JOHN NORTON

EINSTEIN, THE HOLE ARGUMENT AND THE
REALITY OF SPACE

l. /INTRODUCTION

In November 1915, Einstein put the finishing touches to his general
theory of relativity. Then he proclaimed that the theory, through its
general covariance, “robbed time and space of the last trace of objective
reality” (Einstein, 1915, p. 831). This triumphant proclamation was
repeated early in 1916 in a review of the theory. The requirement of
general covariance “takes away from space and time the last remnant of
physical objectivity.” (Einstein, 1916, p. 117).

This case, as Fine has reminded us, is one of a number of embarrass-
ments for scientific realists who like to think that progress in science
has depended at least in some measure on the realist orientation of
scientific investigators (Fine, 1984, pp. 91—92). But Einstein’s work on
special and general relativity owed a great debt to Machian positivism
and in particular Mach’s non-realist! attitude towards Newton’s abso-
lute space and time. It is striking, for example, that Einstein’s earliest
and still best known exposition of the complete general theory of
relativity does not begin by revealing some empirical deficiency of
earlier theories. Rather he launches the theory by pointing out an
“epistemological defect” in special relativity and classical mechanics,
which, he tells us, was first noticed by Mach. (Einstein, 1916, p. 112))

In the simplest of glosses, Einstein’s work on relativity theory is
portrayed as the relentless pursuit of the implications of Mach’s non-
realist view of space and time. Assertions about motion with respect to
space are to be rendered meaningless unless they can be reinterpreted
solely in terms of the relative motion of bodies. Special relativity was
the first step. In it motion with respect to some absolute state of
rest was eliminated and with it went the aether of electromagnetism.
General relativity completed the process by removing the unacceptable
intrinsic distinction between inertial and accelerated motion which had
still lingered in special relativity. The result was a complete victory for
Leibniz’s relational view of space and time. In so far as one talked
about space and time within general relativity (and this is done
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frequently!), the talk must be understood entirely instrumentally. Ac-
cording to general relativity, the terms space, time and spacetime do
not refer to any entities in the world.

This account portrays the development of relativity theory as driven
by a naive positivism and non-realism and as such it does not capture
the subtlety and depth of Einstein’s work towards the discovery of
relativity theory.” To illustrate my claim [ am going to tell the story of
the origin and significance of an argument of Einstein which seems at
first glance to be quite naively positivistic in outlook and somewhat
trivial in import. I follow John Stachel in calling the argument the
“point-coincidence argument” and quote the well known 1916 presen-
tations of it. The argument is given in the wake of Einstein’s statement
of the requirement of general covariance, the requirement that the laws
of nature must “hold good for all systems of coordinates.” [t reads:

‘That this requirement of general co-variance, which takes away from space and time the
last remnant of physical objectivity, is a natural one, will be seen from the foilowing
reflexion. All our space-time verifications invariably amount to a determination of
space-time coincidences. If, for example, events consisted merely in the motion of
material points, then ultimately nothing would be observable but the meetings of two or
more of these points. Moreover, the results of our measurings are nothing but verifica-
tions of such meetings of the material points of our measuring instruments with other
material points, coincidences between the hands of a clock and points on the clock dial,
and the observed point-events happening at the same place at the same time.

The introduction of a system of reference serves no other purpose than to facilitate
the description of the totality of such coincidences. We allot to the universe four
space-time variables x,, x,, x;, x, in such a way that for every point-event there is a
corresponding system of values of the variables x, ... x,. To two coincident point-
events there corresponds one system of values of the variables x, ... x,, i.e. coin-
cidence is characterized by the identity of the coordinates. If, in place of the variables
X, ... X4 we introduce functions of them x’,, x’,, x’;, x’y, as a new system of
coordinates, so that the systems of values are made to correspond to one another
without ambiguity, the equality of all four coordinates in the new system will also serve
as an expression for the space-time coincidence of the two point-events. As all our
physical experience can be ultimately reduced to such coincidences, there is no imme-
diate reason for preferring certain systems of coordinates to others, that is to say, we
arrive at the requirement of general covariance. (Einstein, 1916, pp. 117—118)

Presented in this form, the argument has little force. Its conclusion is
not the most interesting claim of the passage, which is that space and
time have lost the last remnant of physical objectivity. Fine (1984, p.
91) quite rightly calls it a “suspicious-looking verificationist argument”.
What I think makes the argument look suspicious is not its verifica-
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tionism. Rather it is the caution with which Einstein pursues a quite
trivial conclusion: that there should be no preferred spacetime coordi-
nate systems, which acquires the lofty title of postulate or requirement of
oeneral covariance. If spacetime coordinate system has its usual meaning
— a smooth but otherwise arbitrary numerical labelling of spacetime
events — then it is hard to see how we could require otherwise. Certainly
this requirement is a commonplace of differential geometry, in which
any well formulated spacetime theory is automatically expressible in
coordinate free (= generally covariant) terms. This makes the require-
ment essentially useless as a criterion for selecting between competing
theories. For example, generally covariant formulations of Newtonian
spacctime theories and of special relativity are well known.

Nevertheless Einstein’s point-coincidence argument, with its verifi-
cationist turn of phrase, fascinated contemporary philosophers such as
Reichenbach and Schlick, both of whom studied closely the new-born
gencral theory of relativity. (I follow here the discussion of Friedman,
1983, Ch. | and Howard, 1984, Sect. 3.) Briefly, they saw in it a
perfect example of the relation between theory and fact proposed
by the soon to emerge logical positivist movement and in a manner
essentially related to the non-realistic view of theoretical terms. For
Reichenbach, for example, our freedom in choosing coordinate systems
was another instance of the conventionality inherent in theory, which
would surface elsewhere as the conventionality of geometry and distant
simultaneity. Schlick applauded the point-coincidence argument as
illustrating how we can eliminate elements which are superfluous to our
theory in the sense that they are arbitrary and thus cannot correspond
to anything real. For Schlick space and time were the arbitrary elements
while the coincidences of the point-coincidence argument were non-
arbitary. Thus Friedman identifies the arbitrariness of choice of coordi-
nate system as “the genesis of Reichenbach’s notion of ‘coordinative
definition’” (p. 19) and in Einstein’s 1916 statement above of the
point-coincidence argument he sees “the birth of the modern observa-
tional/theoretical distinction.” (p. 24)

We owe a great debt to John Stachel (1980), who discovered the key
to a proper understanding of the point-coincidence argument. With the
help of Einstein’s correspondence from that period, he was able to
identify the argument as Einstein’s resolution of a grave difficulty which
had helped delay the completion of the general theory of relativity by as
much as three years. In the so-called “hole argument” of late 1913,
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Einstein had convinced himself that generally covariant gravitational
field equations were incompatible with physical determinism. Late in
1915, in order to be able to readmit generally covariant gravitational
field equations into general relativity, Einstein had to find an answer to
the hole argument. That answer was the point-coincidence argument,
which Einstein then interpreted as establishing that space and time
must forfeit the “last remnant of physical objectivity.”

In this paper, I shall review the hole and point-coincidence arguments
and the circumstances surrounding their origins. We shall see that the
really important conclusion Einstein drew from this episode was a
result which I label “Leibniz equivalence”. It asserts that in g generally
covariant theory such as general relativity, a single gravitational field
cannot be represented by a single mathematical field, but must be
represented by an equivalence class of diffeomorphic fields.

We shall see that without excursions into Einstein’s earlier publica-
tions and his correspondence it is impossible for readers of Einstein
(1916) to understand that this result was the issue or, for that matter,
precisely how the verificationism of the point-coincidence argument
was to be applied. Moreover we shall see the establishment of Leibniz

Einstein (1916). It is clear from retrospective appraisal of the hole
argument, that unless we accept Leibniz equivalence, we wil] commit
ourselves to an altogether unacceptable variety of indeterminism when
we come to formulate generally covariant field theories such as general
relativity.

an antisubstantivalist view of spacetime, which asserts not that Spacetime
has no reality, but no reality independent of the fields it contains. We
shall see that, within four years of 1916, Einstein retracted his non-
realist statements in favour of explicit antisubstantivalism.

