JOHN D. NORTON

ELIMINATIVE INDUCTION AS A METHOD
OF DISCOVERY: HOW EINSTEIN DISCOVERED
GENERAL RELATIVITY

One who has himself poked about so much in the chaos
of possibilities can understand very well your fate. You
haven’t the faintest idea what I, as a mathematical
ignoramus, had to go through until I entered this harbor.'

1. INTRODUCTION

So began Einstein’s weary and consoling response of August 1915 to his
correspondent Paul Hertz on a yet another proposal concerning the troubled
and still incomplete general theory of relativity. Einstein had been working
on the theory for eight years and within a few months would overcome
his final obstacles, bringing to completion his greatest scientific achieve-
ment.” My concern in this paper is to establish two theses about Einstein’s
discovery of his general theory of relativity. The first concerns the heuristic
methods he used to navigate the “chaos of possibilities”; the second concerns
an important moral Einstein, the “mathematical ignoramus,” drew from
the experience:

1. In broad outline, Einstein discovered the theory through a sequence of
eliminative inductions in which empirically based generalizations were
used to eliminate theories from a universe of candidate theories with
the goal of converging onto a unique theory.

2. Einstein’s later and much celebrated fascination with a canon of math-
ematical simplicity in the quest for fundamental physical laws was
derived in significant measure from his experlence with the discovery
of general relativity.

The first thesis describes what I shall call an “eliminative model of scien-

tific discovery” and its treatment will attract the bulk of my efforts in this

paper.

1.1. On Eliminative Induction

I shall construe eliminative inductions broadly as arguments with premises

of two types:

(a) premises that define a universe of theories or hypotheses, one of which
is posited as true; and

(b) premises that enable the elimination of members of this universe by
either deductive or inductive inference. (These are called “eliminative
principles” below.)
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The goal of inference in an eliminative induction is to converge on the
true theory in the universe specified by (a). However we shall see a case
in which the elimination is too thorough and the premises of (b) enable
elimination of all the theories of (a); we shall also see a case in which
more than one of the theories of (a) remain after the elimination has
proceeded. i

Eliminative induction has long been a recognized form of inference. In
recent years it has attracted little attention in the literature, a neglect which
has been persuasively denounced recently by John Earman.’ Mill’s canons
provide some of the best known examples of eliminative induction. He
labelled them “methods of elimination” since they are intended to enable
one to eliminate all but the true causes out of the range of possible causes
for a given phenomenon.* A tradition of work in eliminative induction has
amplified the basic methods Mill laid out.’ It is easy to underestimate the
power of eliminative induction, especially when so many of its examples
are fairly unimpressive disjunctive syllogisms in which one is faced with
the relatively easy task of eliminating all but one of a small number of
candidate hypotheses. The true power of the argument form emerges, as
we shall see below, when one considers cases in which the universe of
theories or hypotheses in question is infinitely large, containing almost every
conceivable possibility, and the elimination of theories is not effected singly
but “wholesale” in infinite sets.

Although they bear the name “induction” in the literature eliminative
inductions need not be ampliative. For example, an eliminative induction
that has the form of a disjunctive syllogism is a deductively valid argument.
However ampliative inferences usually wait in the wings. The establishment
of the premises of an eliminative induction that is also a disjunctive
syllogism will usually be ampliative or, in more complicated cases, the
actual eliminations may be carried out by ampliative inductions. Since
eliminative inductions are often demonstrative (i.e. non-ampliative), they
are closely associated with so-called “demonstrative induction” and
commonly cited examples of both could qualify as either. In demonstra-
tive induction, premises of greater generality are combined deductively with
premises of lesser generality to yield a conclusion of intermediate gener-
ality.® In an important sequence of papers, Jon Dorling has shown that
demonstrative induction has played on important role in the history of
theoretical physics, including the work of Einstein.’

1.2. Amplification on the Theses

The first thesis of this paper requires several amplifications: The bulk of
theories in the universe of theories of Einstein’s eliminative inductions
were unarticulated and remained so. -

That is, that universe simply consisted of the set of theories that Einstein
could have chosen, or, as he put it above, his “chaos of possibilities”.
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Most of them were not chosen and typically not even formulated explic-
itly by him. To anticipate an objection, I stress that the thesis makes no more
presumptions about the existence of some Platonic world of theories forming
this universe than does everyday talk of unrealized choices or possibili-
ties. We shall see that it is quite straightforward to define, even if loosely,
a universe of theories and proceed to eliminate all but a few of them without
ever articulating the bulk of the theories.®

As the eliminative induction proceeds, however, Einstein retains a smaller
and smaller subset of uneliminated theories that are given more and more
complete articulation by the actual process of elimination until the induc-
tion, if successful, concludes with the full articulation of the final theory.
That is: The carrying out of the eliminative induction is also the actual
construction of the final theory.

Further, since this induction is a rational process and, at the same time,
a justification of the theory, we have: The generation of the theory pro-
ceeded hand in hand with the development of its justification.

Thus Einstein’s later expositions of the theory often contains a recapit-
ulation of steps taken in its discovery, offered as a partial justification of
the theory for the reader. In particular, the eliminative principles — the
“(b)” premises above — that were used in the generation of general relativity
included the principles of general covariance and equivalence as well as
the requirements of conservation of energy and momentum and of the
appropriate Newtonian and special relativistic limit. With the discovery
of the theory completed, these principles were retained for the theory’s
justification and took their place in the axiomatic foundations of Einstein’s
standard expositions of the theory. Finally: With the possible exception of
the principle of general covariance, these eliminative principles were
empirically based.

Thus the discovery process and the justification it spawned have
substantial empirical foundations.

The second thesis affirms that Einstein, who had denounced the a priori
in physics, did not himself pluck his later insistence on the decisive
importance of mathematical simplicity from the “Olympus of the a priori.”
Rather he derived the heuristic in the manner one would expect of any
good empiricist, from experiences in scientific discovery. We shall see
that prior to concluding his work on the theory he was indifferent or even
hostile to such a canon, but he came to realize that adherence to this canon
would have accelerated greatly his completion of the theory when his usual
direct physical analysis actually turned out to be more of a hindrance.

1.3. Preview

The first thesis suggests that Einstein’s actual process of discovery, at least
at a broad level, admits quite simple, rational and even mechanical char-
acterization. The contrary view that scientific discovery is not susceptible
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to logical analysis is very common. Popper, for example, advances it under
the banner “Elimination of Psychologism” and quotes Einstein’s own
remarks for support.'® Since Einstein’s own remarks on scientific discovery
are often cited as support of such views as Popper’s, I shall briefly review
in the following section what Einstein does say about the matter. I shall
urge that Einstein’s remarks do rule out mechanical characterization of a
particular aspect of scientific discovery, but that they do not rule out and
even invite the eliminative model of his own discovery process given in
the first thesis above. In Section 3, I shall review Einstein’s discovery of
special relativity and argue that his distinction of constructive theories
from theories of principle arose as a part of an application of the elimina-
tive model and that this discovery was one of Einstein’s early successes with
the eliminative model.

" In Sections 4, 5 and 6, I turn to general relativity and review three of
the major decision points in its discovery, characterizing each as an attempt
at theory construction by eliminative induction. The first concerns the
starting point of Einstein’s work on general relativity, his speculation in
1907 on how one might modify gravitation theory to bring it into accord
with his 1905 special theory of relativity. This work led to the striking
conclusion that no special relativistic theory of gravitation was accept-
able, that a new theory of space, time and gravitation was needed and that
this theory would extend the principle of relativity to accelerated motion.
The second major decision point concerned the basic question of how
gravitation was to be represented in the new theory. In the theory of static
gravitational fields that Einstein developed in 1907 to 1912, he concluded
that gravitation was to be represented by a variable speed of light. In 1912
and 1913 he combined the resulting program of work on gravitation with
the four dimensional methods introduced to relativity theory by Hermann
Minkowski five years before. With the assistance of his mathematician
friend Marcel Grossmann, he arrived at essentially the complete general
theory of relativity in which gravitation was represented by the metric of
spacetime itself. The third decision point concerns the new theory’s grav-
itational field equations. The equations Einstein and Grossmann constructed
in 1913 were not generally covariant and Einstein even came to believe
that generally covariant field equations would be physically unacceptable.
Einstein struggled for nearly three more years with this problem until he
returned to general covariance and brought the theory to its essentially
final form in November 1915.

The example of Einstein’s generation of these f1e1d equations enables
us to address a question concerning Einstein’s procedures. Are the elimi-
native inductions I describe merely clever devices that happen to solve
the problems which they address? Or are they applications of genuine
methods? I shall take the distinction between these two options to be that
a method supplies explicitly identifiable procedures that can be used to solve
a range of problems, whereas a device can be used only in the one case
in which it arises. At least in the instance of these field equations, we
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shall see that Einstein clearly thought his procedure was an application of
a method. In fact the term “method” is his. He explains the method by
showing how it could be applied to solve other problems, in this case the
problem of generating the field equation of electrostatics, thereby demon-
strating directly that it can solve more than one problem.

Finally, in Section 7, I reflect on the examples of eliminative induction
of the preceding sections and then, in Section 8, I consider the heuristic
that Einstein elected to assign a lesser importance in his search for the
theory, the canon of mathematical simplicity, and show how he came to
regret and reverse that decision.

2. EINSTEIN’S VIEWS ON SCIENTIFIC DISCOVERY

Of all of Einstein’s pronouncements on scientific discovery, probably the
best known are those that seek to deny that theories can be deduced from
experience.” Typical of these pronouncements are the words of his 1918
address, ‘Principles of Research’, where he proclaims:

The supreme task of the physicist is to arrive at those universal elementary laws from which
the cosmos can be built up by pure deduction. There is no logical path to these laws; only
intuition, resting on sympathetic understanding of experience, can reach them.'

Elsewhere, in his 1933 ‘On the Methods of Theoretical Physics’, Einstein
offers two related justifications for this “no logical path” claim. Excepting
the constraint that the concepts and fundamental principles of a theory entail
conclusions compatible with experience,

. . . these latter [concepts and fundamental principles] are the inventions of the human
intellect, which cannot be justified either by the nature of that intellect or in any other
fashion a priori.”

Thus he continues on the following page to infer the erroneousness of

. . . the idea that the fundamental concepts and postulates of physics were not in the logical
sense free inventions of the human mind but could be deduced from experience by “abstrac-
tion” — that is by logical means.

This “free invention” view is in turn supported immediately by the obser-
vation that general relativity embraced an even wider range of empirical
facts than Newtonian theory while using foundations quite different from
those of Newtonian theory. This observation led to the general claim that

. . . quite apart from the question of the superiority of one or the other, the fictitious
character of fundamental principles is perfectly evident from the fact that we can point to
two essentially different principles, both of which correspond with experience to a large extent;
this proves at the same time that every attempt at logical deduction of the basic concepts
and postulates of mechanics from elementary experiences is doomed to failure.

We now of course label the new claim introduced as the thesis of the
underdetermination of theory by evidence or, more briefly, the under-
determination thesis.
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While Einstein’s views on “no logical path”, “free invention” and the
underdetermination thesis are widely known and often cited, there is a
very significant set of qualifications to them which are less well reported.
He continued the passage cited above from ‘Principles of Research’ by
stressing that the underdetermination of theories by evidence does not
arise in practice:

In this methodological uncertainty, one might suppose that there were any number of possible
systems of theoretical physics all equally well justified; and this opinion is no doubt correct
theoretically. But the development of physics has shown that at any given moment, out of
all conceivable constructions, a single one has always proved itself decidedly superior to
all the rest. Nobody who has really gone deeply into the matter will deny that in practice
the world of phenomena uniquely determines the theoretical system, in spite of the fact that
there is no logical bridge between phenomena and their theoretical principles;. . .

