz? + c*dP,

where x, y, and z are the usual Cartesian spatial coordinates and ¢ the
time coordinate. Just as straight lines in Euclidean space are those of
minimal /, so the world lines of undeflected particles in spacetime are
geodesics, lines of extremal s.

Perhaps the juxtaposition of these two ideas was sufficient to lead
Einstein to the central idea of his new theory, the consideration of
spacetimes with a more general, non-Euclidean geometry than that of
special relativity.!? Specifically, he considered those in which the inter-
val s is given in terms of the ten components of a symmetric metric
tensor, g,

dst = gydxt +2gndxdag+ - - + gudxd .

The special attraction in this was that the four spacetime coordinates,
Xy, X3, X3, and x4, could be selected arbitrarily, provided the values of
the g,, were adjusted by the appropriate transformation. This associat-
ing of spacetime coordinate systems with frames of reference suggests
an equivalence of all frames of reference, as demanded by a generalized
principle of relativity. Moreover, Einstein and Grossmann could turn
to the absolute differential calculus of Christoffel, Ricci, and Levi-
Civita, which enabled the writing of the basic laws of the new theory in

10. Einstein to Ehrenfest, 28 May 1913, EA 9 340.

11. Einstein, "Lichtgeschwindigkeit" (ref. 6), 356.

12. See J. Stachel, "Einstein and the rigidly rotating disk.,” in A. Held, ed., General rela-
tivity and gravitation: A hundred years after the birth of Einstein, vol. 1 (New York. 1980),
1-15.
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a generally covariant form.

Finally, Einstein could interpret the physical significance of the
metric tensor by examining certain special and limiting cases. From the
requirement that special relativity be a limiting case, it followed that the
metric tensor governed the behavior of rods and clocks in space. In
addition, Einstein could compare the spacetimes of his new theory with
the static gravitational fields of his earlier theory and conclude that non-
constancy of the components of the metric tensor corresponded to the
presence of a gravitational field. This meant that the metric tensor
could be regarded as the generalization of the Newtonian gravitational
potential and, in particular, that this single potential was now to be
replaced by ten gravitational potentials, the ten components of the
metric tensor.

As a part of this reasoning, Einstein made an assumption about the
form of static fields that was to cause him a great deal of trouble. In
the first section of his part of the Entwurf paper, Einstein reviewed the
results of his earlier theory of static gravitational fields. Within the
second section, he translated some of these results into the formalism
of his new theory. He noted that in special relativity—the "usual"
theory of relativity, as he put it—the metric tensor degenerates to the
simple form

1 0 0 0
0-1 0 0
0 0-1 0 (1)
0 0 0 &

where g4 = ¢? is constant. Recalling his earlier theory, he wrote: "The
same type of degeneration appears in static gravitational fields of the
type considered just now, only that in these g4 = c? is a function of x,
Xy, x3."13 This formulation compactly expressed several results of his
earlier theory that were now being transported intact to his new theory.
According to his earlier theory, in static fields the speed of light ¢ is
variable and the rate of clocks varies with it. This is encapsulated in
the new theory by allowing g4 = c? to be a function of the three spatial
coordinates. Einstein had also concluded that three dimensional space
would remain Euclidean in these static fields. This now meant that for
a proper choice of coordinate system, the remaining components of the
metric tensor would retain their constant values as in (1).14

13. Einstein and Grossmann (ref. 1), 229.

14. This special case may have been important in the sequence of events in Einstein's
transition to the new theory. In an addendum to (ref. 8), he noted that the equations of
motion of the theory could be written as a variation principle. Formally the equation he
gave is identical to the equation for a geodesic in a spacetime with the metric (1). See J.
Stachel, "The genesis of general relativity,” in H. Nelkowski. et al.. eds., Lecture notes in
physics: Einstein Symposium, Berlin (Berlin 1979), 428—442, on 433-434.
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Einstein did not discover for three years that this last conclusion
about static fields was incorrect. It follows from his final theory of
November 1915 that static fields are not spatially flat in all but a very
few specialized exceptions. But for the time being, Einstein had little
reason to doubt this natural extension of the results of his earlier
theory. In particular it provided a convenient special case in which the
number of gravitational potentials was effectively reduced from ten to a
more manageable single potential.

3. THE REJECTION OF THE RICCI TENSOR

The saga of Einstein’s search for his general theory of relativity
should have ended rapidly and happily here, with the completion of the
Entwurfpaper. And it nearly did. All that he needed was to write the
field equations. Einstein opened the critical Section S in a familiar and
promising way by writing the field equations in the general form

k0, =T,,, (2)

where « is a constant, the source term ®,, is the contravariant stress-
energy tensor and, the field term T, is the as yet undetermined gravi-
tation tensor, which is to be built up by differential operations out of
the metric tensor, g,,." Since the gravitation tensor is the generaliza-
tion of the corresponding Newtonian quantity, the Laplacian of the
Newtonian gravitational potential A¢, Einstein expected it to be of
second order in the derivatives of the metric tensor.

Then Einstein quietly dropped his bombshell. It has proved impos-
sible, he wrote, to find such a differential expression that is a generali-
zation of A¢ and also a generally covariant tensor. Part of his
justification is that covariant operations, corresponding to those that
generate A¢ out of ¢ in Newtonian theory, yield degenerate results
when applied to the metric tensor. The bulk of the justification, how-
ever, is a reference to a particular subsection of Grossmann’s "Mathe-
matical part" of the paper.

15. I adhere throughout to Einstein’s original notation, which is nearly the same as
modern notation. However, all indices are written as subscripts, covariant components
being indicated by Latin letters, e.g., v and their corresponding contravariant com-
ponents by Greek letters, e.g., v,,, except for the four contravariant spacetime coordi-
nates, written as x,. Gothic letters represent tensor densities. The Einstein summation
convention is not used. Greek and sometimes Latin indices vary over 1, 2, 3, and 4,
with the 4-component representing the time component. [ also follow Einstein’s use of
the term "tensor” by allowing it to describe quantities covariant under limited as well as
under arbitrary coordinate transformations. Between 1912 and 1915 Einstein modified
his notation gradually until it achieved the form now standard.
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Grossmann noted that the prominent position of the "Christoffel
four index symbol," that is, the fourth-rank Riemann curvature tensor,
would lead us to expect that its second rank contraction, now called the
"Ricci tensor," would be a natural candidate for the gravitation tensor.
"However [he wrote] it turns out that this tensor does not reduce to the
expression A¢ in the special case of an infinitely weak, static gravita-
tional field."'6 With this, both Grossmann and Einstein dropped the
question of constructing generally covariant field equations out of the
Riemann tensor and, apparently, out of any expression of second order
in the derivatives of the metric tensor.

