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in similar circumstances.

Finally, Einstein still admitted the possibility of generally covariant
field equations if derivatives higher than the second in the metric ten-
sor were allowed. Indeed, in 1914 he insisted that there must be a gen-
erally covariant generalization of the field equations if they have any
physical content.? But this belief seems not to have had any practical
effect on his work.

5. THE ARGUMENTS AGAINST GENERAL COVARIANCE

With the conclusion of the Entwurf paper, the problem of the field
equations had altered radically. The question was no longer "What are
the generally covariant field equations?” It had become "Why are there
not any second order generally covariant field equations?" and "How
does the limited covariance of the field equations fit with the require-
ment of the general relativity of motion?" Once Einstein took this
approach, answers to the first question came fairly fast.

We can date the discovery of the first answer to the first question
quite exactly—August 15, 1913—from Einstein’s correspondence with
Lorentz.# Finstein’s analysis focussed on the law of conservation of
energy-momentum, written as

> [zay+tw]=0, (18)

0Xx,

where T, and t,, are the mixed stress-energy tensor densities for
matter and the gravitational field respectively (the v index is contra-
variant). Einstein’s argument has the general form of a reductio ad
absurdum. If the theory were generally covariant, then we would expect
the stress-energy tensor for the gravitational field to be generally
covariant and share the same transformation properties as the usual
stress-energy tensor since they both enter into equations such as (18)
in the same way. But if this were the case, equation (18) could not be
generally covariant. Indeed, a "closer consideration" shows that such an
equation (18) could only be covariant under linear coordinate transfor-
mations.*! This means that the conservation laws and, as a result, the

39. Einstein, "Prinzipielles zur verallgemeinerten Relativititstheorie," Physikalische
Zeitschrift 15 (1914), 176—180 (received 24 Jan 1914), 177-178.

40. A. Einstein to H. A. Lorentz, 16 Aug 1913, EA 16 434. See also Einstein and
Grossmann (ref. 1), 260-261:; Einstein (ref. 31), 1257-1258, and (ref. 48), 178.

41. Einstein (ref. 48), 178. FEinstein did not tell us what this "closer consideration”
was. Perhaps he wrote l/v—g times the left-hand side of equation (18) in terms of a
covariant divergence in the following way:

l/v—g[\/—g TY +V—gt‘;],,, = [T; +2l;, + L

L],
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theory as a whole, can only hold in coordinate systems related by linear
coordinate transformations, which contradicts the assumed general
covariance. '

Einstein was very pleased and, perhaps, even somewhat relieved
with the discovery of this argument. In his letter to Lorentz he
confided: "Only now does the theory please me, after this ugly dark spot
seems to have been removed." We can understand Einstein’s satisfac-
tion, for there is a pleasing coherence in the way that the conservation
laws first circumscribe powerfully the range of admissible field equa-
tions, as he found in the derivation of the Entwurffield equations, and
then guarantee that the theory cannot be generally covariant. After
Einstein felt that he had stronger reasons for rejecting the admissibility
of generally covariant field equations, he was still pleased to note that
the stronger restriction of the covariance of the theory to linear coordi-
nate transformations should follow from the conservation laws. He
wrote Ehrenfest: "What can be more beautiful than that necessary spe-
cialization flowing from the conservation. laws."4

Of course what Einstein had not allowed for in his argument is that
a generally covariant theory, with generally covariant field equations,
might have a stress-energy tensor for the gravitational field which is
itself not a generally covariant tensor, without compromising the gen-
eral covariance of the theory. This is the case in the final general
theory of relativity. That Einstein should miss this point is by no
means a trivial oversight. The basic nature of the theory seems to
demand that any physically meaningful quantity be represented by a
generally covariant tensor. That this is not the case for the gravitational
field stress-energy tensor of the final theory was to be a source of some
confusion and is now explained in terms of the impossibility of localiz-
ing gravitational field energy and momentum.

Certainly we could not expect Einstein to anticipate this at a time
when he still believed that there were no second order, generally
covariant field equations. There was, however, a second error in
Einstein’s use of this consideration. Einstein had concluded from it
that the covariance of all versions of his new theory would be limited to
linear transformations. This included the Enrwurftheory. But, as we
have seen, the restriction to linear coordinate transformations depended
on the general covariance of the stress-energy tensor for the gravita-
tional field and this tensor in the Entwurf theory was not generally
covariant. So the argument from the conservation law did not entail a

All terms on the right-hand side are generally covariant tensors with the exception of
8uv.o Which is a tensor under linear coordinate transformations only. Thus the left-hand
side can only be covariant under linear coordinate transformations as well.

42. Einstein to Ehrenfest, 1913, EA 9 342.
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limitation of the covariance of the Entwurftheory to linear coordinate
transformations. Einstein himself pointed out this error early in 1914
in a footnote to the paper in which he began concentrated study of the
covariance properties of the Entwurf theory.®* This was an important
point, since Einstein came to regard it as essential that the Entwurf
theory be covariant under more than just linear coordinate transforma-
tions if it was to realize any extension of the principle of relativity.

The argument from the conservation law then seems to have
dropped from sight. It had already been eclipsed by what seemed to be
a stronger argument against generally covariant field equations, the
"hole" argument, discovered sometime late in 1913 and 19144 The
argument is intended to show that if the field equations are generally
covariant, then a given stress-energy tensor cannot uniquely determine
the gravitational field through the field equations. The first three ver-
sions of the argument are virtually identical. I quote the second ver-
sion:

If the reference system is chosen quite arbitrarily, then in general the g,,, can-
not be completely determined by the ¥ ., [stress-energy tensor density].
For, think of the T ,, and g,, as given everywhere and let all ¢ ., van-
ish in a region of ® of four dimensional space. I can now introduce a
new reference system, which coincides completely with the original out-
side ®, but is different to it inside ® (without violation of continuity).
One now relates everything to this new reference system, in which
matter is represented by ', and the gravitational field by g’,,. Then it
is certainly true that

I IO’V = I ay
everywhere, but against this the equations
8w = 8u

will definitely not all be satisfied inside ®. The assertion follows from
this.

If one wants a complete determination of the g,, (gravitational field)
by the ¥ ,, (matter) to be possible, then this can only be achieved by a
limitation on the choice of reference systems.

43. Einstein and Grossmann, "Kovarianzeigenschaften der Feldgieichungen der auf die
verallgemeinerte Relativitiitstheorie gegrindeten Gravitationstheorie," Zeitschrift flir
Mathematik und Physik, 63 (1914), 215-225, on 218.

44. Ordered by dates of publication, Einstein and Grossmann (ref. 1), 260-261; Ein-
stein (ref. 39), 178; Einstein and Grossmann (ref. 43), 217-218; Einstein (ref. 26),
1066-1067. The argument does not appear in the body of the published text of
Einstein’s address to the Congress of German Natural Scientists and Physicians in 1913,
although it appears.in a footnote to the printed text (ref. 38), 1247 it occurs in a letter to
L. Hopf of 2 Nov 1913 (EA 13 290) and in the addendum to the journal printing of the
Entwurfpaper and not in the earlier separatum.
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Einstein claimed to have shown with this argument that a single
stress-energy tensor can determine two different gravitational fields, if
the field equations are generally covariant. Einstein’s argument seems
to rest on a simple mistake: g',, and g,, do not represent different
gravitational fields. Rather they represent the same gravitational field,
but as it appears in two different coordinate systems. All Einstein
seems to have shown is that a given gravitational field will look
different if viewed from different coordinate systems. On this basis,
there seems no reason to doubt that the given stress-energy tensor does
specify a unique gravitational field. This mistake is a trivial one and it
has become customary in accounts of this argument to convict Einstein
of making it.5 Grossmann must then also have made the same mis-
take, for he was still collaborating with Einstein at this time and even
coauthored one of the papers in which the argument appears.

That both Einstein and Grossmann could repeatedly make this same
trivial mistake on such an important question is highly implausible,
especially if we recall that Einstein was quite comfortable with the
notion of applying coordinate conditions to generally covariant gravita-
tion tensors prior to the completion of the Entwurf paper. Moreover,
there is unequivocal evidence in both of the papers, in which the third
and fourth versions of the "hole" argument appeared, that Einstein and
Grossmann recognized that a change in coordinate system did not pro-
duce a new field, even though the components of the metric tensor
may change.*¢ In both papers, an arbitrary infinitesimal change in the
ten components of the metric tensor g, is introduced. This is broken
up into two parts, the first of which corresponds to a change in the
gravitational field between "adapted" coordinates, the second to a
change "that can be produced through mere variation of the coordinate
system without a change of the gravitational field.... A variation of this
kind is determined by four functions (variations of the coordinates),
which are are independent of one another."4? This shows a clear recog-
nition of the fact that a change in the coordinate system does not alter
the gravitational field, although the components of the metric tensor
will change, and that this arbitrariness in the representation of the field
is associated with four independent conditions.