Einstein offers a similar qualification in his 1936 ‘Physics and Reality’,
where he writes:

The liberty of choice [of axioms]. however, is of a special kind; it is not in any way similar
to the liberty of a writer of fiction. Rather, it is similar to that of a man engaged in solving
a well-designed word puzzle. He may, it is true, propose any word as the solution; but there
is only one word which really solves the puzzle in all its parts. It is a matter of faith that
nature ~ as she is perceptible to our five senses — takes the character of such a well formu-
lated puzzle. The successes reaped up to now by science do, it is true, give a certain
encouragement for this faith.'*

This latter set of views surely reflect the practical experiences of Einstein
the working scientist. We shall see, for example, how his work on the special
and general theories of relativity led him to quite definite theories, even
if their elements were introduced as free inventions of his mind. This
definiteness, the impossibility of adjustment of any of these elements, is
what made the success of the general theory’s prediction of the anom-
alous motion of Mercury so striking and brought to a triumphant close
the eight years of his search for the theory.

How are we to reconcile these two groups of views? On the one hand
Einstein insists that the concepts and fundamental principles of our theories
are free inventions of our minds and underdetermined by experience. On
the other hand, our choice of theory is actually determined by experience
after all, either as a matter of practice or, more strongly, because nature is
so constituted as to admit determinate theories.

The best reconciliation that I can offer of these views proceeds as follows.
At any point in history, the scientist works within a universe of conceiv-
able theories applicable to the problems at hand. The selection of the theories
of this universe and the concepts and fundamental principles used to
construct them, is an historically highly contingent matter, dependent on the
creative thought and the conceptual and experiential resources of the
scientists involved. Thus the universe of theories of space and time avail-
able to a Newton could not have included spacetime theories with variable
curvature metrics. Our current universe of theories may not contain some
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to be conceived in the future. However once the universe of theories is
defined, then nature is so constituted that experience enables selection of
a single theory as the best theory from that universe. The indeterminate-
ness however still remains in the sense that an expansion of the universe
of theories may well change the theory which would be selected and,
presumably, such an expansion is always possible.

For my purposes here, the crucial point of this reconciliation is this view:
once the universe of theories with attendant concepts and principles is
specified. experience enables selection of a single theory as the best. But
how is experience to direct us to that theory? In his ‘On the Methods of
Theoretical Physics’, Einstein gives one answer: “Our experience hitherto
justifies us in believing that nature is the realization of the simplest con-
ceivable mathematical ideas.” (p. 274) In other words, in the universe of
conceivable theories, experience directs us to prefer the mathematically
simpler theory. However in his work towards general relativity, this heuristic
was accorded less importance and to his cost. Instead, Einstein let experi-
ence guide him through a number of other devices. One of the most
important had proved its worth in his work on special relativity.

3. THEORIES OF PRINCIPLE: THE LESSON OF THE SPECIAL
THEORY OF RELATIVITY

Investigations in the history of special relativity indicate the existence of
a crucial decision point in the development of the theory.’® At this decision
point, Einstein knew that the then current electrodynamics of Maxwell
and Lorentz, unlike mechanics, required a preferred state of rest, but that
this preferred state of rest seemed to escape all attempts at observational
identification. What made the preferred state of rest all the more suspect
was the fact that such escapes from observational verification seemed to
be built into the deepest foundations of the theory, as Einstein’s celebrated
thought experiment of the magnet and conductor showed.'® Moreover he
believed that it was not feasible to modify electrodynamics to embody an
emission theory of light. In such a theory, the velocity of light would depend
on the motion of its source in the same way as in a mechanical-corpus-
cular theory, so that the need for a preferred state of rest is precluded. Finally
the problem was complicated immeasurably by Einstein’s knowledge from
his investigation into the behavior of black body radiation and, in particular,
its fluctuations, that Maxwell-Lorentz electrodynamics was not a correct
theory.

At this point, Einstein may well also have suspected that the problem
involved the theory of space and time and that this theory would have to
be modified in a way to be revealed by electrodynamics. Such an insight
however would surely have made the problem seem all the more intractable,
for Einstein would have to contemplate not just the possibility of modifi-
cations to electrodynamics but also to the theory of space and time and
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thus other sciences such as mechanics that depended upon it. Presumably
it was to the resolution of this crisis that Einstein referred in his
Autobiographical Notes, when he wrote (p. 49):

Reflections of this type made it clear to me as long ago as shortly after 1900, i.e. shortly
after Planck’s trailblazing work, that neither mechanics nor electrodynamics could (except
in limiting cases) claim exact validity. Gradually I despaired of the possibility of discov-
ering the true laws by means of constructive efforts based on known facts. The longer and
the more desperately I tried, the more I came to the conviction that only the discovery of a
universal formal principle could lead us to assured results. The example I saw before me
was thermodynamics. The general principle was there given in the theorem: The laws of nature
are such that it is impossible to construct a perpetuum mobile (of the first and second kind).
How, then, could such a universal principle be found?

His solution lay in his distinction between two types of theory. Constructive
theories, as he explained elsewhere, “attempt to build up a picture of the
more complex phenomena out of the materials of a relatively simple formal
scheme from which they start out.”’” His example was the kinetic theory
of gases. Theories of principle are of the type of thermodynamics in which
the entire theory is derived logically from a few empirically discovered
principles. Einstein sought to let a few empirically discovered principles
determine his selection of theory and thus resolve the crisis. The princi-
ples that Einstein chose are well known. The first was the principle of
relativity of inertial motion. The second was the light postulate which
encapsulated the contribution of electrodynamics to the new theory. In so
far as the light postulate required the independence of the velocity of
light from its source, the postulate summarized Einstein’s doubts over an
emission theory of light as an alternative to Maxwell-Lorentz electrody-
namics.'®

These two principles lead to the new kinematics of the special theory
of relativity, which completely solves Einstein’s original problem of the state
of rest in Maxwell-Lorentz electrodynamics. If this electrodynamics is
coupled without modification with the new kinematics, the electrodynamics
immediately satisfies the principle of relativity and no longer requires a pre-
ferred state of rest. However, because of its ingenious means of construction,
the new kinematics is not dependent on the complete truth of that electro-
dynamics, but only on a tiny part of the electrodynamics which seemed
robust to Einstein and was expressed by the light postulate.

It is customary to portray the kinematics of special relativity as deduced
essentially from the principle of relativity and the light postulate alone. This
is a seriously misleading oversimplification both logically and historically
and the generation of the final theory requires a further breakthrough.
Einstein stressed that the final special theory of relativity, like the princi-
ples of thermodynamics, can only be used to eliminate possibilities:'

. . . the theory of relativity in no way hands out a means of deducing hitherto unknown
laws from nothing. It provides only a criterion applicable everywhere which limits the
possibilities; in this regard it is comparable with the energy principle or with the second
law of thermodynamics.
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Correspondingly, the two principles of the new theory can only be used
to eliminate possibilities in kinematical theories and, unless one has a broad
enough view of what these possibilities are, the principles might well be
judged as “apparently irreconcilable,” as Einstein himself remarked in his
‘On the Electrodynamics . . .", so that nothing can be deduced through them.
Einstein continued to note in his Autobiographical Notes, after recalling
his revelation over theories of principle, that the theory could not be
completed “as long as the axiom of the absolute character of time, or of
simultaneity, was rooted in the unconscious” (p. 51). One of the final
breakthroughs in Einstein’s discovery of special relativity seems to have
been the disclosure and rejection of this axiom so that Einstein was free
to contemplate the possibility of a kinematics without absolute simultaneity.

At this point, Einstein had all the ingredients of a classic eliminative
induction. The final insight about simultaneity had solved one of the most
difficult problems in setting up an eliminative induction. It had directed him
to a universe of kinematical theories that would include theories without
absolute simultaneity and so was sufficiently large for the induction to
proceed. The principle of relativity and the light postulate could then be
applied as eliminative principles to this universe of kinematical theories and
the kinematics of special relativity recovered. The precise steps that Einstein
used to effect this inference for the first time remain a matter of histor-
ical debate. We now know very many ways that this inference can be carried
out. The most pertinent example is Einstein’s own of 1905 in §3 of his
‘On the Electrodynamics of Moving Bodies’.

In that celebrated version of the argument, the universe of kinematical
theories is characterized in a very simple manner. Einstein considers the
familiar inertial coordinate systems (x, y, z, f) of a space and time, where
the Cartesian spatial coordinates, x, y and z, are given directly by the usual
measuring operations with rigid rods and the time coordinate ¢ by
measurements with clocks. A kinematics is defined by the group of trans-
formations relating these inertial systems. Einstein’s universe of kinematical
theories contains all those for which the relevant group always consists
of linear equations so that, in the case of coincident origins, the transfor-
mation relating two inertial coordinate systems (x, v,z Hand X, Y, Z, T)
is given by

1) X = 0 x + Oy + 032 + Oyt
Y = Oy x + Ogpy + UpsZ + Olyyt
Z = 03X + O3y + 0332 + Olgyl
T = QX + Oy + 0z + Oyt

where the coefficients o are constants. Roughly speaking, this is the
kinematics of a homogeneous and isotropic space and time.” The prin-
ciple of relativity and the light postulate are then used to eliminate all but
the group of the Lorentz transformation, thus arriving at the kinematics
of special relativity. In summary form, the eliminative induction is:
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Universe of Theories: Kinematics of homogeneous and isotropic spaces
and times as given by (1).

Eliminative Principle: Principle of Relativity

Eliminative Principle: Light Postulate

Conclusion: Special relativistic kinematics (Lorentz transfor-
mation).

Einstein’s discovery of special relativity illustrates a number of impor-
tant aspects of the eliminative model of scientific discovery:

+ Even though the universe of theories chosen is very large, the elimina-
tive induction leads directly and perhaps even mechanically to the choice
of a definite theory.

» The carrying out of the eliminative induction automatically involves
construction of the final theory.

» The eliminative principles are at least indirectly empirically based.
Einstein indicates in the opening paragraphs of ‘On the Electrodynamics
.. ." that the principle of relativity is based on “unsuccessful attempts
to discovery any motion of the earth relatively to the “light medium”
as well as internal evidence from electrodynamics, a theory which is itself
based on numerous experiments. Similarly, the light postulate is derived
from electrodynamics.?!

» The justification of the theory develops alongside its discovery. The
two eliminative principles which governed its discovery were offered
by Einstein as the axiomatic foundations of the new theory and the
justification of the theory could be reduced to the justification of the
axioms. This justification was already partially in place because of the
care exercised in the original choice of these principles.

In the following sections, I will urge that Einstein used essentially the
same eliminative method in his discovery of the general theory of rela-
tivity and that all of the above points are of importance in this latter case
as well. However in the case of special relativity, the procedure was applied
at one decision point. In the case of general relativity the procedure was
used repeatedly at a number of decision points. The earlier instances led
to unsatisfactory or incomplete results. The later instances, designed specif-
ically to remedy these early deficiencies, were dazzling successes.

4. THE FAILURE OF GRAVITATION WITHIN SPECIAL RELATIVITY

Einstein’s first decision point in what became his work on general rela-
tivity came in 1907 when he was invited to write a review article on
relativity theory for the Jahrbuch der Radioaktivitit und Elektronik. As a
part of this article he hoped to show how one had to modify Newtonian
gravitation theory in order to bring it into accord with special relativity. The
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startling conclusion of these efforts was that there was no acceptable special
relativistic gravitation theory.

This conclusion was derived by means of an eliminative induction. The
eliminative induction was not carried out as tightly as the one described
for special relativity. In this new case, theories were not eliminated by
deductive inference from the eliminative principles but by far less sure
inductive inference to the simplest or the most natural choice, excluding
all others. The universe of theories contained all conceivable three space
gravitation theories. By this I refer to gravitation theories formulated after
the standard methods current in 1907. In particular the theories are not
spacetime theories. Space and time are represented by different manifolds
— space by a three dimensional manifold and time by a one dimensional
manifold.