This was a catastrophe. A continued focus on the Riemann curva-
ture tensor would have set them on a royal road to the generally covari-
ant field equations of the final theory. The selection of the Ricci tensor
as the gravitation tensor would have given them these equations in the
source-free case. The discovery of the additional term necessary for
the general case would have been but a small step, as it proved to be
for Einstein in November 1915.77

It is clear from Grossmann’s brief comment that the decision to
turn away from the Ricci tensor resulted from a problem preventing
recovery of a Newtonian limit from the field equations concerned. But
he gives virtually no clues to the way they attempted this recovery or to
the exact nature of the problem they encountered. Fortunately, in Sec-
tion S of their paper, Einstein went to some pains to establish the form
that an appropriate generalization of A¢ must have and, correspond-
ingly, the form that the gravitation tensor must take if it is to reduce to
this expression in appropriate cases. The required form I',,, is given as

a
T, =2 -+l } (3)
#r R 9Xa
where the curly brackets indicate terms that drop out in first order
when the derivatives of g,, are small. In brief, this is justified by not-
ing that only the highest order terms in equation (3) remain in the
weak-field case and reduce to an expression of the form

y 0 v
af
aXB

Y P 8w 1 v

dxif 9x3 9x3 c? 9xf

r,,=-—

737

16. Einstein and Grossmann (ref. 1), 256-257.
17. In modern notation, these equations are

1
Ry~ >8R = kT,

?gu.v wy

where R, is the Ricci tensor with contraction R, and T, is the stress-energy tensor.
The left-hand side of the equation is now called the "Einstein tensor".
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provided that the components of the weak field metric differ from those
of the special relativistic metric of form (1) by infinitely small quanti-
ties. (The right-hand side of the preceding equation will be written as
Oy,,.) From this, I',, reduces to a satisfactory Newtonian form, with

T4 =—Ayu

as the only nonvanishing term, in the case of a static field, in which g4
alone is variable.

This last case corresponds exactly to the special case considered by
Grossmann, that of "an infinitely weak, static gravitational field." This
promises to give us an immediate explanation of Einstein and Gross-
mann’s rejection of the Ricci tensor as a gravitation tensor. For a
direct inspection of the form of the Ricci tensor, written out explicitly
in terms of derivatives of the metric tensor, shows that it fails to satisfy
Einstein’s condition (3) above. In fact the Ricci tensor contains four
second derivative terms in the metric tensor which are of first order of
smallness when the derivatives of the metric tensor are small. Only
one of these corresponds to the one in condition (3).

However, the elimination of these three other second derivative
terms can be achieved readily in the process of recovery of the
Newtonian limit. As I pointed out earlier, generally covariant field
equations, such as those based on the Ricci tensor, hold in all coordi-
nate systems, whereas the equations of Newtonian theory do not. So in
the process of recovering Newtonian theory we must restrict the set of
coordinate systems under consideration, by requiring, for example, the
satisfaction of additional constraints. In particular, we could consider
coordinate systems in which the "harmonic" coordinate conditions

14 o —

g {;w] =0 4)
are satisfied (the curly bracket is the Christoffel symbol of the second
kind). In such coordinate systems, the three additional second deriva-
tive terms vanish and the Ricci tensor reduces to the form required by
condition (3). The recovery of the expected Newtonian limit then fol-
lows readily from the consideration of weak fields in these coordinate
systems.

Thus if we wish to explain Einstein and Grossmann’s turning away
from the Ricci tensor as a result of their inability to reduce it to the
form required by condition (3), we must assume that neither had suffi-
cient facility or familiarity with tensor calculus to be able to find such a
condition as (4). Or worse, we might assume that neither was even
aware of his freedom to apply coordinate conditions.

It is difficult to believe that both Einstein and Grossmann could
have been ignorant of this freedom and that their ignorance should
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have persisted over several years of intense study and reflection.
Nevertheless, several commentators believe it.}® Their approach is
made at least provisionally viable by the fact that neither Einstein nor
Grossmann made any explicit acknowledgement of their freedom to use
such coordinate conditions in their publications at the time of the
Entwurfpaper. The approach has significant attraction: it enables a very
simple explanation of the apparent fallacy in Einstein’s later "hole"
argument against the physical admissibility of all generally covariant
field equations. Einstein was unaware, it is supposed, that the imposi-
tion of coordinate conditions does not alter the physical content of the
laws of his theory; rather it affects only their mathematical form in re-
stricting them to certain coordinate systems. We shall see later that
Einstein’s "hole" argument can be approached by supposing that Ein-
stein was unaware of a closely related result. That is, that a change in
the coordinate system will affect only the mathematical functions
representing the physical quantities of his theory, without actually
changing the physical quantities themselves. That is, they will "look
different" to us, but, of course, remain physically unchanged by our
change of viewpoint.!?

That such an account of Einstein’s three-year struggle has become
widespread is not surprising. Three out of four of Einstein’s presenta-
tions of the "hole" argument are extremely brief, and admit the stan-
dard interpretation. Moreover, the evidence necessary to acquit Ein-
stein of the charge of ignorance of his freedom to apply coordinate con-
ditions is neither as accessible nor, at present, as readily available as his
publications from this period. Nevertheless, it seems that the
simplifications of the standard account could have been avoided. I do
not mean that we should assume that Einstein never made mistakes.
In the course of this paper we shall see him make and correct quite a
few mistakes. But we could have been more wary of accounts that try

18. See C. Lanczos, "Einstein’s path from special to general relativity,” in
L. O’Raifeartaigh, ed., General relativity: Papers in honour of J. L. Synge (Oxford 1972),
5-19, on 13-14; A. Pais, Subtle is the Lord: The science and life of Albert Einstein (Oxford
1982), 221-223, 243-244; V. P. Vizgin and Ya. A. Smorodinskii, "From the equivalence
principle to the equations of gravitation," Sovier Physics Uspekhi, 22 (1979), 489-513, on
501-502; Earman and Glymour (ref. 1), 256-257. Mehra discusses the rejection of the
Ricci tensor in terms of Einstein’s difficulties in finding a generally covariant conservation
law, but these difficulties became important only at a slightly later stage. J. Mehra, Fin-
stein, Hilbert and the theory of gravitation (Dordrecht, 1974), 11-12.

