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WHAT WAS EINSTEIN’S “FATEFUL PREJUDICE”?

 

In the later pages of the notebook, as Einstein let general covariance slip away, he
devised and abandoned a new proposal for his gravitational field equations. This
same proposal, revived nearly three years later, opened passage to his final theory. In
abandoning it in the notebook, Einstein had all but lost his last chance of deliverance.
This chapter reports and develops our group’s accounts of this decision. Einstein’s
later accounts of this decision blame it upon what he called the “fateful prejudice” of
misinterpreting the Christoffel symbols. We suggest that Einstein’s aberrant use and
understanding of coordinate systems and coordinate conditions was as important as
another fateful prejudice.

INTRODUCTION

Under a decade of analysis, discussion and reflection, Einstein’s Zurich notebook has
yielded. Strategies that were once enigmatic and pages that were once obscure have
become familiar. For the great part, we understand the problems Einstein approached,
how he sought to solve them, when these efforts succeeded, when they failed and
even the hesitations behind the smallest markings. In other parts we may follow a cal-
culation line by line but our view of his hopes and plans remain distant. Or he may
abandon a calculation with just a few symbols surviving on the page. They can be
deciphered only through luck or clairvoyance.

The boundary that fences in the clear from the obscure has grown so that less and
less escapes it. The intriguing puzzles of the notebook remain at this boundary. They
cannot be solved with the assurance that the weight of evidence admits no alternative.
But they are not so distant that we must despair of any solution. We understand just
enough of these puzzles to sense that a complete solution lies within our grasp. We
may even articulate one or more candidates that are both plausible and attractive. Yet
the evidence we cull from the notebook and elsewhere remains sufficient to encour-
age us, but insufficient to enable a final decision.

My purpose in this chapter is to review two of these problems. I will draw heavily
on ideas that have circulated freely in our group and have grown, mutated and con-
tracted as they passed between us.
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 This chapter will report on these communal ideas,

 

1 I gratefully acknowledge thoughtful discussion and responses on this chapter and its proposals from
the members of this group (who are also co-authors in this volume) and also from Jeroen van Dongen.
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while it gives my own particular viewpoint on them and adds a conjecture. Many of
the ideas in this chapter are not reflected in our joint commentary because my view-
points and conjecture represent a minority opinion. At the boundary, where categori-
cal evidence is elusive, our intuitions and sensibilities decide. They differ as we pass
through the group. We do not all know the same Einstein.

Two Puzzles

The problems meet on page 22R of the notebook. There we find Einstein generating
the very same gravitational field equations of near general covariance that will reap-
pear briefly in his publication of November 4, 1915, when he ruefully returned to
general covariance. This supplies our first puzzle:

• Why were these field equations rejected in the notebook, when they were deemed
admissible in November, 1915?

These equations did not employ the Ricci tensor as gravitation tensor, as would the
source free field equations of Einstein’s final theory. Famously, Einstein and Gross-
mann had mentioned but discarded this possibility in their joint “Entwurf” paper. The
equations on page 22R employ a different gravitation tensor, which we have come to
call informally the “November tensor.” It was carefully and apparently successfully
contrived to avoid exactly the problems they imagined for the Ricci tensor.

The calculations on page 22R differ in no essential way from those Einstein
would publish in 1915. The calculations on the surrounding pages do differ. The
absolute differential calculus makes it easy to write down expressions that are gener-
ally covariant; they hold in all coordinate systems. In the modern literature we rou-
tinely restrict these expressions to specialized coordinate systems by imposing freely
chosen coordinate conditions. As Einstein’s calculations in the notebook progressed,
he became quite adept at the purely mathematical aspects of applying these condi-
tions. Careful analysis of the pages show that his use of these conditions came to dif-
fer considerably from the modern usage and possibly with fatal consequences. Our
second puzzle is to understand these differences:

• Did Einstein 

 

choose

 

 to use coordinate conditions in an idiosyncratic way later in
the notebook? Or was he unaware of the modern usage?

In solving these puzzles, more is at stake than merely deciphering a few pages of a
notebook that may not have long occupied Einstein. These pages mark Einstein’s all
but last chance to rescue himself from the misconceptions that led him to his
“Entwurf” theory and to more than two years of distress as his greatest discovery
eluded him. A solution to these puzzles will tell us if Einstein’s final slide into the
abyss rested on simple blunders, lack of imagination or creative misunderstandings
that have yet to be appreciated in the historical literature.
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Four Parts

This chapter is divided into four parts. In the first, I will review the circumstances that
induced Einstein to the proposal of the “November tensor”  as gravitation tensor.
Its rejection in the notebook will be explained partially by drawing on a proposal of
Jürgen Renn’s. At the time of the notebook, as Einstein later recalled, he failed to see
that the Christoffel symbols were the natural expression for the components of the
gravitational field, his “fateful prejudice.” As a result, he was unable to see how to
recover a stress-energy tensor for the gravitational field and the associated conserva-
tion laws from the “November tensor.” The calculation just proved too complicated.
This problem was resolved in November 1915 when Einstein had developed more
powerful mathematical methods.

The second part outlines the puzzle surrounding Einstein’s use of coordinates. I
will distinguish the standard way in which coordinate conditions are used from the
way that Einstein came to use them later in the notebook. It is so different that our
group labels coordinate conditions used this way as “coordinate restrictions.” This
non-standard use of coordinate restrictions can aid us in explaining the notebook
rejection of the “November tensor,” if in addition we assume that Einstein was
unaware that the same mathematical manipulations could be used in the modern man-
ner as coordinate conditions. The evidence available to us admits no final decision
over Einstein’s awareness of this usage. I will suggest however that there are suffi-
cient indications to make his supposed lack of awareness implausible and that page
22R of the notebook might well mark a transition from the use of coordinate condi-
tions to coordinate restrictions.

The third part develops a conjecture on what might lie behind Einstein’s idiosyn-
cratic use of coordinate conditions in the notebook. In his later hole argument, Ein-
stein erred in tacitly according an independent reality to coordinate systems. It is now
speculated he may have committed this same error within the notebook while using
coordinate conditions to extract the Newtonian limit from the “November tensor.”
The outcome would be that his theory overall would seem to gain no added covari-
ance from the use of coordinate conditions rather than coordinate restrictions, to
which Einstein reverted for their greater simplicity. Once again, the available evi-
dence admits no final decision. I will suggest however that the conjecture is plausible
since it requires us to suppose no additional errors by Einstein; he merely needs to
follow through consistently on the misapprehensions we know he harbored in the
context of the hole argument.

The fourth part offers a summary conclusion.

1. THE PUZZLE OF THE GRAVITATION TENSORS

Why did Einstein abandon the gravitational field equations in the notebook on page
22R that he later deemed suitable for publication on November 4, 1915? This is our
first puzzle. In the first section of this part I will review the essential background to
this puzzle. In the pages preceding page 22R, Einstein considered and rejected the
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natural candidate for a gravitation tensor, the Ricci tensor. It fell to misconceptions
about static fields and the form of gravitational field equations in the case of weak
fields. In the second section of this part I will describe how the proposal of page 22R
was contrived ingeniously to circumvent the illusory flaws he had imagined for the
Ricci tensor. In the third section I will review Einstein’s later recollections concern-
ing the notebook rejection and the central role that, as I shall call it, “  prejudice”
played in them. Drawing on a proposal by Jürgen Renn, I will advance what I believe
is a plausible account of its significance. The difficulty was the recovery of an expres-
sion for the stress-energy tensor of the gravitational field and its associated conserva-
tion law. Because Einstein did not recognize that the Christoffel symbols are the
natural structure for representing the components of the gravitational field, he
thought this recovery required the algebraic expansion of the Christoffel symbols.
That yielded such a surfeit of terms that Einstein despaired of completing the calcula-
tion. This difficulty, along with others to be reviewed in later parts of this chapter, led
Einstein to abandon the proposed gravitation tensor. In 1914, in the course of his
work on the “Entwurf” theory, Einstein developed more powerful variational meth-
ods. These enabled him to complete the calculation and to see the significance of the
Christoffel symbols.

1.1 Background: The Rejection of the Ricci Tensor

 

The “Entwurf” Papers

 

In the “Entwurf” paper, Einstein and Grossmann famously report their failure to find
generally covariant gravitational field equations. Their search had focused on finding
a gravitation tensor,  constructed from the metric tensor and its derivatives, to be
used in the gravitational field equations

(1)

where  is the stress-energy tensor and  is a constant. The absolute differential
calculus of Ricci and Levi-Civita supplied the natural structure from which generally
covariant gravitation tensors can readily be constructed. It is the Riemann tensor,
written in Einstein’s paper of November 4, 1915 (Einstein 1915a) as
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(2)

where the Christoffel symbols of the second kind are

 

2 My policy with notation will be to follow the conventions used at the time of the work discussed. In
November 1915, Einstein indicated contravariant and covariant components of a tensor by raised and
lowered indices. Summation over repeated indices was 

 

not

 

 implied. The notation for the Riemann ten-
sor and Christoffel symbols do not respect this raising and lowering convention.
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(The term  is the Christoffel symbol of the first kind and is defined implicitly
in this expression.) The Ricci tensor is the first nontrivial contraction, unique up to
sign, of the Riemann tensor, written by Einstein as

(3)

Einstein later chose this tensor as the gravitation tensor in the source free case.
Einstein and Grossmann had revealed that they had considered this candidate for

the gravitation tensor in preparing the “Entwurf” paper. They explained (Einstein and
Grossmann 1913, 256–57), in Grossmann’s words, “...it turns out that this tensor
does 

 

not

 

 reduce to the [Newtonian] expression  in the special case of an infinitely
weak, static gravitational field.” Einstein and Grossmann’s explanation proved all too
brief. It did not even mention the use of the coordinate conditions that are expected
by the modern reader and that must be stipulated to restrict the coordinate systems of
a generally covariant theory to those coordinate systems in which Newton’s equations
can hold. This omission even led to the supposition in the early history of this episode
that Einstein was unaware of his freedom to apply these coordinate conditions.

With its earliest analyses,
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 we learned from the Zurich notebook that Einstein
understood all too well how to reduce generally covariant gravitational field equa-
tions to a Newtonian form by restricting the coordinate systems under consideration.
In particular, he knew how to select what we now call “harmonic coordinates” to
reduce the Ricci tensor to an expression analogous to the Newtonian  With
deeper analysis as developed in our commentary, the notebook provides a detailed
account of how Einstein tested the Ricci tensor against his other expectations and
how he was led to reject it.

 

Two Misconceptions: The Static Field…

 

What precluded acceptance of the Ricci tensor as the gravitation tensor were two
interrelated expectations that proved to be incompatible with Einstein’s final theory.
On the basis of several apparently sound arguments, Einstein expected that static
gravitational fields would be represented by a spatially flat metric, whose coefficients
in a suitable coordinate system would be

 

3  See (Norton 1984) and also (Stachel 1980).
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(4)

where the  component  is some function of the three spatial coordi-
nates  The spatial flatness is represented by the constant value

 for the other non-zero components,   and  This spatial
flatness is not realized in general in the final theory.

We can understand exactly why Einstein would fail to anticipate this lack of spa-
tial flatness. His explorations were based on the principle of equivalence, which
asserted that a transformation to uniform acceleration in a Minkowski spacetime
yielded a homogenous gravitational field (see Norton 1985). The Minkowski metric
in standard coordinates is given by

(5)

for  now a constant interpreted as the speed a light. If one transforms to a coordinate
system in uniform acceleration, the metric reverts to a form Einstein associated with a
homogeneous gravitational field,  which has the form of  but in which 
is a linear function of the spatial coordinates,    If the acceleration is in the
direction of the  coordinate, for example, then  for  and  arbi-
trary constants whose values are set by the particulars of the transformation, so that

(6)

Einstein’s early strategy in his work on gravitation had been to recover the properties
of arbitrary gravitational field by judiciously generalizing those of  His mis-
take, in 1912 and 1913, was to fail to anticipate that the spatial flatness of  was
not a property of all static fields, but a very special peculiarity of 

 

…and the Field Equations for Weak Fields

 

Einstein’s second expectation concerned how the gravitational field equations (1)
would reduce to the Newtonian limit. In the weak field case, one supposes that one
can find coordinate systems in which the metric adopts the form
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(7)

The quantities  are of first order of smallness. For this weak field, Einstein sup-
posed that the gravitation tensor of (1) would reduce to4 

(8)

If the gravitation tensor reduced to this form in the weak field, then all that would
remain to first order is the first term of (8), so that the gravitational field equations
would reduce to the near-Newtonian expression

(9)

or more simply expressed

It turns out that these most natural of intermediates in the transition to Newton’s law
of gravitation are not realized by the final theory. In it, the weak field equations corre-
sponding to (9) include an extra trace term. See (Einstein 1922, 87).

(9’)

These two expectations concerning the static field and weak field are closely con-
nected. In particular, as Einstein showed in Einstein (Einstein 1913, 1259), one
recovers a spatially flat static metric  if one solves the weak field equation (9)
for the case a of a time independent field produced by a static, pressureless dust
cloud.5 This recovery of a spatially flat solution is blocked by the added trace term 
in (9’) in the final theory.

4 I revert to the notation of (Einstein and Grossmann 1913). Summation is not implied by repeated indi-
ces. All indices are written as subscript with the covariant and contravariant forms of a tensor repre-
sented by Latin and Greek letters respectively. Thus the modern  is written as  but the
modern  is written as  Coordinate indices are written as subscript as well.

5 The prediction of spatial flatness is almost immediate. The stress energy tensor  for this static
dust cloud will satisfy  excepting  Thus we have immediately for all values of  
excepting  that  for all spacetime. With finite values at spatial infinity as a boundary
condition, these last equations solve to yield  for all   excepting  as
required by  of (4).
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That Prove Fatal

On page 19L of the notebook, Einstein showed that he knew how to reduce the Ricci
tensor to the weak field form required by (9). Using a standard device in the literature,
he simply restricted his coordinate systems to those in which the harmonic condition

(10)

is satisfied. He immediately found that he could eliminate all the second derivative
terms that were not required by the operator (8) for the Newtonian limit. Disaster
ensued over the pages 19R–21R for this promising combination of Ricci tensor as
gravitation tensor and harmonic coordinate systems. Einstein sought to bring this
combination into accord with his expectations (4) for static fields and for the weak
field equations (9). He failed and inevitably so. The coordinate systems used to bring
the static field into the form of  in (4) are not harmonic. That coordinate system
does, however, satisfy a formally similar coordinate condition

(11)

(We call this “Hertz condition” in this volume since it is mentioned by Einstein in a
letter to Paul Hertz of August 22, 1915 (CPAE 8, Doc. 111).) What makes this condi-
tion attractive is that it entails the weak field form of the energy momentum conserva-
tion law6

(12)

Einstein even realized that he could retain this form of the energy conservation law
and the harmonic condition if he added the trace term in  in (9’), but the modified
field equations were no longer compatible with his expectations for the weak static
field  so they could not stand. Harmonic coordinate systems no longer
appear in the notebook.