The induction began with the application of the first eliminative prin-
ciple, the requirement that special relativity hold, which led Einstein to
eliminate all but field theories of gravitation as his most natural choice.
In his later recollections, Einstein reconstructed his argument:

I first came a step nearer to the solution of the problem when I attempted to deal with the
law of gravity within the framework of the special theory of relativity. Like most writers at
the time, I tried to frame a field-law for gravitation, since it was no longer possible, at least
in any natural way, to introduce direct action at a distance owing to the abolition of the notion
of absolute simultaneity.?

The second eliminative principle was the requirement of compatibility
with Newtonian gravitation theory in some suitable limiting case, so that
the new theory could agree with Newtonian theory in the empirical domain
in which Newtonian theory had been verified. The simplest way of achieving
this was to ensure that the new theory had the same general form as
Newtonian theory. So Einstein eliminated all but those theories patterned
after Newtonian theory in which the gravitational field is represented by
a scalar field potential and whose interaction with masses is governed by
a field equation and a force law. He could not use the Newtonian field
equation and force law because they were incompatible with the require-
ment of special relativity. So he sought their simplest relativistic gener-
alization. Thus Einstein continued: b

The simplest thing was, of course, to retain the Laplacian scalar potential of gravity, and to
complete the equation of Poisson in an obvious way by a term differentiated with respect
to time in such a way that the special theory of relativity was satisfied. The law of motion
of the mass point in a gravitational field had also to be adapted to the special theory of
relativity. The path was not so unmistakably marked out here, since the inert mass of a
body might depend on the gravitational potential. In fact, this was to be expected on account
of the principle of the inertia of energy.

If ¢ is the scalar gravitational potential and we adopt a standard coordi-
nate system (x, y, z, t) of special relativity, where x, y and z are Cartesian
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spatial coordinates and r the time coordinate, then the transition referred
to is from the Newtonian field equation

2 2 82
O so= (5o + 55 5a) 0 - 4G,

to its Lorentz covariant extension
1o & & 2 )
3 Lo = (02 OF T o T T o7 ¢ = —4nGp,

where G is the universal constant of gravitation and p the rest mass density
of matter. Thus Einstein could readily find a field law compatible with
special relativity and, because of the large size of ¢, probably also with
the requirement concerning the limiting Newtonian case. The case of the
_force law was not quite so straightforward. Here the Newtonian force law
was

f. = —m d@/ox,

where f, is the force on a body of rest mass m in the x direction and there
are similar expressions for f, and f,. The adaptation of this law to special
relativity cannot be effected merely by the insertion of the expected rela-
tivistic contraction or dilation factors. Further modifications are needed
and one can choose between at least two ways in which they can be carried
out. The first involves the assumption that the rest mass m varies with
the gravitational potential; the second allows the addition of extra field terms
to the right hand side of the equations.” Einstein’s remarks above suggest
that he followed the former route and, it would seem from the comments
that followed, that it immediately led to dubious conclusions. He continued:

These investigations, however, led to a result which raised my strong suspicions. According
to classical mechanics, the vertical acceleration of a body in the vertical gravitational field
is independent of the horizontal component of its velocity. Hence in such a gravitational
field the vertical acceleration of a mechanical system or of its center of gravity works out
independently of its internal kinetic energy. But in the theory I advanced, the acceleration
of a falling body was not independent of its horizontal ve10c1ty or the internal energy of
the system.

This did not fit with the old experimental fact that all bodies have the same accelera-
tion in a gravitational field. This law, which may also be formulated as the law of equality
of inertial and gravitational mass, was now brought home to me in all its significance.

The result that Einstein outlines holds whether one modifies the force law
in the first or second way outlined above. Take the case of a gravitational
field whose gradient is non-vanishing only in the the x-direction, the
“vertical” direction. The vertical x-component of the gravitational force
acting on a body with velocity v but, at that instant, vanishing vertical
velocity, is:

fi=-m 1 = v¥c* 9¢p/ox,
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Thus the greater the horizontal velocity v, the smaller the vertical gravita-
tional force on the body. It now follows that a spinning body or a gas —
any body whose internal energy is in part due to the kinetic energy of motion
in the horizontal direction — will fall slower than a simple body with no
horizontal motion. As Einstein notes, this result is incompatible with the
equality of inertial and gravitational mass.

This equality was introduced as the third eliminative principle of the
induction which now yielded a quite definite result: all the theories in the
universe of theories in question had been eliminated. Einstein’s further work
on gravitation presumed that there could be no acceptable special relativistic
gravitation theory. To summarize the argument:

Universe of Theories: Three space gravitation theories.
Eliminative Principle: Special relativity holds.
Eliminative Principle: Newtonian gravitation theory holds in a suitable

limiting case.

Intermediate Conclusion: In the uneliminated theories, the acceleration of
fall of a body depends on its horizontal velocity
or internal energy.

Eliminative Principle: Equality of inertial and gravitational mass: the
acceleration of fall of a body is independent of
its horizontal velocity or internal energy.

Conclusion: All theories are eliminated.

The heuristic path that Einstein followed to this conclusion was soon
converted into its justification. This conversion can be seen clearly in a
vitriolic dispute in which Einstein engaged with Max Abraham in 1912 over
Einstein’s new work in gravitation theory. To justify his conclusion, Einstein
allowed that gravitation could be represented in the then current theory of
special relativity either as a “four-vector” or a “six-vector”, using the
terminology then current.?* The scalar field of his 1907 speculations was
an instance of the four-vector case; its spacetime gradient formed the four
vector in question. The six-vector case corresponded to gravitation theories
modelled after Maxwell electrodynamics; the Maxwell field tensor is a
second rank antisymmetric tensor with six independent components and was
then called a six-vector. In either case, Einstein urged, extending the
compass of this 1907 reasoning, the transformational behavior of these
quantities would lead to a violation of equality of inertial and gravita-
tional mass.”
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5. THE INCORPORATION OF GRAVITATION INTO THE STRUCTURE
OF SPACE AND TIME

5.1. The Scalar Theory of Static Gravitational Fields of 1907-1912

If Einstein could not have a special relativistic theory of gravitation, he
was certainly not going to give up on the problem of gravitation and
relativity. He expanded his compass to include gravitation theories not com-
patible with special relativity except in the limiting case of a vanishing
gravitational field. Once again, Einstein faced an overwhelming diversity
of possible theories. From this diversity, he plucked a theory in which the
now variable speed of light ¢ was to represent the scalar gravitational poten-
tial. This was the theory that he unveiled in the final Part V of the 1907
review article whose invitation had triggered the entire investigation.”
The theory was developed further in a sequence of papers published in
1911 and 1912.”7 The 1911 paper is the best known of the series through
its republication in the volume The Principle of Relativity,”® but the 1912
papers give a far more fully developed version of the theory.

Einstein arrived at this theory by means of an eliminative induction. That
induction was a modification of his original eliminative induction which
had yielded no theories at all. He retained the same universe of all con-
ceivable three space gravitation theories. However he weakened the first
eliminative principle, which required satisfaction of special relativity, to
require just the satisfaction of special relativity in the limiting case of a
vanishing gravitational field. In order to ensure convergence of the induc-
tion to a definite theory, he needed to match this weakening with a
strengthening elsewhere. He focussed on the third eliminative principle. This
was the remarkable fact of experience that he felt largely responsible for
the failure of special relativistic gravitation theories, the equality of inertial
and gravitational mass. Convinced of its decisive importance, he strength-
ened and generalized it to the eliminative principle that would dominate
the construction of the new theory. As he continued to explain in his ‘Notes
on the Origin of the General Theory of Relativity’ (p. 287):

The principle of the equality of inertial and gravitational mass could now be formulated
quite clearly as follows: In a homogeneous gravitational field all motions take place in the
same way as in the absence of a gravitational field in relation to a uniformly accelerated
coordinate system. If this principle held good for any events whatever (the “principle of
equivalence”), this was an indication that the principle of relativity needed to be extended
to coordinate systems in non-uniform motion with respect to each other, if we were to reach
a natural theory of the gravitational fields.

This principle of equivalence became the launching point for his 1907-1912
theory and its satisfaction would clearly ensure that the weaker equality
of inertial and gravitational mass would also be satisfied automatically.”

The principle of equivalence provided an immediate answer to the
question of what structures are to represent gravitation in the new theory.
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The customary answer up to that time had been that one must define
further structures in space and time, such as a scalar field, and these struc-
tures would represent the gravitational field. The principle of equivalence
forced a completely novel answer to the question: the supposedly gravita-
tion free space and time of special relativity already contained the structures
needed to represent gravitation. For the principle asserted that the case of
a uniformly accelerating frame in the supposedly gravitation free spaces
of special relativity was in fact fully equivalent to — I would say, “just
the same as” — the presence of a homogeneous gravitational field in an
unaccelerated frame. Thus whatever structures were already present in
special relativity as a theory of space and time had also to be able to
represent this special case of a gravitational field, the homogeneous field,
and thus presumably more general cases as well.

The principle of equivalence enabled Einstein to eliminate virtually all
the theories of the new universe in favor of those that required only the
structures of space and time already in special relativity. What remained
was the task of determining which structures of space and time were to
represent the gravitational field and what were their properties. It was here
that he could apply the remaining eliminative principle, the requirement
of an appropriate Newtonian limit. In the uniformly accelerating frame, free
bodies move with uniform acceleration in a given direction. This acceler-
ation is interpreted as the action of a homogeneous gravitational field, for
which one must seek a structure approximating a scalar field which varied
linearly in the direction of the motion. This structure was not hard to find.
The scalar ¢, the now variable speed of light, varied linearly with the
direction of acceleration, so that it could be chosen naturally as the
gravitational potential.

Using fairly natural inductive arguments of this type, the eliminative
principles introduced so far were sufficiently powerful to enable construc-
tion of a quite definite theory of static gravitational fields. The principles
needed only to be supplemented by a further eliminative principle, the
retention of the usual conservation laws of energy and momentum, including
the equality of action and reaction. The principle of equivalence gave a
special case of the gravitational field, a homogeneous field. Its properties
could be investigated minutely and then extended to the more general
static case in a manner compatible with the other constraints. As Einstein
put it in his 1907 review article (p. 454):

The heuristic value of the assumption lies in the fact that it allows replacement of a homo-
geneous gravitational field by a uniformly accelerated reference system, the latter case being
amenable to theoretical treatment up to a certain degree.

To begin, Einstein arrived directly at the two best known conclusions
of the theory. It turned out that the rate of natural clocks slowed in pro-
portion to the magnitude of ¢ in the homogeneous case; it was assumed
that this would continue to hold in the inhomogeneous case. Similarly the
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connection between the speed of light ¢ and the gravitational potential would
be assumed to remain in the inhomogeneous case as well, so that Einstein
could infer that a light beam propagating past the sun would be bent, an
effect capable of experimental test, as he urged in the introductory para-
graph of his 1911 paper. In the course of developing the theory in the
1912 papers, Einstein arrived at a series of results for the general case of
inhomogeneous but static fields, which included a law for the gravita-
tional force on a body, a gravitational field equation as well as theories
of electrodynamics and thermodynamics in which the action of the gravi-
tational field ¢ was incorporated.