Fortunately, it is possible to give a quite different account of the
content and import of the "hole" argument, as it appears in its fourth
version, which does not convict Einstein of a trivial mistake, and I will
argue that this interpretation can also be used on the earlier three ver-
sions. The essential part of the text of this fourth version reads as

45. See ref. 18 and ref. 19.
46. Einstein and Grossmann (ref. 43), 223; Einstein (ref. 26), 1071.
47. Einstein (ref. 26), 1071-1072.
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follows:

We consider a finite region of the continuum X, in which no material
process takes place. Physical happenings in ¥ are then fully determined,
if the quantities g,, are given as functions of the x, in relation to the
coordinate system K used for description. The totality of these func-
tions will be symbolically denoted by G(x).

Let a new coordinate system K' be introduced, which coincides with
K outside X, but deviates from it inside X in such a way that the g',,
related to the K' are continuous everywhere like the g,, (together with
their derivatives). We denote the totality of the g',, symbolically with
G'(x). G'(x) and G(x) describe the same gravitational field. In the
functions g',, we replace the coordinates x', with the coordinates x,, i.e.,
we form G'(x). Then, likewise, G'(x) describes a gravitational field
with respect to K, which however does not correspond with the real (or
originally given) gravitational field.

We now assume that the differential equations of the gravitational
field are generally covariant. Then they are satisfied by G'(x") (relative
to K') if they are satisfied by G(x) relative to K. Then they are also
satisfied by G'(x) relative to K. Then relative to K there exist the solu-
tions G(x) and G'(x), which are different from one another, in spite of
the fact that both solutions coincide in the boundary region, i.e., happen-
ings in the gravitational field cannot be uniquely determined by generally
covariant differential equations for the gravitational field.

This version of the argument is identical to the three earlier ver-
sions, with the exception of the addition of a new and crucial step at
the end. This step involves the construction of a new gravitational field
that is also a solution of the field equations with the same stress-energy
tensor and in the same coordinate system as the original field. It makes
clear that the introduction of the alternate coordinate representation
G'(x") of the original field is only a device to enable construction of the
new field. There is clearly no confusion over whether G'(x’') represents
a new field. Einstein wrote: "G'(x') and G(x) describe the same gravita-
tional field."

The way in which Einstein constructed this new field in the argu-
ment does bear some elucidation since Einstein’s account of it is quite
brief. The construction proceeds as follows. Consider a particular point.
of the spacetime manifold, called P, for convenience, in . It will have
coordinates x, in K and x', in K'. There will be another point P, in £
whose coordinates in K’ are numerically the same as x,. The gravita-
tional field at this point P, in coordinate system K' will be described by
the functions G'(x,). Now consider the new field that would arise at
the original point P, if the functions describing the field at P, were not
G(x,) but G'(x,). Clearly the fields described by the functions G(x,)
and G'(x,) are related to the same coordinate system K since the argu-
ments of both functions are the same numbers x,, the coordinates of P,
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in K. But equally clearly they cannot describe the same field since G
and G' are not the same functions. If a new field is constructed in this
way for all points in the spacetime manifold, then this new field will
still satisfy the field equations. For we have done nothing to change
the mathematical form of G'(x’',), which, of course, is a solution to the
field equations, in constructing the new field. Rather, all that has been
done occurs on the conceptual level. That is, we reassign the points in
the spacetime manifold which are thought of as belonging to a given set
of coordinates—specifically, the point P, in the manifold is now
assigned to the coordinates x, in the coordinate system K'. Since the
stress-energy tensor vanishes everywhere in X, its new components,
generated by exactly the same method as the new field, will still vanish
everywhere in . That is, its components will agree everywhere with
those of the original stress-energy tensor in X. Thus both the new field
and the old field are solutions to the field equations with the same
stress-energy tensor in the same coordinate system K —and Einstein’s
result is established.

The case of the three earlier versions of the argument still remains.
Were it not for one crucial piece of evidence, it would be difficult to
escape the conclusion that Einstein and Grossmann were presenting a
different argument to the fourth version and one in which the trivial
mistake outlined above is committed. That crucial piece of evidence is
a footnote appended to the sentence ending "the equations g',, = g,,
will definitely not all be satisfied inside ®," in the second version of the
argument quoted above:

The equations are to be understood in such a way that each of the
independent variables x', on the left-hand side are to be given the same
numerical values as the variables x, on the right-hand side.

In other words, Einstein required the inequality of g, and g,, to be
read in a special way. In terms of points P, and P, defined earlier, the
g'., at P, are unequal to the g,, at P,. This, of course, is the inequality
crucial to the fourth version of the argument. If all Einstein were say-
ing was that the different coordinate representations of the original field .
8., and g’,, were actually different fields, then there would have been
no reason to specify that the inequality be read in this special manner.
This suggests that all four versions of the argument were under-
stood by Einstein to have the same content as the fourth and that his
greatest mistake was only to present the first three versions in too com-
pact a form to be readily understood. Presumably the crucial stipula-
tion on how the inequality of the g,, and g',, was to be read was obvi-
ous to Einstein, for it was appended only as an apparent afterthought to
the second version of the argument in the footnote quoted. (It could
equally have been added to the first and third versions and thus made
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their content clearer as well.) Perhaps if we were all Einsteins then such
subtleties would be equally clear to us too!

Stachel has pointed out that, in effect, what Einstein did in the final
step of the argument is to generate a new field from the old one by
means of a point transformation.*® Specifically, under a point transfor-
mation from P, to P,, the image field represented in the image of coor-
dinate system K’ amounts to the field with coordinate representation
G’'(x). Further, Stachel has argued that, with the discovery of his gen-
erally covariant field equations in 1915, Einstein was able to draw a
very significant physical conclusion about the relationship between the
spacetime manifold and the metric field from the machinery of the
"hole" argument. This was that the individual points of the spacetime
manifold have no independent individuality and can only be dis-
tinguished with reference to the metric field (or perhaps some other
material phenomena) in spacetime. Thus it is the final step of the
"hole" argument that is erroneous.

Within this understanding, it is impossible to drag the metric field
away from a physical point in empty spacetime and leave that physical
point behind. For the physical individuation of the point only has
meaning in terms of the metric field at that point. Or, in the terms
Einstein used in the fourth version of the argument, it makes no sense
to remove one field, G(x), leave behind the bare spacetime manifold,
as represented by the coordinate system K, and then construct a new
field, G'(x), on this bare manifold. For this presupposes the concept of
a spacetime manifold, replete with points that have an existence
independent of the metric field. Take away the metric field and one
takes away the spacetime points with it.4

This account is derived from—and indeed explains—Einstein’s
comments about the "hole" argument made late in 1915 and early 1916,
after the discovery of the final generally covariant field equations. He
wrote Besso:0

Everything was correct in the hole consideration up to the last conclu-
sion. There is no physical content in two different solutions G(x) and
G'(x) existing with respect to the same coordinate system K. To ima-
gine two solutions simultaneously in the same manifold has no meaning
and the system K has no physical reality. In the place of the hole con-
sideration we have the following. Reality is nothing but the totality of
space-time point coincidences. If, for example, physical happenings

48. Stachel (ref. 3).

49. Einstein later put great stress on this inseparability of metric and manifold. See his
Relativity: The special and the general theory (London, 1977), 155.

50. Einstein to Besso, 3 Jan 1916 (ref. 27), 63-64. Cf. Einstein to Ehrenfest, 26 Dec
1915, EA 9 363.
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could be built up out of the motion of material points alone, then the
meetings of the points, i.e., the points of intersection of their world
lines, would be the only reality, i.e., in principle observable. Naturally
these points of intersection remain unchanged in all transformations
(and no new ones are added) only if certain uniqueness conditions are
preserved. Therefore it is most natural to require of laws that they
determine no more than the totality of timespace coincidences. Follow-
ing what has been said before, this is already achieved with generally
covariant equations.

One of the important outcomes of Einstein’s experience with the
"hole" argument was the point coincidence argument for the need of
generally covariant equations, which is sketched out in this letter to
Besso. Einstein came to use this argument to good effect in his exposi-
tions of the general theory of relativity.s!

6. COVARIANCE PROPERTIES OF THE ENTWURF
FIELD EQUATIONS

Now satisfied that there were good reasons to give up a search for a
generally covariant theory, Einstein could devote his attention to the
task of elucidating his Entwurftheory and, in particular, of determining
the significance of its limited covariance. He began this work before his
move to Berlin, while still collaborating with Grossmann, and the first
product of their labor appeared early in 1914. In the introduction to
this paper, they stressed that the field equations must be covariant
under nonlinear coordinate transformations as well as linear if the
theory was to contain an extension of the principle of relativity and
satisfy the requirements of the principle of equivalence. They summar-
ized the achievements of the paper:5?

In the following it will be proved that the gravitation equations set up by
us have that degree of general covariance which is conceivable under the
condition that the fundamental tensor g,, should be completely deter-
mined by the gravitation equations; in particular, it turns out that the
gravitation equations are covariant under acceleration transformations
(i.e., non-linear transformations) of many different kinds.