2. THE ENTWURF THEORY

In August 1912 Einstein returned to Zurich. Over the preceding five
years he had worked intermittently on the problem of relativizing
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gravitation theory and extending the principle of relativity to accelerated
motion. Within less than a year, with the mathematical assistance of his
friend Marcel Grossmann, he was able to sketch out virtually all the
essential components of his general theory of relativity. We now call
that theory the Entwurf (“Outline”) theory after the first word of the
title of Einstein and Grossmann (1913a and 1913b), in which the
theory first appeared.

[ now describe some elements of this theory in modern terms, terms
somewhat different to those used by Einstein and Grossmann. Without
this more precise terminology it would be very difficult to explicate
adequately the hole and point-coincidence arguments. The theory
proposed that spacetime was a four dimensional differentiable manifold
on which certain fields were defined, the most important of these being
the metric tensor field. | '

A four dimensional differentiable manifold is a set whose members
are identified with the points or events of spacetime in the standard de-
velopments of spacetime theories. If the manifold were just a set of
events, then we would have no idea of which events neighbor on which
others. This information is provided by the topological structure of the
manifold, which specifies which subsets of events are the open sets
(neighbourhoods). Thus we have a notion of locality through which we
can identify the neighbourhoods containing each event. The manifold
looks locally like a four dimensional Cartesian space — that is, for any
event we can always find a neighbourhood containing the event which
can be mapped one—one onto some open subset of R*.

A coordinate system or coordinate chart is just such a map. It labels
each point p of the relevant neighbourhood with some unique four-
tuple of reals, x'(p) (i = 0, 1, 2, 3). If one such coordinate system K is
possible, then from K, it is easy to define a second coordinate system
K’ which assigns a different four-tuple x"(p) to p. All coordinate
systems, which are related by continuous, infinitely differentiable trans-
formation equations where they overlap, belong to the manifold’s altas
of coordinate systems.

In terms of manifold structure alone, it is possible to define curves
(smooth maps from an interval of the reals into the manifold) and their
tangent vectors. But a bare manifold is unlike a Euclidean space in the
sense that we cannot define length along the curves and thus have no
notion of a straight line. Moreover we cannot single out preferred
coordinate systems. In a Euclidean space we could distinguish preferred
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Fig. 1. A manifold with coordinate systems.

Cartesian coordinates, whose coordinate differences correspond to
length, only because Euclidean spaces have extra structure enabling the
defining of the length of curves.

A covariant, second rank, symmetric, Lorentz signature metric field,
8a» Pprovides this notion of length (usually called “Interval”) in the
Entwurf theory. Its Lorentz signature means that it does not assign
lengths isotropically, unlike a Euclidean metric. It assigns positive
lengths to curves in one direction, now identifiable as the “time-like”
direction, and negative lengths to the curves of the other three “space-
like” directions. Thus the Lorentz signature metric gives spacetime its
light cone structure. Time-like curves are the possible trajectories or
world lines of real non-zero rest mass particles. The null length curves
forming the light cones are possible trajectories of light. The metrical
length of a curve is given by the integral

Vg VAV dl

along the curve, where V, and V', are the curve’s tangent vector and /
the associated path parameter.
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Gravitation and metrical curvature. The world lines of particles in
free fall are time-like geodesics, curves of extremal interval, the analogue
of Euclidean straights. If the metric is flat, we have a Minkowski space-
time, the case of special relativity. Particles in a Minkowski spacetime
with initially parallel world lines never approach or diverge, analogous
to the behaviour of parallel straights in a Euclidean space. This will no
longer be the case if the metric tensor has non-vanishing curvature.
Free particles with initially parallel world lines might now approach one
another. This would be taken to be due to a gravitational action and the
non-vanishing curvature of the metric associated with the presence of a
gravitational field.?

Transformation law for tensor components. A second rank, covariant
tensor, such as the metric tensor, can be represented uniquely in a given
coordinate system by a 4 X 4 matrix of its components, g, , where i,
m =0, 1, 2, 3. The components of all such tensors obey the following
transformation law under change of coordinate system. If any such
tensor G, has components G,, in coordinate system x‘' and com-
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ponents G,.,. in the new coordinate system x’" (i, m" =0, 1, 2, 3) at
the same point in the manifold, then
axi axm
axi' axm'
where summation over repeated indices i* and m’ on the right hand
side is implied in accord with the Einstein convention introduced in
Einstein (1916, p. 122).

This transformation law will figure prominently in the story to

follow. Notice in particular that if a tensor G, has all zero components
in one coordinate system x' at p:

Gim = O

Gi'm’ = Gim (1)

then it follows immediately from the above law that it will have zero
valued components in any other coordinate system x* at p:

Gi’m' =0

Such a tensor is a zero tensor.

The stress energy tensor T,, is another field in spacetime which we
need consider for what follows. It is a second rank, covariant tensor like
g, and represents the energy and momentum of all non-gravitational
forms of matter, such as electromagnetic fields or dust clouds.
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As far as the above details are concerned, the Enrwurf theory did
not differ from the completed general theory of relativity. In fact the
two theories agree in all but one essential aspect. The exception is
crucial. The metric tensor takes the place of the scalar gravitational
potential @ of Newtonian gravitation theory. As a result Einstein
required in both the Entwurf and his final general theory that the
metric tensor enter into a field equation analogous to Poisson’s equation

Ap =4nGp
in Newtonian theory. That equation was required to have the form

Gy = k Tab (2)

ab

where k is a constant, analogous to the Newtonian gravitation constant
G; T, is the stress energy tensor, analogous to the source mass density
o of Poisson’s equation; and G, is the gravitation tensor, which is
constructed out of any combination of the metric tensor and its first
and second derivatives, and which is linear in the second derivatives.
This tensor is the analogue of the Laplacian of the Newtonian gravita-
tional potential, Ag.

The derivatives in question here are derivative of the components of
the metric tensor with respect to the coordinates. Notice that the above
constraint appears to allow very many possible gravitation tensors. This
freedom is illusory, however, for if g, is a tensor, then it does not
follow for example that its derivatives with respect to coordinate x",
that is g;,, ,, will also be a tensor. g;, , cannot represent a tensor since it
can readily be confirmed that it does not satisfy a transformation law
analogous to (1). It turns out to be very hard to combine the coordinate
derivatives of the metric tensor to yield a new tensor. The only relevant
possibilities are the metric tensor itself, the Riemann curvature tensor
Ry, its contractions R, (the Ricci tensor) and R, and tensors formed
from them. The last include the Einstein tensor, R,, — +g,, R. It is now
well known that the addition of the requirement of energy momentum
conservation is sufficient to force the choice of G, as the Einstein
tensor, the gravitation tensor of Einstein’s final theory of November
1915. (He then ignored the possibility of an additive cosmological term
proportional to g,,.)

Einstein and Grossmann clearly knew in 1912 and 1913 that the
obvious place to look for a gravitation tensor was in the contractions of
the Riemann curvature tensor. They even considered the Ricci tensor
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as a gravitation tensor, which would have given the final field equations
at least in the source free case. But, they decided, this choice did not
yield the correct Newtonian limit in the case of weak, static fields and,
worse than that, they could find no acceptable gravitation tensor. An
acceptable account of how they arrived at this conclusion has only
recently become available. See Norton (1984) and in shortened form
Norton (1985a) and (1985b). There I also describe the three year
odyssey of compounded error upon which Einstein embarked and
which culminated in a breathless and dramatic discovery of the final
field equations in November 1915. The hole argument arose as one of
the episodes of this odyssey in the following way.

To deal with their failure to find a gravitation tensor, Einstein and
Grossmann took a desperate measure. They had found what they
believed to be an acceptable quantity to stand for G, in equation (2).
But that quantity was not a tensor, since the matrix of its components
did not transform according to (1) for all coordinate transformations.
As a result they distinguished two types of tensor:

(a) those whose components transformed as tensors under arbitrary
coordinate transformations;

(b) those whose components transformed as tensors under some
limited set of coordinate transformations.