The case of the gravitational field equation illustrates how the elimina-
tive induction forced him to a quite definite result, even to the point that
he was dissatisfied but could not revoke the outcome. In the homogeneous
case, the gravitational potential ¢ varies linearly with the direction of the
field — call it the x direction — so that it satisfies

¢ = ¢, + ax,
for a and c, constants. This was a solution of the equation
Ac =0,

which, under correspondence with the Newtonian case, was the obvious
choice for the source free field equation in the inhomogeneous case. The
natural choice for the case with sources would then be

Ac = kep,

where k is a constant and p the rest mass density. (The factor of ¢ on the
right hand side was introduced to ensure that the field equation defined ¢
up to a multiplicative rather than additive constant.) These at least were
the results offered in the first of the 1912 papers. The ease with which
the equations arise belie the degree to which their content is determined
by the eliminative principles. In the second of the 1912 papers, in its closing
section 4, Einstein revealed that all was not well with the theory. It was
incompatible with the equality of action and reaction (and thus the con-
servation laws), for he could show that it entailed that masses connected
to a massless rigid frame would set themselves into motion under the
action of their own gravitational field. More formally, we might note, the
problem was that the theory did not admit the defining of a gravitational
field stress tensor.

Einstein proceeded to investigate the possible modifications to the theory,
an explicit exploration of other members of the universe of theories. The
violation might be avoided if one allowed gravitation to act on the members
of the rigid frame because they were stressed, even though they were
massless. The failure of this modification was shown by two examples,
one of electromagnetic radiation enclosed in a box with mirrored walls
and the other of a monatomic gas enclosed in a box. A second attempt
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involved modification of his earlier law for the gravitational force on a body
by the insertion of further terms. The failure of this second attempt was
demonstrated through an eliminative induction of classic form. Its main
features were as follows.

Einstein’s original expression for the gravitational force R, on a body
of mass m moving with velocity g was

__m grad ¢
@ R, Vi-g¥dc”

He was prepared to entertain almost any rival to (4), but he had to elimi-

nate all but those that differed from (4) by a multiplicative factor because

of two requirements:

« In the case of a space of constant ¢, the force law had to yield results
compatible with those of special relativity.

« In the case of a body at rest (¢ = 0), the expression for the force had
to reduce to —m grad c.

In conjunction with dimensional requirements, he concluded that the

universe of possible force expressions was reduced to

m grad c-c?
(5) Rs = — _\/—f;_—q-w - const.

where “const.” and P were constants. Finally, he reported that the con-
stants in (5) had to have the values of the original formula 4 in order that
 The inner product of (non-gravitational force) - (velocity) is the time
derivative of a quantity.®
He concluded that he had to retain the original expression for gravita-
tional force, “if one did not want to give up the whole theory (determination
of the static gravitational field by c)” (p. 455). This is a classic illustra-
tion of the power of an eliminative induction to force a qu1te definite
result on the basis of very general premises.
Thus Einstein was driven to his final option, a modlflcatlon of his original
field equations. The modification that would do the job could be arrived
at quite straightforwardly. One had to adopt the new field equation

Ac = k{cp + (1/2k) (grad® c/c)}.

The new equation even had a natural interpretation. Its second term rep-
resented the energy of the gravitational field and it seemed appropriate
that this energy also be a source for the field. Einstein explained, however,
that he adopted this new equation reluctantly for it no longer admitted a
linear dependence of the potential ¢ on distance. Thus the homogeneous
gravitational field of the principle of equivalence could no longer be
included in the theory. This meant that the principle of equivalence
could only be retained in the theory for the case of infinitesimally small
regions, even though it was already limited to the case of homogeneous
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gravitational field. This result puzzled Einstein and he noted in his
polemical exchange with Abraham that he knew of no satisfying reason
for this limitation.*!

This episode reveals two important aspects of Einstein’s heuristic
methods. First it shows us that the principle of equivalence did genuinely
function as an aid to discovery, a heuristic principle. It was not an invio-
lable requirement. In this case it was clearly subordinate to the requirement
of the conservation of energy and momentum, since Einstein gave it up
partially in order to protect the conservation law. Notice that the principle
takes on its later inviolable character only after it has made the transition
to the justification of the theory.*? Second we see just how powerfully the
eliminative induction forces a quite definite result. Often this power is
masked by the naturalness of the result arrived at so that Einstein need
not advance arguments detailing just how restricted the choice of results has
become. He need merely parade the result as the most natural or simplest.
This case is an exception and gives us a glimpse of the “behind the scenes”
considerations which presumably guide much of scientific discovery.

The eliminative induction can be summarized as:

Universe of Theories: Three space gravitation theories.

Eliminative Principle: Special relativity holds in the limiting case of
a vanishing gravitational field.

Eliminative Principle: Principle of Equivalence.

Intermediate Conclusion: Eliminate all gravitation theories which repre-
sent gravitation by more structure than is already
present in the space and time of special

relativity. '
Eliminative Principle: Newtonian gravitation theory holds in a suitable
limiting case.
Eliminative Principle: Conservation of energy and momentum
Conclusion: Gravitation theory in which:

— the variable speed of light c is the gravita-
tional potential:

- clocks are slowed and light beams bent in a
gravitational field.

Gravitational field equation.

Gravitational force law.

Einstein could not rest contentedly with his 1912 theory, for it was not
yet sufficiently general and it still fell far short of meeting the expecta-
tions he had entertained in 1907. To begin, of course, the theory dealt
only with static gravitational fields and he surely planned a theory that would
deal with dynamically varying fields. The theory did not even deal ade-
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quately with time-independent fields. There was the gravitational field
produced by uniform rotation in special relativity and this field had no home
in Einstein’s 1912. He described this case to Ehrenfest as analogous to a
magnetostatic field, whereas the fields of the 1912 theory were analogous
to electrostatic fields.”® Further, he had made clear from the very start in
the 1907 review article that he expected the new theory to implement an
extension of the principle of relativity. In so far as this extension required
an expansion of the covariance of the theory beyond Lorentz covariance,
there was clearly more to be expected. While the 1912 theory might extend
the Lorentz covariance of special relativity to include transformations to
uniformly accelerating systems, it still excluded many others, most notably
transformations to rotating systems.

Einstein had enjoyed some success in his program of extending the
principle of relativity. Part of that program, as he recalled later,** involved
implementation of the idea, which he attributed to Mach, that inertia arose
entirely from an interaction between bodies. He was able to show that
weak field effects compatible with this view were derivable from his 1912
theory: an accelerating shell of matter would tend to drag along with it
test masses placed inside and the presence of the shell would increase the
inertia of the bodies placed within it.*

However by July 1912, Einstein had clearly reached another crisis point.
He described in his reply to Abraham of that month® how the equiva-
lence principle raises the possibility of a theory of relativity containing
gravitation which would be invariant under acceleration and rotational
transformations. But he had to admit that the path to this goal would be
very difficult and that he did not know what form the general spacetime
transformation equations would take. We can gauge his feeling of desper-
ation from the fact that he concluded with a plea quite uncharacteristic of
his writings: “I would like to ask all colleagues to apply themselves to
this important problem.”

5.2. The ‘Entwurf’ Theory

However grim things may have seemed in July 1912, Einstein was soon
able to solve the problem himself with dazzling success. The papers of 1911
and 1912 on gravitation theory were prepared in Prague. Within months
of his August 1912 move to Zurich, Einstein had in hand essentially all
the crucial elements of the final general theory of relativity. In particular
he had a spacetime theory in which gravitation was incorporated into a
variable curvature, symmetric, Lorentz signature spacetime metric tensor.
The resulting theory, called here the ‘Entwurf’ theory after the title of
the paper in which it was published, lacked only the gravitational field
equations of the final general theory of relativity.”

The crucial element in the transition came with Einstein’s move to Zurich
in August 1912, There he put to his mathematician friend, Marcel
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Grossmann, the question of whether there were mathematical methods which
would enable the formulation of a theory covariant under arbitrary coor-
dinate transformations. Grossmann informed Einstein of the so called
“absolute differential calculus” of Ricci and Levi-Civita which enabled
just such a formulation and, with Grossmann as mathematical advisor and
co-author, these methods were used to write the theory of the ‘Entwurf’
paper. We know that the transition had already commenced prior to
Einstein’s exposure to the absolute differential calculus. For he recalled
in the introduction to the Czech edition of his popular text Relativity:*®

I first had the decisive idea of the analogy of the mathematical problems connected with
the theory and Gauss’s theory of surfaces in 1912 after my return to Zurich without knowing
at that time Ricmann’s and Ricci’s or Levi-Civita’s work.

We do not know the full story of this transition. Stachel has posed this
as a problem of a “missing link”. He urges convincingly that Einstein’s
investigation of the non-Euclidean geometry of a uniformly rotating disk
in special relativity provided this missing link.* That problem, which had
been considered in the first of the 1912 papers on the theory of static
gravitational fields, alerted Einstein to the relevance of the infinitesimal
geometry of curved surfaces in which arbitrary coordinate systems were
routinely employed. He may even have recalled this latter practice from
lectures given at the Zurich ETH by C. F. Geiser on the subject and for
which Einstein had registered. Moreover, the rotating disk provided Einstein
with a case in which the coordinate system used lost its direct metrical
significance, a result that had to be accepted to complete the transition to
a generally covariant theory. This result had also arisen automatically for
the time coordinate in the 1912 theory. Einstein used this time coordinate
example, rather than the rotating disk, as support for the result in the relevant
Section 3 of his part of the ‘Entwurf’ paper.*

In terms of the eliminative model, the transition represented a move to
a new universe of theories in an attempt to find a theory that would satisfy
all of Einstein’s desiderata. The new universe contained four dimensional
spacetime theories of the type of those given by Minkowski, but now
formulated using the the generalized four dimensional vector analysis that
resulted from combining the four dimensional vector analysis of Minkowski
with the absolute differential calculus of Ricci and Levi-Civita.”

We do not know the details of the circumstances surrounding Einstein’s
crucial transition to this new universe of theories because of the scarcity
of historical resources for this episode. Perhaps further arguments of the
type advanced by Einstein in 1912 convinced him that he would not find
the more general theory sought in the older universe of theories. Or perhaps
the brilliance of his above mentioned “decisive idea” of the analogy to
Gauss’ theory of surfaces simply outshone his earlier efforts so that he
abandoned them. Either way, the nature of the expansion was almost dictated
by his “decisive idea”. In Gauss’s theory of surfaces, one can expand the
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analysis of the geometry of a two dimensional Euclidean surface from the
Cartesian coordinates (x, ¥), in which the line element has the form

(6) ds? = dx? + dy%,

to an arbitrary coordinate system (u, v) where the line element now takes
on the form

@) ds? = Edu® + 2Fdudv + Gdv?,

for E, F and G functions of u and v. In Minkowski’s formulation of special
relativity, the fundamental quantity was the invariant interval which, in
infinitesimal form in a standard coordinate (x, y, z, £) system, was

(8) ds? = Adf — dx* — dy* — dZ~

Presumably the analogy Einstein perceived was between line elements (6)
and (8) and his hope was that arbitrary coordinate systems could be
introduced for line element (8) analogously to the transition from (6) to
(7). What may have contributed to the perception of this analogy was the
content of a remarkable addendum on the final page of Einstein’s second
1912 paper on the theory of static gravitational fields.* There he con-
cluded that the theory’s equations of motion for a free point mass could
be written as the variational principle

S{[VPd = dF - dy? - dZ} = 0,

which is just the equation of a geodesic in a spacetime with the line element
(8), where now c is allowed to vary as a function of x, y and z.

Finally there is a quite prosaic reason that might in itself have been
sufficient to lead to the expansion of the universe of theories to include
those formulated four dimensionally. As late as 1912, some five years
after their introduction, Einstein was still not using the new four dimen-
sional methods of Minkowski, Sommerfeld and Laue, even though they were
becoming widespread. Perhaps he simply decided it was time to overcome
his legendary early reticence over adopting fancy mathematical techniques,
to accept the inevitable and start using the new methods.