The "condition that the fundamental tensor g,, should be completely
determined by the gravitation equations” refers, of course, to the "hole"
argument. This passage therefore asserted that the Enmwurffield equa-
tions have the maximum covariance consistent with the considerations

51. For example, Einstein, "Die Grundlage der allgemeinen Relativitdtstheorie," AP,
49 (1916), 769-822 (received 20 Mar 1916), 776-777.
52. Einstein and Grossmann (ref. 43), 216.
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of the "hole" argument. They proved this assertion simply and
elegantly. However, there is no further detailed discussion of the
second assertion, that this allowed covariance embraces a wide range of
acceleration transformations, or any demonstration that some of these
correspond to cases of special physical interest in the context of a gen-
eralized principle of relativity or the principle of equivalence. This is a
curious and, as it turned out, serious omission and one that was main-
tained in Einstein’s generalization of the work in this paper late in
1914.

The paper continued with a brief statement of the equations of the
Entwurf theory and of the "hole" argument itself. Einstein and
Grossmann then took the field equations, written in the compact form

D

afu

v gyaﬁgap a —K[Iay"'tcrv ) (19)

)
9,
formed its coordinate divergence, and then applied the conservation law
in the form of equation (18). This resulted in the condition

B,= 2

aBuv ax,,axa

2

— 0Yuy
—& ‘Yazﬂga'p £

i, =0, (20)

which would clearly have to be satisfied in any coordinate system in
which the Enmwurffield equations held. They decided to call such coor-
dinate systems "adapted."”

The remainder of the paper was devoted to showing that this neces-
sary condition is also a sufficient one. That is, if condition (20) was
still satisfied after a coordinate transformation, then the field equations
would still hold in the new coordinate system. In their proof, Einstein
and Grossmann introduced mathematical techniques which would
become of great importance to the development of the theory. They
found a variational formulation of the field equations and studied their
covariance properties by examining the behavior of the variational
integral under an infinitesimal coordinate transformation. 1 pass over
the details of their arguments now, for they are fully subsumed by the
more general apparatus of Einstein’s first major paper on the theory
after his move to Berlin in April 1914. With that Einstein could-
guarantee that his field equations had the maximum covariance permit-
ted by the "hole" argument.

We can approach the condition (20) in terms of the problem of
coordinate conditions discussed earlier. Einstein had made clear in a
paper written earlier in 1914 that he believed that some generally
covariant set of equations must correspond to the Enrwurfequations.

53. Einstein (ref. 39), 178.
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The condition (20) would then be the coordinate condition that would
have to be applied to these equations in order to recover their Entwurf
specialization.’* Of course by this time Einstein had become convinced
that the field equations in their generally covariant form were physically
uninteresting as field equations. So there would have been little to gain
from finding them.

The results of his and Grossmann’s paper seemed at last to have
reconciled Einstein to the limited covariance of his theory. He
described these results to his friend Besso in a letter of March 1914, in
which he claimed that the justified transformations included rotations
transformations:3s

Now I am completely satisfied and no longer doubt the correctness of the
whole system, whether the observation of the solar eclipse work out or
not. The sense [Vernunft] of the matter is too evident.

Einstein’s move to Berlin in April 1914 marked the end of his colla-
boration with Grossmann. Fortunately, by this time Einstein no longer
seems to have needed Grossmann’s mathematical guidance. By
October 1914, he had compieted a lengthy summary article on his new
theory, whose form and detailed nature suggest that Finstein felt his
theory had reached its final form. The article contained a review of the
methods of tensor calculus used in the theory and, flexing his
newfound mathematical muscles, Einstein could even promise to give
new and simpler derivations of the basic laws of the "absolute
differential calculus."s¢ Of great importance for us was the fact that Ein-
stein had taken the new mathematical techniques of his last paper with
Grossmann, generalized them and found in them a quite new deriva-
tion of the field equations.

Einstein began his new derivation and treatment of the covariance
properties of the field equations by introducing an undetermined action
H (for "Hamiltonian"?), which was to be some function of the metric
tensor g** and its first derivatives g#*.57 From this the integral

J= [ HJ=gar 1)
was formed, where 4 is an infinitesimally small element of spacetime.

54. Einstein treated condition (20) in the same way as the coordinate condition (10) in
his letter to Paul Hertz (ref. 29).

55. Einstein to Besso, Mar 1914 (ref. 27), 52-53.

56. Einstein (ref. 26), 1030.

57. lbid., 1066-77. In this paper, Einstein reintroduced the representation of contra-
variant components of a tensor by raised indices and covariant components by lowered
indices. This convention had been used by Ricci and Levi-Civita. Grossmann (ref. 1),
246, described how he and Einstein decided not to use it then because it was too compli-
cated in certain cases. The term g#¥ signifies dg#*/ 9x,, .
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The g#* were varied infinitesimally in such a way that their variation
5g** disappeared on the boundary of the region of spacetime of the

integration.
The variation produced in J can be rewritten as
8 = fz G 08" dr (22)
ny
and the new quantity,
_ 9HV-g _ d |[dHV—g 23
C 98" ; 0x, | dgt |’ (23)

was designated as the tensor density derived from the gravitation tensor
for the field equations (2). The covariance properties of the field equa-
tions that resulted were determined by examining the behaviors of J
under infinitessimal coordinate transformations. Introducing such a
transformation A, Einstein found that

1 oH 0%°Ax
—AH = a £, 24

M= L 8 g trox, (24)
given that H was a function of g** and g#* alone and making the

assumption that A was invariant under linear transformations, which
9Ax,

made it possible to neglect all terms in in the general expression

[

for AH. From this assumption, it followed that

Ly-farxaxB)+F, (25)
2 o4
where
— 62 o aHV—g
DY vy v Cimrywranl (26)

and F is a surface integral term that would vanish in case Ax, and
dAx,

Xa

Einstein could then define "adapted" coordinates for a given field.
He considered a series of infinitesimally separated coordinate systems
K, K', K", -- -, whose values agreed on the boundary of the region of
integration in such a way that if A represented the coordinate transfor-
dAx,

0X,

vanished on the boundary of the region of integration.

mation between two adjacent systems, then both Ax, and disap-

pear on the boundary: F vanishes for A. Therefore we have

1
A = % f drAx,B, . (27
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Einstein defined the adapted coordinate system to be that one for which
J is an extremum: in adapted coordinate systems,

B,=0. (28)
Einstein proceeded to demonstrate his crucial result that
A(BS) =0 (29)

provided that A relates adapted coordinate systems, or, using Einstein’s
term, is a "justified" coordinate transformation. In other words, 8/ is a
scalar under justified coordinate transformations. It follows directly
from equation (22) that the gravitation tensor 1/v—g G ,, is a tensor
under justified coordinate transformations.

These results have been derived so far with a largely undetermined
H. If at the beginning H had been set as

_1 38 9g™

H 4a§’pga dx, Oxg ~ : (30)
then these calculations would have corresponded to those of Einstein
and Grossmann'’s earlier paper, in which they showed that the Entwurf
field equations are covariant under justified coordinate transformations.
The gravitation tensor resulting from this choice of H is the Entwurf
gravitation tensor, as Einstein and Grossmann showed, and the condi-
tion (28) takes on the form of condition (20). Further, we can now
see that the basis of Einstein and Grossmann’s claim that the Entwurf
field equations have the maximum covariance allowed by the "hole"
argument and can also note that this applies to the generalized field
equations of Einstein’s Berlin paper as well.

The "hole" argument was built on the fact that generally covariant
field equations in a given region of spacetime hold in any two coordi-
nate systems whose values agree on the boundary of that region.
Einstein’s definition of an adapted coordinate system requires the selec-
tion of one of all those coordinate systems in a given region of space-
time, whose values agree on the boundary, by means of the condition
that AJ in equation (27) be an extremum.5® Such a restriction seems to
be the minimum that the "hole" argument requires and this is the full
extent of the limitation of the covariance of Einstein’s field equations.’¥

In the Berlin paper, Einstein no longer felt that he had to stipulate
the value of H in order to recover his Enrwurf field equations. He

58. Cf. Einstein to Lorentz, 23 Jan 1915, EA 16 436.

59. The close connection between the devices employed in the "hole" argument and in
the variational treatment of the field equations suggests that the "hole" argument may
have occurred to Einstein as a result of early attempts to apply variational techniques to
his field equations.
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believed that he could derive equations (30) from the above general
formulation of the field equations. To do this, he substituted the gravi-
tation tensor of equation (23) into the conservation law, written in the
form of equation (12), which gave him

0S5y _
Zv, Bx. B,=0, (31)
where
dHV—g oHV—g
SV = T + vT
o E gv ago-‘,- g# ag‘({‘r
+Lorpy=g - LourdfN=g | (32)
2 2 agkr

A count of the number of equations determining the field—10 field
equations, 4 adapted coordinate conditions (equation (28)) and the four
equations in (32) —showed that the field was overdetermined by four
conditions. This could be resolved, Einstein concluded, if the S iden-
tically vanished:

Sy =0. (33)

Since this condition did not fully determine the field equations, Ein-
stein stipulated that H should be a homogeneous function in second
order of the g#*. From this it followed unproblematically that H# would
have to be equal to one of, or a linear combination of, the five linearly
independent terms

v T , v A v’ i v
zgg,v’a—g'“_'aL zga-ag‘w ag“ gp.'u'ag“ 3 Zgao'_a—Lig”_'

9%, 0x, 0x, dx'y dx, dx,’
Zgy.y. gvvg” axo» ax;a » and zgaﬁ ax? ax(r . (34)

Einstein then asserted that the condition (33) eventually leads to the
choice of the fourth of these terms, up to a constant factor. He gave
no proof, but demonstrated that this choice of H does indeed satisfy
equation (33). Of course this choice of H is equivalent to the selection
of H in equation (30). So Einstein’s argument amounts to a new
derivation of the Entwurffield equations.