19. Besides the items in ref. 18, see B. Hoffmann, "Einstein and tensors,” Tensor, 26
(1972), 157-162, on 161, and "Some Einstein anomalies,” in G. Hoiton and Y. Elkana,
eds., Albert Einstein: Historical and cultural perspectives (Princeton, 1982), 91-105, on
100-102; E. Zahar, "Einstein, Meyerson and the role of mathematics in physical
discovery," British journal for the philosophy of science, 31 (1980), 1-43, on 31-33.
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to explain the errors of three years of intense searching as beginners’
blunders.

The first sustained attempt to write an account of these episodes
which would not convict Einstein and Grossmann of such simple and
fundamental errors was made by Stachel.?® He pointed out that the spe-
cial case that Grossmann considered was not just that of an infinitely
weak field, but that of an infinitely weak, static field. He also noted that
Einstein’s expectations for the form of static fields were inconsistent
with his final theory, in the way we have seen here. If Grossmann or
Einstein calculated the components of the Ricci tensor G,, in infinitely
weak fields of this special type, it is easy to reconstruct what they
found. If the metric of the field is of the form (1) and the derivatives
of ¢ are small, it follows that the Ricci tensor’s only nonvanishing com-
ponents of the first order are

1 1| 92 92 . 82
“T2N T 2okl 9k 0l )
1 8%
G = 2¢2 3x0Xx;

where / and j vary over 1, 2, and 3 only. The Gy term looks promis-
ing, but the remaining terms are disastrous. In the source free case,
the field equations take the form

G, =0.

With equations (5), this yields the unacceptable conclusion that ¢? can
vary at most linearly with the spatial coordinates. Thus, if we assume
that static gravitational fields have the form (1), as Einstein believed,
then it follows that the Ricci tensor is unacceptable as the gravitation
tensor. ,

Through this conjecture, we can now see that Einstein and
Grossmann’s rejection of the Ricci tensor need not be explained in
terms of a simple error, but that it may have resulted from a deep-
seated misconception about the nature of static fields. Some problems
remain, however. Beyond the brief remark of Grossmann’s cited ear-
lier, there is no direct evidence that Einstein or Grossmann ever actu-
ally performed the calculation described. Of greater importance, it still
does not tell us whether Einstein and Grossmann were aware of their
freedom to apply coordinate conditions. Of course the assumption that
the static field in question has a metric with components of the form
(1) contains an implicit coordinate condition. For the coordinate system

20. Stachel (ref. 3).
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must be chosen in such a way that the components of the metric do in
fact adopt the required form. But were they explicitly aware of this in
1912 and 1913?

4. THE ZURICH NOTEBOOK

In the Einstein Archive is a notebook originally cataloged as con-
taining notes for Einstein’s lectures at the University of Ziirich in the
period 1909-11. However, the contents of the notebook, all written in
Einstein’s hand, are not lecture notes but scratch-pad calculations.
The subject matter includes statistical physics, thermodynamics, and
basic principles of the four-dimensional representation of electro-
dynamics. The major part of the notebook, which extends from pages
5 to 29, belongs to 1912-13, for it contains calculations made by Ein-
stein during his work on the FEntwurf paper. These calculations are
accompanied by virtually no explanatory text. Fortunately their import
can generally be deciphered.

The section in question begins with the heading Gravitation and con-
tains various formulae, including generally covariant expression of the
equations of motion of a point mass and the laws of conservation of
energy and momentum. Einstein’s treatment here closely corresponds
to that of the early sections of the Entwurfpaper. He investigates vari-
ous basic questions in his new theory, including the properties of gen-
eral and rotating coordinate transformations. This part also contains a
study of generalized d’Alembertian operators and the formation of
associated expressions out of the metric tensor and its derivatives.
These appear to be some of Einstein’s earliest speculations on the prob-
lem of constructing field equations for his new theory. He writes next
to one term "vermutlicher Gravitationstensor'—"supposed gravitation
tensor."

After these preliminaries, which stop at page 14, Einstein began
what seem to be his earliest attempts to construct a generally covariant
gravitation tensor out of the Riemann curvature tensor. He wrote out
this fourth rank curvature tensor explicitly, with the notation
"Grossmann/Tensor vierter/Mannigfaltigkeit"—"Grossmann/tensor of
fourth/rank." This, of course, suggests that this expression was pro-
vided for him by Grossmann, as we would expect at this early stage of
their collaboration. So it is not surprising that it matches Grossmann’s
formula (43) in the Entwurf paper exactly—even including the choice
of letters used to label the indices. The four second derivative terms of
the expression Einstein wrote down were:

21. AE 3 006. John Stachel had already noted its misiabelling.
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Einstein then contracted this once over k and / to form the Ricci ten-

sor and proceeded to calculate its first derivative terms explicitly. Then
the page was ruled off and Einstein wrote:

Py

k

: (6)
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ought to vanish." @)

By comparison with equation (6), we can see that these three terms are
taken from the explicit expression for the second derivative terms of
the Ricci tensor.22

The point of Einstein’s remark seems quite clear. The expression in
(7) "ought to vanish" exactly in case Einstein were to require the Ricci
tensor to have the form (3). Since this expression does not vanish in
general, Einstein had found that the Ricci tensor does not have the
form (3), which he required of a gravitation tensor. So far, what we
have seen here is entirely in accord with Einstein’s presumed ignorance
of his freedom to apply coordinate conditions, for he had not men-
tioned the coordinate conditions that could be used to make these three
terms vanish.

Einstein continued with an extended calculation of the explicit form
of the Riemann curvature scalar. He had some difficulty working with
all the terms since he dropped a factor of 1/4. But, under the con-
straint that the determinant of the metric tensor, written as G, should
be equal to unity, he came to a final result on page 16. There his pur-
pose becomes clear, for he tried to divide the scalar into the contraction
of two tensors, ¥ ., & 3 x- This 3, would presumably again be a
candidate for the gravitation tensor. He then turned to a calculation of
the contravariant components of the Ricci tensor. This calculation is
broken off early as "zu umstéindlich," "too involved."