To be generally covariant, the theory would have had to have a
gravitation tensor of the first type, but Einstein and Grossmann offered
a tensor of the second type. It followed that the field equations of the
theory held only in a restricted set of coordinate systems. They soon
began work on the problem of determining precisely how large this set
was. After April 1914, with his move to Berlin, Einstein had to work
on this problem alone. I have conjectured (Norton, 1984, p. 295) that it
was in the process of the variational calculations involved that Einstein
hit upon a marvellous way of converting failure into success. That was
the hole argument.

3. THE HOLE ARGUMENT

The hole argument purported to demonstrate that any generally co-
variant gravitational field equations in the context of the Entwurf
theory would violate physical determinism in a severe and striking
manner.’ It aimed to show that if one had a matter distribution with a

e e i g R S P i

setienl




EINSTEIN AND THE HOLE ARGUMENT 163

matter free spacetime neighbourhood (which Einstein called the “hole™)
and with the gravitational field specified everywhere outside the hole,
then generally covariant field equations would be unable to determine
uniquely the gravitational field within the hole, no matter how small the
hole. Naturally this provided much comfort to Einstein, who could now
regard his failure to find generally covariant field equations as un-
important. He need not doubt that such field equations were possible,
but there was no point in pursuing them since they would be physically
uninteresting.®

The hole argument was published four times by Einstein. In order of
publication dates, they were Einstein and Grossman (1913b), pp. 260—
261;’ Einstein (1914a), p. 178; Einstein and Grossmann (1914), pp.
217—218; and Einstein (1914b), pp. 1066—1067. The first three of
these were essentially the same. I quote the second:?®

If the reference systemm is chosen quite arbitrarily, then in general the g,, cannot be
completely determined by the T,,. For, think of the T, and g,, as given everywhere
and let all T,, vanish in a region ® of four dimensional space. 1 can now introduce a
new reference system, which coincides completely with the original outside @, but is
different to it inside @ (without violation of continuity). One now relates everything to
this new reference system, in which matter is represented by T',, and the gravitational
field by g¢’,,,. Then it is certainly true that

— ’
TSH - T s

mn

everywhere, but unlike them the equations

g’lﬂl! = gﬂlﬂ (3)

will definitely not all be satisfied inside ®. The assertion follows from this.

If one wants a complete determination of the g, (gravitational field) by the T,,
(matter) to be possible, then this can only be achieved by a limitation on the choice of
reference systems. : [Einstein’s italics]

Reduced to its essentials, Einstein’s argument appears to run as follows:

1. Consider a metric within the matter-free hole with components g,
in some coordinate system. The metric satisfies the generally co-
variant source free field equations G,, = 0, for some boundary
condition specification of the metric and source matter distribution
everywhere outside the hole.

2. Introduce a new coordinate system within the hole which agrees
smoothly with the original coordinate system outside the hold. In the
new coordinate system, the components of the gravitation tensor
still vanish, i.e. G',,, = 0, since G, is a zero tensor (in accord with
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the discussion in Section 2). Thus the new components of the metric
tensor g’,,, still satisfy the source free field equations.

3. Therefore we have a case of a unique boundary condition outside
the hole but two distinct fields within, both satisfying the field
equations.

Einstein’s argument seems to rest on a simple beginner’s blunder. It is
certainly the case that the components of the metric tensor will differ in
the new and old coordinate system within the hole, so that the equality
of (3) will fail within the hole. But the failure of this equality does not
mean that one has arrived at a different metric tensor as is claimed in
step 3. Rather we only repeat the well known result that different
matrices of components can represent the same metric in different
coordinate systems.

Whilst it is difficult to imagine that Einstein could commit such a
beginner’s blunder repeatedly on a question which had his devoted
attention for nearly three years, many commentators have been unable
to resist convicting him of it. The most recent is Pais, 1982, pp. 221—
222. What makes this ‘blunder account’ untenable is the footnote
Einstein appended to the sentence containing equation (3). (An equi-
valent footnote did not appear in the first or third versions of the
argument cited.) It read

The equations are to be understood in such a way that each of the independent
variables x’, on the left-hand side are to be given the same numerical values as the
variables x, on the right-hand side.

In the blunder account there is simply no good reason for Einstein to
insist on this perverse way of reading the equation. The only reading of
the hole argument compatible with it is one in which the transformation
introduced in step 2 is understood in the active sense, in which case
Einstein’s argument becomes far from trivial.

I now review the active and passive view of transformations. The
coordinate transformations discussed in the last section are generated
from a smooth map from R* to R* which assigns the 4-tuple x’” to the
4-tuple x". This map can be used in two ways:

Passive view: Coordinate transformation. The map is used to generate
a new spacetime coordinate system x'” from x”. That is, it is used to
relabel the points of the manifold with different coordinates.

Active view: Point transformation. The map is used to generate a
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another map in the manifold which will smoothly assign points in the
manifold to other points in the manifold. Represent this induced map
by A. Then the point p with coordinates x" will be mapped onto the
point Ap with coordinates x'" in the same coordinate system. If h is
invertible and both it and its inverse are continuous and infinitely
differentiable — which is the case usually dealt with — then £ is called a
diffeomorphism.

mantold R4
Active view: Passive. viev:
$ indoces h finduces chanoe Hom

old fo new coorclinate system

Fig. 4. The active and passive view of transformation.

Each h induces another map, h*, the carry along, which maps
structures defined on the manifold at a point p to structures defined on
the manifold at Ap. Thus A* defines a carried along coordinate system.
The carried along coordinates A*x" at hp are defined naturally by the
requirement that they be numerically equal to the coordinates of x" of
p. Similarly the carried along metric h*g,, is defined by the require-
ment that:
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The components of the carried along metric A*g,, at Ap in
the carried along coordinate system at Ap are numerically
equal to the components of the original metric g,, at p in the
original coordinate system.

Thus if primed indices represent the carried along coordinate system
and unprimed indices the original coordinate system, this amounts to
requiring '

(h*g)m'n'(hp) = B (p) (4)

The inverse of #* is the “pull back”.

Diffeomorphism represents the gauge freedom of tensor field equa-
tions. Recall the earlier result that if a tensor has all zero valued
components in one coordinate system, then it has all zero valued
components in all coordinate systems and is the zero tensor. Thus it
follows from the above rule that the carry along of a zero tensor will
still be a zero tensor. Therefore if a metric tensor g, satisfies a
tensorial gravitational field equation G, = 0, it then follows that the
carry along of g, will also satisfy the field equation. For the carry along
of G, will still vanish.

We now ask how to test whether A*g,,, the carry along of a metric
tensor g,,, will be the same tensor as g,,,, the original metric tensor. We
begin with equation (4), which does not allow immediate comparison
because the matrices of components on either side of the equation
belong to different coordinate systems. The easiest way to compare the
carry along h*g,, and the original g, is to transforin the components of
the carry along in (4) from the carried along coordinate system back to
the original coordinate system. To do this, we must carry out the
following operation:

Algorithm for comparing components of g, and h*g,, in the
same coordinate system. We take the matrix g,,.(p), which
comprises the components of g, in the original coordinate
system, transform it to the new coordinate system x’" and
compare the resulting matrix of components with the com-
ponents of the original metric at hAp. To ensure that we
compare metrics at the same point in the manifold (which
here is Ap), we recall that the matrix of components will be a
function of the coordinates and must insist that the com-
parison be carried out for matrices with equal coordinate
values (here the coordinate values of Ap).

i

IR
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But this operation is precisely the ‘perverse’ reading of equation (3)
upon which Einstein insisted in the footnote to the hole argument
guoted above! Thus the only reasonable conclusion is that Einstein
viewed the transformation of the hole argument actively and that this
recipe did genuinely yield a new metric, the carry along of the original,
and that the failure of the equality in equation (4) shows that the new
metric does differ from the original within the hole. Finally it follows
from the above discussion that the carried along metric will satisfy
the field equations if the original metric already does, so completing
Einstein’s argument.