1.2 The “November Tensor”

The outcome of Einstein’s investigations of the Ricci tensor was disappointing. But
his creative energies were far from spent. He then turned immediately to another pro-

6  is the contravariant form of the stress-energy tensor  The condition (11) combined with the
field equation (9) yields the weak field form of the energy conservation law through
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posal for a gravitation tensor, the one he would publish on November 4, 1915, upon
his return to general covariance. It is laid out on page 22R of the notebook. Einstein
shows how it is possible to split off a part of the Ricci tensor that is not a generally
covariant tensor, but at least transforms tensorially under unimodular transformations.

Unimodular Transformations

The class of unimodular transformations has a simple defining property. A coordinate
transformation  is fully specified by the associated matrix of differential
coefficients  A transformation is unimodular if the determinant of this
matrix is unity:

(13)

Unimodular transformations preclude transformations that uniformly expand the
coordinate system, such as  They are volume preserving in spacetime.7 

The coefficients of the metric tensor transform according to

Taking the determinants of these quantities we find that the (positive valued)8 deter-
minant  transforms according to

It now follows immediately that  for unimodular transformations, that is,
when (13) holds. This equality tells us that  transforms as a scalar under unimod-
ular transformation, as do functions of it such as  We can easily form unimo-
dular vectors from this quantity. The coordinate derivative  of a generally
covariant scalar  is a generally covariant vector. Similarly, the coordinate derivative

of a unimodular scalar is a unimodular vector. Therefore  is a unimodular

vector. This result is the key to Einstein’s plan.

7 They are volume preserving in the coordinate space. A volume element  for a region
bounded by the four coordinate differentials  in coordinate space is preserved since it transforms
according to the rule  The invariant volume
element of a metrical spacetime,  is also preserved since  is an invariant under
unimodular transformation. 

8  In other places, it is written as 
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Proposal: A Unimodular Tensor....

On page 22R of the notebook, Einstein took the Ricci tensor  and expressed it as
the sum of two parts. He wrote

(14)

His purpose is quite clear. And if there were any doubt, the proposal is explained in
detail in (Einstein 1915a). The first term of  is a just the covariant derivative of the
unimodular vector

and therefore a tensor under unimodular transformations. Since the Ricci tensor 
transforms as a tensor under all transformations, Einstein could infer that the second
term of (14) must also transform as a tensor under unimodular transformations.9 This
second term, denoted as  is chosen by Einstein as a candidate gravitation tensor.
Because of its reappearance in November 1915, we have labeled it the “November
tensor” in this volume. Its selection is compatible with Einstein’s ambitions for
extending the principle of relativity to acceleration. While not supplying general
covariance, covariance under unimodular transformations is sufficiently expansive to
capture transformations between inertial and accelerated coordinate systems. As Ein-
stein shows in (Einstein 1915a, 786), these acceleration transformations include ones
that set the spatial coordinate axes into rotation as well as ones that accelerate its spa-
tial origin without rotation.10

…that Gives the Newtonian Limit and Energy Conservation

The remainder of the page explains why Einstein was attracted to this new candidate.
He had been unable to reduce the entire Ricci tensor to the form (8) without employ-
ing a coordinate condition, the harmonic condition, that brought fatal problems. Ein-
stein now showed that he could reduce the tensor  to the form (8) if he considered
coordinate systems which satisfied the coordinate condition (11) introduced above.

As Einstein proceeded to show, with the assumption of this condition, the candi-
date gravitation tensor  reduced to

9 The result is automatic. The quantity  can be expressed as a difference of two quantities, each of
which are tensors at least under unimodular transformations. 
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(15)

In the weak field of (7), the terms quadratic in

will all be of order  and thus of the second order of smallness; the first term of (15)
agrees with the first term of (8) in quantities of first order. The candidate tensor 
has been reduced to the requisite form (8). In addition, the reduction has been
effected by just the condition (11) needed to enforce energy conservation in the weak
field. As Einstein had already found, that coordinate condition, in conjunction with
the weak field equations (9) entailed energy conservation in the weak field form (12).

…Or Does It? 

Einstein could hardly hope for a more satisfactory outcome. He was burdened by strict
and unforgiving requirements on static fields and the weak field limit. Yet he found
gravitational field equations of very broad covariance compatible with both. So satis-
factory is this resolution that Einstein published it in November 1915 upon his return
to general covariance.  is the gravitation tensor he proposed in his communication

10 This last compatibility is not straightforward. The choice of  as gravitation tensor is not compati-
ble with Einstein’s favorite examples of a field produced by uniform, rectilinear acceleration in
Minkowski spacetime, the static, homogeneous field,  given as (6). One finds by explicit calcu-
lation that  is not a solution of the source free field equations  This failure is already
suggested by that fact that  is only a tensor under unimodular transformations and that the trans-
formation from  to  is not unimodular. (Unimodular transformations preserve the determi-
nant of the metric. But  whereas 
Now  is obviously a solution of the source free field equations  So we cannot infer from
the covariance properties of  that  is also a solution.
If Einstein was aware of this problem, he did not find it immediately fatal to  as gravitation tensor.
The problem should have been apparent as soon as Einstein contemplated a gravitation tensor covari-
ant only under unimodular transformations. Yet he proceeded on page 22R with the elaborate recovery
of the Newtonian limit. Again there is no trace of a concern over the homogeneous field,  in the
pages surrounding and following. (The concern is directed towards the coordinate restriction (11) and
the rotation field  defined below.) The failure amounts to a failure of his principle of equiva-
lence. But Einstein had already reconciled himself to such a failure in his theories of 1912 and it arose
again in his “Entwurf” theory. See (Norton 1985, §4.3).
In the text I have explained his apparent indifference by assuming that he adopted the position
expressed later in (Einstein 1915a, 786). Employing the same gravitation tensor  the theory of
that paper was also covariant under unimodular transformations. In order to affirm that the theory sat-
isfied the relativity of motion, he observed (in part) that the coordinate transformation 

   with  and  arbitrary functions of  is unimodular. We
might note that this transformation corresponds to a large class of unidirectional accelerations. While
the class does not include the transformation from  to  Einstein may well have simply
assumed that it did include related transformation of comparable physical significance.
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of November 4 to the Prussian Academy (Einstein 1915a). On November 4, he had lit-
tle choice. The natural gravitation tensors, the Ricci tensor and then the Einstein ten-
sor, were still unavailable to him. He was still bewitched by his early, mistaken
expectations concerning static fields and the weak field limit. These expectations were
dispelled after that communication, over the course of that November. A rapid series
of communications first brought him his successful explanation of the anomalous
motion of Mercury and then his final, generally covariant field equations.

In the November 4 communication, Einstein paused to explain the transient
charms of the “November tensor”  He closed the communication of November 4
by showing (§4) that the coordinate condition (11), in the case of weak fields, reduces
his field equations to the form (9). 

Yet Einstein’s achievement on page 22R of the Zurich notebook proves to be as
puzzling as it is impressive. For the proposal disappears as rapidly as it appeared; it
receives no further serious consideration in the notebook.11 The difficulties that led to
its dismissal cannot be those that defeated the combination of the Ricci tensor and the
choice of harmonic coordinate systems. These were the misleading expectations
about static fields and the weak field limit. The gravitation tensor  was compatible
with both. Why did Einstein so rapidly discard this promising candidate for his grav-
itation tensor? What changed to make it acceptable in November 1915? 

1.3 The {} Prejudice

We have fragments of evidence that allow us to answer these questions. Some come
from the pages of the notebook surrounding page 22R. The most important come in
Einstein’s later recollections.

A Letter to Sommerfeld of November 28, 1915

Einstein’s most complete account comes in all too brief remarks in this letter
(CPAE 8, Doc. 153). Having recounted the final field equations of his theory, Einstein
continued:

Of course it is easy to write down these generally covariant equations. But it is hard to
see that they are the generalization of Poisson’s [Newtonian] equations and not easy to
see that they allow satisfaction of the conservation laws.

Now one can simplify the whole theory significantly by choosing the reference system so

that  Then the equations take on the form

11 We shall see below in section 3.7 that  is reevaluated on the following page 23L, but now with the
coordinate restriction (11) replaced by another. The candidate gravitation tensor reappears briefly on
page 25L in an incomplete attempt to compute the stress energy tensor of the gravitational field asso-
ciated with this gravitation tensor.
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I had already considered these equations 3 years ago with Grossmann up to the second
term on the right hand side, but had then arrived at the result that they did not yield New-
ton’s approximation, which was erroneous. What supplied the key to this solution was
the realization that it is not

but the associated Christoffel symbols  that are to be looked upon as the natural
expression for the “components” of the gravitational field. If one sees this, then the above
equation becomes simplest conceivable, since one is not tempted to transform it by mul-
tiplying out [Ausrechnen] the symbols for the sake of general interpretation.

Which equations had he considered three years before? “…[T]hese equations…up to
the second term on the right hand side…,” that is, excluding the trace term in 
coincide with the choice of the “November tensor”  as gravitation tensor on page
22R. Einstein tells Sommerfeld that he had considered these equations with Gross-
mann and that detail is affirmed by the appearance of Grossmann’s name on the top
of page 22R.12

The Fateful Prejudice

The elements of the account Einstein laid out to Sommerfeld reappear in other places
in Einstein’s writing. In his publication, (Einstein 1915a, 1056), he also recounted his
misidentification of the “‘components’ of the gravitational field.” He recalled how he
had reformulated the energy conservation law in his earlier work, (Einstein 1914c). In
the absence of non-gravitational forces, the law is just the vanishing of the covariant
divergence of the stress-energy tensor  It could be re-expressed as13

where the tensor density  Einstein now reflected upon his earlier error:

This conservation law had earlier induced me to view the quantities

12 Presumably Einstein alludes to his earlier recovery of these equations in the introduction to his paper
of November 4, 1915. Einstein (Einstein 1915a, 778) recalls his work three years earlier with Gross-
mann and then claims: “In fact we had already then come quite close to the solution of the problem
given in the following.”

13 Einstein refers back to the results in (Einstein 1914c). There the energy conservation law was written
in terms of the covariant divergence of  In his paper of November 4, 1915, Einstein had dis-
carded a term in  to simplify the result at the expense of reducing its covariance to unimodular
transformations only.
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as the natural expression for the components of the gravitational field, even though it is
obvious, in view of the formulae of the absolute differential calculus, to introduce the
Christoffel symbols

instead of those quantities. This was a fateful prejudice.

Einstein continues to argue for the naturalness of this choice. The Christoffel symbols
are symmetric in the indices  and  and they reappear in the geodesic equation.
However he does not explain precisely how this “prejudice” led him astray. For con-
venience, I will call this the “  prejudice.”

A letter written to Lorentz the following January 1, 1916, repeats and slightly
clarifies the role of the  prejudice. (CPAE 8, Doc. 177.) 

I had already considered the present equations [of the final theory, not of November 4] in
their essentials 3 years ago with Grossmann, who had made me aware of Riemann’s ten-
sor. But since I had not recognized the formal meaning of the  I could achieve no
overview and could not prove the conservation laws.

The Problems Collected

If we assemble the clues, we find Einstein giving two reasons for his rejection of the
“November tensor”  when he worked with Grossmann:14

• He was unable to recover the Newtonian limit.

• The  prejudice precluded recognition of the inherent simplicity of the equations
and the recovery of the energy conservation law.

Both elements of Einstein’s account are puzzling. A straightforward reading of page
22R shows Einstein recovering the Newtonian limit in exactly the same way as in his
later publication of November 4, 1915. A more careful analysis will be needed, but
that will be postponed to later parts of this chapter. Einstein’s remarks about the 
prejudice are also puzzling at first. Einstein had a perfectly acceptable expression for
the energy conservation law. It is just the vanishing of the covariant divergence of

 and was introduced by Einstein on page 5R of the notebook. I believe that these
last remarks admit a fairly simple explication.

14 Since recollections are not infallible, there is always a possibility that the first difficulty with the New-
tonian limit was misremembered and really pertained only to his problem with the Ricci tensor. We
need not have such concerns for the  prejudice. Since it was published on November 4, 1915, the
notion was clearly formulated before Einstein had realized the problems with the Newtonian limit
associated with his assumptions about the static field and the weak field equations.
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Recovering Energy Conservation

To understand why this prejudice was fateful, we need to recall a major difference
between Einstein’s work in the notebook and in November 1915. Here I draw heavily
on the insights of Jürgen Renn and Michel Janssen (Janssen and Renn 2004). By
1915 Einstein had developed techniques of considerably greater sophistication for
recovering energy conservation than he had used in 1913. Also, when Einstein talks
of proving the conservation laws, we must understand him to mean a little more than
merely recovering the standard result that the covariant divergence of  vanishes.
We must understand an important part of the recovery to be the identification of a
stress-energy tensor for the gravitational field,  that will figure in an alternate
form of the energy conservation law (as given in Einstein and Grossmann 1913, 17)

At the time of the “Entwurf” theory, Einstein employed a simple device for gener-
ating this stress-energy tensor. It had been used on pages 19R, 20L and 21L of the
notebook in the weak field, while Einstein weighed the fate of the Ricci tensor as
gravitation tensor. Einstein took the expression for the gravitational force density in
the weak field (7),

where  is the contravariant form of the stress-energy tensor  He then substi-
tuted for  using the gravitational field equation for the weak field (9). A simple
manipulation that preserved only terms of lowest order in the derivatives of 
allowed this force density to be rewritten as the divergence of a tensor 15

Einstein identified that tensor with the stress-energy tensor of the gravitational field.

15 The symbol  where  when  and zero otherwise, was not then used by Einstein,
but is introduced here for simplicity.
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This equation holds only for quantities of second order of smallness (  in the
metric tensor of (7) of the weak field. The major part of Einstein’s strategy for deriv-
ing his “Entwurf” field equations was to determine what quantities must be added to
the gravitation tensor of the weak field equations (9) to make the relation between
force density and the divergence of  exact, that is, true for all orders. This strategy
reappears after page 22R, on pages 24R and 25R, and then in the full derivation of the
“Entwurf” gravitational field equations by this strategy on pages 26L–26R.

Why the  Prejudice Was Fateful

Now we can understand why the  prejudice was fateful as Einstein inspected the
candidate gravitation tensor  on page 22R. On his account, he was unable to see
how to recover the Newtonian limit, a problem we shall return to. He also needed to
assure himself that the gravitation tensor was compatible with energy conservation
and that included admission of a well-defined stress-energy tensor  for the gravi-
tational field. Following his standard practice, that would mean that he must be able
to reformulate the expression for gravitational force density as a divergence. We can
immediately see the problem Einstein would face. The tensor  is expressed fully
in terms of Christoffel symbols, with each representing a sum of three terms in

The product of two Christoffel symbols would yield nine of these derivative terms.16

Faced with so many terms, we could well imagine Einstein’s sense that he had no
overview (as he wrote to Lorentz above) or that this was certainly not the simplest
conceivable equation (as he wrote to Sommerfeld above). We could well imagine that
this difficulty, along with failure of the Newtonian limit, would be sufficient grounds
for him to abandon the candidate tensor.