So far, Einstein seems to have made no real progress since he
discovered the failure of the Ricci tensor to take on the form (3). He
introduced a new result of crucial importance, however, on page 19.
This is the condition:

’j’] 'y ®

Five pages earlier Einstein defined the term in square brackets to be the

Y ki

22. That Einstein sums over k in such terms as g, indicates that he is considering a
weak-field case in a coordinate system with an imaginary x4 ("time") coordinate and in
which the metric is Minkowskian and represented by the unit matrix to zeroth order.



FIELD EQUATIONS 269

Christoffel symbol of the first kind. So, in assuming summation as
implied over repeated indices, we recognize equation (8) as the har-
monic coordinate condition (4). Einstein proceeded to confirm that
this condition reduces the Ricci tensor to the required form of equation
(3). On pages 19-22, Einstein studied the behaviour of the weak field
that would follow from taking the Ricci tensor as a gravitation tensor in
harmonic coordinates. He focused on the energy-momentum conserva-
tion law and the construction of a gravitational field stress-energy
tensor.

Whatever he found there must not have pleased him greatly, for on
page 22 he took a completely new approach to the problem of con-
structing a generally covariant gravitation tensor from the Riemann cur-
vature tensor. Under the heading "Grossmann" he wrote an expression
for the covariant Ricci tensor, denoted by 3, which exactly matches
the contraction of Grossmann’s expression (44) for the Riemann cur-
vature tensor in the Entwurfpaper. Einstein declared:

If G is a scalar, then ﬂgxﬂ = J, tensor lst rank;
il
5 9 3, Z[ﬂl 5 |-y N [i»c’ll)\’ ©)
” 0x; A ) o | 9% kj | &
tensor 2nd rank supposed gravitation tensor. ¥

The interpretation of this equation is made very easy by the fact that
Finstein’s procedure corresponds exactly to his first method of con-
structing a generally covariant gravitation tensor when he returned to
the problem in late 1915.22 There he showed that if one restricts one-
self to coordinate transformations with a determinant of one, then G
becomes a scalar, the first term in the expansion of the Ricci tensor is
itself a tensor as marked and thus the second term, which is taken as
the gravitation tensor, is also a tensor.

This close correspondence to the content of Einstein’s later paper is
in itself a fascinating discovery. It also provides an unexpected
confirmation of Einstein’s claim in the introduction to that paper that,
three years earlier, he and Grossmann "had actually already come quite
close to the solution of the problem given in the following."?* The

23. Einstein, "Zur allgemeinen Relativitidtstheorie,” AW, Sb, 1915, 778-786. 6ompare
this equation (9) with Einstein’s equations (42), (43), and (44) below. '
24. Einstein (ref. 23), 778; cf. Einstein to Sommerfeld, 23 Nov 1915 in A. Hermann,

ed., Albert Einstein— Arnold Sommerfeld Briefwechsel (Basel/Stuttgart, 1968). 23-26.
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reason that Einstein elected to split up the Ricci tensor in this way
appears on page 22. There he showed the application of the coordinate
condition

5
yTe g (10)

v 9%

leads to the reduction of the new gravitation tensor to the form
required in equation (3).

Einstein next investigated the behavior of his new gravitation tensor
‘and coordinate condition particularly in connection with the energy-
momentum conservation law. He constructed what [ take to be the
(coordinate) divergence of the gravitational field stress-energy tensor,
which, he confirmed, vanishes in Minkowski spacetime when viewed
from rotating coordinates. Then, quite abruptly, he broke off the
search for generally covariant gravitation tensors. On page 26, under
the heading "Ableitung der Gravitationsgleichungen"—"derivation of
the gravitation equations"—Einstein wrote out, or perhaps transcribed,
a tight summary of the derivation of identity (12) of his part of the
Entwurf paper. This comprises a major part of the derivation of the
Entwurf field equations. Its appearance here, and the want of these
equations earlier in the sequence of the bound pages of the notebook,
indicate that the Enrwurffield equations and their derivation came after
the attempts to construct an acceptable generally covariant gravitation
tensor outlined above.?

The problem of coordinate conditions

From Einstein’s notebook we learn that his search for a generally
covariant gravitation tensor was dominated by the requirement that it
take the form given in equation (3). We also see that he was already
quite aware of his freedom to apply coordinate conditions to achieve
this form and that he discovered two suitable gravitation tensors that
reduced to the required form with appropriate coordinate conditions.

25. 1 briefly review the internal evidence for dating the material in the notebook to the
period of writing the Entwurfpaper. Its notation, especially the use of y,, for the contra-
variant components of the metric tensor, date it before mid-1914. Its generally elemen-
tary content and the similarity of its treatment to that of the Enrwurfpaper place it at the
very beginning of Einstein’s work on the theory, as does the repeated crediting of the
formula for the Riemann curvature tensor to Grossmann. Note also the-omission of
such concepts as "adapted coordinates” and of the use of variational techniques that be-
came characteristic of Einstein’s work on the theory after 1913.
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FIG. 1 Ziirich notebook, page 5 (right-hand side). The subject of gravitation
is introduced with some elementary results from the Entwurf theory. Compare
ref. 1, 229, 232. These results include the equations of motion of a unit point
mass, written in a Hamiltonian form, and the identification of various "quanti-
ties of motion," which are combined to yield the law of conservation of energy
and momentum, written as the vanishing of the covariant divergence of the
stress energy tensor. © Hebrew University of Jerusalem, reproduced by per-

mission.
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FIG. 2 Zirich notebook, page 19 (left-hand side). In the first three lines, Ein-
stein shows that he intends to contract the Riemann curvature tensor with v,
leaving only a d’Alembertian-like term in second derjvatives of the metric. He
succeeds easily with the harmonic condition y KIT = 0. Of the final result,
given in the last two lines, he remarks, "Result certain. Holds for coordinates,
which satisfy the eq[uation] A¢p =0." © Hebrew University of Jerusalem,
reproduced by permission.
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FIG. 3 Zirich notebook, page 22 (right-hand side). In the second equation,
Einstein breaks up the Ricci tensor into two parts, as described in the text, the