Einstein seemed to realize that his first three versions of the hole
argument were not transparent. In his fourth and final version, he went
to great pains to remedy this defect and in particular to show that he
did intend the transformation to be viewed actively.

We consider a finite region of the continuum X, in which no material process takes
place. Physical occurrences in 2 are then fully determined, if the quantities g, are
given as functions of the x, in relation to the coordinate system K used for description.
The totality of these functions will be symbolically denoted by G(x).

Let a new coordinate system K be introduced, which coincides with K outside X,
but deviates from it inside = in such a way that the g',, related to the K’ are
continuous everywhere like the g, (together with their derivatives). We denote the
totality of the g’,,, symbolically with G'(x"). G'(x) and G(x) describe the same gravita-
tional field. In the functions g’,,, we replace the coordinates x’, with the coordinates x,,
i.c. we form G'(x). Then, likewise, G’(x) describes a gravitational field with respect to
K. which however does not correspond with the real (or originally given) gravitational
field.

We now assume that the differential equations of the gravitational field are generally
covariant. Then they are satisfied by G'(x’) (relative to K’), if they are satisfied by
G(x) relative to K. Then they are also satisfied by G’(x) relative to K. Then relative to
K there exist the solutions G(x) and G’(x), which are different from one another, in
spite of the fact that both solutions coincide in the boundary region, i.e. occurrences in
the gravitational field cannot be uniquely determined by generally covariant differential
equations for the gravitational field.

Einstein (1914b, pp. 1066—1067) [Einstein’s italics.]

Einstein’s use of the “G(x)” notation is not standard, but his purpose is
clear enough. He carefully acknowledges that a mere coordinate trans-
formation cannot produce a new field — “G’(x") and G(x) describe the
same gravitational field.” Rather he uses the transformation to generate
a new field with the required property. That new field is G'(x), which
we can identify as the carry along of the original metric, or, more
precisely, the components of the carry along in the original coordinate
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system. The comparison of G’(x) with G(x) implements exactly the
above algorithm for comparing 4*g,, and g,,.

Thus in summary Einstein's hole argument, when read actively, has
the force Einstein claimed. It amounts to the following:

I. Consider a metric g, within the matter free hole. The metric
satisfies the generally covariant source free field equations G, = 0,
for some boundary condition specification of the metric and source
matter distribution everywhere outside the hole.

2. Let h be a diffeomorphism which maps points within the hole to

different points within the hole and which smoothly becomes the

identity map everywhere outside the hole. Because of the tensor
nature (general covariance) of the field equations, the carry along

h*g,, will still satisfy the field equations. But in the general case, the

carry along will differ within the hole from the original metric.

Therefore we have a case of a unique boundary condition outside

the hole but two distinct fields within, both satisfying the field

equations.

9]

Einstein concluded that such a violation of physical determinism was
unacceptable and that the only way out was to deny use of generally
covariant field equations.

4. THE POINT-COINCIDENCE ARGUMENT

Einstein’s fourth version of the hole argument was communicated to the
Prussian academy in October 1914. A year later Einstein had com-
pletely lost confidence in the Entwurf field equations and returned in
desperation to the search for generally covariant field equations. He
communicated a new set of field equations to the Prussian academy on
November 4. He submitted a modified version on November 11. The
following week on November 18 he submitted his celebrated explana-
tion of the then anomalous motion of Mercury. But he still did not have
the modern field equations with the Einstein tensor as gravitation
tensor. These field equations — the third set to be offered by him in the
course of a month — were communicated to the Prussian academy on
November 25.°

The following month Einstein wrote to Ehrenfest and reflected upon
the momentous events of the past month.!"
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It is comfortable for Einstein. Each year he retracts what he wrote the previous year;
now my duty is the extremely sad business of justifying my most recent retraction.

Nowhere in Einstein’s frantic communications of November 1915 to
the Prussian academy had he explained how the hole argument could
be reconciled with his new generally covariant field equations. This task
was the “sad business” to which Einstein now turned. He addressed the
fourth statement of the argument. (It had appeared as section 12 of
Einstein (1914b) and its first three paragraphs were quote above.)
Einstein continued:

In §12 of my work of last year, everything is correct (in the first three paragraphs) up to
the italics at the end of the third paragraph. Onc can deduce no contradiction at all with
the uniqueness of occurrences from the fact that both systems G(x) and G’ (x), related
to the same reference system, satisfy the conditions of the grav. field. The apparent
force of this consideration is lost immediately if one considers that
1) the reference system signifies nothing real
(2) that the (simultaneous) realization of (wo different g-systems (better said, two
different grav. fields) in the same region of the continuum is impossible according
to the nature of the theory.
In the place of §12 steps the following consideration. The reality of the world-
occurrence (in opposition to that dependent on the choice of reference system) subsists
i spacetime coincidence.™ For example the intersection

|Footnote| *and in nothing else!

points of two different world lines are real, as is the assertion that they do nor inter-
sect one another. Those assertions, which refer to physical reality, are not lost then
through any (unambiguous) coordinate transformation. If two systems of g, (or [more|
gen.[erally|, variables used for describing the world) are so constituted, that one can
obtain the second from the first merely through a space-time-transformation, then they
refer to exactly the same thing [voellig gleichbedeutend|. For they have all timespace
coincidences in common, i.e. all that is observable. This consideration shows im-
mediately how natural is the requirement of general covariance.  [Italics in the original,|

The argument developed above is the point-coincidence argument,
which we can now identify as Einstein’s answer to his hole argument.
Seen in this context it is clear why it is nearly impossible for modern
readers to understand the point-coincidence argument if they only read
the well known version given in Einstein (1916), which was quoted
above in the introduction.

First, modern readers will not be able to see why there is a need for
any such argument at all for general covariance, for it is a minimum
requirement of any well formulated modern spacetime theory. In partic-
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ular there is no hint in Einstein (1916) of the long period of doubt
about general covariance which preceded the paper, let alone any men-
tion ol the hole argument.'" Second, it is by no means clear that the
argument secks to establish anything more than the following: a space-
time coordinate system is a smooth but otherwise arbitrary labelling of
events with four numbers; therefore no theory can suppose that any
coordinate system is distinguished or preferred independently of the
other structures defined on the manifold. Why, we must ask, would
Einstein seek to derive this entirely straightforward result from con-
tentious assertions about reality being constituted of spacetime coinci-
dences? Finally, it is not clear even after reading Einstein's letter to
Ehrenfest, that the point-coincidence does reconcile the hole argument
with gencral covariance.

In short I will show that we can retain these objections only as long
as we read the transformation it invoked passively. If we read it actively
— and [ shall urge that there is good reason to do so — then Einstein's
argument becomes cogent and makes a strong case for the results
claimed. The argument will be broken up into two steps. The first
argues for what I call “Leibniz equivalence™; from it, the second seeks
to establish the naturalness of general covariance, now understood in
an active and non-trivial sense.

[ begin by making the argument more precise. Represent a model of
a generally covariant gravitation theory as the ordered triple (M, g,,,
T,,). where M is a four dimensional manifold, g, a Lorentz signature
metric and 7, a stress energy tensor. In accord with the usual conven-
tion, g, and T,, represent two tensor fields in coordinate free fashion.
Of course each tensor can be represented by a matrix of components
8y and T,. The corresponding model of the theory based on com-
ponents in coordinate system K is represented by (M, K, g, T;.).

The basic assertion of the point-coincidence argument is made most
clearly towards the end of the passage quoted above from Einstein’s
letter to Ehrenfest: two systems of spacetime quantities represent the
same physical system if they are related by a coordinate transforma-
tion, for then each yields identical observables, that is, spacetime
coincidences.

Point-Coincidence Argument (Passive Reading)

Thesis: Two models T, = (M, K, gy, Ty)and T, = (M, K,, g, T'.,)

R ]
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represent the same physical system in case T, becomes T, under
coordinate transformation from K, to K.