Einstein had good reason to be pleased with this resuit. For it
seemed to show that his theory was not just a theory of gravitation, but
a generalized theory of relativity, in so far as it was concerned with
establishing the widest covariance possible in its equations. His original
derivation of the field equations had been based squarely on considera-
tions in gravitation theory—that is, he sought tensor equations which
would yield the correct Newtonian limit while consistent with the
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conservation laws. The new derivation, however, focused on covari-
ance considerations. He had found a simple way of formulating field
equations that would have exactly the maximum covariance allowed by
his "hole" argument, and they led him almost directly to his original
Entwurf field equations. As a result, he could promise to "recover the
equations of the gravitational field in a purely covariant-theoretical way"
and to claim to "have arrived at quite definite field equations in a purely
formal way, i.e., without directly drawing on our physical knowledge of
gravitation."® Perhaps Einstein overstated the purity of his new deriva-
tion, but it certainly is far purer than the Entwurfderivation.®!

Finstein’s satisfaction with his new treatment of the field equations
was short-lived. He soon found that the last step in his derivation was
incorrect. The condition (33) in no way required that H take on its
Entwurfform. In effect, all that this condition required was that H be a
scalar under linear coordinate transformations: it just returned an
assumption that Einstein had made earlier in the derivation. We can
readily confirm that this is the import of condition (33) by writing out
the general expression for A H, which, by the usual methods, turns out
to be

1

ILED)>

OH A%, (35)

0Ax o
—te 0gk” 9x,0x,

1 o
V—g * dx,

If H is a scalar under linear coordinate transformation, then AH must
Ax,

nyvoa

vanish in the case in which the 0 have arbitrary non-zero values,

9%Ax,
0Xx,0X,

Xa

but all the vanish. Clearly this will only be true if condition

60. Einstein (ref. 26), 1030, 1076.

61. A new derivation of the field equations of Nordstrém’s gravitation theory based
on covariance considerations had been presented in Einstein and A. D. Fokker, "Die
Nordstromsche Gravitationstheorie vom Stanpunkt des absoluten Differentialkalkiils,”
AP, 44 (1914), 321-328 (received 19 Feb 1914), 328. The derivation involved postulat-
ing a scalar field equation based on the Riemann curvature scalar. They conciuded by
speculating that a similar derivation of the "Einstein-Grossmann gravitation equations”
might also be possible using the Riemann curvature tensor. They observe without furth-
er explanation that the reason given in Grossmann’s section 4 of the Enrwurf paper for
the nonexistence of such a relationship between the gravitation equations and the
Riemann curvature tensor does not hold up under closer consideration. All that Einstein
and Grossmann had found in the Enmwurf paper was that the then obvious methods of
forging a link between the Riemann curvature tensor and the gravitation tensor seem to
fail on the question of the Newtonian limit. This does not prove that such a connection
does not exist and perhaps just this was the point of Einstein and Fokker’s footnote.
Einstein and Fokker do not seem to have doubted the correctness of the Enmwurf field
equations nor did they repudiate the general arguments against the admissibility of gen-
erally covariant field equations.
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(33) is satisfied by H. Equation (35) is a generalization of equation
(24). Presumably Einstein was unaware of the appearance of S in
(35) since, in his derivation of (24), there would have been no need to

) A
collect terms in 0A%, )
90X,

All five expressions in (34) and any of their linear combinations will
satisfy condition (33) since they are all scalars under linear coordinate
transformation. I have been unable to find any explanation why Ein-
stein believed that condition (33) finally led to the result that A had to
take its Entwurf value. He asserted this result without proof in the
paper and limited himself to confirming that this form of A does in fact
satisfy condition (33). His correspondence and later published discus-
sion of his work of 1914 sheds only a little light on this episode and it
remains an outstanding puzzle in the history of Einstein’s theory.5?

7. THE GRADUAL DAWNING

Einstein appears to have remained satisfied with the theory he
developed in 1914 through the first half of 1915. In March, April, and
early May, he defended the theory wholeheartedly in an intense
correspondence with Levi-Civita, who challenged Einstein’s derivation
of the covariance properties of his gravitation tensor. But it seems that
by mid-July he was less certain. He wrote enthusiastically to Sommer-
feld about his visit to Gottingen of late June and early July, where he
had lectured on his theory.®® But he was less enthusiastic about

62. Most promising of these later comments comes in a letter to Hilbert of 30 Mar
1916 (EA 13 097), in which Einstein discussed a mistake in his "work of 1914" that Hil-
bert had pointed out to him. Einstein noted that under the infinitesimal (coordinate?)
transformation A the relation

Agh = =L (agn) (36)
0x,
does not hold. "Therefore,” he said, "there is no variation in the sense of variational cal-
culations that correspond to the change A." This cannot be the confession of a simple
blunder in his calculations that might have explained the error in question. For the Ein-
stein of 1914 knew that (36) does not hold for infinitesimal coordinate transformations;
he gives the correct relation as his equation (63a) of ref. 32, and uses it correctly-
throughout the paper. Rather, the problem seems to be associated with the proof of the
important result (29). Writing to de Sitter on 23 Jan 1917 (EA 20 540), Einstein placed a
mistake, first found by Hilbert but otherwise unspecified, as somewhere in this proof.
There Einstein had divided the variation of the field & into two parts, the second of
which, 8,, was a four-parameter variation that could be generated mathematically by an
infinitesimal coordinate transformation. Therefore, the variation 8, cannot satisfy (36),
whereas the variation 8 must, if the gravitation tensor of equation (23) is to be derived
from it by the usual methods. Thus, in short, we can say that §, is "no variation in the
sense of variational caiculations.”
63. Einstein to Sommerfeld, 15 Jul 1915 (ref. 28), 30.
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Sommerfeld’s proposal that one or two papers on general relativity be
included in a new edition of Das Relativitatsprinzip, the well-known col-
lection of original papers in the development of relativity theory. Ein-
stein wrote that he would prefer to see the volume left unchanged since
none of the current presentations of the theory was "complete."

By mid-October Einstein’s points of dissatisfaction with his theory
had grown in number and intensity. They soon culminated in some of
the most agitated and strenuous weeks of his life, in which generally
covariant field equations were discovered, or perhaps, rediscovered. In
a letter of January 1, 1916, Einstein recounted the events of these
months to Lorentz:%

The gradually dawning knowledge of the incorrectness of the old gravita-
tional field equations gave me a rotten time last autumn. I had already
found earlier that the perihelion motion of Mercury was too small. In
addition, I found that the equations were not covariant for substitutions
which corresponded to a uniform rotation of the (new) reference system.
Finally I found that my approach of last year to the determination of
Lagrange’s function H of the gravitational field was illusory throughout,
since it could be easily modified so that one needed to apply no limiting
condition at all to H, so that it could have been chosen quite freely.
Thus I came to the conviction that the introduction of adapted systems
was a false path and a more far-reaching covariance, where possible gen-
eral covariance, must be demanded.

Einstein gave a similar account of this dawning in an earlier letter to
Sommerfeld.¢> There he noted that the old theory gave a figure of 18"
of arc per century rather than 45" for the perihelion motion of Mercury.

The first result Einstein mentioned, the failure of his theory to
account for the anomalous motion of Mercury’s perihelion, might well
have been known to him from the earliest days of the Entwurftheory.
One of his earliest hopes for his new work on gravitation, as communi-
cated in a letter of December 24, 1907 to Konrad Habicht, was that it
might account for this anomaly.%¢ The question seems to have arisen
again early in 1915 in connection with the Berlin astronomer Freund-
lich, who had been the first to attempt astronomical tests of Einstein’s
new theory. In a postcard of March 1915 to Freundlich, Einstein
confirmed that, according to his Entwurftheory, matter at rest can only
yield a g4, field, which proved that "a g, field cannot come into con-
sideration in the problem of the planets."$?” This shows that Einstein
still believed that a static field had to be spatially flat. But now he

64. EA 16 445,

65. Einstein to Sommerfeld, 28 Nov 1915 (ref. 28), 32-36.
66. EA 12 445,

67. Postmarked 19 Mar 1915, EA 11 208.
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regarded it as a theorem of his Entwurftheory.