.
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second being his presumed gravitation tensor. Application of the coordinate
condition Y dvy,./ 0k, = O enables reduction of this tensor to a form whose

K
only second derivative term in the metric is of the required d’Alembertian
form. The complete reduced form of the gravitation tensor is at the bottom of

the page. © Hebrew University of Jerusalem, reproduced by permission.
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In solving one problem, however, we have created another. Given
that Einstein had these results prior to the completion of the Entwurf
paper, why did he reject them and construct field equations of severely
limited covariance? Unfortunately, the question cannot be answered
decisively on the basis of the material at hand. However, we can note
that there are two persistent characteristics of the calculations in which
Einstein appears to test out his proposed gravitation tensors. First, they
are concerned with the conservation of energy-momentum and the con-
struction of a gravitational field stress-energy tensor. Second, they
relate to a few special cases: weak and static fields and spacetime viewed
from rotating coordinates. These are sufficient clues to enable a rea-
sonable conjecture why Einstein rejected these gravitation tensors. I
conjecture that his reasons reduce to two basic points:

e Both of the coordinate conditions that Einstein considered fail in at least
one of the special cases in which he would have expected them to hold.

e Einstein believed that the derivation of the Entwurffield equations gave a
unique result, which disagreed with both of the gravitation tensors pro-
posed in the notebook, even after the application of the coordinate condi-
tions.

I will return to the second point at the end of this section.

To begin analysis of the first point, note that Einstein’s most
favored special case in this period is that of the static gravitational field,
which he assumed to have the form given in (1), where ¢? is a function
of the spatial coordinates. Einstein certainly considered this special case
in the notebook (on pages 6 and 21) and after his examination of the
Ricci tensor in harmonic coordinates. Now such a field in the form (1)
does not satisfy the harmonic coordinate condition. So the Ricci tensor
would appear to Einstein not to reduce to the required form of (3) in
this most basic of cases. Einstein would have regarded this failure as a
major defect—perhaps in itself sufficient basis for Grossmann’s claim
that the Ricci tensor does not reduce to A¢ in the case of a weak, static
field. It is not surprising that Einstein should then have continued to
search for another generally covariant gravitation tensor and proceed to
arrive (on page 22) at 3. The coordinate condition associated with
this tensor, equation (10), is satisfied in Einstein’s static field, with the
metric (1).

In the last relevant part of the notebook (page 24 ff.), Einstein rein-
troduced the case of a Minkowski spacetime viewed from Cartesian
coordinates in uniform rotation. We know that Einstein regarded this
case as crucial to the general relativity of motion, so he expected his
field equations to hold in such a case.?® We shall see that Einstein dealt

26. Einstein, "Die formale Grundlage der allgemeinen Relativititstheorie,” AW, Sb,
1914, 1030-1085, on 1067-1068 (received 29 Oct 1914).
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with this case in a manner that suggests that he expected the gravitation
tensor to retain the form (3). This assumption was natural. For he
readily, but mistakenly, came to believe that his Entwurffield equations
held in such a rotating system—and that they have a gravitation tensor
of the form (3).27” Now coordinate condition (10) does not hold in this
case, nor does the harmonic condition, another argument for Einstein
against the Ricci tensor. If Einstein approached the problem in the way
set out here, he would inevitably be drawn to reject 3 j as a gravitation
tensor.

This interpretation is consistent with a letter Einstein wrote to Som-
merfeld late in 1915, in which he told him of his success in discovering
generally covariant field equations:28

One can eminently simplify the whole theory by choosing the reference
system so that v/—g = 1. Then the equations take on the form

S ahife}feto

] a X af

I had already considered these equations three years ago with Grossmann
(up to the second term on the right hand side). But then I had come to
the result that they did not yield Newton’s approximation, which was
erroneous.

This confirms the dating of the material in the Ziirich notebook, for
the field equation described here is exactly the one that would follow
from placing 37 in the general field equation (2). The rejection of
this equation, as Einstein tells us here, was due to a mistaken belief
that it did not provide Newtonian theory as an approximation. We
know that he was aware then that the coordinate condition (10) led to a
reduction of 3} to the expected form in the weak-field case. We can
only conclude that he had some objection to the coordinate condition
itself.

In a letter to Paul Hertz, probably written in 1915, Einstein men-
tioned that he had had serious difficulties with coordinate conditions.?
The general context is the problem of "adapted" coordinates, which he
introduced with Grossmann in 1914. He singled out coordinate condi-
tion (10) as one coordinate that he had considered, but, unfortunately,
he did not give further details on its use or the reasons for its rejection.

27. A. Einstein to M. Besso, ca. Mar 1914, in P. Speziali, ed., Albert Einstein— Michele
Besso: Correspondence, 1903-1955 (Paris, 1972), 52-53.

28. A. Einstein to A. Sommerfeld, 23 Nov 1915 (ref. 24). Tis the trace of T,.

29. A. Einstein to P. Hertz, 22 Aug 19157, EA 12 202.
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The reduction of the gravitational potentials

The last of the errors responsible for Einstein’s rejection of the
Ricci tensor as the gravitation tensor was an insistence that the gravita-
tion tensor must adopt the form (3) in rotating coordinate systems after
the application of the appropriate coordinate condition. This was the
least supportable of Einstein’s misconceptions. Thus it is not surprising
that its discovery came at an early stage in Einstein’s 1915 return to
general covariance.

The other errors were products of an extremely coherent but
nonetheless mistaken view of static and weak fields. We have seen
how Einstein came to believe that the metric degenerated in static fields
to the form of (1), where g4 = ¢? is a function of the spatial coordi-
nates and, due to the constancy of the remaining components of the
metric, three dimensional space is flat. This result seemed to be
anchored firmly in the principle of equivalence. In his earlier theory,
Einstein had invoked the principle to produce a homogeneous field by
transforming to a coordinate system in uniform rectilinear acceleration.
In terms of the Entwurftheory, the field that resulted had the degen-
erate form given above, with g4 now a linear function of the spatial
coordinates. It seemed entirely unremarkable to generalize from this
very special case to the case of more general static fields through the
relaxation of this condition, which now allowed g4 to be an arbitrary
function of the spatial coordinates. But this last generalization turned
out to be inadmissible from the standpoint of the final general theory of
relativity and led Einstein to a view of static fields inconsistent with that
theory. For according to it, static fields are not spatially flat in all but
very few exceptions. At the time, however, the view that arbitrary
static fields are spatially flat was simple and attractive, for it promised to
reduce the number of gravitational potentials from the unwieldy ten of
the general case to a more manageable and familiar single potential, g44.