Justificatton: The transformation from K, (o K, preserves spacetime
coincidences, which are the only observables.

Under this passive reading, the thesis becomes trivially true. It
merely reminds us that coordinate transformations do not alter quan-
tities, but only the matrices of components which represent them. The
Justification offered does not establish this trivial thesis. It is just
irrelevant to it.

[f we read the transformation actively — that is, as a diffeomorphism
induced by the coordinate transformation — we have:

Point-Coincidence Argument (Active Reading)

Thesis (Leibniz equivalence): Two models =M, g, T, and
Iy =(M, g, T, represent the same physical system in case there
exists a diffeomorphism /4 such that the carry along of 7, is T,. Then

we have

" A, g \ j— y sk s F
<A[' guh? rul)/ </”)L[’ h gulv’/z [ulr>
Justification: The diffeomorphism h preserves spacetime coincidences,
which are the only observables of the system.

T, and T, are said to be diffeomorphic. Thus a convenient expression
for the thesis of the active point-coincidence argument 18

Leibniz equivalence: Diffeomorphic models represent the same physical
system.

On this active reading, the argument 1s far from trivial. A model and its
carry along are quite distinct mathematical structures. That they repre-
sent the same physical system is a claim which requires justification. A
verificationist justification is provided. Observables are claimed to be
preserved under the carry along, so that a model and its carry along
agree on all observables.'” To insist that a model and its carry along
represent different physical systems, is to insist that there are physical
systems which differ in some property, even though there can be no
possible observational verification of the difference.!3
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Einstein supports the claim that observables are preserved under
carry along by asserting that all observables can be reduced to coinci-
dences, that is, to the relative points of intersection of physical systems.
What is not preserved is the locations of these coincidences in the
manifold. But these locations are in principle unobservable. Consider,
for example, a model in which the system of fields representing a ray of
light strikes a system of fields representing a photographic plate at its
midpoint. Then that coincidence will be preserved in an arbitrary carry
along of the model, even though the coincidence will be located at a
different point in the manifold. Moreover that it is located at a different
point has no observational consequences at all.

The active reading of the argument (but not the passive reading)
does release Einstein from the problem of the hole argument. Recall
that the indeterminism established by the hole argument was a con-
sequence of our ability to take a solution of a tensor field equation and
produce arbitrarily many diffeomorphic replicas, which still satisfied the
field equation for the same boundary conditions but were nevertheless
distinct from the original. Leibniz equivalence eradicates such indeter-
minism by asserting that all these diffeomorphic replicas represent the
same physical system. The fields within the hole are mathematically
underdetermined, but not physically, underdetermined since the allowed
fields all represent the same physical situation. Thus the generation of
diffeomorphic copies of the original solution within the hole amounts to
the exercising of a gauge freedom akin to that of electrodynamics.
Given any solution of Maxwell’s equations in terms of a scalar and a
vector potential, we can generate arbitrarily many more mathematically
distinct solutions by a change of gauge, but each solution still represents
the same electric and magnetic field.

What grounds are there for reading the point-coincidence argument
activity? There are several. To begin, coherence points directly to the
active reading. Only the active reading is not trivial and the justification
offered actually relevant to the thesis. Only the active reading does
what Einstein claimed, namely, resolve the hole argument. Some of
Einstein’s contemporaries — Schlick for example'* — clearly read the
point-coincidence argument actively. The two versions of the point-
coincidence argument quoted so far are most naturally read passively
by modern readers. We cannot allow this to rule out the active reading
as Einstein’s intended reading. We have already seen in the case of the
hole argument that Einstein simply failed to make clear in two of four
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versions that he intended the transformation to be viewed actively. In
another, as we have seen, he flagged this fact just by an opaque foot-
note. In the fourth and final version he made his intention clear only by
use of a clumsy and non-standard notation. !’

The strongest evidence for the active reading arises from the sceptic-
ism of another of Einstein’s contemporaries. Ehrenfest was not con-
vinced by Einstein’s letter of 26 December 1915 of the admissibility of
general covariance. He presented Einstein with a counterexample in a
letter which I believe is no longer extant. Einstein responded in a letter
to Ehrenfest of 5 January 1916 (EA 9 372). Reconstructing the
counterexample from Einstein’s response, it dealt with the system of a
star, an aperture and a photographic plate, illuminated through the
aperture by the star. Einstein explained that “Your difficulty has its root
in the fact that you instinctively treat the reference system as something
‘real’.” He then continued: '

Your example somewhat simplified: you consider two solutions with the same boundary
conditions at infinity, in which the coordinates of the star, the material points of the
aperture and of the plate are the same. You ask whether “the direction of the wave
normal™ at the aperture always comes out the same. As soon as you speak of “the
direction of the wave normal ar the aperture,” you treat this space with respect to the
functions g,, as an infinitely small space. From this and the determinateness of the
coordinates of the aperture it follows thar the direction of the wave normal AT THE
APERTURE for all solutions are the same."”

» skar

_qQ:__ apari‘ure
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Fig. 5.

This is my thesis. For more detailed explanation [I offer] the following. In the follow-
ing way you recover all solutions allowed by general covariance in the above special
case. Trace the above little figure onto completely deformable tracing paper. Then
deform the tracing paper arbitrarily in the plane of the paper. Then make a carbon
copy back onto the writing paper. Then you recover e.g. the figure




174 JOHN NORTON

._star

Y
-
i
i
v

i

\. plote

Fig. 6.
When you relate the figure once again to orthogonal writing paper coordinates, the
solution is mathematically difterent from the original, and naturally also with respect to %

the g,,. But physically it is exactly the same, since the writing paper coordinate system
is only something imaginary. The same point of the plate always receives the light. If
you carry out the distortion of the tracing paper only in the finite and in such a way that
the picture of the star, the aperture and the plate do not lose continuity, then you
recover the special case to which your question relates.
The essential thing is: as long as the drawing paper, i.e. “space”, has no reality, then
there is no difference whatever between the two figures. It |all] depends on coincidences
[Italics in the original |

Einstein makes clear here that he intends the transformation used in the
point-coincidence argument to be read actively as a diffeomorphism.
This diffeomorphism is represented appropriately by a distortion of the
tracing paper. Its carrying along of structures is represented very

graphically by the carrying along of lines of a drawing by the distortion. é.
The comparison of the two structures in question is clearly intended to @

be carried out in the same coordinate system, the orthogonal system
of the writing paper, as required in an active (but not passive) reading
of the argument. Einstein then continues in the following paragraph
to give an active account of what it is for a theory to lack general ﬂsﬂm{ﬁm&ﬁ;
covariance: - B

If the equations of physics were not generally covariant, then you certainly could not

carry out the above argument; but relative to the writing paper system the same laws

would not hold in the second figure as in the first. Then to this extent both would still -

not be equally justified. This difference falls away with general covariance. ’
[Italics in the original.]

In more modern terms we would say that a theory is generally covariant
in the active sense if it satisfies the following condition:
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General covariance of a theory (active reading): If T is a model of the
theory, then a carry along of T under an arbitrary diffeomorphism is
also a model of the theory.

Since the relation of being diffeomorphic is an equivalence relation, it
follows that the set of models of a generally covariant theory can be
divided into equivalence classes of diffeomorphic models. It is impor-
tant to see that the requirement of general covariance is not the same as
Leibniz equivalence. The former provided for the existence of equi-
valence classes of diffeomorphic models within the set of models of the
theory. The latter requires that each member of a given equivalence
class represents the same physical system.

For comparison, we can formulate the general covariance of a theory
in the passive sense as follows. The formulation is specific to theories
with models of the form (M, g,,, T,,). but its generalization is obvious.

General covariance of a theory (passive reading). If T, =(M, K|, gu, Ty)
is a model of a theory, then so is any model T, = (M, K,, g, T;\)
where g, and T, are the matrices of components produced by
transforming g, and 7}, from K, to K,.