Once the new universe of theories was adopted, Einstein again faced
an overwhelming diversity of theories. But the same set of eliminative
principles came into play as were applied in the 1907-1912 search and
they immediately reduce the universe of theories. In particular, the principle
of equivalence once again enables the conclusion that gravitation is not
to be represented by a new field structure defined in spacetime, but that
the existing spacetime structure of special relativity is already sufficient.
This conclusion is arrived at somewhat indirectly in two steps. First, it turns
out that Einstein’s 1912 theory of static gravitational fields corresponds
to the theory of a spacetime with line element (8) but in which cis a function
of x, y and z. Thus such a spacetime corresponds to a spacetime with a static
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gravitational field of the type of the 1907-1912 theory. The result is
mentioned without fuss in the second section of Einstein’s part of the
‘Entwurf’ paper (p. 229), referring back to the summary of the 1912 theory
given in the first section.

In a less formal 1913 exposition of the physical foundations of his new
theory, Einstein summarized the line of reasoning developed in greater detail
in the ‘Entwurf’ paper and which leads to identification of the spacetime
structures that are to represent gravitation. In particular, he makes clear
the role of the principle of equivalence:*

According to the usual theory of relativity, an isolated material point moves uniformly in a
straight line according to the equation

8(Jds) = 0,
where
ds? = —dx? — dy? — dZ? + AP,

and c is the (constant) speed of light. The equivalence hypothesis now admits the
conclusion that a material point in a static gravitational field (of a special kind) moves
according to the above equation, where however c is a function of place and determined by
the gravitational potential.

Unlike the case of the 1912 theory, there was no doubt about how the theory
was to be further extended to include more general gravitational fields
than these special static gravitational fields. The line element (8) with ¢
varying linearly with the spatial coordinates had been arrived at by
transforming to a uniformly accelerated coordinate system. If we now
allowed transformations to arbitrary coordinate systems, as one ought to
if the theory were to be generally covariant, then the line element (8)
would adopt the form

9  ds?= gg.-kdxidxk,

where x; with i = 1, 2, 3, 4 are the new spacetime coordinates and
summation extends over i, k = 1, 2, 3, 4. The matrix g, of metrical coef-
ficients revealed by this process is the structure that would represent the
gravitational field. More precisely, the presence of a gravitational field
would be associated with a non-constancy of these coefficients. Thus
Einstein continued:

From this special case of the gravitation field one can arrive at a more general field in any
case by changing to moving coordinate systems through coordinate transformation. (Footnote:
Thereby we postulate that we arrive at an equally justified description of processes, in that
we relate it to an appropriately moving coordinate system; thus we adhere to the funda-
mental idea of the theory of relativity.) On this path one recognizes that the only generalization,
sufficiently broad from the invariant theoretic point of view, of the above equation of motion
consists in assuming a “line element ds” of the form

ds® = Dgudxdx, (L k=1,2,3,4)
ik
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where the g, are functions of x;, X,, x; and x, and the first three coordinates characterize
place and the last time and that the equation of motion ought again to have the form

8([ds) = 0.

What Einstein did not make very clear in this summary is that the matrix
gik produced by transformation from the line element (8) can only repre-
sent a special case of the gravitational field, for this matrix can always be
transformed over some neighborhood to the diagonal matrix corresponding
to line element (8); that is, the metric is flat. It is an additional but very
natural assumption that the matrix gik relieved of the flatness condition
can represent arbitrary gravitational fields.*

The eliminative induction can be given in summary form as follows.
Notice the structural similarity between this induction and the corresponding
induction of the earlier theory of static fields, the most prominent differ-
ence being the differing choice of universe of theories:

Universe of Theories: Spacetime theories of gravitation.

Eliminative Principle: Special relativity holds in the limiting case of
a vanishing gravitational field.

Eliminative Principle: Principle of Equivalence.

Intermediate Conclusion: Eliminate all gravitation theories which repre-
sent gravitation by more structure than is
already present in the spacetime structure of a
Minkowski spacetime.

Eliminative Principle: Newtonian gravitation theory holds in a sujtable
limiting case.
Eliminative Principle: Principle of general covariance.
Conclusion: The matrix of metrical coefficients g, represents

the gravitational field.

This conclusion is actually still restricted to a Minkowski spacetime. As I
have noted above, that it also applies to other more general spacetimes is
a natural generalization. I postpone further discussion of the point until
the discussion of the gravitational field equations in which the nature of
the more general spacetimes becomes the basic issue.

I have refrained from pointing out that all the eliminative principles
used so far have obvious empirical foundations. The above argument
contains the only problematic case, the principle of general covariance,
but I must leave open here the question of whether the principle has an
empirical foundation. On the one hand, the principle is introduced
sometimes as a purely mathematical requirement. On the other, Einstein
sometimes offers the principle as the generalization of the principle of
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relativity of special relativity, but then it is still supported at least
partially by epistemological as opposed to empirical grounds.*”

How important was the reasoning of the above argument to Einstein’s
actual discovery process? It would seem to have been of “decisive
importance” if we believe that Einstein’s remarks to Laue, in letters of
September 12, 1950 and January 16, 1951, were autobiographical.“ Laue
had objected to Einstein’s conclusion that the presence of a gravitational
field coincides with the non-constancy of the metrical coefficient g; (which
coincides with the non-vanishing of the Christoffel symbols I'};). Laue
preferred to identify the presence of a gravitational field with a non-
vanishing curvature tensor R,,,. Einstein replied in the September letter:

. what characterizes the existence of a gravitational field from the empirical standpoint

is the non-vanishing of the I}, not the non-vanishing of the R,,,. If one does not think

intuitively in such a way, one cannot grasp why something like a curvature should have
anything at all to do with gravitation. In any case, no reasonable person would have hit
upon such a thing. The key for the understanding of the equality of inertial and gravita-
tional mass is missing.

Laue persisted, noting that the coordinate transformation might only alter
the spatial components and thus have nothing to do with a gravitational field
producing transformation. Einstein’s reply in the January letter contained
the remarks:

Heuristically, the interpretation of the field existing relative to a system, parallel acceler-
ated against an inertial system (Equivalence principle) was naturally of decisive importance,
since this field is equivalent to a Newtonian gravitational field with parallel lines of force.
In this case, the Newtonian field strengths are equal to the spatial derivatives of the g,,.

The above line of reasoning indicates how the principles of equiva-
lence and general covariance enabled Einstein to select from the universe
of theories in question a quite particular class of theories in which gravi-
tation is represented by a Lorentz signature, symmetric tensor. Once again,
Einstein’s pathway to this discovery provided him with an argument that
could be used as a later justification for the theory. Thus the above line
of reasoning is often recapitulated in Einstein’s development of the theory.
Perhaps the most interesting instance lies in a letter to J. Becquerel of August
16, 1951.% Einstein is assisting Becquerel to convince a sceptic who accepts
special but not general relativity. Einstein carefully lays out a step by step
pathway from special to general relativity with the purpose of convincing
the sceptic or at least laying out the assumptions made in the transition. The
path contains exactly the eliminative reasoning laid out above, but now used
as justification for the theory.

With the basic structure of the theory decided, the remaining components
of the theory are determined almost completely by the larger list of elim-
inative principles: the principle of equivalence, the generalized principle
of relativity (which took the form of a principle of general covariance),
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the requirement of an appropriate Newtonian limit and the laws of con-
servation of energy and momentum. The most interesting of -these
components are the gravitational field equations, which posed unexpected
problems and will be looked at in the next section.

Other components were selected quite naturally. For example the equation
of motion of a point mass in a general gravitational field was taken to be
the same as the corresponding equation of special relativity.® That is, the
trajectory of a free particle in both cases is a geodesic of the metric satis-

fying
10) 8fds=0

Einstein could confirm that such a choice was compatible with the
Newtonian limit and with the conservation laws. Note that the introduc-
tion of such an equation of motion as a “natural” choice tends to obscure
the lack of viable alternatives.

6. THE GRAVITATIONAL FIELD EQUATIONS

Einstein had concluded that a Minkowski metric represented a special case
of the gravitational field. Upon this conclusion he based the generaliza-
tion that arbitrary gravitational fields were to be represented by a Lorentz
signature metric. The task of the gravitational field equations of his theory
was to pick out which metrics were to be associated with which matter
distributions. It is well known that the requirements of correspondence
with the Newtonian case and satisfaction of the conservation of energy
and momentum direct selection of quite definite gravitational field
equations for the theory. In Section 5 of his part of the ‘Entwurf’ paper,
Einstein commenced development of those equations in a manner typical
of the arguments commonly used in developments of general relativity.
He sought field equations of the form®

(11) KO, =T,

where the stress-energy tensor ©,, represents the sources of the field, I',
is the gravitation tensor and K a constant. That the field term ', must be
a tensor is directed, of course, by the requirement of general covariance.
The form of the law (11) and the value of K is directed by analogy with
the corresponding Newtonian law (2). In particular, since the metrical
coefficients g,, correspond to gravitational potentials, it is natural to require
that T, be constructed from g,, and its first and second derivatives and
be linear in the latter.

At this point, later readers know that his requirements have already
restricted the choice of gravitation tensor I'y, to a very few tensors. The
selection is expected to be finalized quite routinely by the requirement of
conservation of energy and momentum. This requirement is expressible




54 JOHN D. NORTON

as the vanishing of the covariant divergence of the stress-energy tensor,
which we would write in modern notation as

(12)  VTi=0.

One would then substitute the gravitation tensor Gj for Tj in this equation
to recover

which must hold identically. The fact that the gravitation tensor must satisfy
(13) identically determines that it must be the so-called “Einstein tensor”
(up to an additive cosmological term linear in g;) so that the choice of
field equations is essentially fully determined. This most standard of deriva-
tions of the gravitational field equations of general relativity is an eliminative
induction which can be given in summary form as:

Universe of Theories:  Field equations of form (11).

Eliminative Principle:  Principle of general covariance: T, is a gener-
ally covariant tensor.

Eliminative Principle: Requirement of Newtonian limit: I',, is composed
of first and second derivatives of g,, and is linear
in the latter.

Eliminative Principle: Conservation of energy-momentum (applied via
identity (13)).

Conclusion: I',, is the Einstein tensor or Einstein tensor with
cosmological term linear in g,,.

However Einstein fails to meet the expectations of his later readers and
does not produce this argument or even the same tensor. Instead he informs
them of the surprizing conclusion that it has proved impossible to find a
generally covariant tensor I',, which is the appropriate generalization of
the Newtonian expression A of (2). The principal discussion of this
problem is carried by Grossmann in Section 4.2 of his part of the paper,
where he indicates that the Ricci tensor, the second rank contraction of
the Riemann curvature tensor, is the obvious choice of gravitation tensor.
Here Einstein and Grossmann stand on the threshold of the final theory,
for the selection of the Ricci tensor would at least give the gravitational
field equations of the final 1915 generally covariant theory in the source
free case. “However,” Grossmann wrote, “it turns out that this tensor does
not reduce to the expression A@ in the special case of an infinitely weak,
static gravitational field.” Einstein and Grossmann then dispense with the
requirement of general covariance and proceed to seek gravitational field
equations which need not be generally covariant.

We see eliminative induction at work here, displaying its power to reduce
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the universe of theories. Unfortunately something went very wrong, for
the the final theory adopted in November of 1915 has been eliminated
as well. This disaster does reveal something interesting. Just as we saw in
1912 that the principle of equivalence was a heuristic principle and not
inviolable, we see here that the principle of general covariance was, in 1913,
functioning as a heuristic principle that could be dispensed with, should
the expediencies of the search call for it. It is only when both are transferred
to justifications of the final theory that they become asserted as inviolable
premises.