Einstein might well have been able to recover from this mistake
quite rapidly were it not for an unfortunate coincidence. Einstein
required that the gravitation tensor reduce to the form (3) in appropri-
ate coordinate systems. This amounts to requiring that the gravitation
tensor reduce to the d’Alembertian of the metric tensor, Og,,, in the
weak-field case. The naturalness of this requirement is virtually
unchallengeable. It guarantees at least Lorentz covariance for the
theory in the weak-field case; it guarantees that this weak-field theory
will generalize Newtonian theory in much the same way as electro-
dynamics generalizes electrostatics, and it does both in about the sim-
plest way possible.

However, when combined with the assumption that the field equa-
tions have the form (2), this natural requirement led to results
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inconsistent with Einstein’s final general theory of relativity. For it led
to the weak-field equations

Dgpl}:KT,u,v ’ (11)
whereas his final theory yielded
Og,, = k(T,, — %g,w 7 (11)

in similar circumstances.’® Unfortunately for Einstein, it turned out
that his weak field equation (11) could be solved in appropriate cases to
yield exactly the static fields he expected from his earlier considera-
tions. Equations (11'), however, do not yield such solutions.

As Einstein showed a little later in 1913, in the case of a static weak
field, whose only source to first order is a pressureless, static dust cloud
of density py, weak-field equations (11) reduce to

Agas = kCpo
Ag,, =0 (all otheru,v)

where the asterisks denote deviations from Minkowskian values.3! Pro-
vided the second equation holds everywhere in spacetime, it can be
solved to yield constant values for all the g,,, excepting gs44. The first
equation then solves to yield a g44 that behaves exactly like the familiar
Newtonian potential. If the background Minkowskian metric is taken
to have the values of equation (1), then this solution amounts to the
recovery of exactly the metric that Einstein expected in static fields.
Such a simple reduction to a single gravitational potential does not
occur in the final theory. However, to Einstein at this early stage, it
would have seemed quite natural, for some such reduction had to occur
in the process of recovering Newtonian gravitation theory. And, of
course, this simple reduction agreed exactly with the type of reduction

30. Compare with Einstein’s own later writing of the weak-field equations of his final
theory in A. Einstein, The meaning of relativity (London, 1976), 83. After reduction with
the harmonic coordinate condition, they are

ax2 wr ™ B )
where y,, are the weak-field deviations of the components of the metric tensor from
their Minkowskian values. Here Einstein began with the presumption that all the y,,
were of the same order. He later rejected this presumption. This altered the further
development of these weak-field equations and their relationship to the Newtonian case.
See A. Einstein, L. Infeld, and B. Hoffmann, "The gravitational equations and the prob-
lem of motion," Annals of mathematics, 39 (1938), 65-100.

31. Einstein, "Zum gegenwirtigen Stande des Gravitationsproblems,” Physikalische
Zeitschrift, 14 (1913), 1249-1266 (lecture of 23 Sep 1913), 1259.
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Einstein believed would happen in static fields on the basis of a quite
separate consideration, the principle of equivalence.

This reduction of the number of gravitational potentials in the
weak-field case followed also from the form of equation (11) in weak
fields that need not be static through an order-of-magnitude argument.
If the source of the field is a dust cloud, which now need not be static,
then the (4,4) term of the stress-energy tensor on the right-hand side
of equation (11) is, typically, significantly larger than all its other com-
ponents. Transferring this property to the field term on the left-hand
side, it follows that the only first order deviations from constant values
in the components of the metric tensor are in the g4, term.3?

This argument cannot be used on the weak field equations (11') of
Einstein’s final theory. In this final theory, more components of the
metric than gy, are variable. However, only the g44 component appears
in the equations of motion of a slow moving point mass. From the
point of view of the final general theory of relativity, this alone enables
Newtonian theory to account successfully for the motion of a slow
moving point mass in terms of one gravitational potential only. Ein-
stein commented to Besso late in 1915 on this remarkable feature of
the equations of motion, which is common to both the Entwurftheory
and the final theory. Perhaps this also helped to convince Einstein of
his early misconceptions about the ease with which a reduction in the
number of gravitational potentials could be achieved.

Thus, in 1912 and 1913 Einstein found himself driven to a single
viewpoint by the interweaving of conclusions from quite disparate
sources: in both weak and in static fields the number of gravitational
potentials effectively reduces from ten to one in the same way. This
agreement underpinned his confidence in equation (11) as the weak-
field equations and in metric (1) as the metric of static fields and
helped make his passage to his final field equations such a difficult one.

The account being developed here is supported by comments Ein-
stein made late in 1915, after he returned to seek generally covariant
field equations and began to realize his earlier mistakes. "The difficulty
was not finding generally covariant equations for the g,,," he wrote Hil-
bert in mid-November, "for this worked out easily with the help of the
Riemann tensor. But it was difficult to recognize that these equations
formed a generalization and, indeed, a simple and natural generalization
of Newton’s law."3* A month later, after all the difficulties were finally
resoived, Einstein wrote to Besso in a more buoyant mood:3*

32. A very similar argument to this appears in Einstein, Infeld, and Hoffmann (ref.
3N, 12-73.

33. Einstein to Hilbert, post-marked 18 Nov 1915, EA 13 091.

34. Einstein to Besso, 21 Dec 1915 (ref. 27), 61. See also Einstein to Besso, 10 Dec
1915, ibid., 59-60, for a briefer statement of surprise at the variability of g;; — g33 in the
weak-field case.
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The most delightful is the agreement of the perihelion motion and gen-
eral covariance, the most remarkable however is the fact that Newton’s
theory of the field is already incorrect in equations of the 1st order
(appearance of g;;— g33). Only the fact that &11— &3 do not appear in
the equations of motion effects the simplicity of Newton’s theory.