What changed by November 1915? In the course of 1914, Einstein developed
powerful variational methods for recovering energy conservation and expressions for
the stress-energy tensor of the gravitational field. (Einstein and Grossmann 1914;
Einstein 1914c). He applied those to his field equations of November 4, 1915, and
found that the expressions took on just about the simplest form one could expect—as
long as all quantities were expressed in terms of the Christoffel symbols. His field
Lagrangian was just

16 Einstein’s “Entwurf” gravitation tensor has one second derivative term and three first derivative terms.
Unless there are duplications, the November tensor would have three second derivative terms and nine
first derivative terms. 
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It is one of the simplest fully contracted expressions quadratic in the Christoffel sym-
bols. (The Lagrangian must be quadratic if it is to return field equations linear in the
second derivatives of the metric tensor.) His expression for the canonical stress-
energy tensor of the gravitational field was scarcely more complicated.

Einstein’s analysis in the notebook began with a force density

expressed in terms of the derivatives of the metric tensor. It overwhelmed him and he
abandoned it. Einstein’s analysis in November 1915 retained the Christoffel symbols
and, using his more powerful methods, yielded just about the simplest expressions he
could expect. In hindsight, Einstein diagnosed the error to lie in his starting point.
Had he not misidentified the components of the gravitational field, would he have
resisted the temptation to expand the Christoffel symbols? Would he have come to
see that he had the right equations before him?

Einstein used the term “prejudice”—a belief not properly grounded in evidence. It
is a fitting label for the error we reconstruct. He was not assured that energy conser-
vation would fail for this tensor in the notebook. He had no firm proof, no result
around which to maneuver. He merely balked at a very complicated calculation that
could have, in principle, been completed. He had no good reason to abandon the ten-
sor other than the hunch that the true way could not be that complicated. And he later
found that it was not at all complicated when viewed from another perspective.

2. COORDINATE CONDITIONS AND COORDINATE RESTRICTIONS

On page 22R of the notebook, Einstein shows how to use the coordinate condition
(11) to reduce the gravitation tensor  to the requisite Newtonian form (8). Why
does he report to Sommerfeld that he and Grossmann had originally thought the
resulting gravitational field equations incompatible with the Newtonian limit? In this
part of the chapter and in the part to follow, I will describe two explanations, both
requiring that Einstein did not use coordinate conditions in the modern way. The
explanation to be developed in this part is the simpler of the two. It asserts that Ein-
stein understood field equations to be compatible with the Newtonian limit if they
had the form (8) not just in some specialized coordinate systems, but in all coordinate
systems. A cursory inspection would reveal that  does not have this form (8), ren-
dering it incompatible with the Newtonian limit.

For this account to be tenable, we must now explain why page 22R displays the
apparently successful reduction of the tensor  to the Newtonian form (8) using
coordinate condition (11). This part will supply that explanation by suggesting that
Einstein did not use the coordinate condition (11) in the standard way, as it was later
in Einstein’s paper of November 4, 1915. It was not a condition just to be invoked in
the case of the Newtonian limit. It was a postulate to be used universally. In part one
of this section, I will review the these two ways of using conditions such as (11). In
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this volume, we reserve the term “coordinate condition” for the standard usage and
“coordinate restriction” for the other usage suggested here. This notion of coordinate
restriction was introduced by Jürgen Renn and Tilman Sauer (Renn and Sauer 2004).
We will see in the second section of this part that there is clear evidence that Einstein
used coordinate restrictions in the notebook on page 22 and afterwards.

In the third section of this part, I will describe how we can use the notion of coor-
dinate restrictions to explain why Einstein abandoned the gravitation tensor  To
do so, we need a further assumption. Einstein did not just use (11) as a coordinate
restriction on page 22. We must assume that he was unaware of the other possibility
of using (11) as a coordinate condition. Then his rejection of  as gravitation tensor
is automatic; it does not have the Newtonian form (8). This account is the majority
viewpoint within our group.

The account depends upon the assumption that Einstein was unaware of the possi-
bility of using (11) as a coordinate condition. In the fourth section of this part, I will
explain why I do not believe the assumption. There is no single piece of evidence that
allows us to decide either way on the assumption. It lies on the boundary. However I
believe that there are so many indications that speak against it, that their combined
weight makes the assumption untenable. The most plausible account, I believe, is that
page 22 of the notebook marks a turning point. Prior to it, Einstein used coordinate
conditions; after he reverted to the use of coordinate restrictions.

2.1 Two Uses of One Equation

Four Equations Select a Coordinate System…

The equations of a generally covariant spacetime theory hold in arbitrary coordinate
systems. In applying the theory, we may pick the coordinate system freely. The four
coordinates are just four real valued functions  defined on the spacetime manifold.
Therefore a coordinate system can be chosen with four conditions 
where the  are four arbitrary real valued functions of suitable differentiability
defined over events  Thus four arbitrary conditions are associated with the choice
of a coordinate system.

This simple fact about coordinate systems is often rendered as the much looser
idea that there are four degrees of freedom in a generally covariant theory associated
with the freedom of choice of the coordinate system.17 These four degrees of free-

17 This slogan—four degrees of freedom associated with the choice of coordinates—must be
approached with some caution. It does not mean we can adjoin any four equations we like to our the-
ory under the guise of choosing the coordinate system. Adding the single equation  where 
is the curvature scalar, does a great deal more than restrict the coordinate system. One might imagine
that restricting the equations to first order derivatives in  would protect us from these problems,
since, at any event in spacetime, we can always transform such derivatives to zero. But it does not.
Imagine that we have 100 such conditions,   …,  that more than exhaust
the freedom to choose coordinates. They can be disguised as a single equation
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dom are more usually exploited indirectly by specifying four differential conditions
on quantities defined in spacetime. Examples are the harmonic condition (10) and the
condition (11) used on page 22R. They do not fully exhaust the freedom. Since they
are differential conditions on the metric, they do not force a unique choice of coordi-
nate system; differential equations admit many solutions according to the choice of
boundary conditions. So each of (10) and (11) admit many coordinate systems. For
example, if one admits a coordinate system  it also admits any coordinate system
linearly related to it. This follows immediately from the covariance of (10) and (11)
under linear coordinate transformations.

In the case of the harmonic condition (10), the relation between the different
forms of the condition can be made more explicit. We can define the natural, gener-
ally covariant analog of the d’Alembertian operator used in (9) as follows. If  is
a scalar, we take its covariant derivative twice and contract with  over the two
resulting indices. In Einstein’s notation of 1913, this gives

If we now form  for each of the four coordinates, we quickly see that the har-
monic condition (10) is equivalent to18

(10’)

One sees from this equation that the harmonic condition cannot fix the coordinate
system uniquely.19 If the condition is satisfied by  it will also be satisfied by any
linear transform of it. Other transforms will also be admissible. The condition cannot
fix the coordinate system up to linear transformation unless one invokes further
restrictive conditions (see Fock 1959, §93).

We know that Einstein was aware of this form (10’) of the harmonic condition on
coordinate systems, then routinely available in the literature on infinitesimal geome-
try as the “isothermal” coordinates. At the bottom of page 19L on which he intro-
duced the condition in form (10), he wrote “…Holds for coordinates which satisfy
the eq[uation] 

We see how equations (10) and (11) allow us choose a restricted set of coordi-
nates. There are two ways relevant to our present interests that these equations may
be used: as coordinate conditions and as coordinate restrictions.

18 To see the equivalent, notice that the first term of (10’) vanishes for any coordinate system. The sec-
ond term vanishes if (10) holds. So (10) entails (10’). Conversely, if (10’) holds, its second term must
vanish, which immediately entails (10).

19 Notice that the operator  is invariant under linear transformation.
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…As Coordinate Conditions

Einstein later used a standard procedure for recovering the Newtonian limit from his
generally covariant general theory of relativity. See for example, (Einstein 1922, 86–
87). That theory must revert to Newton’s theory of gravitation in the special circum-
stance of weak static fields, that is, under the assumption that the metric has the form
(7) and is static. In addition, Newton’s theory is not generally covariant, but is covari-
ant under Galilean transformation only.20 Therefore the covariance of Einstein’s the-
ory must be restricted if Newton’s theory is to be recovered.

That covariance is already restricted in part by the presumption that the metric
have the form (7). That form is not preserved under arbitrary transformations. The
restriction to the weak field metric (7) is not, however, sufficient to reduce the covari-
ance of the theory to the Galilean covariance of Newton’s theory. That form is pre-
served by any transformation which introduces small changes of order of the  to
the coefficients of the metric. This last freedom is eliminated by imposing a coordi-
nate condition, such as the harmonic condition (10). We have already seen the direct
effect of this condition. It eliminates all second derivative terms from the Ricci tensor
beyond those in the Newtonian like form (8). In so far as Einstein expected his
“Entwurf” theory to have broad covariance, he must have believed the restriction of
the metric to the weak field form (7) was sufficient restriction on its covariance for
the recovery of the weak field limit.

A coordinate condition is used only in the special circumstances of the Newtonian
limit; it is not imposed universally on the theory.

…As Coordinate Restrictions

The same equation (10) and (11) can be used in a different way. Einstein’s goal in the
notebook is a theory with sufficient covariance to satisfy a generalized principle of
relativity. General covariance supplies more covariance than he needs; it includes
covariance under transformations not associated with changes of states of motion,
such as the transformation from Cartesian spatial coordinates to radial coordinates.
So Einstein can afford to use the generally covariant expressions of the Ricci Levi
Civita calculus merely as intermediates. If those expressions are not themselves suit-
able for his theory, then he can simplify them to generate others of somewhat less
covariance that are. The generation of the November tensor  on page 22R is an
example. The Ricci tensor itself appeared unsuitable as a gravitation tensor. There
proved to be a way of splitting the tensor into two parts each of which is a tensor
under unimodular transformations. Since Einstein was willing to accept unimodular
covariance instead of general covariance, he could select one of these parts as his
gravitation tensor.

20 At least, this is the way it seemed to Einstein in the 1910s. Cartan and Friedrichs later showed that
Newtonian theory could be given a generally covariant formulation, so that the problem of recovering
the Newtonian limit from Einstein’s theory takes on a different cast. See (Havas 1964) and also
(Stachel 2004).
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The equations (10) and (11) could be used in the same way. If the Ricci tensor or
the tensor  proved unsuitable as a gravitation tensor, why not sacrifice a little more
covariance to produce expressions that are suitable? Conjoining (10) or (11) to their
associated tensors produces simpler expressions. The tensor  for example is
reduced to (15). If Einstein selected this reduced form as his gravitation tensor, then
he assured recovery of the Newtonian limit. The gravitation tensor has the required
form (8).

The cost of using equations (10) and (11) in this way is a further sacrifice of cova-
riance. The final equations will have no more covariance than the coordinate restric-
tions (10) and (11). Whether these have sufficient covariance to support an extension
of the principle of relativity cannot easily be read by inspecting equations (10) and
(11). It is a matter of computation.

2.2 The Evidence for Einstein’s Use of Coordinate Restrictions

There is strong evidence that Einstein used equation (11) and another similar restric-
tion as a coordinate restriction, that is, as a universal restriction not limited to the spe-
cial case of the Newtonian limit.

The Non-Linear Transformation of Equation (11)

The first piece of evidence is on page 22L. There Einstein undertakes a simple calcu-
lation. He writes down two equations. The second is  Since, in Einstein’s
notation,

this is just the condition that the transformation  be unimodular. The first is
equation (11) in the primed coordinate system. Einstein then expands this equation in
terms of unprimed quantities and the coefficients of the transformation  and their
inverses.

The calculation is incomplete and its outcome obscure. Its purpose is not obscure
and that is all that matters here. Einstein is checking the covariance of equation (11)
within the domain of unimodular transformations. If Einstein intended (11) to be a
coordinate condition, it is hard to see why he would concern himself with its transfor-
mation properties. The role of equation (11) as a coordinate condition is merely to
assist in reducing the covariance of the theory to enable recovery of the Newtonian
limit. Galilean covariance only is required in that Newtonian limit. Einstein can be
assured of this much covariance. Galilean transformations are a subset of the linear
coordinate transformations. Einstein can determine rapidly that equation (11), used as
a coordinate condition, will give him that much covariance. The calculation is trivial.
It merely requires noticing that the coefficients
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and their inverses

are constants under linear transformation. Therefore the quantity in equation (11)
transforms as a vector under linear transformation since

where we use  Hence, if this quantity vanishes in one coordinate

system as (11) requires, it will vanish in any coordinate system to which one trans-
forms with a linear transformation.

Einstein cannot have had this simple linear case in mind on page 22L. For the cal-
culation there clearly allows non-constancy of the coefficients  he does not elim-
inate the derivative terms

which vanish automatically for linear transformations. This concern is unintelligible
if equation (11) is being used as a coordinate condition. The concern is explained
quite simply if that equation is being used as a coordinate restriction. The quantity in
(15), the tensor  after reduction by coordinate restriction (11), is his gravitation
tensor. He is computing its covariance the easy way. By its construction, this candi-
date gravitation tensor will transform as a tensor under unimodular transformations
that leave equation (11) unchanged. If the candidate gravitation tensor is to allow a
generalization of the principle of relativity, its covariance must include non-linear
transformations.

The Theta Requirement

The result of the calculation on page 22L cannot have been encouraging for the com-
bination of the tensor  and condition (11) receive no further serious attention in
the notebook. Instead, on page 23L, Einstein introduced another way of recovering
the Newtonian like expression (8) from  that did not require use of equation (11).
That it not be required was apparently of some importance since, in a document of
pure calculation with essentially no explanatory text at all, Einstein went to the trou-
ble to explain in writing

“  is not necessary.”

pµν

∂x′µ

∂xν
----------=

πµν

∂xν

∂x′µ
----------=

∂γ′κα

∂x′κ
-------------

κ
∑ πκρ

κρστ
∑=

∂ pκσ pατγ στ( )

∂xρ
---------------------------------- pκσ pατπκρ

∂γ στ

∂xρ
-----------

κρστ
∑ pατ

∂γ στ

∂xσ
-----------

στ
∑= = ,

Pκσπκρ
κ
∑ δσρ.=

pµν;

∂Pµα

∂xi
------------,

T il
x

T il
x

T il
x

∂γ κα

∂xκ
-----------∑ 0=



WHAT WAS EINSTEIN’S “FATEFUL PREJUDICE”? 23

In its place Einstein introduced a coordinate restriction of another type. He con-
structed the quantity

(16)

and required that transformations between coordinates be so restricted that this quan-
tity  transform as a tensor. (We shall call this the “theta requirement,” the “theta
condition” or the “theta restriction” according to its interpretation.) He then pro-
ceeded to show by adding and discarding terms in  from  how one could con-
struct a quantity

(17)

that is a tensor under unimodular transformations for which  transforms tensori-
ally. Einstein’s efforts have produced another expression in the form of (8), appar-
ently yet another candidate for the gravitation tensor, at least in the Newtonian limit.