The second result that Einstein mentioned was his discovery that a
uniform rotation of the coordinate axes did not belong to the justified
coordinate transformations of his Enrwurf field equations. We know
that Einstein believed such transformations to be justified in 1914,
although he never presented a proof. The Einstein Project has recently
acquired a copy of a single page in Einstein’s handwriting that bears on
this matter.®® Einstein here wrote out the FEntwurf field equations.
Beneath each of its terms, he put the values that their (4,4) com-
ponents reduce to in a Minkowski metric viewed from uniformly rotat-
ing coordinates. In three dimensional spacetime, the transformation
used seems to have been '

'=tr=r,0=0—wt, (37)

where the nonrotating coordinates are unprimed, rotating coordinates
primed and the coordinates have their usual meaning.

Einstein’s calculation is for the special weak-field case of small
angular velocity « and regions close to the axis of rotation. The results
show. that the field equations do not hold in the rotating case. Sur-
rounding this calculation, in a way that indicates that it was added later,
is the draft of a letter to Ministerial Director Naumann. This letter can
be dated by content to late November or perhaps early December 1915.
If the calculations are coeval with the letter, they were made around the
time when Einstein returned to seek generally covariant field equations.
The reverse side of the document contains some calculations on the
form. of the Minkowski metric in a uniformly rotating coordinate sys-
tem. Einstein concentrated on the spatial part of the metric and devi-
ated from the normal practice of equations (37) by leaving the radial
coordinate in the rotating system r’ an undetermined function of the
original nonrotating radial coordinate r.

The relationship—if any—between these calculations and those on
the first side is unclear. Perhaps Einstein was investigating some prob-
lem in rotating coordinates, for example the spatial geometry on a
rotating disk, and perhaps this investigation led him to check whether
the transformation to rotating coordinates was in fact justified. Or
perhaps the discovery that the particular transformation (37) was not
justified led him to try to find another transformation to rotating coordi-
nates that was justified—hence the presumably unsuccessful examina-
tion of a more general transformation in which ' is an undetermined
function or r. What does remain a puzzle is how Einstein could have
overlooked for long the result that transformation (37) is not

68. I am grateful to John Stachel for drawing this document to my attention.



FIELD EQUATIONS 301

justified—if he in fact did. Or perhaps he knew that it did not hold,
but was not disturbed to find that just one of many possible transforma- -
tions to rotating coordinates is not justified.

The third result that Einstein described to Lorentz as precipitating
his return to the search for generally covariant field equations was his
discovery that his new derivation of 1914 did not actually determine H.
He had found that an easy modification of his considerations no longer
led to any restricting conditions on H. Lorentz would have been quite
familiar with this last result, for in a letter of October 12, 1915, Ein-
stein had described to him exactly what this modification was.® In his
letter, Einstein recognized the condition (33) amounted only to the
requirement that A be a scalar under linear coordinate transformation.
He described how he missed this in 1914 since he had assumed this
property for H at the beginning of the derivation.

In his modified derivation of the field equations in this letter of
October 1915, he proceeded exactly as in 1914, but without this
assumption. He found that the condition for adapted coordinate sys-
tems was equation (31) rather than (28). This immediately clarified the
status of equation (33). Einstein continued to write the field equations
that arose from the gravitation tensor in equation (23) as

_ a A aQ = kT I+ vA Q 38
Zaxo & ags” Tat ag“" %g" age |’ (38)
where Q0 = HV—g; and he expressed the conservation laws as
A t Al =
2 a xx T+ s (39)
where
th= zK g:”a—% 05| 10 (40)

Einstein then required that the source term of the field equations, the
right-hand side of (38), be equal to «(T)+1t2). It follows directly
from equation (40) that this will only be true if condition (33) is
satisfied. (This result is interesting in itself. In effect, Einstein showed
that the field equations can always be written with a source term of this
form as long as H is a scalar under linear coordinate transformations.
So this result applies to his final generally covariant field equations as
well.)

69. EA 16 442.
70. This form of the conservation law follows from a contraction of the field equa-
tions with g#* and substitution into the conservation laws in the form of equation (12).
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Einstein then completed what was to be his last derivation of the
Entwurf field equations by noting that the choice of H as its Entwurf
form was dictated by the requirements of the Newtonian limit. This
must have been quite a setback for Einstein, for, as we have seen, he
had taken great pride in he fact that his earlier derivation of 1914 of the
Entwurf field equations seemed to be based only on covariance argu-
ments and did not need to draw directly on any physical knowledge of
gravitation.

In his letter to Lorentz, Einstein did not explain how the require-
ment of the Newtonian limit was to be applied. Presumably he meant
that the gravitation tensor had to have the form (3). If so, then he was
wrong on two counts. First, equation (3) does not quite uniquely
determine the form of H as its Entwurfform, the fourth of those listed
in (34). It admits a limited number of alternatives. For example, the
gravitation tensor resulting from taking H as the fourth plus an arbi-
trary constant times the difference of the third and the fifth also has
this property. Second, as Einstein soon discovered, Newtonian theory
can still be obtained as a limiting case if we dispense with the restrictive
condition (3).

But Einstein’s work on this derivation had not been entirely in vain,
for it had brought him both temporally and conceptually closer than
ever before to a generally covariant theory. If we ignore Einstein’s last
fatal step, we find that the mathematical apparatus set up here by Ein-
stein and, earlier, by Grossmann, can be used almost unchanged in the
final generally covariant theory. For if we make the now familiar selec-

el

then the field equations of the final theory follow.” The adapted coor-
dinate condition still holds, but in a degenerate form, for now all coor-
dinate systems are adapted. In fact the adapted coordinate condition,
written as either equation (28) or (31) is none other than the con-
tracted Bianchi identities.

Einstein clearly came to recognize these resuits, for they comprise
the major part of his paper of late 1916 on a Hamiltonian formulation
of the general theory of relativity.”? By adopting a gravitational field

log
187

p

3 , (41)

H=gw

71. [:V} is the Christoffel symbol of the second kind and summation over repeated in-

dices is implied. This expression results from the Riemann curvature scalar after terms
in the second derivatives of the metric tensor are separated out as a total divergence
term. See, for example, P. Dirac, General theory of relativity (New York, 1975), 48.

72. Einstein, "Hamiltonsches Prinzip und aligemeine Relativititstheorie,” AW, Sb,
1916, 1111-1116 (received 26 Oct 1916).
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action density based on the Riemann curvature scalar, he arrived at an
H of the form of (41). Since this H is a scalar under linear coordinate
transformations, he arrived at condition (33) and then directly at condi-
tion (28). With this choice of H, this last condition is equivalent to the
contracted Bianchi identities, although Einstein was unaware presum-
ably of the connection to the uncontracted Bianchi identities at this
time.”? He then proceeded to the field equations and conservation laws
written in a form similar to equations (38), (39), and (40), but now
using condition (28) to derive the conservation laws from the field
equations and their covariance properties.

It is hard to imagine that Einstein was unprepared for the ease with
which his formalism of 1914 could be applied to his final generally
covariant theory. In 1914, in the paper in which he had first introduced
the adapted coordinate condition, he remarked —prophetically—that,
were this condition to be generally covariant, then all coordinate sys-
tems would be adapted and that this consequence would not compro-
mise any step of his proof.” But, he continued, these conditions were
not generally covariant in the Entwurftheory; for if they were, the fully
contracted gravitation tensor would have to be none other than the
Riemann curvature scalar and it was not.

Hilbert, through his important paper of November 1915, is generally
thought of as introducing the comprehensive use of these action prin-
ciples to the theory.”” My analysis shows that although Einstein might
have drawn some of his work of 1916 in this area from Hilbert’s, his
basic mathematical apparatus and even the notation itself had its ances-
try in his own work earlier in 1914 and 1915.

8. "THE FINAL EMERGENCE INTO THE LIGHT""¢

By mid-October 1915, Einstein was no longer satisfied with his
theory. Presumably he had been disappointed that it had not accounted
for the anomalous motion of Mercury. Perhaps this shortcoming had
become all the more acute with the difficulties Freundlich faced in his
attempts to set up and carry out astronomical tests of the theory. Then
Einstein convinced himself that transformations to rotating coordinate
systems were not "justified," which must have compromised his belief

73. Mehra (ref. 18), 49-50, 78, and Pais (ref. 18), 274-278, discuss the delay in
recognition of this connection.

74. Einstein and Grossmann (ref. 52), 224-225.

75. D. Hilbert, "Die Grundlagen der Physik," Akademie der Wissenschaften,
Gottingen, Nachrichien, 1915, 395-407.

76. Title from Einstein, "Notes on the origin of the general theory of relativity," in
Einstein, /deas and opinions (London, 1973), 289-290.
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that his new theory extended the relativity of motion to accelerated
motion. Finally, he found that all his elegant manipulation of covari-
ance requirements and adapted coordinates did not even lead him to a
definite set of field equations. With doubts accumulating about the
empirical, physical, and*formal foundations of his theory, Einstein took
drastic action. He wrote to Sommerfeld that, at this point, he gave up
the notion of requiring covariance with respect to adapted coordinate
systems:”’

After all trust in the results and methods of the earlier theory had thus
given way, I saw clearly that only in a link to the general theory of
covariants, i.e., to Riemann’s covariant, could a satisfactory solution be
found. Unfortunately I have immortalized the last errors in this struggle
in the Academy papers, which I can send you soon.