Elsewhere, with the assistance of an unpublished notebook of calcula-
tions by Einstein from this period, I have analyzed in detail where I believe
Einstein and Grossmann’s application of the requirement of the Newtonian
limit went astray.® Very briefly, the principal problem lay in two interlocking
beliefs incompatible with the final theory. First, on the basis of his 1912
theory and the principle of equivalence, Einstein assumed that static fields
in the new theory ought to have a line element of the form (8) in a suitably
chosen coordinate system, where ¢ varies as a function of x, y and z. It
turns out that the final theory does not admit such spacetimes except in
trivial cases; in even a quite simple weak field case, the coefficients of
dx, dy and dz will be variable. Unfortunately for Einstein this first belief
was compatible with a second that is also ruled out by the final theory.
Pursuing an analogy with equation (3), Einstein assumed that the field
equations of the new theory must reduce to
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in the weak field case, for Kk’ a constant. Einstein’s final field equations
of November 1915 do not reduce to this form. However, Equation (14)
can be solved to yield a weak static field of form (Equation 8).

The bulk of the discussion concerning gravitational field equations in the
“Entwurf’ paper focuses on the selection of a gravitation tensor I',, where
this quantity would not transform as a tensor under arbitrary transforma-
tions but only under some subgroup. It turns out that the method Einstein
used is essentially analogous to the modern method described above, in
which the conservation law plays the crucial role in determining the field
equation. It is also interesting to note that the field equations admit con-
struction of a gravitational field stress-energy tensor. It was precisely the
failure of his first field equation of 1912 to admit defining of a gravita-
tional field stress tensor that had forced the embarrassing modification
required in the second 1912 paper and even dictated its character.

Einstein went to considerable pains in his Section 5 of the ‘Entwurf’
paper to explain to the reader the heuristic method used to arrive at his
field equations. In doing so, he made clear that he conceived his proce-
dure to be more than just a clever trick that happened to work in this case.
It was an application of a genuine method of discovery. Here I take the
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distinguishing characteristic of a method to be that it supplies explicitly
identifiable procedures that can be applied in multiple cases. “So that the
method [my emphasis] used stands out clearly,” Einstein wrote, “I now
want to apply it to a generally known example.” He proceeded to show
that this method was capable of discovering the field equation of electro-
statics

eR)
19 TF--p
where ¢ is the electrostatic potential, p the electric charge density and
summation for v extends over 1, 2 and 3. The crucial restriction in the
procedure was the assumption that the theory of electrostatics is com-
patible with the conservation laws which were expressed in the theory by
the requirement

Divergence force density
of electric field = on charge density
stress tensor p

This condition is given mathematical form as
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since the electrostatic field stress tensor is
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Substitution for p in (16) from the field equation (15) yields an expres-
sion in ¢ and its derivatives alone and which is an identity:
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Einstein’s method consists in the realization that one might start with identity
(17). Were one to do so, then the field equation (15) could be recovered
simply by comparing the form of the identity (17) with the conservation law
(16). The field equation (15) would be arrived at immediately since it is just
the equation needed to convert (17) to (16). Einstein completed his example
by urging that the identity (17) would be very easy to find, resulting almost
immediately from an application of the rule for differentiating products to
the quantity

22)
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Einstein then turned to his new theory and showed how this method could
be applied to arrive at a set of gravitational field equations. The form of
the conservation law that was relevant could be given informally as

Divergence of Four force density
gravitational field = on matter represented
stress-energy tensor by ©,,

Einstein presumed a formal statement of this version of the conservation
law, which we can develop as follows. The conservation law (12) was
written in the ‘Entwurf’ paper in several forms. On p. 239 it is given
as the sum of the divergences of the stress-energy tensor ©,, of non-grav-

itational matter and of the stress-energy tensor 6, of the gravitational
field:

(12,) g\;aiv {\/—:é gou(guv + euv)} =0.

He also wrote the conservation law (12) in the form (p. 232):
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where the second term of this equation was identified in his Section 4 of
the ‘Entwurf’ paper as the gravitational four force density on matter. If
one uses the field equations (11) to substitute (1/k) I, for ®,, in the second
term of equation (12”) and then combines equations (12’) and (12”) by
eliminating their common first term, one arrives at the equation

(18) S (0 800 = 3¢ T g BT,
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which is the form of the conservation law sought. Since both the stress-
energy tensor 6, and the gravitation tensor Ty, contain only the metric
tensor and its derivatives, the same must hold for the entire equation.
Einstein implemented the requirement of the Newtonian limit as requiring
the gravitation tensor I'y, to reduce to the expression []7y,, as given in the
weak field Equation (14) above, so that he could conclude that the
conservation law (18) was reducible to an identity of the form (p. 237)

(19)  “Sum of differential quotients
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further terms which drop away in the } ”
formation of the first approximation

Einstein could then announce that the conditions laid out led to a uniquely
determined identity which he then presented; the derivation of the identity
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was provided, as Einstein’s footnote indicated, in Section 4.3 of
Grossmann’s part of the paper. (But there was no support for the unique-
ness claim.) It was now a simple matter to read off both the gravitation
tensor and gravitational field stress-energy tensor from the identity, com-
pleting the construction of the theory.” His gravitation tensor was:

aYuv _ aYut a’va
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Notice that Einstein’s method of arriving at the gravitation tensor and thus
the field equations is essentially the same as that described as the standard
method for the generally covariant field equations of general relativity at
the start of this section. In both cases, one takes the conservation law,
substitutes the gravitation tensor for the stress-energy tensor, thereby
reducing the law to an identity in the metric tensor and its derivatives.
The choice of gravitation tensor is then determined by the choice of identity,
which is extremely restricted. In summary form, this comprises an elimi-
native induction closely comparable in form to the standard derivation of
the final field equations discussed above:

Universe of Theories:  Field equations of form (11).

Eliminative Principle: Requirement of Newtonian limit: Ty, is composed
of first and second derivatives of g, and is linear
in the latter; the only second derivative term is

Eliminative Principle: Conservation of energy-momentum (applied via
identity (19)).

Conclusion I, is the ‘Entwurf’ gravitation tensor (20).

The first and major difference between the two inductions is the omission
of the requirement of general covariance in the second. This is compensated
for by a strengthening of the implications of the requirement of the
Newtonian limit.

This example shows very clearly once again how the justification of a
theory can develop hand in hand with its discovery by the eliminative
method. For the justification of the field equations given in the ‘Entwurt’
paper amounts essentially to the recapitulation of the method used to arrive
at the equations.

With the completion of the ‘Entwurf’ theory, Einstein descended into a
dark abyss where he would wander for nearly three years as he grappled
with the ramifications of the lack of general covariance of this theory.
One of its darkest moments came when Einstein decided that his failure
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to find generally covariant field equations, satisfying his heuristic con-
straints, was unimportant; for, even if he could find them, they would be
physically uninteresting. The principal argument in favor of this conclu-
sion was the “hole argument”, which concluded that a field theory such
as the ‘Entwurf’ theory with generally covariant field equations, would
violate the principle of causality, or, as we would now put it, would be
indeterministic.”” It was not until November of 1915 that Einstein announced
in a communication to the Prussian Academy that he had abandoned the
‘Entwurf’ field equations and had returned to the search for generally
covariant field equations. This search was based on the construction of
gravitation tensors from the Riemann curvature tensor and its contrac-
tions, the route that Grossmann had earlier designated as the mathematically
obvious path. Its direction was governed as before by the application of
the same set of eliminative principles that operated in 1912 and 1913.
However, Einstein was still not to come directly to his final theory. He
sent four communications to the Prussian Academy in that month. In them
it is possible to watch Einstein as he slowly unravels the same miscon-
ceptions that had originally led him astray in 1912 and 1913, coming to
the final result only in the fourth communication of November 25. This
series of documents what might well be the most exciting moment of
Einstein’s scientific career, for in the third communication he could show
that his theory with its new field equations was finally able to account
for the anomalous motion of Mercury.>

7. REFLECTIONS ON THE EXAMPLES OF ELIMINATIVE INDUCTION

The success with which an eliminative induction establishes its conclu-
sion depends on:
(a) our confidence in its premises and most especially our confidence that
the universe of theories is sufficiently large; and
(b) the strength of the inference used for elimination.
If inductive (ampliative) inference is used to effect the elimination, then
the stronger the inference, the more successfully the conclusion is estab-
lished. Elimination by deductive inference is, of course, the strongest from.
By these standard, the two most successful eliminative inferences of those
examined above are those used to arrive at special relativistic kinematics
and at the generally covariant field equations of general relativity. In both
cases the universe of theories is sufficiently large to make us very confi-
dent that the correct answer to the problem at hand lies within the relevant
universe; and the elimination is carried principally by deductive inference.
The least successful eliminative induction is that discussed in Section
4 which concluded the impossibility of an acceptable special relativistic
theory of gravitation. The induction is weak judged by criterion (a), for it
is difficult to have great confidence in the sufficiency of the size of the
universe of theories, when that universe is so vaguely defined. Essentially
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all we know is that Einstein was looking for a “law of gravity within the
framework of the special theory of relativity.” More serious problems arise
concerning criterion (b). For the bulk of the elimination was carried out
by rather fragile inductive arguments. For example, the requirement of a
Newtonian limit by no means forces one to retain a scalar potential to
represent the gravitational field, although it is a plausible conjecture. There
are other choices compatible with the requirement of a Newtonian limit
and the other requirements including equality of inertial and gravitational
mass.>* Again special relativity does not force a gravitation theory to be a
field theory; there is a lively literature in special relativistic action at a
distance theories.

Finally, of intermediate strength are the eliminative inductions of Section
5. Their strength lies in the ability of the principle of equivalence to restrict
gravitation theories to those that exploit structures already present in space
or spacetime. Their primary weakness lie in the vagueness of delineation
of the relevant universes of theories.

At this point, one might wonder whether the inferences described in
Section 4 and 5 are eliminative inductions at all, as opposed to attempts
at theory construction divorced from any ramifications for rival theories.
Here one must not confuse the weakness of an eliminative induction with
its being no eliminative induction at all. Elimination was the essence of
the special relativistic gravitation theory whose construction we saw Einstein
sketching in Section 4. Each of its components was selected as the one most
likely to be found in a successful theory so that the failure of the resulting,
most promising theory should serve to cast doubt upon the possibility of
success of any other. Similarly, when Einstein constructed the theory of
static gravitational fields and then the ‘Entwurf’ on the basis of the sequence
of requirements described in Section 5, he clearly understood that these
requirements be applied eliminatively. Thus he ruled out Mie’s theory of
gravitation since it failed to satisfy the equality of inertial and gravita-
tional mass (let alone the principle of equivalence).”

8. THE CANON OF MATHEMATICAL SIMPLICITY

The Einstein of 1912 and 1913 seemed all too ready to turn away from
the obvious mathematical route to the gravitational field equations and
thus was destined to spend nearly three years groping for a result that is
now blithely spat out in one or two lines in modern text books. It is hard
to imagine that this was the same Einstein who later wrote in his ‘On the
Methods of Theoretical Physics’ (p. 274):

I answer without any hesitation that there is, in my opinion, a right way [to find the axiomatic
basis of theoretical physics], and that we are capable of finding it. Our experience hitherto
justifies us in believing that nature is the realization of the simplest conceivable mathemat-
ical ideas. I am convinced that we can discover by means of purely mathematical constructions
the concepts and laws connecting them with each other, which furnish the key to the
understanding of natural phenomena . . .
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The change is dramatic. The revealing words in the passage are that “our
experience . . . justifies . . .” and what I would like to argue now is that
one of the most important parts of this experience was Einstein’s own
experience with the field equations of general relativity.