Its Relation to Rotational Covariance…

Through another part of the notebook we also learn what apparently interested Ein-
stein in the requirement that  transforms tensorially. The simplest requirement of
this type would be to ask that the quantity  transform as a tensor. But that,
perhaps, was an excessively restrictive. It is easy to see that this quantity transforms
as a tensor only under linear transformations of the coordinate systems. If one sought
a natural weakening of this requirement, the simplest weakening is to consider just
the symmetric part of  which is (up to multiplicative factor) the quantity

21 One might hope that the weakened requirement would now admit other inter-
esting transformations, such as those to coordinate systems in uniform rotation. More
explicitly, these are the transformations that take the coordinates  to a
new coordinate system  in uniform rotation at angular velocity 
about the  axis

   (18)

That this is Einstein’s hope is revealed, apparently, by calculations on pages 42L–
42R of the notebook. Einstein sets up and solves the following problem: what are all
the metrics of unit determinant that satisfy the conditions22

21 Another advantage is that the symmetrized form  of  is very similar in structure to the
Christoffel symbols, so that the Christoffel symbols in  can readily be rewritten in terms of 
easing the course of the calculations.

22 Einstein also suppresses the  coordinate.
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 and (19)

The problem posed by Einstein is a reformulation of this more interesting problem:
assume we start from the metric  To which time (=  coordinate) independent
metrics can we transform by means of unimodular coordinate transformations for
which  transforms as a tensor? Since  has constant coefficients, we have

 so that the requirement that  transforms as a tensor reduces to the
requirement that  remain the zero tensor. Thus the metrics to which we can trans-
form must satisfy (19). Apparently Einstein hoped that these transformations would
include the unimodular transformation (18), so that this class of metrics would
include what we can call a “rotation field”, the form of the metric  that results
when it is transformed by the rotation transformation (18)

(20)

… Is Not Close Enough

And Einstein’s hopes were almost realized. The result of his calculation was that the
two conditions (19) were satisfied by a metric whose coefficients in its covariant
form equaled those of the contravariant form of  that is  This was close
to showing that the transformations under consideration would allow the transforma-
tion from  to  But it is not good enough for a mathematical result such as
this to be close. It either succeeds or fails—and this one failed. Einstein revealed his
frustration by remarking in one of the few textual comments in the notebook of calcu-
lations, “Schema of  for a rotating body identical with the adjacent schema!” The
exclamation remark is very unusual and flags Einstein’s surprise and, probably, dis-
appointment.23

The Theta Requirement is Not a Coordinate Condition

We can reconstruct the content of these calculations fairly confidently. But their pur-
pose is quite mysterious if we assume that the theta requirement is simply a coordi-
nate condition being used to reduce  to the Newtonian form (8) for the case of the

23 That this result proved fatal to the proposal of the theta restriction is confirmed by the calculations that
follow on page 43L. There Einstein attempts to define a contravariant form of  and begins to
check whether it might be able to reduce the tensor  if used in the same way as  in the origi-
nal theta restriction. Presumably Einstein chose a contravariant form of  as a replacement of the
failed  in the hope that a calculation analogous to that on pages 42L–42R would yield the correct
covariant form of 
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Newtonian limit. There are two problems. First, if the theta requirement has this pur-
pose, then there is no need to investigate its covariance under rotation transformations
(18) or, for that matter, to contrive the condition to have this covariance. Linear cova-
riance is sufficient for the Newtonian limit and it is obvious without calculation that
the theta condition has that much covariance.24 Nonetheless, lack of rotational cova-
riance seems to have been fatal to the proposal of the theta condition.

The second problem is that the reduction of  to (17) is not the calculation that
would be undertaken if the theta condition were a coordinate condition. In that case,
one would merely seek the expression to which  reduced in coordinate systems
compatible with the condition. Expression (17) is not that expression. In generating
it, Einstein freely added terms in  so contrived as not to disturb the covariance of
the resulting expression under these transformations. One cannot revert to  merely
by relaxing the constraint of the theta restriction. In short, (17) is guaranteed to trans-
form tensorially under these restricted transformations, but it is not the quantity one
would seek if one chose  as the gravitation tensor and sought its Newtonian limit
through a coordinate condition.

Both these problems are resolved immediately if we assume that Einstein is using
the theta requirement as a coordinate restriction. The expression (17) is his candidate
gravitation tensor. It can have no more covariance than the theta condition, so an
investigation of the latter’s covariance is, indirectly, an investigation of the covariance
of the candidate gravitation tensor. Moreover  is merely an intermediate used in
the construction of the candidate gravitation tensor (17). There is no need to ensure
that this latter expression be a form of  in a restricted class of coordinates. Ein-
stein’s goal is merely a quantity of Newtonian form (8) with as much covariance as
the theta condition. Einstein can add terms in theta freely if they allow a simpler final
result, for these terms do not compromise the covariance of the result.

2.3 The Problem of the Newtonian Limit

How can the notion of coordinate restriction help us understand why Einstein
rejected  as a candidate gravitation tensor in the notebook? In particular, how can
it help us to understand Einstein’s remark to Sommerfeld that the tensor did not yield
the Newtonian limit when page 22R of the notebook appears to contain the calcula-
tion that shows how to recover the Newtonian limit? That is, it shows how to use
equation (11) to reduce  to a Newtonian form, just as Einstein would in his paper
of November 4, 1915.

The answer is simple. The expression  does not have the Newtonian form (8)
and that may already be sufficient to explain Einstein’s remark. Indeed, in addition to
problems of energy conservation, Einstein may also have succumbed at this point to

24 The deep concern with the covariance of the theta condition is also evident on the page facing the one
on which the theta restriction is introduced. That facing page, 23R, is given over to computation of the
transformation behavior of  under infinitesimal transformations.θiκλ
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the temptation to multiply out the Christoffel symbols in an effort to get closer to an
expression of the Newtonian form (8). If equation (11) is being used as a coordinate
restriction in this effort, then  has ceased to be Einstein’s candidate gravitation
tensor. The new gravitation tensor is its reduced form, expression (15). While the for-
mal manipulation of the reduction to expression (15) is the same in the notebook and
in the November 4, 1915, paper, their interpretations would be very different. In
1915, the calculation shows how to recover the Newtonian limit from  In the
notebook, the calculation merely used  as an intermediate to generate a new can-
didate gravitation tensor, expression (15).

What was the fate of this new candidate gravitation tensor? It does not survive
beyond page 22R. The notion of coordinate restriction can help us surmise its fate. If
expression (15) is to be used as a gravitation tensor, it is of the greatest importance to
determine its covariance. As we have seen, that is determined indirectly by investigat-
ing the covariance of the coordinate restriction (11). Presumably this was Einstein’s
goal on the facing page 22L when he probed the covariance of equation (11). We do
not know how far Einstein went in these investigations. But we do know the results
he would have found had he persisted. It is not too hard to see that coordinate restric-
tion (11) is not covariant under rotation transformation (18). The simplest way to see
this is to substitute  directly into (11). Since (11) vanishes for  if it is cova-
riant under rotation transformation (18), then it must also vanish for  But it
does not. We have

We know that the rotation transformation (18) and the rotation field  became a
topic of continued concern to Einstein on the pages following page 22. The rotation
field enters indirectly on page 23L through the connection of the theta condition to
the rotation field on pages 42L–42R. The rotation field is explicitly the subject of
pages 24L, 24R and 25L.

It is natural to suppose that Einstein somehow came to see that his coordinate
restriction (11) lacked rotational covariance, although we cannot identify a particular
calculation in the notebook that unequivocally returns the result. The supposition that
he had found the result would explain the strategy of the introduction of the theta con-
dition on page 23L. Having found that his coordinate restriction (11) fails to satisfy
rotational covariance, Einstein would respond by introducing a new coordinate restric-
tion explicitly contrived to have rotational covariance. The theta condition is formu-
lated directly as a covariance condition—Einstein will consider coordinate systems for
which  transforms as a tensor. As we saw above, the quantity  was plausibly
chosen exactly because it might yield covariance under rotation transformation (18).
And we saw that Einstein remarked with evident satisfaction on page 23L that equa-
tion (11) was not needed, affirming his goal of replacing it with the theta condition.

This account of the failure of  as a gravitation tensor in the notebook is both
simple and appealing. It depends crucially on one assumption: Einstein was unaware
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of how to use conditions like (11) as a coordinate condition at the time of the writing
of the notebook. Without this assumption, we cannot use the notion of coordinate
restrictions to explain Einstein’s remark that the candidate gravitation tensor  does
not yield the Newtonian limit. For, if he then understood the use of coordinate condi-
tions, the calculation of page 22R supplied everything needed for recovery of the
Newtonian limit. We must assume that he was unaware of the use to which his formal
manipulation could be put.

2.4 Was Einstein Unaware of Coordinate Conditions?

I know of no evidence that decisively answers this question. So my final assessment
is that we just do not know. There are weak indications, however, that point in both
directions and I will try to assess them here. My view is that the case for the negative
is stronger; that is, I find it most credible that Einstein was aware of possibility of
using coordinate conditions.

In the Notebook

Requirements that may be either coordinate conditions or coordinate restrictions play
a major role in the notebook on pages 19–23. The harmonic condition/restriction per-
sists on pages 19–21, the requirement (11) on page 22 and then the theta requirement
on page 23. The theta requirement was used as coordinate restriction and Einstein’s
calculation admitted no alternative interpretation of its use as a coordinate condition
because of the way he added terms in  in the course of his calculation. The calcu-
lation that used requirement (11) on page 22R is compatible with the requirement
being used as either coordinate condition or coordinate restriction or both; the inter-
est in the non-linear transformation of (11) on page 22L suggests its use as a coordi-
nate restriction. There seems to be no indication that lets us decide whether the
harmonic condition is used as a coordinate condition or restriction.25 In particular, if
it were used as a coordinate restriction, we might expect Einstein at some point to
check its covariance in the way that he checked the covariance of requirement (11)
and the theta restriction. The pages 19–21 contain no such check. Was that because he
was using the requirement as a coordinate condition so that it needed no such check?
Or was is that he was too preoccupied with the ultimately fatal difficulty of recover-
ing the Newtonian limit and energy conservation to proceed to a test of covariance?

While Einstein certainly used coordinate restrictions in the notebook, nothing in the
above precludes his awareness of coordinate conditions and that he may have also
thought of using the harmonic requirement and equation (11) as coordinate restrictions.

“Presumed Gravitation Tensor”

Of the fragments of relevant evidence in the notebook, the most important is Ein-
stein’s labeling on page 22R. There, as we saw above in expression (14), Einstein
splits the Ricci tensor into two parts. The first is easily seen to be a tensor under uni-
modular transformation. Therefore the second is also such a tensor. Einstein labels
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this second quantity “Vermutlicher Gravitationstensor —“presumed gravitation
tensor. 

If Einstein is unaware of the use of coordinate conditions, then the identification
of  as a gravitation tensor is very hard to understand. It does not have the Newto-
nian form (8). The derivative of the Christoffel symbol will immediately contribute
three second derivative terms in the metric tensor, two more than (8) allows. This fail-
ure is not difficult to see. A Christoffel symbol is the sum of three first derivative
terms. Its derivative will contain three second derivative terms in the metric tensor.
Perhaps a novice in these calculations might overlook it. But Einstein is not a novice
in these calculations at this stage in the notebook. In the pages preceding in the note-
book he has become increasingly adept at more and more elaborate calculations
involving the expansion of Christoffel symbols. On the following page 23L he
devises the theta requirement. It depends on the recognition that the quantity 
and a Christoffel symbol have very similar structures so that the latter could be re-
expressed profitably in terms of the former.

Perhaps this was just an oversight by Einstein. Perhaps it was haste that led him to
label a manifestly inadmissible term as his presumed gravitation tensor. This supposi-
tion of haste becomes harder and harder to reconcile with what we know. At least the
top half of page 22R is fairly neatly written and compact in argument, suggesting that
it is not a live calculation but the record of deliberations elsewhere. Perhaps they
record the outcome of a meeting with Grossmann—this is suggested by Grossmann’s
name on the top of the page and Einstein’s later report to Sommerfeld of November
28, 1915, that he and Grossmann together had considered the gravitation tensor of
this page. Einstein’s failure to notice the two additional second derivative terms
would have to survive whatever deliberation or meeting that produced the result and
its transcription.

25 We might clutch at straws. If the harmonic requirement is used as a coordinate condition merely for
the Newtonian limit, one needs to recover only the second derivative terms in the metric tensor and
not the full reduced expression with first derivative terms, as Einstein does on page 19L. Or is this just
Einstein being thorough and carrying a simple computation through to completion, wondering, per-
haps, if the full result has an especially simple form? If the harmonic requirement were used as a coor-
dinate restriction, then the full result would be needed, but that would still not preclude the possibility
that Einstein weighed the use of the harmonic requirement as both coordinate condition and coordi-
nate restriction. At the top of page 19R Einstein decomposes the harmonic requirement in the weak
field into two equations comprising five conditions in all. That is one more than is allowed for a coor-
dinate condition but admissible for coordinate restrictions. But since one of the new equation sets is
just energy momentum conservation in the weak field, the decomposition is not necessarily an illegit-
imate strengthening of a coordinate condition as supplementing it with a physical requirement he
demands on other grounds. Alternately but in the same spirit, that same condition, which is just equa-
tion (11) in the weak field, is a differential condition that must be satisfied by any static metric of form
(4), as Einstein has already found earlier on page 39R of the notebook. On this same page 19R, he
calls the harmonic requirement a “Nebenbedingung”—a “supplementary condition.” If the require-
ment is a coordinate restriction, that is an odd label for what is as much a physical postulate as the
original gravitational field equations they modify. But then perhaps that is the right way to view their
action—as a universal supplement to those equations.
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Yet more curious is the success of the equation (11) in reducing the tensor  to
the Newtonian form (8). If Einstein chose  as a candidate gravitation tensor in
haste, what sublime good fortune came with the equation (11). It just happens to be a
restriction compatible both with the form he demanded for the static field and with
energy conservation in the weak field, the problems that proved fatal to the harmonic
requirement. And it just happened to the one that rescued his poor choice of  as
gravitation tensor and allowed him to use it as an intermediate on the way to a better
choice. On the supposition that Einstein was unaware of the use of coordinate condi-
tions, we cannot presume that he already knew that equation (11) would effect this
reduction. For if he already knew that, he would not label  his presumed gravita-
tion tensor. It would just be an intermediate as the Ricci tensor itself is.

The supposition of haste and unanticipated good fortune seems necessary to make
the page compatible with a lack of awareness of the use of coordinate conditions. I
find this supposition incredible. I find it much more credible that Einstein simply
wrote what he meant. He chose  as his gravitation tensor, fully aware of the sur-
plus second derivative terms and fully aware, by the time of the writing of page 22R,
that they could be eliminated by the condition (11). That condition (11) has this
power need longer be a fortuitous coincidence. After the failure of the harmonic
requirement, we may suppose that Einstein sought a tensor that could be reduced to
the Newtonian form by equation (11), for that was the requirement that was mani-
festly compatible with energy conservation in the weak field. Surely what attracted
Einstein to the gravitation tensor  was exactly the fact that condition (11) allowed
its reduction to the Newtonian form (8) and its selection as a presumed gravitation
tensor resulted from working backwards from this result.