The two requirements of general covariance are not equivalent. It is
easy to find examples of theories which satisfy one requirement but not
the other. Consider, for example, a version of special relativity whose
sole model is a particular Minkowski spacetime (M, n,,), where M is a
four dimensional manifold and n,, a Minkowski metric. In component
terms it has a set of models, each of the form (M, K, n,), which
contains just all coordinate systems K defined on M and all the com-
ponent representations of n,. This theory is generally covariant in
the passive sense. But the theory is not generally covariant in the
active sense since by stipulation none of the diffeomorphic replicas of
(M, n,,) are models of the theory.

Fortunately the two requirements agree in a number of important
cases. For example, consider a general relativity-like gravitation theory
whose models are the set of all triples (M, g,,, T,,) which satisfy the
field equation

Hab = Gab - kTab =0 (5)

were G, is some generally covariant gravitation tensor. The theory is
obviously generally covariant in the passive sense. It is also generally
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covariant in the active sense. For the H, tensor of any model is the
zero tensor. Therefore the H,, tensor of the carry along under arbitrary
diffeomorphism of the model will also be a zero tensor, given our
earlier result that the carry along of a zero tensor is always a zero
tensor. Note that the active general covariance of this class of theories,
restricted to the case in which g,, is source free, was the central result
discussed in Section 3 in the context of the hole argument. Writing the
field equation in the form of (5), enables us to drop the restriction to
the source free case.

If we read general covariance actively, we can now take the final step
and see how Einstein’s argument proceeds from Leibniz equivalence to
general covariance. From Leibniz equivalence we have: given a model
of a theory which represents some physical system, we can generate
arbitrarily many diffeomorphic replicas which represent the observables
of the same system equally well. The requirement of general covariance
“is a natural one,” to quote Einstein (1916, p. 117), since it just allows
that all of these diffeomorphic replicas are also models of the theory.
Without Leibniz equivalence, the requirement of general covariance is
not at all natural. It is simply disastrous, as the Einstein of 1915 and
1916 well knew. For the diffeomorphic copies admitted by general
covariance need no longer represent the same physical system and one
arrives immediately at the radical indeterminism of the hole argument.

5. WHAT DO THE HOLE AND POINT-COINCIDENCE
ARGUMENTS ESTABLISH?

Leaving aside the historical issues, let us ask what are we warranted to
conclude from these two arguments. I think there is only one clear and
unambiguous conclusion which we can draw and which has direct
impact on the application of general relativity: Leibniz equivalence.
This equivalence is now incorporated as a matter of course into some
of the better modern texts on general relativity, although there is no
acknowledgement of Einstein’s original adoption of it. (See Hawking
and Ellis (1973, p. 56), Sachs and Wu (1977, p. 27) and Wald (1984,
p. 438).)

But Einstein clearly felt in 1915 and 1916 that some kind of con-
clusion about the reality of spacetime could also be recovered. I con-
sider three possibilities. The first is literally Einstein’s proposal of 1915
and 1916, the non-realist proposal, which I will argue is not established
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by Einstein’s arguments. The second is a proposal by John Stachel and
the third is due to John Earman and myself.

Non-Realism About Spacetime

Einstein urges (1916, p. 117) that we conclude that general covariance
“takes away from space and time the last remnant of physical objec-
tivity.” Non-realism about spacetime is the direct reading of Finstein’s
assertion and presumably the one he indended. It claims that the term
“spacetime” (or correspondingly “space” and “time”) have no referen’
in the physical world. The claim should be tightened just a little, since
what is really at issue is not whether the English word “spacetime” has a
referent, but a theoretical structure known as “spacetime” in general
relativity. Here I take the manifold to be that structure and the non-
realist claim about spacetime to be that the manifold refers to nothing
in the physical world.

But what supports the claim is not clear. General relativity read
literally posits that the actual world and other possible worlds are
represented by spacetime manifolds with fields, such as g, and T,,,
defined on them. In the model representing the actual world, these
fields refer to real physical fields. Correspondingly the points of the
manifold refer to real physical events.

The hole and point-coincidence arguments complicate the issue by
making it impossible to determine which point of the manifold refers to
which physical event without considering the fields defined on the
manifold. The trouble is that according to Leibniz equivalence the same
manifold can figure in two different (diffeomorphic) models which
represent the same physical system. Imagine for example that the point
p of the manifold M refers to some event — say the collision of
two cars — in the model (M, g,,, T,,). Then the same point p will
in general not refer to the same event in the diffeomorphic model
(M, h*g,,, h*T,,). Rather the different point 4p will refer to that event.

This difficulty however does not establish the non-realist claim. The
relativization of reference is not the same as the elimination of refer-
ence entirely.

Spacetime Events Lose Individuation

The loss of individuation of spacetime events is the basic conclusion
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which Stachel urges we draw from the hole and point-coincidence
arguments.'’® As I understand it, Stachel’s conclusion amounts to the
difficulty mentioned above: the physical events to which points of the
manifold refer cannot be determined from manifold structure alone.
Their reference is determined by the fields defined on the manifold.

Recall that a spacetime coordinate system gives us a numerical
labelling which enables us to distinguish points of the manifold from
one another. So presumably Einstein had in mind such a loss of
individuation when he sought to clarify his view to his correspondents
in 1915 and 1916. He stressed to Ehrenfest (26 December 1915) that
“the reference system signifies nothing real” and similarly to Besso 3
January 1916) that the coordinate “system K has no physical reality.”'®
(Speziali, 1972, pp. 63—64) He returned to precisely this point in his
letter of 6 January 1916 to Ehrenfest, describing a failure to grasp it as
the root of Ehrenfest’s objection to general covariance.

Thus Stachel (1985, Section 4) writes of the hole argument:

The main difficulty here was to see that the points of the space-time manifold (the
“events” in the physical interpretation) are not individuated a priori but inherit their
individuation, so to speak, from the metric field.

Stachel’s response (1985, Section 6) to this loss of individuation is to
cease representing physical events by points of the manifold in the case
of spacetime theories without absolute objects, such as general rela-
tivity. In this case he represents physical events by structures in the
fibre bundle formed from the manifold and geometric objects definable
on it. (Specifically they are a set of maps from the manifold into cross-
sections of the bundle.) In this way, the ambiguity of reference can
be avoided since the geometric objects which determine that reference
are automatically incorporated in the structure. I refer the reader to
Stachel's paper for details of this construction and of his general
proposal concerning spacetime theories with and without absolute
objects.

Refutation of Spacetime Substantivalism

John Earman and I (Earman and Norton, forthcoming) have argued
that the hole and point-coincidence arguments amount to a decisive
refutation of the doctrine of spacetime substantivalism for a large class
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of spacetime theories. When the arguments are suitably generalized,
that class includes general relativity as well as spacetime formulations of
Newtonian theory and special relativity. I limit the discussion here to
the case of general relativity.

According to this doctrine, spacetime is held to have an existence
independent of anything it contains. The doctrine is best known
through Newton’s views towards absolute space and absolute time,
whose properties are asserted to be entirely independent of the matter
they contain. In particular one can have Newtonian absolute spaces and
times devoid of matter. An exactly analogous formulation of the doc-
trine is not possible in the spacetime case within general relativity. For
general relativity posits that every spacetime has both a manifold and a
metric. By hypothesis, we cannot have a spacetime, understood to be
the manifold, without the metric field it must contain. This renders
spacetime substantivalism false by hypothesis in general relativity.
Clearly this analysis resolves the question too cheaply, for spacetime
substantivalism is not usually regarded as analytically false in general
relativity.'”

At this point the natural move is to seek an acceptable reformulation
of the doctrine of spacetime substantivalism. Is it captured, we might
ask, by the assertion that spacetime is not reducible to other structures;
or that we must quantify unavoidably over spacetime events; or in
Stachel’s notion of no independent individuation of the points of the
manifold? Fortunately we do not need to embark on this laborious
quest. For our purposes it suffices that spacetime substantivalists must
all agree on a simple acid test. The test is best known through Leibniz’s
challenge to Newtonian space substantivalists: would God have created
a different universe if he had placed all the masses in it reversed East to
West, but otherwise preserving all relations between them? Newtonian
space substantivalists must concede that the new universe would be
different to the old one, since the bodies in the new one are at quite

different spatial locations, even though there would be no observable -

difference between the two universes.