Einstein, by his own account, had neglected mathematics as a student.’®
He preferred physics since he was able to “scent out that which might
lead to fundamentals and to turn aside from everything else.” His
intuition in mathematics was not comparably strong and, he confessed
further, that “it was not clear to me as a young student that access to to a
more profound knowledge of the basic principles of physics depends on
the most intricate mathematical methods.” This last scepticism followed
Einstein to 1912, the time at which he began work on the ‘Entwurf’ theory.
In 1911, Laue had published his Das Relativitdtsprinzip,”’ which included
a development of the four dimensional vector methods of Minkowski and
brought a level of mathematical sophistication to an introductory text book
in relativity theory that outstripped the level of Einstein’s own publica-
tions. So Einstein quipped that he could “hardly understand Laue’s book.”®
At that time, Einstein was quick to use this scepticism to attack Abraham’s
rival theory of gravitation in his private communications behind the major
lines of the public battle with Abraham. Einstein wrote to Zangger in January
1912 of the incorrectness of Abraham’s theory, lamenting that Abraham’s
errors result from operating formally without thinking physically.” A few
months later, he complained to Besso in a letter of March 26, 1913,% that
Abraham’s theory was based purely on considerations of mathematical
beauty and completely untenable.

By October of 1912, Einstein had moved from Prague to Zurich and
had been introduced to the absolute differential calculus of Ricci and Levi-
Civita. He began to see that he had been too hasty in his assessment of
the role of mathematics in physics and he wrote to Sommerfeld on October
29:¢

I occupy myself now exclusively with the problem of gravitation and now believe, with the
help of a local, friendly mathematician, that I will be master of all difficulties. But one
thing is certain, that I have never before had to toil anywhere near as much, and that I have
been infused with great respect for mathematics, which I had up until now in my naivety
looked upon as a pure luxury in its more subtle parts. Compared to this problem, the original
theory of relativity is child’s play.

However Einstein did not master all the difficulties as rapidly as he would
have liked. By March of 1914, he believed that the natural mathematical
pathway laid out for him by the absolute differential calculus-was just a
dead end and that direct physical reasoning was the correct way. In that
month, he informed Besso of his satisfaction with his non-generally
covariant ‘Entwurf’ theory and expressed some disenchantment with the
lure of the mathematical route:®

Now I am completely satisfied and no longer doubt the correctness of the whole system,
whether the observation of the solar eclipse works out or not. The sense [vernunft] of the
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matter is too evident . . . The general theory of invariants functioned only as a hindrance.
The direct path proved itself to be the only passable one.

By November of 1915 when Einstein had decided to return to the search
for generally covariant field equations, he had certainly come to regret
this assessment of the theory of invariants, for it was his greatest resource
in that search. He later recalled how he “ruefully returned to the Riemann
curvature.”® What may have deepened those feelings was the knowledge
that Hilbert in Gottingen was also working on the problem of the field
equations. Hilbert’s assault on the problem was an essentially mathemat-
ical one. He constructed generally covariant field equations for gravitation
and electromagnetism from an action principle arriving, by essentially
pure formal manipulation, at the same equations as Einstein. Einstein
communicated his final field equations to the Prussian Academy on
November 25 of 1915; Hilbert communicated his equations to the Gottingen
Academy on November 20, 1915, five days before Einstein.®* Coming so
close to having the capstone of the general theory of relativity stolen from
him was surely a memorable lesson. It may well have been in his mind along
with the other events of the three years leading up to November 1915, when
he recalled in his Autobiographical Notes:*

I have learned something else from the theory of gravitation: no collection of empirical
facts however comprehensive can ever lead to the setting up of such complicated equations
[as non-linear field equations of the unified field]. A theory can be tested by experience,
but there is no way from experience to the construction of a theory. Equations of such
complexity as are the equations of the gravitational field can be found only through the
discovery of a logically simple mathematical condition that determines the equations
completely or almost completely. Once one has obtained those sufficiently strong formal
conditions, one requires only little knowledge of facts for the construction of the theory; in
the case of gravitation it is the four-dimensionality and the symmetric tensor as expression
for the structure of space that, together with the invariance with respect to-the continuous
transformation group, determine the equations all but completely.

9. CONCLUSION

A principal burden of this paper has been to demonstrate that, in broad
outline, the process of Einstein’s discovery of general relativity followed
what I described as the “eliminative model of scientific discovery” in the
introduction. It follows from this result that Einstein’s process of discovery
was, at this broad level, a process of reasoned investigation, not inscrutable
creativity, and that it is amenable to logical analysis just as much as is
any other part of scientific activity. In this century, there seems to be a strong
temptation to represent the generation of scientific discoveries, especially
those of the caliber of general relativity, as somehow miraculously tran-
scending reason and analysis. Perhaps the fear is that we would respect
Einstein less if we realized that his toolbag was filled with the same instru-
ments as are used in the common reasoning of science. Such a fear is
surely unwarranted. We ought to respect an Einstein all the more when
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we find that he wrought his miracles with tools and materials available to
everyone, day to day.

Needless to say, the eliminative model has oversimplified many of the
subtleties of Einstein’s process of discovery and there are quite possibly
components of the process of discovery that do transcend rational analysis.
Indeed one could hardly expect the process of discovery of one of the major
achievements of science to be fully reducible to that simple a recipe.
However I find it striking that so simple a model can do as much as it
has in this paper. It suggests that the process of discovery, even in the
case of general relativity, admits of quite simple logical schemas. In any
case, since commentaries on scientific discoveries so easily reduce to
vacuous praise, I should prefer to err on the side of oversimplification rather
than mystification.

The eliminative model does leave room in many places for the inser-
tion of arational procedures. One of the most tempting is associated with
the initial construction of the universe of theories or with its expansion,
when an earlier eliminative search yields unacceptable results. This move
would seem to involve the conception of hitherto never conceived possi-
bilities, perhaps even Einstein’s “free inventions of the human mind.” But
even here it is not clear just how much arational activity is involved. In
the examples we have seen in this paper, the universes of theories dealt with
often have been very vaguely specified. While it is true that each universe
of theories is populated with numerous hitherto never conceived possibil-
ities, the bulk of them remain just that — never conceived. Moreover, as
we have seen, the eliminative induction actually enables construction of
the principal content of those favored few theories in the universe upon
which attention is lavished.®

The assumption that Einstein’s discovery process is essentially a rational
exploration explains a phenomenon familiar to Einstein’s readers. An
explanatory account or justification of one of his theories very commonly
involves a recapitulation of the historical path that led him to the theory.
I have indicated several instances of this in the course of the paper, although
Einstein does not usually himself point out when this happens.*” If the
discovery process is predominantly a process of rational exploration and
elimination, then we should expect its recapitulation to provide abundant
material for construction of an account of the justification of the theory.

Finally we might well wonder just how plausible it is for the process
of discovery of a theory such a general relativity to be dominated by
arational maneuvers. What faces any such process is an enormous number
of candidate theories, the bulk of them essentially unarticulated. What
kind of a process could select and articulate from this overwhelming flood
a theory as able as general relativity to stand up to extensive later rational
testing — both as to its internal logical structure and its foundation in
experience? Could it be that a set of canons of rationality that cannot
embrace such a process is in need of revision? Or are we prepared to
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entertain the possibility of mysterious processes realized in the human
mind that achieve eminently rational ends by predominantly arational

means?

University of Pittsburgh

ADDENDUM

In the paper that follows, Professor Stachel expresses some fundamental doubts
about my paper. I should like to affirm that I stand by my account as it appears
in this volume. In response to some of his specific points, I note:

To say that Einstein proceeded from stage A to stage B of the development of
his theory using method X (be it eliminative induction, transcendent revelation,
the reading of entrails etc.) is perfectly in accord with Stachel’s general remarks
on the nature of explanation in history of science. Nowhere do I say that it could
not be otherwise or that stage A had to develop to stage B in the same way as kinetic
gas theory tells us that a gas in state A has to develop into state B.

My remarks on simplicity are intended to apply to mathematical simplicity specif-
ically. While the sense may be “narrow,” to use Stachel’s word (§3), it is far from
trivial given its prominence in Einstein’s later thought.

Einstein’s “fruitful error” (Stachel, §5), was the acceptance of the conclusion of
an inductive argument. Since the strength of the induction was weak, the acceptance
involved considerable inductive risk. As it turned out, Einstein lost the gamble.
The conclusion was false. Einstein’s procedure, however, was rational.

As an eager student of Stachel’s work, I was fully aware of the account of the history
of special relativity that Stachel lays out in his Section 5 when I wrote the original
version of my paper. I do not believe that my story contradicts Stachel’s account.
I never intended the short section on special relativity to give a comprehensive
account of the emergence of special relativity or to claim that Einstein discovered
his two principles simultaneously. I carefully excised any remarks in the original
version that could even vaguely suggest otherwise.

To answer Stachel’s question in Section 5: If a method of solving a set of
simultaneous equations is known to yield the only admissible solution, then the
use of the method embodies a (non-ampliative) eliminative induction. You will
find this fact trivial if you think that a guarantee of uniqueness of the solution is
trivial. I do not find it trivial.

Stachel’s pessimism (§9) over our ability to make well grounded normative judg-
ments about methods of scientific discovery is unwarranted. The goal of scientific
theorizing is theories that are confirmed or justified by experience. If such a theory
is in their universe of candidates, scientists who proceed eliminatively, as did
Einstein, have at least some reasonable prospect of finding it and of knowing
when they have found it, because their procedure automatically generates a partial
justification. I have no similar confidence in the prospects of scientists who start
at the same point but proceed by the reading of tarot cards as a method of dis-
covery in science. Unless Stachel’s view of tarot cards is very different from mine,
I cannot see that he could disagree.
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connection, which is always merely ‘until further notice’.” (Letter reproduced and
translated in pp. 270-272 of A. P. French (ed.), Einstein: A Centenary Volume, Cambridge,
MA: Harvard University Press, 1979.)
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3 In Ideas and Opinions, p. 272.

In Ideas and Opinions, pp. 294-295. Presumably this faith is related to the “faith in
the simplicity, i.e., intelligibility of nature” which he expresses as the view that “nature is
so constituted that it is possible logically to lay down such strongly determined laws that
within these laws only rationally completely determined constants occur (not constants,
therefore, whose numerical value could be changed without destroying the theory.)”
Autobiographical Notes, La Salle and Chicago, Illinois: Open Court, 1979, p. 59.

1> In addition to the usual sources in the history of special relativity, see J. Stachel, “Einstein
Michelson: The Context of Discovery and the Context of Justification”, Astron, Nachr.,
303 (1982), 47-53 especially for evidence that Einstein had toyed with an emission theory
of light. See also J. Earman, C. Glymour and R. Rynasiewicz, “On Writing the History of
Special Relativity”, Philosophy of Science Association, Proceedings, 1982, Volume 2, pp.
403-416; “Reconsidering the Origins of Special Relativity”, never (?) to be published man-
uscript.

'S This thought experiment launches Einstein’s ‘On the Electrodynamics of Moving Bodies’,
pp- 37-55 in Principle of Relativity (Dover, 1952). See my ‘Thought Experiments in Einstein’s
Work”, in T. Horowitz and G. Massey (eds.), Thought Experiments in Science and Philosophy,
Savage, MD: Rowman and Littlefield, 1991, pp. 129-148 (University of America Press, forth-
coming).

17 A. Einstein, “What is the Theory of Relativity”, in Ideas and Opinions, p. 228.

'8 1In a letter of January 17, 1952 to Max von Laue (EA 16 167, 168) Einstein recalls that
he could not base special relativity on Maxwell’s theory because of its failure to yield
acceptable results for the fluctuations in black body radiation pressure and the need for an
atomic structure for radiation incompatible with that theory. Thus he based special rela-
tivity on the constancy of the velocity of light.