If we accept this last version of the story, then we accept that Einstein intended to
use requirement (11) on page 22R as a coordinate condition and only later considered
using it as a coordinate restriction.

Einstein’s Later Discussion and Treatment of Coordinate Conditions

If the content of the notebook allows no final decision, we might look for evidence
elsewhere. If Einstein were unaware of the use of coordinate conditions and this
played some role in his failure, we might expect some trace of it in his later recollec-
tions and writings. He would have failed to see what later became his standard
method for recovery of the Newtonian limit. Many of the errors of the notebook and
“Entwurf” theory are mentioned later. He remarks both in correspondence and in his
publications on his surprise that static fields turn out not to be spatially flat, (see
Norton 1984, §8). He eventually also puts some effort into explaining to his corre-
spondents how he erred in the “hole argument” and an enduring trace of this correc-
tion was his publication of the “point-coincidence argument,” see section 3.2 below
and (Norton 1987). I know of no place in which Einstein directly allows that he was
unaware of the use of coordinate conditions when he devised the “Entwurf” theory.

What were the errors he corrected when he returned to the tensor  A problem
with the Newtonian limit accrues a brief mention in his letter to Sommerfeld. The real
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force of Einstein’s correction in that letter lies in his confession of the  prejudice.
That he regarded this error as decisive is affirmed by the fact that it also is discussed
at some length in the text of the paper of November 4, 1915, as we say above. In stark
contrast, the use of coordinate conditions gets no mention in this correspondence. In
the November 4 paper, the correct use of coordinate conditions is introduced with an
indifference that suggests he thinks their use entirely obvious.26 His complete discus-
sion is merely (p. 786):

[Through this previous equation] the coordinate system is still not determined, in that
four equations are needed for their determination. Therefore we may arbitrarily stipulate
for the first approximation

[(11)]

If Einstein had suffered a failure to see that equation (11) could be used this way for
almost three years, would he not offer some elaboration if only to assure readers that
the manipulation is admissible? Or should we assume that Einstein was feeling too vul-
nerable at this crucial time in his theory’s development to admit all his former errors?27

The Entwurf Theory

What is striking about the “Entwurf” theory is that it does not require coordinate con-
ditions for the recovery of the Newtonian limit. Its gravitation tensor already has the
Newtonian form (8). So merely presuming a weak field of form (7) indirectly intro-
duces enough of a restriction on the coordinate system to allow recovery of the New-
tonian limit.

This striking feature of the “Entwurf” theory and Einstein’s silence on coordinate
conditions would be explained quite simply by the supposition that Einstein was then
unaware of the use of coordinate conditions. But both could also be explained in
another way. If he decided in favor of the “Entwurf” field equations for other reasons,

26 This nonchalant attitude persisted into his review article (Einstein 1916, E§21), where the recovery of
the Newtonian limit is formally incomplete exactly because Einstein neglects to invoke a coordinate
condition. Einstein considers just the first term of the tensor  as part of his recovery of the Newto-
nian limit. He observes correctly that from it one recovers Poisson’s equation of Newtonian theory,

 (where  is the Laplacian,  a constant and  the mass density) by considering just the
44 component in the case of a time (  independent field. That observation is insufficient for the
recovery of the Newtonian limit. One must also establish that the remaining components of the field
equations do not impose further conditions that restrict Poisson’s equation in a way incompatible with
the Newtonian limit. This further step requires a coordinate condition and that Einstein simply neglects
to introduce or even mention. Einstein’s later textbook exposition (Einstein 1922, 87) does give a ser-
viceable account of how coordinate conditions are used to reduce the gravitational field equations to a
Newtonian form, but without any special care that would suggest he thought the matter delicate.

27 Einstein did not explain in this paper where his “hole argument” against general covariance had erred.
Below (see section 3.7) I will suggest that this reticence may have reflected a difficulty in seeing
clearly what the problem was and this difficult will be a part of the account developed there.
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then he might well never mention the use of coordinate conditions simply because he
had no occasion to. Indeed, even in his later theory which did require them, he
seemed quite reluctant to say anything more than the absolute minimum about them.

One thing that we cannot infer from the “Entwurf” theory and his writings associ-
ated with it is that Einstein was somehow naive about coordinate systems and how
one might introduce a specialized coordinate system. We shall see below in section
3.6 that Einstein explained both in print and correspondence that he understood that
equations of restricted covariance must correspond to generally covariant equations if
they are to be anything more than just a restriction on the choice of coordinate sys-
tem. He also made quite clear that he understood the subtleties of introducing special-
ized coordinate systems. That is, they might be introduced in two ways. In one way,
one merely chooses to consider a restricted class of the coordinate systems already
available; this decision does not alter the geometry of the spacetime. In the second
way, one demands that this geometry must be such that it admits a coordinate system
of a particular type; this demand indirectly applies a further and often profound
restriction to the geometry of the spacetime.

If Einstein was unaware of the possibility of using coordinate conditions, it was not
part of a broader blindness or lack of sophistication concerning coordinate systems.

What is More Plausible?

Since none of these items of evidence is decisive, we should also ask after the plausi-
bility of different answers. Here our personal Einsteins speak as much as evidence.
One might be comfortable with an Einstein unaware of the possibility of coordinate
conditions. They never appear unequivocally in the notebook—although the labeling
of  on page 22R as the “presumed gravitation tensor” is, in my view, very hard to
explain if the initial intent was not to use a coordinate condition. So perhaps, on a
principle of parsimony, we attribute the least knowledge we need to Einstein.

I find the supposed lack of awareness quite implausible. Coordinate systems and
covariance requirements are Einstein’s great strength and the locus of his deepest
reflection. As we shall recall below in section 3.4, the essential goal in devising his
general theory of relativity was the elimination of the preferred inertial coordinate
systems of Newtonian theory and special relativity, which is in turn sustained by their
limited covariance. It is fundamental to his entire research project that his final theory
not harbor them. So how then is Einstein to recover the Newtonian limit from his the-
ory? He must introduce specialized assumptions that obtain only in the case of the
Newtonian limit and restores the characteristically Newtonian elements. One
assumption is that the metric field have the specialized weak form of (7). He must
also reduce the covariance of theory and thereby reintroduce exactly the preferred
coordinate systems he had labored so hard to eliminate. Einstein’s knew how to
restrict covariance. It is done partly in the coordinate dependence of the metric given
as (7). It is done explicitly through a set of four equations such as the harmonic
requirement or equation (11). But is it really possible that Einstein would fail to
notice that he need only impose these covariance restricting requirements in the cir-
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cumstances of the Newtonian limit? He would see that a specialized form of the met-
ric is admissible in these special circumstances. But he must somehow overlook that
a restriction of covariance in these special circumstances is also admissible.

Mistakes and oversights are all too common in science. We enter them into the
historical record readily when we have evidence for them. This is one for which we
have no unequivocal evidence and we have indications that speak against it. It must
happen in Einstein’s area of greatest expertise and concern. And it must not be a
momentary lapse. It must persist28 into the development of the “Entwurf” at least up
to the development of his general arguments against general covariance later in 1913.

A Transition from Coordinate Conditions to Coordinate Restrictions?

Our evidence on Einstein’s awareness or lack of awareness of the use of coordinate
conditions remains incomplete. Yet all these considerations make it most credible that
Einstein was aware of their use and could have considered using requirements such as
the harmonic and equation (11) as both coordinate conditions and coordinate restric-
tions. Let us go a little further. If we had to choose a single narrative that would fit
best with the progression of calculations in the notebook, it would be this.

When the harmonic requirement is introduced on page 19L, it is used as a coordi-
nate condition, with Einstein perhaps reserving the possibility of using it as a coordi-
nate restriction if that should prove viable and simpler. On page 22R, requirement
(11) is introduced as a coordinate condition with  chosen as the gravitation ten-
sor. However he is unable to see how to use  as his gravitation tensor. So he
decides he must look for simpler expressions. He reverts to use of requirement (11) as
a coordinate restriction so that he can use the simpler gravitation tensor (15), the
reduced form of  That also proves inadmissible, presumably because of its
restricted covariance. So, on the following page, Einstein introduces the theta restric-
tion, which can only be a coordinate restriction. It is especially contrived to have the
covariance that requirement (11) lacked.

What makes it credible that page 22R is the turning point is Einstein’s labeling of
 as the “presumed gravitation tensor” when he must have known already that

equation (11) would reduce it to the Newtonian form. That suggests that equation
(11) was first introduced as a coordinate condition. The investigation of its covariance
properties on page 22L marks the decision to treat the requirement as a coordinate
restriction.29 In the earlier pages 19–21, the harmonic requirement could have been
either coordinate condition or restriction. Nothing in the calculations would have
committed Einstein to either. The lack of interest in the covariance properties of the
harmonic requirement suggests that Einstein had less interest in its use as a coordi-
nate restriction.

28 Thoughts of the use of condition (11) did not leave Einstein after the “Entwurf” theory was com-
pleted. As late as August 1915, he recalled in a letter to Paul Hertz how he had struggled with this con-
dition, (Einstein to P. Hertz, August 22, 1915, (CPAE 8, Doc. 111)). Presumably this continued
presence facilitated revival of  in November 1915.T il
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If these suppositions are correct, then they bear directly on the “mathematical” and
“physical strategy” we describe Einstein as using elsewhere in these volumes. The use
of coordinate conditions would be associated with the mathematical strategy in its
purest form. If recovery of the Newtonian limit will be through the harmonic condi-
tion, for example, then Einstein is able to use the full Ricci tensor as his gravitation
tensor and not a simpler reduced form. With his failure to see that the Ricci tensor or
that  are viable gravitation tensors, Einstein begins to withdraw from the mathe-
matical strategy towards the physical strategy. The use of coordinate restrictions rep-
resents an intermediate stage in that withdrawal. He is still trying to use the gravitation
tensors naturally suggested by the mathematical formalism, but now in reduced form.
The failure of these last efforts leads him to revert to the physical strategy.

3. A CONJECTURE: THE HOLE ARGUMENT AND THE INDEPENDENT 
REALITY OF COORDINATE SYSTEMS 

The Puzzle Continues

If we accept that Einstein knew about the possibility of using coordinate conditions,
page 22R once again presents us with a troubling puzzle. In his later recollection to
Sommerfeld, Einstein reports that he had been unable to recover the Newtonian limit
from the gravitation tensor  But page 22R contains just the calculation that seems
to do this. As we saw in section 2, the remark could be explained using the notion of
coordinate restrictions. But that explanation fails if we accept that Einstein was aware
of the use of coordinate conditions. So how can we reconcile his later recollection
with the content of the notebook?

There is a further aspect of page 22R that bears cautious reflection. Page 22R
should have been a great triumph for Einstein. He had labored since page 14L
through calculations of great complexity in an effort to recover a gravitation tensor
from the Riemann tensor. The problem seemed to yield on page 19L with the intro-
duction of the harmonic condition and the easy reduction of the Ricci tensor to a
quantity of Newtonian form (8). But the success faded over the following pages in the
face of a final hitch that grew to be fatal. He could not see how to reconcile the har-
monic condition with the form he expected for the static field, the weak field equa-

29 Is there a trace of two stages of calculation on page 22R? The calculations there are divided by a hor-
izontal rule. The calculations above the rule deal only with the term in  that contains second deriv-
atives of the metric tensor and its reduction by equation (11) to the Newtonian form (8). Those below
deal with expansion of the terms quadratic in the Christoffel symbols in  The calculations above
the rule are the ones needed if equation (11) is to be used as a coordinate condition; in the Newtonian
limit all that matters are the terms in the second derivatives of the metric. The ones below are needed
in addition if (11) is used as a coordinate restriction; they give the full expression for the reduced form
of  The calculations above the rule are neater and, as I suggested earlier, may just report discus-
sions and calculations conducted elsewhere. Those below the rule are massively corrected and have
the look of live calculations. Were they undertaken later after Einstein had decided to revert from the
use of (11) as a coordinate condition to a coordinate restriction?
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tions and energy conservation in the weak field. On page 22R he finally had the
answer to that last hitch. By choosing  as his gravitation tensor, he could replace
the harmonic condition with condition (11) and this new condition resolved all the
earlier problems, since it was both compatible with the form expected for static fields
and with energy conservation in the weak field. The solution was so unobjectionable
that he published it upon his return to general covariance in November 1915. But in
the notebook, that successful solution is just abandoned and apparently quite hastily.
His later recollections explain this decision in terms of the  prejudice. Just when
he had everything else working, he gave up because, on the best reconstruction, he
could not see how to extract an energy-momentum tensor for the gravitational field
from the tensor. He gave up more than just the gravitation tensor  He seems to
have given up the use of coordinate conditions entirely and with it the easy access to
the gravitation tensors of broad covariance naturally suggested by the mathematical
formalism. If the  prejudice was all there was to it, Einstein had lost his customary
tenacity and become fickle or faint hearted or both.

Might there have been a further difficulty that compromised the recovery of the
Newtonian limit and that he did not report?

Another Error?

Might we find another error or misconception that Einstein may have committed that
would give answers to both the above questions? Of course it is always possible to
invent hidden errors varying from the trivial slip to the profound confusion, tailor
made to fit this or that aberration. The real difficulty is to establish that the error was
really committed.

If there is such an error, we would expect it to be somehow associated with the
use and understanding of coordinate systems. We do know of a serious misconcep-
tion concerning coordinate systems that drove Einstein away from general covariance
during the years of the “Entwurf” theory. This was the misconception that supported
the hole argument. Months after the completion of the “Entwurf” theory, Einstein
introduced this argument as a way of showing that the achievement of general covari-
ance in his gravitation theory would be physically uninteresting. After he had
returned to general covariance Einstein explained the error of the hole argument. He
had unwittingly accorded an independent reality to spacetime coordinate systems and
this had compromised his understanding of what is represented physically in a trans-
formation of the fields of his theory.30 In our histories to date, this error affected Ein-
stein only through the hole argument and thus well after Einstein’s turn away from

30 More precisely stated: A particular set of coordinate values in a coordinate system will designate a
definite physical event in spacetime. In Einstein’s later view and our modern view, the physical event
designated depends on the metric field; an alteration of the metric field changes which physical event
is designated by these coordinate values. Einstein initially believed, however, that these same coordi-
nate values could continue to pick out the same physical event even though the metrical field in that
coordinate system was changed. That is, the coordinate system’s power to pick out events is indepen-
dent of the metrical field.
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general covariance in 1912 and 1913. However Einstein’s theory was, on his own
report, dependent intimately and fundamentally on the transformation of fields and
spacetime coordinates. Is it possible that Einstein’s misconception on the indepen-
dent reality of coordinate systems had earlier damaging effects?