The first of these "last errors in this struggle" was presented to the
Prussian Academy on November 4, 1915. He divided the Ricci tensor
G,, into the sum of two parts:’?

Gim = Rin+ Simm (42)
im
3{ : ] [1‘[} [pm]
R,’m = - _‘—'—+ N (43)
2, aX/ § P [

Sm=E 55 —2[';"] {P/ } . (44)

Einstein had shown that if we restrict ourselves to coordinate transfor-
mations of determinant one, then V—g is a scalar. From this it fol-
lowed easily that S, is a tensor under all such transformations and,
since G,, is a generally covariant tensor, then R,, must also be a tensor
under the restricted set of coordinate transformations. Einstein
selected this as his gravitation tensor, and his field equations became

R, =—«T,, . (45)

Why Einstein should choose this as his gravitation tensor rather
than a generally covariant tensor, such as the Ricci tensor or even the
Einstein tensor itself, has hitherto been a puzzle. It can now be solved
by reference to my discussion of Einstein’s original objections to the

77. Letter of 28 Nov 1915 (ref. 28), 32-36.

78. Einstein (ref. 23). As before, I follow Einstein in using G, to refer to the Ricci
tensor rather than the modern usage, in which G, would refer to the Einstein tensor.
For consistency, | have made Einstein’s implicit summation explicit.
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Ricci and related tensors as gravitation tensors. The results that led to
his disillusionment with the Entwurftheory had left these original objec-
tions substantially intact. Einstein still expected his field equations to
reduce to the form of (11) in the weak-field case. Einstein knew that
the Ricci tensor reduced to the appropriate form with the application of
the harmonic coordinate condition. But, as we have seen, this coordi-
nate condition was unacceptable to him for it was inconsistent with the
form of weak, static fields entailed by equation (11).

But there was a second possibility, the tensor 33 which is the same
as R,, above. This reduces to the required form with the coordinate
condition (10). I argued that Einstein rejected this second tensor
because he found that this coordinate condition was not satisfied in a
Minkowski spacetime viewed from rotating coordinates, a requirement
that would ensure that the field equations retain the weak-field form of
equation (11) in such rotating coordinates. But, as we have seen, by
October 1915 Einstein had found that his Entwurffield equations, which
had the required weak-field form, were not satisfied in such rotating
coordinates. I conjecture that this discovery led him to reconsider the
rather restrictive requirement that the field equations still have this
weak-field form in such rotating systems, for he no longer had any
objections to the tensor R, as a gravitation tensor in his paper of
November 4.

In the concluding section of this paper, Einstein drew all these ele-
ments together. He stated that his new field equations reduce to the
form of equation (11) in the weak-field case with the application of
coordinate condition (10). This confirms my assertion. that he still
believed that his field equations must have this weak-field form and
also that his choice of R,, as the gravitation tensor was based on the
faét that they reduce to this form with the help of coordinate condition
(10). Perhaps the juxtaposition is accidental, but Einstein completed
the paper by noting that his new field equations are indeed covariant
under transformation to rotating coordinate systems and to those in rec-
tilinear acceleration, as required by the relativity of motion.

My account of Einstein’s paper of November 4 has left a problem.
The recovery of the weak-field equations described involved the appli-
cation of the four coordinate conditions (10) and also the condition that
coordinate transformations of determinant one only be admitted. This
last condition amounts to one more coordinate condition than the four
normally permitted. That Einstein did not in fact overdetermine his
equations follows from his treatment of the single coordinate condition
that arises from this last condition. First, he fully contracted the field
equation (45) to yield

s 0lgv—g

axp
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=k Te . (46)
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Then, using familiar variational methods to define the stress-energy
tensor of the gravitational field ), he wrote the field equations in the
mixed form

Lonlerra)-gat L emart = —qneg” @)

The coordinate divergence of the right-hand side of this equation van-
ishes as a result of the conservation laws. This yields the four condi-
tions

a 2 - z ga'rl‘gﬁrfa =0 ) (48)

“ af ox 6x3 araf

which correspond to the "adapted" coordinate conditions of the former
theory. Equation (48) can be solved directly to yield a single
condition—that the term in square brackets be a constant—which
amounts to the coordinate condition imposed by the limitation of coor-
dinate transformations to those with a determinant of one. Einstein set
the value of this constant as zero, as one is free to do with such condi-
tions, and thus arrived at

9%g*f Tarf

% T U%ﬁg” Tt =0. (49)
These considerations resolve the problem of the overdetermination of
the weak-field equations, for we can see immediately that in the weak-
field case, in which terms quadratic in the derivatives of the metric ten-
sor can be ignored, the coordinate conditions (10) entail the coordinate
condition (49). Thus Einstein could introduce the conditions (10), in
the closing section of his paper, as a strengthening of the condition
(49) %0

79. Einstein (ref. 23). Speciﬁcally,
ki = 252 Y gMT B — 2 g#T 2T

2 uvaf pyva

so that

k=2 xtd =2 g*TlE, .
o o

va
Note I'), = —[ . ] )
80. Of course this weak-field assumption is itself a coordinate condition of a kind.
Strictly speaking, Einstein would have to show that his five coordinate conditions were
also consistent with this new constraint. This should nat have been a problem, for a
coordinate system in which the weak-field assumption holds is still determined only up to

a four parameter infinitesimal coordinate transformation.
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The conditions which Einstein derived here led to one further result
that was to be of great importance. The two scalar conditions (46) and
(49) could only both be true if the condition

3 -0 |gasdlev—g

B axa axB

g&

- Y T? (50)

held. Einstein noted that equation (50) meant that V=g could not be
set equal to unity, for the trace of the stress-energy tensor T = pI b4

cannot be made zero.?!

Einstein made one other point of special interest in his communica-
tion of November 4. He described "a fatal prejudice" in his earlier
work: he had been induced to take the quantity

1 08,
_2 gry. "
27 0X,
for the components of the gravitational field I';], .82 He now recognized
that the Christoffel symbol of the second kind, or, to be exact, its nega-

tion, —[”7‘_7], was the quantity he should have selected and proceeded to

argue for this new choice. Einstein did not explain why this prejudice
was so fatal. A comparison of the equations of his Entwurftheory and
the new theory may make it clearer. A weak correspondence between
the forms of the equations of each theory appears if they are written in
terms of I'],, where these components have the appropriate forms as
specified above. The action densities and the gravitational field stress-
energy tensors of both theories take on exactly the same form. More-
over, the second derivative terms of each of the two theories’ gravita-

. s, .
tion tensors take on the same form, aax . In the Entwurf case, this

term is simply the d’Alembertian of the metric tensor. In the case of
the new theory, however, this expression contains other second deriva-
tives of the metric tensor, which Einstein had tried so hard to eliminate

81. Presumably Einstein referred to the general case in which the source of the field is
unspecified. Then, from equation (50), x/—_g cannot have any constant value whose
coordinate derivatives all vanish. Einstein’s procedure is not "incoherent,” contrary to
the assertion of J. Earman and C. Glymour, "Einstein and Hilbert: Two months in the
history of general relativity," Archive for history of exact sciences, 19 (1978), 291-308, on
298-299. For further evidence, note that Einstein chose not to use the familiar covariant
divergence of the stress-energy tensor in his conservation laws, but to replace it by a
different but closely related quantity, which he demonstrated to be covariant under coor-
dinate transformations with a determinant of one. The distinction between the two
divergences drops away when \/—_g = 1, so Einstein’s nonstandard choice in ref. 28 did
not become important in his work over the following weeks.

82. Einstein (ref. 28), 782-783.
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some three years earlier when trying to recover a Newtonian limit. So
Einstein could write to Sommerfeld on November 28, 1915, that this
final approach made his final field equations "the simplest conceivable
since one is not tempted to transform them by multiplying out the sym-
bols with the intention of more general interpretation."?

(It does not seem that pursuing this line of thought will help us
further delineate the path Einstein took in 1912 and 1913. For
Einstein’s comments have all the flavor of an after-the-fact rationaliza-
tion. Note in particular that Einstein did not introduce the notion of
the "components of the gravitational field" into his Entwurftheory until
1914.34) ‘

Einstein did not remain satisfied with his theory of November 4 for
very long. During the following week he found a simple modification
to his theory that left its mathematical machinery essentially untouched
but now brought field equations that were at last generally covariant. It
seems likely that the modification occurred to him as a result of a re-
examination of equation (50). From his standpoint on November 4, it
followed that V=g could not in general be a constant. Certainly there
seemed to be no physical reason in the theory for such a limitation.

However, the equation can be read in a second way. We can regard
it not as placing a limit on the form of v/—g, but as restricting the value
of T. Specifically, if vV—g has a constant value, then T must vanish.
Now this latter restriction does admit a simple physical interpretation,
which Einstein was to seize with enthusiasm. If all matter were elec-
tromagnetic in nature, then this condition would be automatically
satisfied. As is well known, the trace of the stress-energy tensor of an
electromagnetic field is always zero.