Max Born, who was at this time in Berlin and in close contact with Ein-
stein, surely had it on the best authority when he wrote in 1916:35

What is remarkable about this [weak field] is that the gy, g3; - -+ in no
way come out to be zero, so that there is more than one gravitational
potential already in the first approximation; Einstein had first supposed
the opposite and was forced into detours and incorrect assumptions
before he found that his supposition was not confirmed.

The derivation of the Entwurf field equations

The awkward episode of his 1912 field equation in his earlier theory
of static fields seems to have convinced Einstein of the necessity of
ensuring from the very beginning that any new field equation satisfy
the conservations laws. This means that one should be able to con-
struct a gravitational field stress tensor, or a stress-energy tensor in the
four dimensional case, using the field equations. This recognition pro-
vides the key to the understanding of some of the pages in the Ziirich
notebook and leads us directly to the derivation of the Entwurf field
equations.

- The law of conservation of energy-momentum, written as the van-

ishing of the covariant divergence of the stress-energy tensor ©,,, takes
the form
> [V—gg © J— sz—g—ag“"@) =0 (12)
ny axv et 2 uy a'xa' -

in equation (10) of Einstein’s part of the Entwurf paper. The second
term of this expression can be interpreted as the rate of transfer of
energy-momentum out of the gravitational field. Thus, by analogy with
the first term in equation (12), it should be possible to set it equal to
the coordinate divergence of a tensor density corresponding to the grav-
itational field stress-energy tensor 6,, . If we write this equation and
then, using equation (2), substitute the gravitation tensor r,, for the
stress-energy tensor ©,,, we then recover the equation

35. M. Born, "Einsteins Theorie der Gravitation und der allgemeinen Relativitit," Phy-
sikalische Zeitschrift, 17 (1916), 51-59, on 58.
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This equation contains only the metric tensor and its derivatives and
thus must be an identity. If we assume that the gravitation tensor has
the form given in equation (3), then we can follow Einstein in taking
the readily constructed

o (— 1l —98w
axy[ ggoy.Kop.v - 2#21/ g axa F,_;,y . (13)

d | —. 98w 0w 1 08,0 9Yu
y,y%rp axa g‘)'aﬁ axg- axB 2 gBU‘YTp ax.r axp
_ / agﬁ“’ a 67;1.11
#Eﬁ ¢ 0x, 09X, oF 0.x (14)

as approximating equation (13), where the equality in equation (14) is
understood to hold only for quantities in the second order.

The fact that equation (13) should be an identity amounts to a
simple test of whether the field equations in question satisfy the conser-
vation equations and, conversely, provides a simple method of con-
structing the gravitational field stress-energy tensor. In the weak-field
case considered here, we can read off an approximate expression for
this tensor from the left-hand side of equation (14), by comparison
with (13). On pages 19-21 of his notebook, immediately following the
demonstration of how the harmonic coordinate condition reduces the
Ricci tensor to the form (3), Einstein probed the relationship between
his new field equations and the conservation laws by using exactly this
method in the weak-field case. Further on pages 24-25, just after the
construction of the gravitation tensor 3, Einstein confirmed that the
expression that he wrote as

d
dx;

agaﬂ ayaB

aga 87aﬁ
: Vie dx, 9dx;

, 1.9
Yie dx. Ox,

2 d0x,

(15)

vanishes in Minkowski spacetime as viewed from Cartesian coordinates
rotating at uniform speed. With summation over repeated indices, this
expression is equivalent to the coordinate divergence of the gravitation
field stress-energy tensor recoverable from (14), although the J—g fac-
tor is missing and the limitation to weak fields no longer seems to
apply. Since this tensor is derived from a gravitation tensor of the form
(3), it seems that Einstein expected the gravitation tensor to have this
form in the rotating-coordinate case considered here. Presumably his
confirmation of the vanishing of this expression (15), which
corresponds to the satisfaction of the conservation laws, would have
confirmed for Einstein the correctness of this expectation.

We can now step directly to the method of deriving the field equa-
tions used in the Entwurfpaper, which amounts to a simple inversion of
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the method used to construct equation (13). As Einstein showed in
section 5 of his part of the paper, once an identity has been decided
upon to stand for equation (13), then one reads the gravitation tensor
and gravitational field stress-energy tensor directly from it. The deriva-
tion of this identity,

d I a')’7'p ag‘rp _L ) I ay'p ag'rp
agp 9x, TEYap dxg 90X, ZQEP 0x, TEYap dx, 9xg
=2YV-¢ ag“”l}l s (7 g e (16)
uv l ax aB GxB
0Yur fmp 08, Y1
a;p'}'aﬂgfp 9x, axB 2GBZTp7au‘)’BV 9x, aXB

]. ag‘)’p 87Tp ]

4a§,p7p.y7aﬁ axa aXB ’

is given by Grossmann in his section of the paper. It amounts to a gen-
eralization of equation (14) from the weak-field case to the general
case. Equation (14) was constructed originally by expanding the terms
on its right-hand side and retaining only quantities of second order to
yield the left-hand side. The bulk of Grossmann’s derivation of iden-
tity (16) is devoted to making this process exact. He took the terms of
third order, which were dropped in constructing equation (14), and
reworked and redistributed them until the identity had the form
required by equation (13). This yielded identity (16) directly.

For our purposes, the important point is that Einstein introduced
these identities as "eindeutig bestimmt," "uniquely determined."3¢ This,
of course, suggests that he believed the Enrwurf field equations to be
uniquely determined, a belief that he stated explicitly a little later in
1913.37 This conclusion seems to have put an end to his search for gen-
erally covariant field equations, so it is of great interest to us here.
Neither Einstein nor Grossmann give any proof of their crucial result,
the uniqueness of identity (16). On the basis of equations (13) and
(3), Einstein required the identity to have the form

36. Einstein and Grossmann (ref. 1), 237.
37. Einstein, "Physikalische Grundlagen einer Gravitationstheorie,” Naturforschende
Gesellschaft, Zirich, Vierteljahrsschrift, 58 (1913), 284-290 (lecture of 9 Sep 1913), 289.
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"sum of differential quotients

1l —98u 9
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B

+ further terms which fall away in the first approximationg ."