9 A. Einstein, “Zum Relativitits-Problem”, Scientia, 15 (1914), pp. 340-341.

% The spacetime perspective coupled with modern differential geometry has exposed just
how rough this assertion is and how many hidden assumptions it contains. See M. Friedman,
Foundations of Space-Time Theories, Princeton: Princeton University Press, 1983, pp.
138-142.

2 Einstein seems to have expected an experiential or experimental foundation for the prin-
ciples of his theories of principle. In ‘Physics and Reality’ (p. 307) he insists that “there is
no inductive method which could lead to the fundamental concepts of physics.” However
he does then concede that “the most satisfactory situation is evidently to be found in cases
where the new fundamental hypotheses are suggested by the world of experience itself.”
He then lists as examples, the non-existence of a perpetual motion machine, Galileo’s
principle of inertia and the “fundamental hypotheses of the theory of relativity.”

2 A. Einstein, “Notes on the Origin of the General Theory of Relativity”, in Ideas and
Opinions, p. 286. We must rely on later recollections, since Einstein did not report on this
reasoning in the review article that he published in Jahrbuch der Radioaktivitit und Elektronik,
4 (1907), 411-462; 5 (1908), 98-99.

2 This problem turns out not to be straightforward. It finds its fullest development in the
gravitation theory of Nordstrdm, advanced and developed in the period 1912-1914. As a
first pass at the problem, note that the four dimensional analog of the Newtonian force law
is F; = m V., where F, is the four-force on the mass and V, the derivative operator of a
Minkowski spacetime. Since the four-force F; satisfies F; = mA,, the four dimensional force
law will not in general allow the necessary orthogonality of the body’s four acceleration A;
to the body’s four velocity U,, unless U'V,¢ = 0, which amounts to the severe restriction
that the the scalar potential ¢ be constant along the world line of the mass.

2  A. Einstein, “Relativitit und Gravitation: Erwiderung auf eine Bemerkung von M.
Abraham”, Annalen der Physik, 38 (1912), pp. 1059-1064 on pp. 1062-1063.

»  Einstein’s conclusion was hasty. He conceded a year later that Nordstrdm’s special
relativistic, scalar theory of gravitation did satisfy the requirement of the equality of inertial
and gravitational masses of closed systems. (A. Einstein, “Zum gegenwirtigen Stande des

14
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Gravitationsproblems”, Physikalische Zeitschrift 14 (1913), pp. 1249-1262 on p. 1253.)
The only defect of the theory. Einstein remarked (p. 1254), was that according to it the
inertia of a body was influenced but not caused by all other bodies.

% A. Einstein, “Uber das Relativititsprinzip und die aus demselben gezogenen Folgerungen”,
in Jahrbuch der Radioaktivitit und Elektronik, 4 (1907), 411-462; 5 (1908), 98-99.

7 A. Einstein, “Uber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes”, Annalen
der Physik, 35 (1911), 898-908; “Lichtgeschwindigkeit und Statik des Gravitationsfeldes”,
Annalen der Physik, 38 (1912), 355-369; “Zur Theorie des statischen Gravitationsfeldes”,
Annalen der Physik, 38 (1912), 443-458.

% (New York: Dover, n.d.). The article is translated as “On the Influence of Gravitation
on the Propagation of Light”, pp. 90-108.

» In 1907 and 1911, he gave the principle no name. In 1912 it was called the “hypoth-
esis of equivalence” which gave way to the “principle of equivalence”.

% Of course that quantity would be energy so that this last constraint really amounts to
requiring compatibility with force x distance = energy.

3t “Relativitit und Gravitation”, p. 1063. See also the letter from Einstein to P. Ehrenfest
received July 7, 1912, EA 9 333. :

2 This problem became even more acute in Einstein’s gravitation theory of 19131915 in
which the principle even failed in the homogeneous case after the restriction to infinitesimally
small regions. See Section 4.3 of my “What was Einstein’s Principle of Equivalence”,
Studies in the History and Philosophy of Science, 16 (1985), 203-246.

3 Letter from Einstein to P. Ehrenfest received July 7, 1912, EA 9 333,

3 “Notes on the Origin . . .”, p. 286.

% A. Einstein, “Gibt es eine Gravitationswirkung, die der elektromagnetischen
Induktionswirkung analog ist?”, Vierteljahrsschrift fiir gerichtliche Medizin, 44 (1912), 37-40.
36 “Relativitit und Gravitation”, submitted July 4, 1912, pp. 1063-1064.

% A. Einstein and M. Grossman, “Entwurf einer verallgemeinerten Relativititstheorie und
einer Theorie der Gravitation”, Zeitschrift fiir Mathematik und Physik, 62 (1913), 225-
261.

% As quoted on p. 12 in J, Stachel, “Einstein and the Rigidly Rotating Disk”, pp. 1-15,
in A. Held (ed.), General Relativity and Gravitation: One Hundred Years After the Birth of
Albert Einstein, Vol. 1, New York: Plenum, 1980.

¥ “Einstein and the Rigidly Rotating Disk”.

“ And also in his Autobiographical Notes, pp. 63-65.

“! This generalized vector analysis has come to be known as “tensor calculus”. The term
“tensor” comes from vector analysis, where it labelled a quantity we would now call a
second rank symmetric tensor. It was Einstein and Grossmann who generalized the use of
the term and are responsible for its current prominence. Ricci and Levi-Civita do not use
the term. For a review of Einstein and Grossmann’s combining of the two mathematical
traditions see my ‘The Physical Content of General Covariance’, in J. Eisenstaedt and
A. J. Kox (eds.), Studies in the History of General Relativity: Einstein Studies 3, Boston:
Birkhauser, 1992, pp. 281-315.

2 “7ur Theorie. . .”, p. 458.

“  A. Einstein, “Physikalische Grundlagen einer Gravitationstheorie”, Naturforschende
Gesellschaft. Vierteljahrsschrift (Ziirich), 58 (1913), 284-290 on p. 285.

“  This latter point is made very clearly in A. Einstein, “Uber Friedrich Kottlers Abhandlung
“Uber Einstein Aquivalenzhypothese und die Gravitation’”, Annalen der Physik, 51 (1916),
639-642. The relevant passage is translated in my ‘What was Einstein’s Principle of
Equivalence’, p. 207.

“  See, for example, A. Einstein, “The Foundation of the General Theory of Relativity”,
pp. 111-164 in Principle of Relativity, §§2, 3. See also my “The Physical Content of General
Covariance”.

“ EA 16 148 and EA 16 154. The translations are from my “What was Einstein’s Principle
of Equivalence?”, p. 243 and p. 234.
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7 EA 6 074 and EA 6 075. See my “What was Einstein’s Principle of Equivalence?”,
pp. 230-231 for details.

*  Notice that result is introduced as an independent assumption. Einstein did not argue
that the principle of equivalence could be applied to infinitesimal regions of spacetime in
which special relativity would hold, so that we could infer the equation of motion from special
relativity. In fact, Einstein never endorsed this infinitesimal version of the principle. He
corrected Schlick in 1917, when the latter tried to use the argument just outlined, and made
an objection to the infinitesimal principle that renders it essentially impotent. For further
details, see my “What was Einstein’s Principle of Equivalence?”.

4 Note that, unless otherwise indicated, I use Einstein and Grossmann’s notation of 1913.
Thus contra- and covariant components of a quantity are not indicated by the raising and
lowering of indices. Latin letters represent covariant quantities; the corresponding Greek letters
their corresponding contravariant forms. Thus the covariant metric tensor is “g,,” and its
contravariant form is “y,,”. Summation over repeated indices is not implied.

50 “How Einstein Found his Field Equations”, Historical Studies in the Physical Sciences,
14 (1984), 253-316.

' For further discussion of this derivation as well as the ensuing three year digression leading
up to the final theory, see my “How Einstein Found . . .”.

52 For a discussion of the the emergence of the hole argument and its place in Einstein’s
thought, see my “Einstein, the Hole Argument and the Reality of Space”, in J. Forge (ed.),
Measurement, Realism and Objectivity, Dordrecht: Reidel, 1987, pp. 153-188.

3 For details of the hectic proposals of this final month, see my “How Einstein Found
% For example, one can construct one by forming a three space version of the spacetime
theory in which gravitation is represented by a second rank tensor.

% A. Einstein, “Zum gegenwirtigen Stande des Gravitationsproblems”, Physikalische
Zeitschrift, 14 (1913), p. 1263.

% Autobiographical Notes, p. 15. See also R. McCormmach, “Editor’s Foreword” to
Historical Studies in the Physical Sciences, T (1976), xi-xxxv, for a survey of Einstein’s
mathematical development and its relation to then current debates over mathematics.

5" Braunschweig: Vieweg, 1911.

% As reported in McCormmach, p. xxvii.

% June 27, 1912, EA 39 644.

% EA 7 066. This letter was not published in the collection Albert Einstein Michele Besso:
Correspondance 1903-1955, P. Speziali (ed.), Paris: Hermann, 1972.

¢ In A. Hermann (ed.), Albert Einstein/ Arnold Sommerfeld: Briefwechsel, Basel: Schwabe,
1968, p. 26.

2 In Speziali, p. 53. Notice that at this time Einstein had not completely turned away
from the theory of invariants in his work on spacetime theory. In a joint paper submitted in
February 19, 1914, he had shown that Nordstrom’s theory of gravitation was, in effect, the
theory of a conformally flat semi-Riemannian spacetime and that its field equation was actually
R = KT where R is the Riemann curvature scalar and T the trace of the stress-energy tensor.
A. Einstein and A. D. Fokker, “Die Nordstromsche Gravitationstheorie vom Standpunkt
des absoluten Differentialkalkiils”, Annalen der Physik, 44 (1914), 312-328.

¢ “Notes on the Origin . . .”, p. 289.

% This fact and the fact that Einstein suspended essentially all correspondence in that month
in favor of a lively exchange of mail with Hilbert has raised the question of priority of
discovery and even plagiarism. See my “How Einstein Found . . .” for my analysis of the
relation of Hilbert’s work to Einstein’s in this month. I urge that Einstein’s path was essen-
tially independent in its nature from Hilbert’s, so that we have a genuine case of independent
discovery.

65 P. 85. We should note that this 1912-1915 episode was certainly the most prominent
case in Einstein’s experience in which mathematical simplicity was vindicated. But there were
others. For example, within two years of its introduction, Einstein described the addition of
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the cosmological term to the field equations of general relativity as “gravely detrimental to
the formal beauty of the theory.” A. Einstein, “Do Gravitational Fields Play an Essential
Part in in the Structure of the Elementary Particles of Matter?”, in Principle of Relativity,
pp. 191-198 on p. 193. It is well known that Einstein renouced the additional term with
the discovery of the expansion of the universe. See for example, A. Einstein, Review of R.
C. Tolman, Relativity. Thermodynamics and Cosmology, in Science, 80 (1935), 358. Einstein
later described to Gamow the introduction of the term as “. . . one of the biggest blunders
he had made in his entire life.” G. Gamow, “The Evolutionary Universe”, in The Universe,
London: Bell & Sons, 1958, p. 67.

% A mundane analogy: in computer implemented tree searches, such as are carried out by
chess playing programs, one speaks as though the entire tree structure is present to be
inspected. In fact very little of it need be present in the computer’s memory at any time.
The program need only construct those parts of the tree which are actually being visited so
that in a limited sense the search actually creates the tree.

There are exceptions, such as when he announced in his 1917 paper on the cosmolog-
ical problem: “In the present paragraph I shall conduct the reader over the road that I have
myself travelled, rather a rough and winding road, because otherwise I cannot hope that he
will take much interest in the result at the end of the journey.” “Cosmological Considerations
on the General Theory of Relativity”, in Principle of Relativity, pp. 177-188 on pp. 179-180.