The spacetime analogue of reflecting systems of masses East-West in
space is a carry along by diffeomorphism over the manifold. Cor-
respondingly, spacetime substantivalists, irrespective of the precise
formulation of their views, must agree that diffeomorphic models of a
spacetime theory represent different physical systems, for the fields are
now located at different points in the manifold. We can express this by:

——
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Leibniz test for spacetime substantivalism: Spacetime substantivalists
must deny Leibniz equivalence.

But if spacetime substantivalists must deny Leibniz equivalence, then
they face dire consequences. The hole argument forces them to agree
that general relativity, with generally covariant gravitational field equa-
tions, is subject to what Earman and I call “radical local indeter-
minism”. That is, the metric field within any neighbourhood of the
spacetime manifold, no matter how small, is not uniquely determined
by even the most complete specification of the fields outside that
neighbourhood.?® And in the case of the point-coincidence argument,
they must insist that it is possible for there to be distinct systems which
no possible observation could distinguish.

Thus we can summarize the import of the hole and point coin-
cidence arguments for spacetime substantivalists in the form of two
dilemmas:

Indeterminism dilemma (Hole argument). Spacetime substantivalists
must either

(a) accept radical local indeterminism in general relativity, or

(b) deny their substantivalism.

Verificationist dilemma (Point-coincidence argument): Spacetime sub-

stantivalists must either

(a) accept that there are distinct systems which are observationally
indistinguishable, or

(b) deny their substantivalism.

It is hard to imagine that even the most hardened of spacetime sub-
stantivalists could cling onto their doctrine in the face of these dilem-
mas. Perhaps they may do so in the case of the verificationist dilemma,
given that verificationism is no longer fashionable. But surely the
spectre of radical local indeterminism in the other dilemma is far too
high a price to pay for a doctrine that adds nothing predictively to
general relativity.

6. FROM NON-REALISM TO REALISM

If the Einstein of 1915 and 1916 held to non-realism about spacetime,
he did not retain this belief for very long. By 1920 he had clearly
shifted from non-realism (spacetime has no existence) to antisubstan-
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tivalism (spacetime has no existence independent of the fields it con-
tains). This was a fortunate development since, as we have seen, the
former view was not supported by his arguments, whereas the latter is
most strongly supported. He wrote:

There can be no space [spacetime| nor any part of space without gravitational
potentials; for these confer upon space its metrical qualities, without which it cannot be
imagined at all. The existence of the gravitational field is inseparably bound up with the
existence of space. (Einstein, 1920, p. 21)

Since non-realist claims about spacetime disappeared from Einstein’s
writings from this time onwards, I conjecture that this antisubstantival-
ism was the conclusion drawn ultimately by him from the hole and
point-coincidence arguments and general covariance — and perhaps
even what was intended all along in his 1915 and 1916 non-realist
remarks.

Antisubstantivalism appears frequently in Einstein’s writings of the
1950’s, even though sometimes it appears in the form of the slogan, no
space without metric field. (See Einstein (1953) and, in his correspon-
dence, letters to D. W. Sciama, 28 December 1950 (EA 20 469), to G.
Sandri, 24 June 1950 (EA 20 449) and to M. Fischler, 9 September
1954 (EA 11 023).) The best known version of the claim is in the 1952
appendix, “Relativity and the Problem of Space,” to Einstein (1917), his
popular exposition of relativity theory (p. 155):

In accordance with classical mechanics and according to the special theory of relativity,
space (space-time) has an existence independent of matter or field . . . . On the basis of
the general theory of relativity, on the other hand, space as opposed to “what fills
space,” which is dependent on the coordinates, has no separate existence ... . If we
imagine the gravitational field, i.e., the functions g,, to be removed, there does not
remain a space of the the type (1) [Minkowski spacetime], but absolutely nothing, and
also no “topological space.” For the functions g;, describe not only the field, but at the
same time also the topological and metrical structural properties of the manifold . . . .
There is no such thing as an empty space, i.e. a space without field. Space-time does
not claim existence on its own, but only as a structural quality of the field.

[Einstein’s italics.]

Einstein’s stress here on viewing spacetime as a property of the metric
field rather than an independent entity makes it possible for us to
characterize the view as something slightly stronger than antisubstan-
tivalism. The view is a relational view of spacetime. That is, spacetime
arises as an abstraction from the spatiotemporal properties of other
things.
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Readers of Einstein (1916) may well be able to see how he could
modify his non-realism about spacetime to antisubstantivalism. But
surely they will be surprised by the hopes expressed in 1930 by an
Einstein deeply embroiled in the search for a unified field theory
(Einstein, 1930, p. 184):

We may summarize in symbolical language. Space, brought to light by the corporeal
object, made a physical reality by Newton, has in the last few decades swallowed aether
and time and seems about to swallow also the field and the corpuscles, so that it
remains as the sole medium of reality.

What complicates the whole discussion and lends an aura of contradic-
tion to it is the fact that the term “spacetime” (or else “space” or “time”)
refer to different theoretical structures in different contexts.

In the analysis of spacetime substantivalism given by Earman and
myself, spacetime i1s identified with the manifold. But it is harder to
determine precisely what theoretical structure stands for “spacetime” in
various of Einstein’s writings. Presumably the Einstein of 1916 took
spacetime to be the manifold. But the Einstein of 1930, who expresses
the hope that space would become “the sole medium of reality,” surely
took space to be manifold plus metric or manifold plus the geometric
structure of his unified field theory.

In the context of his slogan, no space without metric field, Einstein
seems to take “space” to be certain spatiotemporal properties of a
manifold with metric. Consider for example Einstein’s (1953) remark
that in a generally covariant field theory, “that which constitutes the
spatial character of reality is then simply the four-dimensionality of the
field”; and his remark in a letter to D. W. Sciama of 28 December 1953
(EA 469): “‘Space’ exists only as the continuum property of physical
reality (field), not as a kind of container with independent existence,
into which physical things are placed:” The difficulty with this reading
of “space” is to make precise exactly which properties are in question.
Stachel (Stachel, 1985, Section 6) makes the only attempt of which I
am aware to deal with this problem.

The story of Einstein’s change of viewpoint from non-realist (or
perhaps just antisubstantivalist) to realist about spacetime is a fascinat-
ing one. Since it involves issues well beyond the scope of this paper, I
can only mention a few of its highlights here.

The Einstein of 1915 and 1916, who rejoiced in the loss of objec-
tivity of space and time, had by his own later admission (Einstein,
1946, p. 27) not appreciated fully the picture of reality demanded by a

s
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true field theory. Then he had sought to explain the origin of inertial
forces solely in the interactions of bodies, alloting to fields a purely
intermediate role. (Einstein, 1916, Section 2) The crucial insight, which
he attributed to Mach, was that an epistemologically satisfactory me-
chanics could not admit inertial spaces as causes.

H. A. Lorentz, whom Einstein revered as a father figure, must have
played some role in changing Einstein’s mind. They corresponded
extensively in the 1910’s over relativity. Einstein conceded to him (15
November 1919, EA 16 494) that he had been hasty in concluding the
non-existence of the aether from special relativity. He should only have
concluded the non-reality of an aether velocity. The aether belonged in
general relativity in so far as that theory posited spacetime as a bearer
of physical qualities. Those qualities are the metric field. Thus Einstein
began to portray general relativity as an aether theory and the term
aether figured prominently in some of the titles of Einstein’s papers.
(See Einstein (1918, p. 702; 1920; and 1924).)