The Conjecture

The conjecture to be advanced here is that Einstein’s misconception about the inde-
pendent reality of coordinate systems did not just exert its harmful influence with
Einstein’s discovery of the hole argument, well after the “Entwurf” theory was in
place. Rather I shall urge that it decisively misdirected Einstein’s investigations at a
much earlier stage, the time of the calculation of the notebook. I believe that it can
explain why Einstein abandoned the use of coordinate conditions so precipitously,
why he would have judged the calculation concerning the Newtonian limit of page
22R to be a failure and why he acquiesced so readily to the gravely restricted covari-
ance of the “Entwurf” theory. Einstein failed to see this error until 1915. Until then it
precluded his use of coordinate conditions. It led him to expect that any coordinate
condition must have sufficient covariance to support an extension of the principle of
relativity to acceleration.

More specifically, I will suggest that when Einstein applied a coordinate condition
such as (11), he unwittingly accorded an independent existence to the coordinate sys-
tems picked out by the condition. Then, merely by repeating the same way of thinking
about transformations as used in the hole argument, he would end up entertaining
extraordinary expectations for each of these special coordinate systems. If some met-
ric field  is a solution of his field equations in one of these special coordinate sys-
tems, then he would expect all its transforms (in a sense I will make clear below) 
also to be realizable as solutions in this coordinate system. A failure of the coordinate
system to admit these transforms would appear as an objectionable, absolute property
of the coordinate system. Such properties are just the type that Einstein had denounced
in the inertial systems of classical physics and special relativity and which he prom-
ised his new theory would eliminate. Now the transforms  will only be admissible
in the special coordinate system if they are compatible with the coordinate condition
that defines the special coordinate system. Thus the covariance of theory as a whole
had effectively been reduced to the covariance of the coordinate condition used in
extracting the Newtonian limit. That condition had to be of sufficient covariance to
support Einstein’s hopes for a generalization of the principle of relativity to accelera-
tion. In spite of proposals of great ingenuity in his preparation for the “Entwurf” the-
ory, Einstein could find no combination of gravitational field equations of broad
covariance and coordinate condition that satisfied these extraordinary demands.

The effect of the misconception conjectured is that coordinate conditions would
lose their appeal. If a coordinate condition was used to extract the Newtonian limit,
the covariance of the theory as a whole would now be reduced to that of the coordi-
nate condition. As a result, Einstein would acquire no additional covariance for his
theory in using a requirement as a coordinate condition rather than a coordinate
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restriction. The advantage of the latter, however, is that it delivers a gravitation tensor
of considerably simpler form. Therefore I suggest that Einstein’s recognition of this
outcome, quite plausibly on page 22R itself, would explain why he so precipitously
abandoned coordinate conditions in the notebook. The extraction of the Newtonian
limit from tensor  via equation (11), whether it is construed as a coordinate condi-
tion or restriction, would fail for the same reason. Equation (11) would fail to have
sufficient covariance.

Its Tacit Character

In the hole argument, the independent reality of the coordinate systems has a tacit,
hidden character. Indeed Einstein found it hard to express explicitly what he meant.
Even something as simple as the exact steps of his construction really only became
clear with publication of the fourth version of the argument. It was not until after his
return to covariance and possibly some prompting from his correspondents that he
seemed able to give a clear account of where the argument erred. We must surely pre-
sume that, at the time of the hole argument, Einstein was simply not aware that his
manipulations presumed an independent reality for his coordinate systems. It is an
essential part of the present conjecture that he was not aware of the corresponding
presumption earlier at the time of the calculations of the notebook. The hole argument
was first offered in a hasty, ill-digested form that still led to a powerful conclusion,
the inadmissibility of general covariance. The same would be true in the notebook. A
similarly hasty check of the covariance of the coordinate condition would suffice to
convince Einstein that disaster had struck. Its haste would allow him to overlook that
his conclusion depended upon an assumption about the independent reality of coordi-
nate systems that he would surely never endorse if it were articulated clearly.

In the Sections to Follow…

I will layout the background, context and elaboration of the conjecture. In section 3.1,
I will describe the hole argument and, in section 3.2, how Einstein later diagnosed his
error as the improper attribution of an independent reality to coordinate systems. In
section 3.3 I will lay out the content of the conjecture in greater detail. Einstein’s
treatment of coordinate systems founders since it ends up ascribing absolute proper-
ties to certain coordinate systems. In section 3.4, I will review Einstein’s insistence
on the inadmissibility of such absolute properties, for that inadmissibility is what
defeats his use of coordinate conditions. In section 3.5, I will review Einstein’s early
remarks on the restricted covariance of his “Entwurf” theory and his recognition that
the restricted equations must correspond to generally covariant equations. I will use
Einstein’s mistaken attitude to the independent reality of the coordinate systems to
explain his evident indifference towards finding those equations. During the reign of
the “Entwurf” theory, Einstein gave several accounts of the introduction of special-
ized coordinate systems. In section 3.6, I will review these remarks to show that they
are compatible with the present conjecture concerning Einstein’s attitude to coordi-
nate systems. Finally in section 3.7, I will review our evidence concerning the conjec-
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ture. I will conclude that we have neither decisive evidence in favor of it or against it,
but weaker indications that both benefit and harm it. 

3.1 The Hole Argument

Its Fullest Statement

Einstein and Grossmann’s “Entwurf” paper was published mid 1913 as a separatum
by Teubner (Einstein and Grossmann 1913).31 There they reported their failure to
find acceptable, generally covariant gravitational field equations. By late 1913, Ein-
stein had found what soon became his favored vehicle for excusing this lack of gen-
eral covariance, the “hole argument,” which purported to show that all generally
covariant gravitational field equations would be physically uninteresting.32 Of its
four presentations, the clearest is the final version of November 1914 (Einstein
1914c, 1067); Einstein’s emphasis:

Proof of the necessity of a restriction on the choice of coordinates.

We consider a finite region of the continuum  in which no material process takes
place. Physical occurrences in  are then fully determined, if the quantities  are
given as functions of the  in relation to a coordinate system  used for description.
The totality of these functions will be symbolically denoted by 

Let a new coordinate system  be introduced, which agrees with  outside  but
deviates from it inside  in such a way that the  related to the  are continuous
everywhere like the  (together with their derivatives). We denote the totality of the

 symbolically with   and  describe the same gravitational
field. In the functions  we replace the coordinates  with the coordinates  i.e.
we form  Then, likewise,  describes a gravitational field with respect to

 which however does not agree with the real (or originally given) gravitational field.

31 In a letter of May 28, 1913 to Paul Ehrenfest, Einstein promises that paper will appear “in at least a
few weeks” (CPAE 5, Doc. 441).

32 The earliest written and unambiguously dated mention of the hole argument is in a letter of Nov. 2, 1913,
from Einstein to Ludwig Hopf, (CPAE 5, Doc. 480). Einstein is not likely to have had the hole argument
in hand much earlier than this. The hole argument supplanted another means of exonerating his theory’s
lack of general covariance, a consideration based on the law of conservation of energy-momentum. We
know from a letter of Aug. 16, 1913, from Einstein to Lorentz that Einstein only hit upon this earlier
consideration on August 15 (CPAE 5, Doc. 470). For further discussion see (Norton 1984, §5). (The hole
argument is also mentioned in the printed version of a lecture delivered on Sept. 9 to the 96th annual
meeting of the Schweizerische Naturforschende Gesellschaft in Frauenfeld (Einstein 1914b, 289). But
we cannot be assured that Einstein had the hole argument at the time of the lecture since the printed ver-
sion of the lecture was published many months later on March 16, 1914, see (CPAE 4, 484). Also the
hole argument is not mentioned in another, briefer, printed version of the talk (Einstein 1913). That
briefer version does call for a restriction on the basis of the conservation laws. It is curious that the men-
tion of the hole argument in the printed version of (Einstein 1914b) appears in the context of the discus-
sion of the conservation laws. In this longer and presumably later version, did Einstein strike out the
consideration based on the conservation laws and write in a mention of the hole argument?)
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We now assume that the differential equations of the gravitational field are generally
covariant. Then they are satisfied by  (relative to  if they are satisfied by

 relative to  Then they are also satisfied by  relative to  Then relative
to  there exist the solutions  and  which are different from one another,
although both solutions agree in the boundary region, i.e. occurrences in the gravita-
tional field cannot be uniquely determined by generally covariant differential equations
for the gravitational field.

A Notational Convenience

The content, interpretation and significance of the hole argument has been examined
extensively elsewhere.33 Thus I will concentrate on those aspects of importance to
the present conjecture. The argument depends on exploiting the defining property of a
covariance group to generate new solutions of the gravitational field equations from
old solutions. Assume that a transformation from coordinate system  to  is
within the covariance group of the gravitational field equation and that a metric field

 in the coordinate system  satisfies the field equations. It follows that the
metric  in the coordinate system  defined by the tensor transformation
law

(21)

is also a solution of the field equations. These two solutions of the field equations are
merely representations in different coordinate systems of the same gravitational field;
it is represented by  in the coordinate system  and by  in the
coordinate system  In an attempt to reduce distracting notational complications,
Einstein represented the two metrics as “  and “  His point was to draw
attention to the functional dependence of the  on the coordinates  with the lat-
ter considered as variables; and the functional dependence of the  on  The
device is helpful, since it suppresses the various indices that play no role in Einstein’s
argument. I will use it below but with lower case  instead of upper case 

 is represented by 

 is represented by (22)

 is represented by 

How the Argument Works

This functional dependence allows Einstein to generate a further solution of the grav-
itational field equations that is, apparently, physically distinct from the original field
described by  and  It is constructed by considering the solution  as
a set of ten functions of the four independent variables comprising the coordinate sys-

33 See, for example, (Stachel 1980, §§3–4; Norton 1984, §5; 1987).
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tem  One then replaces the independent variables  by  so that Einstein recov-
ers a new field in the original coordinate system  which is  Now  is a
solution of the gravitational field equations not because of any special properties of
the coordinate system  but merely because of the functional dependence of the

 on the independent variables  That functional form is all that generally
covariant gravitational field equations consider in determining whether  is
admissible. By construction,  shares exactly the same functional dependence on
its independent variables as  Thus if  is a solution of the field equations
so is 34

Einstein can now complete his argument. He has two solutions of his gravitational
field equations  and  both in the same coordinate system  These two
solutions were constructed from the transformation  to  This transformation had
a special property. By supposition the transformation is the identity everywhere but
inside a matter free region of spacetime  (the “hole”), where it comes smoothly to
differ from the identity. This special property confers a corresponding property on the
two solutions  and  they agree outside the hole, but they come smoothly
to disagree within, for the  and  are different functions within that hole. And
since they are defined in the same coordinate system, this difference entails, Einstein
urged, that they represent physically distinct gravitational fields. The result is a viola-
tion of determinism. The metric field and matter distribution outside the matter free
hole fails to determine how the metric field will extend into the hole; it may extend as

 or  Einstein deemed this circumstance sufficiently troublesome to war-
rant rejection of all generally covariant gravitational field equations, for all generally
covariant field equations will admit solution pairs  and 

34 An example illustrates the reasoning. The metric 

happens to be a solution of the generally covariant gravitational field equations  where 
is the Ricci tensor, in a coordinate system  What makes this  a solution is the way that each
coefficient of  depends functionally on the coordinates  All coefficients are  or  excepting

 which is the square of the coordinate  We find  vanishes if we compute it for a  with
this functional dependence. It now follows immediately that the metric

in the coordinate system  is also a solution since it shares this same functional dependence.
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The Hole Construction

For our purposes what is important is that Einstein saw in the general covariance of
the gravitational field equations an immediate license to construct the field 
from  This construction will be the focus of our attention, so I will restate it:

If

(a) a transformation  to  is within the covariance group of the gravitational field
equations and 

(b) a metric field  in the coordinate system  satisfies the field equations,

then

the metric field  is also a solution of the gravitational field equations in the original
coordinate system  where the functions  are defined by the tensor transformation
law (21).

Einstein’s Difficulty in Expressing the Argument

Einstein found it very hard to make clear that his hole argument depended essentially
on the use of the hole construction. Rather, the three earlier versions of the hole argu-
ment seemed to depend on merely noticing that the two coordinate representations

 and  of the same gravitational field employed different functions. In that
case the hole argument becomes the elementary blunder of failing to notice that the
one gravitational field has different representations in different coordinate systems. I
take this as evidence that, in his own work, Einstein did not clearly distinguish the
two types of transformations  to  and  to  His invocation of
the transformation law (21) could refer to either, without the need for explanation or
apology. As we shall see below, Einstein’s early presentations of the hole argument
merely invoked (21) and Einstein must have presumed that readers would follow him
and understand the transformation under consideration to be  to 

The hole argument appears in Einstein’s 1914 addendum to (Einstein and Gross-
mann 1913) where the crucial passage reads “...one can obtain  [for the
metric field ] for at least a part of [the hole] ...it follows...that more than one
system of the  is associated with the same [matter distribution].”35 In a later ver-
sion (Einstein and Grossmann 1914, 218), the corresponding passage reads “at least
for a part of [the hole]   ... so that more than one system of  is associ-
ated with the same system of [stress-energy tensor]  ... ” Again, in the version of
the hole argument of Einstein in (Einstein 1914a, 178), the corresponding passage
reads “...even though we do have  everywhere [for stress-energy tensor
density  the equations  are certainly not all satisfied in the interior
of [the hole]  This proves the assertion.”36 Fortunately Einstein gave a cryptic but
sufficient clue in this last instance that he intended the failure of the equality

35 Translation from (CPAE 4E, 289).

36 Translated in (CPAE 4E, 285).
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 to be understood in the manner of the hole construction above, for he
appended a footnote to the sentence containing the inequality  that read:
“The equations are to be understood in such a way that the same numerical values are
always assigned to the independent variables  on the left sides as to the variables

 on the right sides.”
These presentations were sufficiently ambiguous to confuse the early historical lit-

erature on the hole argument. It interpreted Einstein as believing that the two coordi-
nate representations of the same field,  and  somehow represented
physically distinct fields. One of the achievements of Stachel in his path-breaking paper
(Stachel 1980) was to demonstrate that Einstein was not guilty of this novice blunder.37

3.2 The Error of the Hole Argument: The Independent Reality of Coordinate Systems

Why the Hole Argument Fails

Of course the hole argument fails to establish that all generally covariant gravitational
field equations are physically uninteresting. The standard resolution allows that the
two fields  and  are mathematically distinct but counters that they repre-
sent the same physical field. Thus the hole argument does not show that the field and
matter distribution outside the hole leave the field within underdetermined. It just
shows that the mathematical description of the field within the hole is undetermined.
After his return to general covariance, Einstein argued for the physical equivalence of
the fields  and  with his “point-coincidence argument;” the two fields are
equivalent since they must agree on the disposition of all coincidences, such as the
intersections of the world lines of particles.38 Alternatively, following the approach
favored in Göttingen by the Hilbert school, we could argue for the equivalence of the
two fields by noting that they agree on all invariant properties.39 

Letters to Ehrenfest and Besso Explain Einstein’s Error

The point coincidence argument explains how we should understand the system
described in the hole argument. But it does not diagnose the error of thought that
lured Einstein to interpret the system differently prior to November 1915. That diag-
nosis came in Einstein’s letters in late 1915 and early 1916 when he explained to his

37 As Stachel showed, the transformation from  to  corresponded to what we now call a pas-
sive transformation in which the coordinate system changes but not the field. The transformation of
the hole construction from  to  corresponds to an active transformation in which the coor-
dinate system remains unchanged but the field alters. See (Norton 1987; 1989, §2). However, as I
argue in (Norton 1989, §5), it is possible to remain faithful to Einstein’s purpose and wording without
explicitly introducing the notions of active and passive transformations.