It is necessary to spell out the conditions which this identity had to
satisfy more clearly; otherwise there is no possibility of developing a
uniqueness proof. Most maturally, we would require the gravitational
field stress-energy tensor to be a sum of terms quadratic in the first
derivatives of the metric tensor. From comparison with equation (13),
we see that this requirement specifies the form of the left-hand side of
equation (17), which is just the usual divergence of this tensor. Fol-
lowing the form of Einstein’s final result, we can also require that the
"further terms" on the right-hand side can be constructed out of the
metric tensor and its first derivatives only.

It is a little surprising to find that these natural, even somewhat re-
strictive, conditions-still do not specify the identity uniquely. It is pos-
sible to add further terms to equation (16), which would still leave the
equation an identity and do not violate any of the above conditions.3?
This suggests that Einstein was mistaken in his claim that the identity
(16) was unique and thus mistaken in his belief in the uniqueness of
the Enmwurf field equations. Before we convict Einstein of this
mistake—and perhaps also Grossmann, although the uniqueness claim
does not appear in his part of the paper-—we should consider the possi-
bility that they placed an additional constraint on the form of the left-
hand side of the identity.

In identity (16) the left-hand side contains only quantities built up
out of the derivatives of the metric tensor in which the wv indices of

38. For example, consider the following identity:
[2x/—g 8875878 ~8:V-¢5 8,875 87f ~W-¢ 8,587 85

1 .
l( vV—§ gap.'), o’ g,a::
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This identity can be added to identity (16) to yield a new identity consistent with all the
conditions stated so far. Note that the right-hand side of the identity written above van-
ishes to quantities in the second order of smallness. The discovery of such identities is
by no means easy. This one was found by comparison of different gravitation tensors
generated by Lagrangian methods.
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ax, K 0x, 0xg
this was no accident. Einstein and Grossmann may have required that
the terms on the left-hand side have this form only. They do not state
this explicitly. However they may have tried to indicate it with their
use of the term "sum of differential quotients." Their use of this term is
sufficiently restricted in the Entwurfpaper to allow it to refer to quanti-
ties that are not just the sum of differential quotients, but of differential
quotients summed in the special way I have indicated here.

Why they would impose such a restriction is not entirely clear. The
gravitational field stress-energy tensor derived in the weak-field case
from equation (14) is built up out of terms of this form alone. Perhaps
they wanted to retain this form in the Entwurfcase, which was built up
as a generalization of the weak-field case. Given the assumption that
the gravitation field stress-energy tensor has to be made up out of
terms quadratic in the derivatives of the metric tensor, we can add no
further terms to the existing terms of the weak-field stress-energy ten-
sor without interfering with the reduction to the weak-field case of
(14). This would certainly restrict the summation to the way described
above, for it would require the gravitational field stress-energy tensor to
be exactly the one derived from equation (14).

In any case, if Einstein and Grossmann did use this additional con-
straint, then it can be proved that their identity (16) is unique. (The
proof is deceptively difficult.) The Entwurf field equations would be
uniquely determined. Thus, with the conclusion of his work on the
Entwurf paper, Einstein believed that he had found that the naturally
suggested generally covariant tensors were inadmissible as gravitation
tensors since they failed to yield the correct Newtonian limit and,
furthermore, that he had been able to derive the only acceptable field
equations, which did not turn out to be generally covariant.

It is clear that the probiem in the derivation rests on Einstein’s
misconception of the Newtonian limit. The general method is sound.
The familiar contracted Bianchi identities can be written in the form of
equation (13) and from them Einstein’s final generally covariant field
equations recovered. But Einstein ruled out consideration of this iden-
tity by requiring the right-hand side of the identity to have the form
(17). This meant that he could only recover a gravitation tensor with
the form (3) from his identities: the use of the Bianchi identities would
yield the Einstein tensor as the gravitation tensor and it does not have
this form. Moreover, Einstein’s method could not even yield the field
equations of his final general theory of relativity after they had been
reduced by some coordinate condition. Einstein’s method assumes that
the weak-field equations, in appropriate coordinate systems, take the
form (11), whereas his final theory yields the weak-field equations (11')

these derivatives are always summed as 2 . Perhaps
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in similar circumstances.

Finally, Einstein still admitted the possibility of generally covariant
field equations if derivatives higher than the second in the metric ten-
sor were allowed. Indeed, in 1914 he insisted that there must be a gen-
erally covariant generalization of the field equations if they have any
physical content.?® But this belief seems not to have had any practical
effect on his work.

5. THE ARGUMENTS AGAINST GENERAL COVARIANCE

With the conclusion of the Entwurf paper, the problem of the field
equations had altered radically. The question was no longer "What are
the generally covariant field equations?" It had become "Why are there
not any second order generally covariant field equations?" and "How
does the limited covariance of the field equations fit with the require-
ment of the general relativity of motion?" Once Einstein took this
approach, answers to the first question came fairly fast.

We can date the discovery of the first answer to the first question
quite exactly—August 15, 1913—from Einstein’s correspondence with
Lorentz.# Einstein’s analysis focussed on the law of conservation of
energy-momentum, written as

Zaivlzm,+tm,]=0, (18)

where T ., and t,, are the mixed stress-energy tensor densities for
matter and the gravitational field respectively (the v index is contra-
variant). Einstein’s argument has the general form of a reductio ad
absurdum. If the theory were generally covariant, then we would expect
the stress-energy tensor for the gravitational field to be generally
covariant and share the same transformation properties as the usual
stress-energy tensor since they both enter into equations such as (18)
in the same way. But if this were the case, equation (18) could not be
generally covariant. Indeed, a "closer consideration" shows that such an
equation (18) could only be covariant under linear coordinate transfor-
mations.*! This means that the conservation laws and, as a result, the

39. Einstein, "Prinzipielles zur verallgemeinerten Relativititstheorie," Physikalische
Zeitschrift 15 (1914), 176—180 (received 24 Jan 1914), 177-178.

40. A. Einstein to H. A. Lorentz, 16 Aug 1913, EA 16 434. See also Einstein and
Grossmann (ref. 1), 260-261; Einstein (ref. 31), 1257-1258, and (ref. 48), 178.

41. Einstein (ref. 48), 178. Einstein did not tell us what this "closer consideration"
was. Perhaps he wrote 1/7/—g times the left-hand side of equation (18) in terms of a
covariant divergence in the following way:
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