In particular, in a 1920 lecture at Leiden read before Lorentz,
Einstein conceded that the Machian analysis of the origin of inertia no
longer leads us to seek an account of inertia solely in the interactions of
distant bodies, since we should no longer be prepared to posit action at
a distance. Rather we are led to an aether, which “not only conditions
the behavior of inert masses, but is also conditioned by them. Mach’s
idea finds its fullest expression in the aether of the general theory of
relativity.” (Einstein, 1920, p. 18; Einstein’s italics)

Gradually Einstein replaced the term “aether” by “space” and with it
the shift from non-realist to realist view of spacetime completed.
Einstein now allowed that his Machian critique did not require a non-
realist view of spacetime but the elimination of its preferred causal
status. He summarized his changed viewpoint (Einstein, 1927, p- 260):

The general theory of relativity formed the last step in the development of the
programme of the field-theory ... Space and time were thereby divested not of their
reality but of their causal absoluteness — i.e. affecting but not affected — which Newton
had been compelled to ascribe to them in order to formulate the laws then known.

7. CONCLUSION

My story began in 1916 with a rather unconvincing verificationist
argument from Einstein for general covariance and an associated non-
realist claim about space and time. Even though the argument and
claim are much cited and quoted, we found that they are rarely under-
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stood, largely because Einstein failed to include in his presentation
virtually all the ingredients necessary for this understanding,

. The notion of general covariance at issue was not merely the passive
form of invariance of laws under arbitrary coordinate transformation. It
was general covariance in the active sense under which any model of a
theory belongs to an equivalence class of all possible models diffeo-
morphic to it. The crucial result was what I called Leibniz equivalence,
that each member of one such equivalence class represents the same
physical system. Einstein’s verificationist argument makes good sense as
an argument for Leibniz equivalence. Einstein did not mention the vital
link which connected Leibniz equivalence to general covariance. Leibniz
equivalence released him from the conclusion of his earlier hole argu-
ment, which was that general covariance would lead to a radical and
unacceptable form of indeterminism in his gravitation theory. He also
did not mention that the threat of this indeterminism in the hole
argument could now be turned into an argument for Leibniz equi-
valence, which to modern eyes is stronger than the verificationist
argument he offered. Perhaps Einstein felt that in 1916 an appeal to
verificationism would be more readily accepted. Certainly any such
expectation was vindicated by the enthusiastic response of such con-
temporary philosophers as Reichenbach and Schlick.

The non-realist claim about space and time entered only at the last
moment of this episode and was dropped by Einstein within five years.
We could find no argument within the episode to support this non-
realism. Rather we extracted two dilemmas for those who hold to a
related view, spacetime substantivalism, the view that spacetime has an
existence independent of the fields it contains. These dilemmas force
the rejection of that view. We found antisubstantivalist claims concern-
ing spacetime common in Einstein’s later work.

Einstein strove to express his ideas as simply and clearly as possible.
Unfortunately sometimes his efforts backfired on him and he simplified
his ideas to the point that they become unintelligible to even a diligent
reader, as we have seen in the case here. I have not addressed the
question of whether Reichenbach’s or Schlick’s reading of Einstein’s
work suffered from this difficulty. My story ends with a broader chal-
lenge to historians and philosophers of science: which other of Einstein’s
claims and arguments have been misunderstood for this reason?

University of Pittsburgh, U.S.A.
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NOTES

* 1 wish to thank the Hebrew University of Jerusalem, Israel for its kind permission to
quote the material in this paper from Einstein’s unpublished writings, and Don Howard
for discussion and comments on an earlier draft of this paper.

' A non-realist holds that “space” and “time” have no referents in the physical world. I
would have preferred to use the term “anti-realist”, but it has already been used by van
Fraassen (van Fraassen, 1980, pp. 9—11) for a view which is agnostic about the
existence of these referents.

* Einstein objected to this gloss also. For example he corrected Ehrenfest in cor-
respondence of 1919 by noting that the novelty of special relativity in 1905 was not
epistemological (non-existence of a resting aether) but empirical (equivalence of all
inertial systems with respect to light). He allowed that epistemological demands came
into play in 1907 when he commenced work on general relativity. But here too the
empirically determined equality of inertial and gravitational mass played a significant
role. A. Einstein to P. Ehrenfest, 4 December 1919, EA 9 451. (EA 9 451 refers to the
document with control number 9 451 in the duplicate Einstein Archive, Mudd Manu-
script Library, Princeton.)

* 1 have argued at length (Norton, 1985c¢) that this modern view was not Einstein’s. He
did not associate the presence of a gravitational field just with non-vanishing metrical
curvature, but with the presence of a metric of any curvature. Thus a Minkowski space-
time for Einstein was already a special case of a gravitational field bearing spacetime.
This was one of the crucial insights gleaned by Einstein from his principle of equi-
valence.

* I follow the usual modern conventions concerning indices. A sub- or superscripted
a, b, ¢, d, ...1is used to represent the rank and type of a geometric object according to
the abstract index convention. Thus g,, represents a second rank covariant tensor. Sub-
or superscripted i, k, m, n, . . . take values 0, 1, 2, 3 and are used to represent matrices
of components of geometric objects. Thus a second rank, covariant tensor g, has
components gy, gy, - - - , 823, &3 in some coordinate system. These components are
represented by g, , where i, m are understood to take all values 0,1,2,3.

° This was not Einstein’s first argument against the physical acceptibility of general
covariance. He had already argued against it as early as August 1913 on the basis of
the limited covariance of the stress energy tensor of the gravitational field. See Norton,
1984, pp. 284—86.

¢ He did insist however that if his Lntwurf field equations had any physical content,
then they must have a generally covariant generalization. Einstein, 1914a, pp. 177—
178.

7 But the argument did not appear in the original separatum of this article, Einstein
and Grossmann (1913a).

% For notational continuity, I have replaced Einstein’s Greek indices by Latin indices
both here and in the later version of the argument. Similarly T,,, is the stress energy
tensor density, [—g T,,,, which Einstein denoted with a Gothic &.

® This episode is outlined in Norton (1984), (1985a) and (1985b) in which the first
explanation of Einstein's need for three separate version of the field equations in this

month is offered.
1" A. Einstein to P. Ehrenfest, 26 December 1915, EA 9—363. Einstein presents

it
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essentially the same arguments to Besso in slightly briefer form in A. Einstein to M.
Besso, 3 January 1916, in Speziali (1972, pp. 63—64).

I Obviously I do not mean that Einstein was trying to suppress this episode. It would
have been well known to any contemporary who had been following his theory in the
literature. There was just no need for him to remind his readers of the embarrassing
confusions of the previous three years.

12 Thus the active reading makes sense of the remark of Einstein to Ehrenfest quoted
above, where the passive reading does not: “Those assertions, which refer to physical
reality, are not lost then through any (unambiguous) coordinate transformation.”

13 The denial that such observationally indistinguishable systems are different was
called “Leibniz equivalence” above, since this was precisely the point Leibniz made to
Clark in their celebrated correspondence when he asked how the world would differ if
God had placed the bodies of our world in space some other way, only changing for
example East into West. (Alexander, 1956, p. 26)

14 Schlick’s version, as quoted in Friedman (1983, p. 23), is very clear and simple —
and unambiguously active.

IS We can draw a useful moral here. If Einstein talks of coordinate transformation but
his discussion is incoherent, it is worth considering the possibility that he may really
mean the corresponding point transformation.

16 The two figures shown have been redrawn after the sketches included in the original
letter.

17 I render the double underlining of “at the aperture” by uppercase italics.

172 For more details see Stachel 1985. Torretti (1983, Section 5.6) reviews the hole
argument, the point-coincidence argument, Stachel’s proposal and then offers what I
believe amounts to Leibniz equivalence as a prefered alternative.

18 The other point stressed in both letters was that it is impossible to realize simultane-
ously two different gravitational fields in the same neighbourhood of the manifold. If
Einstein intends that the two fields are diffeomorphic (which is not clear), then I read
this remark as a somewhat awkward statement of Leibniz equivalence.

19 For general discussion of space, time and spacetime substantivalism, see Sklar
(1977).

20 Note that the argument has been generalized by dropping the requirement that the
hole be matter free. The construction now requires that both g, and T,, be carried
along by the diffeomorphism and the field equations of form (5) used.
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