38 See (Norton 1987; Howard and Norton 1993, §7) for a proposal on the origin of the point-coincidence
argument.

39 See (Howard and Norton 1993) for the proposal of a premature communication of this viewpoint to an
unreceptive Einstein by Paul Hertz in the late summer of 1915.
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correspondents how he had erred in the hole argument. In preparing his correspon-
dent Paul Ehrenfest for the point coincidence argument, Einstein explained in a letter
of December 26, 1915 (CPAE 8, Doc. 173), Einstein’s emphasis:40

In §12 of my work of last year, everything is correct (in the first three paragraphs) up to
the italics at the end of the third paragraph. One can deduce no contradiction at all with
the uniqueness of occurrences from the fact that both systems  and  related
to the same reference system, satisfy the conditions of the grav. field. The apparent force
of this consideration is lost immediately if one considers that

(1) the reference system signifies nothing real

(2) that the (simultaneous) realization of the two different  systems (better said, two
different gravitational fields) in the same region of the continuum is impossible accord-
ing to the nature of the theory.

In the place of §12 steps the following consideration. The physical reality of world
occurrences (in opposition to that dependent on the choice of reference system) consists
in spacetime coincidences...

He wrote an essentially identical explanation to his friend Michele Besso a little over
a week later on January 3, 1916 (CPAE 8, Doc. 178), Einstein’s emphasis:

Everything was correct in the hole argument up to the last conclusion. There is no physi-
cal content in two different solutions  and  existing with respect to the same
coordinate system  To imagine two solutions simultaneously in the same manifold
has no meaning and the system  has no physical reality. In place of the hole argument
we have the following. Reality is nothing but the totality of space-time point coinci-
dences...

Ehrenfest proved difficult to convince of the correctness of Einstein’s new way of
thinking over the hole argument and Einstein needed to enter into a more detailed
exchange that centered on the example of light from a star passing through an aper-
ture onto a photographic plate.41 In his letter of Jan. 5, 1916 (CPAE 8, Doc. 180),
Einstein noted the instinctive attractiveness of the notion of the reality of the coordi-
nate system:

I cannot blame you that you still have not seen the admissibility of generally covariant
equations, since I myself needed so long to achieve full clarity on this point. Your prob-
lem has its root in that you instinctively treat the reference system as something “real.”

Surely we are to read in this that Einstein too was misled by this instinct. 

On Being Real

We learn from these letters that Einstein was under the influence of a deep-seated
prejudice at the time of formulation of the hole argument: he improperly accorded a
physical reality to coordinate systems. It can often be difficult to decipher precisely
what is meant by an attribution of reality or non-reality—one need only recall the

40 Adjusted translation from (Norton 1987, 169).

41 For details, see (Norton 1987, §4).
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extended debates over realism in philosophy of science to be reminded of these diffi-
culties. But in this case the attribution of reality has quite precise consequences.
When Einstein accords physical reality to a coordinate system  this entails that the
coordinate system can support two distinct fields,  and  In particular, Ein-
stein is committed to the  in each system of metrical coefficients representing the
same coordinate system. This sameness entails that the two mathematical structures,

 and  represent different physical fields. Some particular set of coordinate
values, such as will pick out the same point of spacetime in each
field. But, since the  and  are different functions of the same coordinates in a
neighborhood of the point, they will each attribute different properties to that point,
revealing that they represent different physical fields.

In Einstein’s later view it no longer makes sense to say that  represents the same
coordinate system in each structure  and  Thus we can no longer con-
clude that some particular set of coordinate values picks out the same point in each
field and the inference to their physical distinctness is blocked. 

Einstein’s misconception about the independent reality of coordinate systems was
clearly firmly in place towards the end of 1913, the time of his creation of the hole
argument.42 Nothing we have seen indicates that this misconception arose at that
time. Rather his description of its “instinctive” character suggests that Einstein had
tacitly harbored this misconception beforehand. Might this misconception have mis-
directed Einstein’s work on his “Entwurf” theory at an earlier stage? In the following
I will conjecture that it did in a quite precise way. 

3.3 The Conjecture: How the Independent Reality of Coordinate Systems 
Defeats the Use of Coordinate Conditions

I have urged that Einstein knew about the possibility of coordinate conditions, that he
used them in the notebook and then abandoned them in favor of the use of coordinate
restrictions. I have even suggested that this transition may have taken place on page
22R of the notebook, in which the same requirement (11) might have been used first
as a coordinate condition and then as a coordinate restriction. I now conjecture that
Einstein abandoned the use of coordinate conditions because of the same error com-
mitted in the context of the hole argument. Einstein unwittingly attributed an inde-
pendent reality to the coordinate systems introduced by coordinate conditions. The
effect was that he mistakenly believed that the covariance of his entire theory was
reduced to that of the coordinate condition. The reversion to coordinate restrictions is

42 In describing Einstein’s earlier misconception I will speak of his belief that the coordinate system has
“independent reality,” which is to be understood as asserting reality independent of the metrical field.
This is because Einstein’s later denial of the physical reality of the coordinate system can only apply
to a reality independent of the metric. For it is entirely compatible with Einstein’s later views that a
coordinate system can reflect an element of reality, but only if it does so indirectly by virtue of its rela-
tion to the metric defined on the spacetime. For example, the possibility of a coordinate system in
which the metrical coefficients are all constant, reflects a real property of the spacetime, its flatness.
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now natural. He mistakenly thought that using coordinate conditions to recover the
Newtonian limit provided no greater covariance for this theory and the use of coordi-
nate restrictions had the advantage of simplifying the equations of his theory.

The Example of 

To see how this notion of the independent reality of coordinate systems would defeat
the use of coordinate conditions, we will look at the example of coordinate condition
(11) applied to the candidate gravitation tensor The example illustrates clearly
the general argument. It is also of interest in itself since I believe Einstein may well
have fallen into the general mistake outlined while considering this very example.

Einstein’s essential purpose in considering a structure as complicated at  is to
achieve the broadest covariance possible for his gravitational field equations. By con-
struction,  is covariant under unimodular transformations. We have seen that one
particular unimodular transformation comes to special prominence in the pages
immediately following the proposal of the gravitation tensor  That is the transfor-
mation (18) to uniformly rotating coordinates that brings a rotation field  (20)
into being in a Minkowski spacetime.43

The simple reading of this covariance of the gravitational field equations in the
case of a Minkowski spacetime is that it admits the transformation of  to the
rotation field  under the coordinate transformation (18). They are just the
same Minkowski spacetime represented in two coordinate systems  and  How-
ever we have already seen that when Einstein speaks of such a simple transformation
he may actually be referring to a more complicated transformation. In the context of
the hole argument, as we saw above, when Einstein wrote about the transformation of
a metric  under the transformation of the coordinates  to  he did not just refer
to the transformation of  to  He also tacitly referred to construction of a
new solution of the field equations  in the original coordinate system  Indeed
Einstein seemed to treat the construction of the new field  as an automatic con-
sequence of the covariance of the gravitational field equations—so much so that, in
three of four presentations of the hole argument, Einstein appears just to refer to the
transformation  to  whereas he intended to refer to the construction of the
new field  Thus Einstein would read the covariance of his gravitational field
equations under transformation (18) as the license to take the solution  of
these equations and construct a new solution  both in the same coordinate
system 

Applying the Hole Construction

Einstein would see this construction as an automatic part of the covariance of his field
equations, although its construction requires some manipulation as codified in what I
called the “hole construction” above. We may pause here for a moment to affirm that
the construction of the new solution  follows directly from the hole con-

43 I shall continue to use the abbreviation (22), so that  stands for 
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struction, although Einstein would surely not have resorted to such a labored devel-
opment. The two antecedent conditions (a) and (b) are satisfied as:

a) If  is chosen as the gravitation tensor, then the gravitational field equations are
covariant under the transformation (18) from inertial to uniformly rotating coordi-
nates, for this is a unimodular transformation.

b)  is a solution of the source free field equations 44

It now follows that  will also be a solution of the source free field equations
in the original coordinate system 

The Independent Reality of the Coordinate Systems  of the Newtonian Limit…

In his evaluation of  Einstein would have a particular class of coordinate systems
in mind as admitting  as a solution. These are the coordinate systems in which the
candidate gravitation tensor  reduces to (8) in preparation for recovery of the
Newtonian limit. Let us label one of these coordinate systems  Thus Einstein’s
field equations must admit both  and  as solutions of the
source free field equations in the same coordinate system 

While these results follow from a straightforward application of Einstein’s 1913
understanding of covariance and coordinate systems, they have brought us close to
disaster for the candidate gravitation tensor  To complete the journey to disaster
we now must now ask what it would mean to say that these source free field equa-
tions must admit both  and  as solutions. In Einstein’s later
view (and the modern view), this could mean nothing more than the following: there
exists coordinate systems  in which  solves the source free field equations;
and there exists coordinate systems  in which  solves the source free field
equations. But there can be no physical sense in the notion that the coordinate sys-
tems  and  are the same coordinate systems. Yet the Einstein of 1912 and 1913
would be committed to the notion that the coordinate systems  appearing in each
solution are the same coordinate systems.

There is only one resource available to give meaning to this sameness. The coordi-
nate systems  of the Newtonian limit are introduced and identified in calculation
by satisfaction of the coordinate condition (11). If it is really the same coordinate sys-
tems  appearing in each of  and then coordinate condi-
tion (11) must be satisfied by both  and  In hindsight, we
know that this demand is excessive. But, I conjecture, the Einstein of 1912 and 1913
did not realize this. There is a natural robustness to the application of coordinate con-
ditions such as (11) in the modern sense that is easily mistaken for the troublesome
use of the condition that I attribute to Einstein. It was legitimate in 1912 and 1913 and
remains legitimate today to use the same coordinate condition to pick out the coordi-
nate systems for the Newtonian limit in a diverse array of distinct physical situations:

44  has all constant coefficients; so all its derivatives vanish and  along with them.
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in the source free case, in the case of static fields, in the case of fields with propagat-
ing gravitational waves, in the case of a field produced by a single mass or in the case
of a field produced by distributed matter; and in many more cases. Now we might use
a condition such as the harmonic coordinate condition rather than Einstein’s (11) but
that difference is inessential to the point. In using the same harmonic condition in
each of these distinct physical cases, we routinely say that we choose harmonic coor-
dinates. Are we always aware that the harmonic coordinates of a Minkowski space-
time are not the same in any physical sense as the harmonic coordinates of a
Minkowski spacetime perturbed ever so slightly by the most minute of gravitational
waves? Proceeding with the tacit assumption of the independent reality of coordinate
systems, Einstein could easily overlook this subtlety. It would surely be quite natural
for him to presume that his coordinate condition (11) would pick out the same coordi-
nate systems  in all these cases and also in the case of  and 

Treated this way, the coordinate condition (11) becomes a physical postulate that
picks out a real entity, the class of coordinate systems  much as the gravita-
tional field equations pick out the gravitational fields that can be realized physically.
This character of the coordinate condition (11) does not compromise our freedom to
stipulate the coordinate systems that we will use in describing our fields. We are still
free to choose which coordinate systems we will use and that choice can be made by
accepting or rejecting a coordinate condition such as (11). But that choice is among
entities that enjoy some physical reality.

…Brings Disaster and Explains Why Einstein Would Check 
the Covariance of His Coordinate Condition

Thus I infer that the Einstein of 1912 and 1913 would expect that the condition (11)
picks out the same coordinate systems  in the cases of the solutions 
and  This is the disastrous conclusion. While the coordinate condition
(11) holds for  we saw above that it fails for  Einstein has
arrived at a contradiction that serves as a reductio ad absurdum of his choice of 
as gravitation tensor and the expectation that his theory is covariant under all unimo-
dular transformations. If the theory has that degree of covariance,  must
be a solution of its source free field equations in the coordinate system  But it is
not. The proposed gravitation tensor has failed.

This is a failure of coordinate condition (11) to have sufficient covariance. Under
the normal understanding of coordinate conditions, Einstein would have no reason to
check the covariance of (11). But if Einstein accords independent reality to the coor-
dinate system  then the natural outcome is to check its covariance. If the
present conjecture is correct, this explains why Einstein checked the covariance of
condition (11) on page 22L, the one facing the page on which condition (11) is used
to reduce  to a Newtonian form.

This contradiction between the expected and actual covariance of Einstein’s the-
ory would appear to have a particular character to Einstein, a conflict between the
covariance of his theory and the ability to recover the Newtonian limit. Upon choos-
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ing  as the gravitation tensor, his entire gravitation theory would be covariant at
least under unimodular transformations. That is, the gravitational field equations are
covariant under unimodular transformations and the remaining equations governing
energy-momentum conservation, the motion of particles and the electromagnetic
field are generally covariant. However if the theory admits coordinate systems in
which the Newtonian limit can be realized, then the theory loses its broad covariance.
In particular, it loses covariance under transformations to uniform rotation, so that
Einstein could no longer conceive of uniform rotation as a rest state, in contradiction
with his requirement of a generalized principle of relativity.

The Problem Generalized

The power attributed to the coordinate condition (11) does not depend on any specific
properties of the gravitation tensor  or the coordinate condition (11). The argu-
ments rehearsed here would proceed equally with any candidate gravitation tensor of
suitably broad covariance and any coordinate condition able to reduce that gravitation
tensor to the form (8). Again, the argument does not require that the transformation
be a rotation transformation (18). Any transformation in the covariance group of the
gravitational field equations could be used. Thus, if the conjecture is correct, Einstein
must have held very restrictive expectations for the covariance of his emerging gen-
eral theory of relativity, whatever its gravitation tensor might be.

To find these expectations, we generalize the argument above for any gravitation
tensor, any transformation in the covariance group of the resulting field equations and
any coordinate condition that reduces the gravitation tensor to the form (8). For the
case of the gravitation tenor  the coordinate condition (11) picks out the class of
coordinate systems  in which the Newtonian limit obtains and the gravitation
tensor has form (6). Correspondingly for some gravitation tensor  of broad cova-
riance, a coordinate condition  will pick out the coordinate systems in which
the Newtonian limit obtains and the gravitation tensor reduces to form (8). Since rota-
tion transformation (18) is in the covariance group of  Einstein would expect
through the hole construction that the two metrics  and  related by this
transformation, are admissible as solutions in this coordinate system  But this
can only obtain if the coordinate condition (11) is covariant under rotation transfor-
mation (18). Correspondingly, if  and  are solutions of the (source free) gravita-
tional field equations based on the gravitation tensor  Einstein would expect,
through the hole construction, that they are solutions of the reduced gravitational field
equations in the limit coordinate system. But this can only obtain if the coordinate
condition  is covariant under the transformation that takes  to  That is,
Einstein would expect the following results (C1), (C2) and (C3), to obtain:

(C1) The covariance of the theory as a whole is limited to the covariance of the coordi-
nate condition used to pick out the coordinate systems in which the Newtonian limit is
realized.