On November 11 Einstein introduced his latest formulation of the
theory with this hypothesis about the electromagnetic nature of all
matter.?S He asserted that the hypothesis made possible the final step to
generally covariant field equations. For these equations he wrote

Gu=—«T,. (51)

From them he could recover the equations of November 4 and still use
all their associated mathematical machinery by applying the coordinate

83. Ref. 65. Einstein also mentioned his "prejudice” in a letter to Lorentz, 1 Jan 1916,
EA 16 445.

84. Einstein (ref. 32), 1058.

85. Einstein, "Zur allgemeinen Relativitdtstheorie (Nachtrag),” AW, Sb, 1915, 799-801
(read 11 Nov 1915). That this hypothesis resulted from a reexamination of the equations
in the earlier theory, rather than from some external source, is suggested by a footnote
(ibid., 800): "At the writing of the earlier communication, the admissibility in principle of
the hypothesis 2 Tf“ = 0 had not yet come 10 consciousness."
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condition
v—g =1, (52)

which in turn entailed the condition that only coordinate transforma-
tions of determinant one be admitted. Under condition (52), §,, van-
ished and his new field equation reduced to that of November 4 in
form. He concluded his note of November 11 by noting that equation
(50) entailed the vanishing of T if the condition (52) held.

In the unkind gaze of historical hindsight, Einstein’s "mistake"
seems simple. He had been forced to admit a dangerous conjecture
about the nature of matter in order to conceal the fact that he had
missed the now familiar trace term in the "correct" field equations.
They are

1

G;.w_ Tgy.uG = 7K Tuv ’ (53)
where G is the trace of G,,, or, in an equivalent form,
G;w ="K Tyu_;—g;WIi . (54)

These field equations are consistent with the conservation laws without
further hypothesis since the covariant divergence of the left-hand side
of equation (53) vanishes identically. Transferring this property to the
right-hand side gives the conservation laws the vanishing of the covari-
ant divergence of the stress-energy tensor. Now Einstein’s field equa-
tions of November 11 did not have this property. But the assumption
that T =0 converts equations (53) and (54) into those field equations
and brings them into accord with the conservation laws. That the
assumption does this is not surprising since it came originally from
equation (50), which in turn was derived with the help of the conserva-
tion laws.

This simple analysis completely misses what Einstein had achieved
with his modification of November 11. He had finally succeeded in
finding generally covariant field equations that reduced to the weak-field
form of equation (11). This reduction could be effected by the applica-
tion of coordinate conditions (10) and the new condition (52). That
these five conditions did not overdetermine the field followed almost
immediately from his paper of November 4. There, as we have seen,
Einstein showed the consistency in the weak-field case of using the four
conditions (10) and also limiting coordinate transformations to those
with a determinant of one. This latter limitation, which amounted to
the limitation to coordinate systems in which ~/—g behaves like a scalar,
was strengthened in the following note to the requirement that v/—g be
a constant, specifically unity.
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An examination of the relevant equations of Einstein’s paper of
November 4 (equations (46) to (50) here) shows that use of condition
(10) strengthened with (52) does not compromise his consistency argu-
ments, provided that we are willing to accept the new constraint on the
field source term of T =0. The adoption of the extra trace terms of
equations (53) or (54) would have been out of the question, for they
would have destroyed the hard-won and finely-tuned agreement
between the field equations and their weak-field limit. We can now
appreciate why field equations (51) seemed the only possible generally
covariant field equations to Einstein and thus why the adoption of the
hypothesis T = 0 seemed a small price to pay for the final achievement
of general covariance. Indeed, in the note of November 11, he seemed
pleased to regard the information it contained as an unexpected bonus
from the requirement of general covariance.

What still separated Einstein from his final field equations was not a
simple oversight, but the same almost untouched misconceptions about
the weak-field limit that he had had three years earlier. I argued that
he expected the field equations to reduce to equation (11) in the weak-
field case because of their formal simplicity and because they in turn
enabled a simple reduction of the ten gravitational potentials of the full
theory to a single Newtonian potential, in a simple static-field case.
The naturalness of such a reduction was corroborated by Einstein’s
belief that, on the basis of quite separate arguments, the number of
gravitational potentials underwent a similar reduction in the case of a
general static field.

The final realization that his ideas on the behavior of weak and
static fields were excessively restrictive and not justified by experience
came over the two weeks following November 11. What seems to have
catalyzed this realization was his calculation of the orbit of Mercury.
He turned to this task immediately after he had arrived at the modified
field equations and was able to present his results to the Prussian
Academy just one week later, on November 18.% In this communica-
tion, Einstein used a method of successive approximations to solve his
field equations for the gravitational field of the sun, that is for the
weak, static, spherically symmetric, source-free case, with Minkowskian
values at spatial infinity. He presented a solution for this case that
satisfied the condition vV—g = 1, so that the field equations he was solv-
ing, those of November 11, reduced in form to those of November 4.
Einstein had already shown that these latter field equations yield the

86. Einstein, "Erklirung der Perihelbewegung des Merkur aus der allgemeinen
Relativititstheorie," AW, Sb, 1915, 831-839 (read 18 Nov 1915). Even Hilbert was im-
pressed at the speed with which Einstein calculated the perihelion motion, as he told Ein-
stein in his congratulatory postcard of 19 Nov 1915, EA 13 054.
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weak-field equations (11). Provided that the central mass is small,
these equations solve to yield a spatially flat field. However, such a
weak-field solution was no longer allowed to Einstein, for his solution
of the field equations had to satisfy the condition V=g = 1. Thus Ein-
stein was forced to a solution that had nonconstant g, g12, - - -, &3
even in the first approximation. He commented on this crucial new
development:?®’

From our theory it follows that, in the case of masses at rest, the com-
ponents g, to gi3; are different from zero already in quantities of the first
order. We shall see later that through this no contradiction arises with
Newton’s law (in the first approximation).

This demonstration followed soon. Einstein was able to show that
in quantities of the first order of smallness the equations of motion of a
slow moving mass point reduce to those of Newtonian gravitation
theory. Although it was not stated in this communication, this
demonstration rested on the fact that only the g, component of the
metric tensor was used in the construction of these equations in the
first approximation. 1 have quoted Einstein’s communication of this
"most remarkable" result to Besso in December 1915. Einstein seems
to have remained impressed by it, for he still described this feature of
the equations of motion as "remarkable" in his summary article on the
theory written early the next year.88 Again, in his lectures of 1921 pub-
lished as The meaning of relativity, he attributed the absence of an earlier
recognition of the tensorial nature of the gravitational potential to this
same feature of the equations of motion.®® This comment can be
applied to Einstein’s own early treatment of weak and static fields.

Einstein’s calculation of the orbit of Mercury was of crucial
significance in the historical development of the theory. It gave the
theory its first convincing empirical success. It was instrumental in
freeing Einstein from his long-standing misconceptions about static and
weak fields. It forced him to deal with a weak, static field, whose g;, to
£33 components were not constant. In the communication of November
18, Einstein had already begun to tease out the implications of this
revelation. He noted that his new theory predicted twice the deflection
of a ray of starlight grazing the sun than that predicted by his earlier
theory—including the field equations of November 4.9

Most significantly, Einstein was no longer constrained by the
requirement that his field equations reduce to the weak-field equation

87. Einstein (ref. 86), 834.
88. Einstein (ref. 51), 817; Einstein to Besso (ref. 34).
89. Einstein (ref. 30), 86.
90. Einstein (ref. 86), 834.
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(11). It was now no longer necessary for the weak-field equations to
give in the appropriate static cases a metric of the form (1); field equa-
tions with additional terms to those in equation (11) could be contem-
plated. Einstein no longer had to adopt his field equations of
November 11 and the associated T = 0 condition as the only possibie
generally covariant field equations. At last he was free to entertain field.
equations of the form of equations (53) and (54). Einstein may have
realized this possibility very soon after completion of his paper on
Mercury’s motion. Although this communication still used the field
equations of November 11 and the hypothesis T = 0, a footnote on its
first page promised a new communication in which the hypothesis
would be shown to be superfluous. The import of this footnote is not
entirely clear since it makes no reference to new field equations. In any
case, Einstein’s next communication, presented to the Prussian
Academy on November 25, gave as the results of nearly three years of
labor, Einstein’s final field equations (54)9' He could also
note—presumably with some relief —that this final modification did not
affect the source-free form of the field equations and the resulting
explanation of the anomalous motion of Mercury.

The question of the exact path that Einstein followed from
November 11 to November 25 has become of some interest to histori-
ans of relativity. In his communication on the later date, Einstein dealt
with what he called "the reasons that gave rise to my introduction of
the second term on the right-hand side of the field equations [54]."%
These, he tells us, arose in considerations analogous to those dealt with
in equations (46) to (50). He noted that his new field equations, when
fully contracted, become

2 «a

v 28 (r+n=0, - (55)

af Gx,,a Xg
which corresponds to the earlier equation (46). However, he observed,
in this new equation, both T} and ¢} appear in a fully symmetrical way,
unlike the case of equation (46). Further reduction of the field equa-
tions with the conservation laws in the manner that produced equations
(48) now yields

9 9g*f _
ox, ,,Zﬁaxaax,g k(T+0)|=0. (56)

In the context of the theory of November 11, Einstein found that the
91. Einstein, "Die Feldgleichungen der Gravitation," AW, Sb, 1915, 844-847 (com-

municated 25 Nov 1915).
92. 1Ibid., 846.
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introduction of the hypothesis T = 0 was needed to bring the equations
(46) and (48) into accord. He noted two weeks later that this
hypothesis was no longer necessary. The corresponding equation (55)
actually entails the corresponding equation (56).

This necessity indicates that Einstein added the new trace term of
his field equations of November 25 in an explicit attempt to modify
conditions (46) and (48) so that the hypothesis T =0 would no longer
be necessary. Further, his observation on equation (55) suggests a
natural way in which Einstein could have found exactly what this
modification to the field equations should be: they should be modified
so that both T and r} appear in a symmetrical way. That this is not
the case with the field equations of November 11 becomes especially
clear if we write them in mixed form in a coordinate system in which
V=g =1, in which case they take the form of equation (47). The
second term on the right-hand side is equal to

—%S,i‘i(t ,
and it is in this term that the asymmetry lies. If this term is replaced
by

—%s,gxm-z) ,

then the field equations become fully symmetrical in T} and * and
equivalent to the final equations of November 25.

The preceding considerations suggest a natural path for Einstein to
have followed between November 4 and the condition (46) and (48)
and November 25 and the final field equations. For the earlier field
equations written exactly in the form of equation (47) appear in
Einstein’s paper of November 4 as a part of his derivation of conditions
(46) and (48). Moreover, we know that Einstein used arguments of
exactly this type at that time. In his review article of the theory written
early the next year, he generated his field equations by first writing
them in their source-free form,

B (goorgy) = —e 7 - Loz, (57)
and then generalizing to their complete form,
B [grarg,) = | Gz + T - Lozt 1| (58)

by requiring that 7 + T2 replace ¢ everywhere.”® Of course the field

93. Einstein (ref. 51), 806-807.
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equations in the form (58) are identical with those to be produced by
the modification of equation (47) described above.

It is now known that Hilbert in Gottingen was able to arrive at sub-
stantially the same gravitational field equations as Einstein and that
these equations were presented to the Gottingen Academy on
November 20, 1915, five days prior to Einstein’s presentation of his
final field equations to the Berlin Academy.** Building on the results of
Einstein and Mie, Hilbert used now familiar variational techniques to
derive both gravitational and electromagnetic field equations and the
associated conservation laws from a combined action density, whose
gravitational part was the Riemann curvature scalar. His gravitational
field equations took the form (53), with the added constraint that the
stress-energy tensor on the right-hand side was purely electromagnetic
in nature and written in terms of a derivative of the electromagnetic
action density with respect to the metric tensor. Apart from the inevi-
table and fruitless question of priority of discovery, there has been
some speculation that Einstein’s final formulation of his field equations
may have been influenced by a knowledge of Hilbert’s field equations.
In November 1915, Einstein virtually suspended his usual correspon-
dence, but maintained an active exchange with Hilbert, in which it is
possible that Hilbert communicated his field equations to Einstein
sometime between November 15 and 18.%

We do not know the exact extent of Einstein’s knowledge of
Hilbert’s work in November 1915. Whatever it may have been, how-
ever, it seems unlikely that it contributed in any decisive way to
Einstein’s final formulation of his field equations. I have tried to show
here how Einstein’s final steps were self-contained. His omission of
the familiar trace term in his field equations of November 11 was not
the consequence of a simple oversight that could be remedied by a
glance at Hilbert’s equations. Einstein had good reasons for not admit-
ting any such additional terms. When he realized that these reasons
were incorrect, he introduced the new terms by a path that can be fairly
readily reconstructed.

There was a brief period of coolness between Einstein and Hilbert
immediately after their November correspondence. Einstein’s former
assistant, E. G. Strauss, attributes this coolness to Einstein’s feeling
that Hilbert had perhaps unwittingly plagiarized some of Einstein’s ear-
lier ideas on the theory from lectures he gave in Gottingen in 1915.% A

94. Hilbert (ref. 91): see also Mehra (ref. 18).

95. See especially Earman and Glymour (ref. 81). They and Pais (ref. 21), 257-261,
also outline the extant contents of this exchange. although Pais acquits Einstein of the
charge of plagiarism.

96. Pais (ref. 18), 261.
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recently discovered letter of Einstein’s to his good friend Zangger in
late November or early December 1915 supports Strauss’ view,
although the letter does not mention Hilbert by name.”” Further, Ein-
stein seems to have been unfamiliar with the detailed content of
Hilbert’s communication of November 20 as late as May 1916, even
though he had stayed with the Hilberts some months earlier. Einstein
reopened his correspondence with Hilbert that May with a plea for help
in understanding Hilbert’s paper, which he had to review in a coming
colloquium in Berlin.?® It was only at the end of this exchange that Ein-
stein felt he could state with certainty that his and Hilbert’s results
agreed.

Einstein’s ignorance of the details of Hilbert’s work before May
1916 extended to Hilbert’s result that was of crucial significance in the
context of Einstein’s final field equations. Hilbert wrote his gravita-
tional field equations in terms of the variational derivative of the
Riemann curvature scalar density with respect to the components of the
metric tensor.®® In the line immediately following, he stated without
detailed proof that this variational derivative is equal to what we now
know as the tensor density corresponding to the Einstein tensor, the
tensor on the left-hand side of equation (53). Einstein could not have
been aware of this result the following January. Then he wrote to
Lorentz that the theory would gain greatly in clarity if a Hamiltonian
formulation could be found for its field equations in their general form,
that is, in their form prior to the imposition of the constraint
V=g = 1.1% This, of course, was what Hilbert had already done. Ein-
stein even described to Lorentz how it appeared to him that the
appropriate action density should be the Riemann curvature scalar den-
sity, the result Hilbert had alreaqy stated, and began to map out the
derivation of the field equations from it.10!

97. H. A. Medicus, "A comment on the relations between Einstein and Hilbert," Amer-
ican journal of physics. forthcoming.

98. Einstein to Hilbert, May 25 and 30 and Jun 2, 1916, EA 13 099, 102, 104; Hilbert
to Einstein, 27 May 1916, EA 13 056. Einstein complained about the obscurity of
Hilbert's work to Hilbert (EA 13 102) and, in stronger terms, to Ehrenfest, where ac-
cused Hilbert of having "pretensions of being a superman by hiding [his] methods” (24
May 1916, EA 9 378).

99. Hilbert (ref. 75), 404.

100. A. Einstein to H. A. Lorentz, 17 and 19 Jan 1916, EA 16 447, 449. Einstein’s
letter to Sommerfeld of 9 Dec 1915 again suggests a limited knowledge of Hilbert’s work
(ref. 28), 37.

101. Lorentz, "On Einstein’s theory of gravitation," Academy of Sciences, Amsterdam,
Proceedings, 19 (1916), 1341-1369, 20 (1916), 2—34 (communication of Feb 26 and Apr);
Lorentz described his success in establishing this result in Lorentz to Einstein, 6 Jun
1916, EA 16 451. Einstein’s uncertainty about this result would explain why it did not
appear in the review article (ref. 61), where he used methods very similar to those of
November 1915 to derive his field equations and to establish their consistency with the
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Einstein wrote Semmerfeld early in 1915:102

There are two ways that a theoretician goes astray

1) The devil leads him around by the nose with
a false hypothesis
(For this he deserves pity)

2) His arguments are erroneous and ridiculous
(For this he deserves a beating).

I have tried to show that Einstein went astray in the first way, rather
than in the second. The cause of his straying is inseparable from his
characteristic methods. On the one hand stood his relentless and
uncompromising insistence on - certain fundamental physical
principles—the requirement of the Newtonian limit, the conservation
laws, physical causality. On the other hand was the remarkable flexibil-
ity that enabled Einstein to reject even the most cherished of notions if
his basic principles seemed to call for it—in this case he was prepared
to forfeit general covariance. A lesser physicist might have comprom-
ised and faltered. But, eventually and perhaps inevitably, Einstein’s
same uncompromising relentlessness enabled him to weed out the false
hypotheses that had misled him and brought him to his goal, his gen-
eral theory of relativity.

conservation laws. These same results can be established much more easily from a varia-
tion principle that uses the Riemann curvature scalar as the gravitational field action den-
sity and, as Einstein was to show in ref. 72, this deduction could be achieved with little
effort by making use of the mathematical machinery of his investigations of 1914.
Presumably Einstein also preferred this latter method: EA 2 077, an early version of
ref. 88, seems to have been intended first to replace the derivation in ref. 61 and then to
be an appendix to that paper.

102. A. Einstein to H. A. Lorentz, 2 Feb 1915. A copy of this letter has been recently
acquired by the Einstein Project.