For the covariance of that coordinate condition delimits the transformations admissi-
ble for solution of the field equations in those coordinate systems.
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(C2) The covariance of the gravitational field equations, after they have been reduced by
the coordinate condition to the form (8), defines the covariance of the theory as a whole.

For these reduced gravitational field equations just result from the conjunction of the
unreduced gravitational field equations and the coordinate condition so that their
covariance is limited by the covariance of the coordinate condition. (In both (C1) and
(C2), if the unreduced gravitational fields equations have restricted covariance, then
these conditions also limit the covariance of the theory as a whole.)

(C3) In a viable theory, the coordinate condition used and the resulting reduced gravita-
tional field equations will still exhibit broad covariance, including covariance under the
rotation transformations (18), so that they admit  as a solution.

If the covariance required in (C1) or (C2) does not include acceleration transforma-
tions, such as the rotation transformation (18), then the theory fails to meet the
demands of a generalized principle of relativity. It harbors covariance restricting
coordinate systems akin to the objectionable, absolute inertial systems of classical
mechanics and special relativity (see below).

If the present conjecture is correct, Einstein would adopt (C1), (C2) and (C3). The
immediate outcome would be that there is no gain is using a requirement like (11) as
a coordinate condition rather than a coordinate restriction. In either use, the equation
will impose the same restriction on his gravitation theory’s covariance. But the
advantage of using coordinate restrictions is that they allow for simpler gravitational
field equations.

Moreover, let us suppose that Einstein came to see (C1), (C2) and (C3) as a part
of his evaluation of the candidate gravitation tensor  on page 22R. Then his natu-
ral response would be to discontinue the use of coordinate conditions, as he does after
page 22R. Indeed his construction of the theta condition on page 23L would be a nat-
ural next step. He abandons coordinate conditions in favor of coordinate restrictions,
so he contrives a coordinate restriction specifically to have the rotational covariance
lacked by (11).

3.4 The Problem of Absolute Coordinates 

The cause of the difficulty is the coordinate systems  essential for the recovery
of the Newtonian limit. Throughout his scientific life Einstein had railed against the
objectionable, absolute properties of inertial coordinate systems. The coordinate sys-
tems  had now adopted just those objectionable properties and Einstein could
not tolerate their presence in his theory. Einstein had made quite clear that the funda-
mental goal of his general theory of relativity was to eliminate exactly these preferred
systems of coordinates.

His Denunciations Persist from his Early Work…

Typical of his denunciations of such systems were his remarks in (Einstein 1914a,
176),45 written in the early days of the “Entwurf” theory:46
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The theory presently called “the theory of relativity” [special relativity] is based on the
assumption that there are somehow preexisting “privileged” reference systems  with
respect to which the laws of nature take on an especially simple form, even though one
raises in vain the question of what could bring about the privilegings of these reference
systems  as compared with other (e.g., “rotating”) reference systems  This consti-
tutes, in my opinion, a serious deficiency of this theory.

The privileging of the reference system  in special relativity resides in the fact that
only in  do free bodies move inertially (the “specially simple form” of the laws of
motion of free bodies), whereas in  they move under the influence of a rotation
field.  and  cannot switch roles.  cannot admit a rotation field while bodies
move inertially in  Of course Einstein was not referring in these remarks to the
special coordinate systems  introduced in the Zurich notebook. However, these
special coordinate systems have exactly the properties that Einstein found objection-
able in  the coordinate systems  admit  so that free bodies will move
inertially in  But  does not admit the rotation field 

The presence of such absolute coordinate systems would cut Einstein to the quick.
In the course of nearly half a century of writing on the general theory of relativity,
Einstein found the need to reappraise much of what he wrote on the foundations of
his theory. His vacillations on Mach’s Principle are probably the best known instance.
But he never wavered in his insistence that the absolute of the inertial system must be
eliminated. These sentiments supported the need for a generalization of the principle
of relativity to acceleration when Einstein wrote his explanatory texts, the popular
(Einstein 1917, Ch.XXI) and the textbook (Einstein 1922). The latter read (page 55):

All of the previous considerations have been based upon the assumption that all inertial
systems are equivalent for the description of physical phenomena, but that they are pre-
ferred, for the formulation of the laws of nature, to spaces of reference in a different state
of motion. We can think of no cause for this preference for definite states of motion to all
others, according to our previous considerations, either in the perceptible bodies or in the
concept of motion; on the contrary, it must be regarded as an independent property of the
space-time continuum. The principle of inertia, in particular, seems to compel us to
ascribe physically objective properties to the space-time continuum. Just as it was con-
sistent from the Newtonian standpoint to make both the statements, tempus est absolu-
tum, spatium est absolutum, so from the standpoint of the special theory of relativity we
must say, continuum spatii et temporis est absolutum. In this latter statement absolutum
means not only “physically real,” but also “independent in its physical properties, having
a physical effect, but not itself influenced by physical conditions.”

45 Translated in (CPAE 4E, 282).

46 Again writing at the time of the “Entwurf” theory, Einstein (Einstein 1913, 1260) expressed similar
sentiments when he spoke of “...reference systems with respect to which freely moving mass points
carry out rectilinear uniform motion (inertial systems). What is unsatisfactory is that it remains unex-
plained how the inertial systems can be privileged with respect to other systems.” Translation in
(CPAE 4E, 219), Einstein’s parentheses and emphasis.
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…To His Final Years

These sentiments persist essentially unchanged in the final years of his life. In a letter
of December 28, 1950, Einstein explained to D. W. Sciama his concern over the lat-
ter’s theory of restricted covariance; the equations held in coordinate systems in the
set  but not in the forbidden set 47

We now ask: on what basis can natural laws hold with respect to  but not with respect
to  (Logically considered, both sets  and  are after all completely equivalent.)
If one takes the theory really seriously, there is only one answer: the preference for 
over  is an independent physical property of space, which must be added as a postu-
late to the field equations, so that the physical theory as a whole can have a clear mean-
ing. Newton recognized this with complete clarity (“Spacium est absolutum”). In fact,
each theory based on a subgroup introduces an “absolute space”, only one that is “less
absolute” than classical mechanics.

It was first achieved in G. R., that a space with independent (absolute) properties is
avoided. There first are the laws, as they are expressed through the field equations, com-
plete and require no augmenting assumptions over physical space. “Space” subsists then
only as the continuum property of the physical-real (field), not as a kind of container
with independent existence, in which physical things are placed.

These same sentiments would apply to  In resisting admission of  the
coordinate system would be restoring independent, absolute properties to spacetime,
properties that went beyond what was given through the field equations. Einstein
would shortly characterize just such behavior as a reversion to the flawed viewpoints
of Antiquity. To George Jaffé on January 19, 1954, he wrote (EA 13 405):

You consider the transition to the special theory of relativity as the most essential of all
the ideas of the theory of relativity, but not the transition to the general theory of relativ-
ity. I hold the reverse to be true. I see the essential in the conquest of the inertial system,
a thing that acts on all processes but experiences no reaction from them. This concept is
in principle no better than the central point of the world in Aristotelian physics.

3.5 The Structure and Program of the Entwurf Theory

Explaining Einstein’s Indifference to General Covariance

According to the accounts developed in this volume, at the time of the creation of his
“Entwurf” theory, Einstein thought rather differently from his later views on coordi-
nate systems. There appears to be a trace of this difference in his early discussion of
the limited covariance of his “Entwurf” theory. That is, he was curiously indifferent
about discovering the generally covariant gravitational field equations that he
believed must correspond to his “Entwurf” equations. Once Einstein has developed
general arguments against the admissibility of general covariance, we need not search

47 The typescript of the letter is EA 20–469. The autograph manuscript, EA 20 470, contains an extra
sentence given in parentheses here as the second sentence, (“Logically considered...”). (EA 20–469
denotes the item with control number 20–469 in the Einstein Archive.)
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for a reason for this indifference. But these arguments emerged only later in 1913,
after the “Entwurf” was published. We need some explanation for this indifference in
the intervening months.

The accounts discussed in this paper supply them. The “Entwurf” equations
would be recovered from generally covariant equations by application of a coordinate
condition. So, if Einstein accorded an independent reality to the coordinate systems
so introduced, then his indifference would be explained by the misapprehension that
his theory overall would gain no added covariance from the transition to these gener-
ally covariant equations. Or, more simply, if Einstein was just unaware of the use of
coordinate conditions, then he would be unaware of how to retain the “Entwurf”
gravitational field equations for the essential case of the Newtonian limit, so the gen-
erally covariant equations would appear unusable within his theory.

The Restricted Covariance of the “Entwurf” theory

Einstein’s exploration of  and the theta restriction are some of his final efforts in
the Zurich notebook to recover gravitational field equations from covariance consid-
erations. These efforts halt decisively on pages 26L–26R, where Einstein laid out in
capsule the derivation of the gravitational field equations of the “Entwurf” theory.
This derivation uses no covariance considerations at all. It is based essentially on the
demand of the Newtonian limit and energy-momentum conservation. Einstein and
Grossmann arrived at a gravitation tensor of form (8)

Unfortunately Einstein and Grossmann were unable to specify the covariance group
of the resulting gravitational field equations. They were able to assure the reader only
of covariance under linear transformation. Of course Einstein was apologetic over
their failure to discover the covariance of these equations. In closing his critique of
any gravitation theory based on a scalar gravitation potential, Einstein candidly con-
ceded how this omission had crippled Einstein’s program (Einstein and Grossmann
1913, I§7):48

Of course, I must admit that, for me, the most effective argument for the rejection of such
a theory rests on the conviction that relativity holds not only with respect to orthogonal lin-
ear substitutions but also with respect to a much wider group of substitutions. But already
the mere fact that we were not able to find the (most general) group of substitutions associ-
ated with our gravitational equations makes it unjustifiable for us to press this argument.

What is puzzling is that the deficiency could be set aside with such a simple dis-
claimer. The driving force of Einstein’s program was the conviction that the relativity

48 Translation in (CPAE 4E, 170–71).
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of motion must be extended to acceleration and that this would be realized by a the-
ory covariant under non-linear coordinate transformations, for only the latter corre-
sponded to transformations to accelerated states of motion.

To see just how puzzling this is, we need to recall two of Einstein’s commitments
at this time. First we are assured by Einstein’s remarks in a letter to Lorentz of August
14, 1913 (CPAE 5, Doc. 467) of his continued commitment to a broader covariance
and his alarm at his continued failure to affirm the broader covariance of the theory:

But the gravitational equations themselves unfortunately do not have the property of
general covariance. Only their covariance under linear transformations is assured. How-
ever the whole trust in the theory rests on the conviction that acceleration of the reference
system is equivalent to a gravitational field. Therefore if all the systems of equations of
the theory, thus also equation (18) [gravitational field equations], do not admit still other
transformations aside from the linear, then the theory contradicts its own starting point;
it’s left hanging in the air (sie steht dann in der Luft). (Einstein’s emphasis)

It is a measure of Einstein’s frustration and desperation that the following day—
August 15, 191349—he fell into an embarrassing error. He thought that he could
establish from the requirement of energy conservation that his gravitation theory
could be at most covariant under linear transformations. He retracted this trivially
flawed argument in a paper published the following May (Einstein and Grossmann
1914, 218), but not before the argument had appeared several times in print.50

Correspondence with Generally Covariant Equations

Second, Einstein expressed his belief that his “Entwurf” field equations must corre-
spond to generally covariant equations. Having presented his “Entwurf” gravitational
field equations, (Einstein 1914a, 179)51 he continued:

It is beyond doubt that there exists a number, even if only a small number, of generally
covariant equations that correspond to the above equations, but their derivation is of no
special interest either from a physical or from a logical point of view, as the arguments pre-
sented in point 8 clearly show.[52] However, the realization that generally covariant equa-
tions corresponding to [these gravitational field equations] must exist is important to us in
principle. Because only in that case was it justified to demand the covariance of the rest of
the equations of the theory with respect to arbitrary substitutions. On the other hand, the
question arises whether those other equations might not undergo specialization owing to
the specialization of the reference system. In general, this does not seem to be the case.

Although Einstein does not make explicit what the relation of correspondence is
between the “Entwurf” equations and their generally covariant counterparts, it would

49 The dating is derived from Einstein’s report to Lorentz in a letter of August 16, 1913 (CPAE 5,
Doc. 470).

50 For discussion see (Norton 1984, §6).

51 Translation in (CPAE 4E, 286).

52 In his point 8, Einstein had stated the hole argument and the argument against general covariance
based on the conservation of energy-momentum.
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surely be that the former are recovered from the latter by some kind of coordinate
condition or restriction.

While these remarks come from a paper of January 1914, we have no reason to
doubt that they reflected Einstein’s feelings just a few months earlier at the time of
completion of the “Entwurf” paper. They provide a natural interpretation of remarks
made by Einstein in (Einstein and Grossmann 1913, I.§5)53 when he reflected on
their failure to find generally covariant gravitational field equations (Einstein’s
emphasis):54

To be sure, it cannot be negated a priori that the final, exact equations of gravitation
could be of higher than second order. Therefore there still exists the possibility that the
perfectly exact differential equations of gravitation could be covariant with respect to
arbitrary substitutions. But given the present state of our knowledge of the physical
properties of the gravitational field, the attempt to discuss such possibilities would be
premature. For that reason we have to confine ourselves to the second order, and we must
therefore forgo setting up gravitational equations that are covariant with respect to arbi-
trary transformations.

Einstein cannot mean by this that the higher order equations are incompatible with
the “Entwurf” equations. For then solutions of the “Entwurf” equations would not be
solutions of the higher order equations, so that each would admit a different class of
physical fields. In this case, the selection of the “Entwurf” equations is just the selec-
tion of the wrong equations. It is hard to imagine that Einstein would dismiss correct-
ing such an outright error by calling the correction “premature.” But the dismissal is
more intelligible if these higher order equations are the generally covariant equations
that reduce to the “Entwurf” equations with the application of a coordinate condition
or restriction. For then all solutions of the “Entwurf” equations would be solutions of
the higher order equations; transition to the higher order equations would merely
admit more coordinate representations of the same physical fields into the theory.

The Incongruity of Einstein’s Approach…

If Einstein held these two views at the time of publication of the “Entwurf” theory
and he also held to an essentially modern view of coordinate systems and coordinate
conditions, then his assessment of the theory’s state and his further development of
the theory is quite mysterious. For the sole effect of a coordinate condition, in this
modern view, is to obscure the covariance of the theory. As long as the coordinate
condition does not extend beyond the four equations routinely allowed, it does not
preclude any physical field; it merely reduces the range of coordinate representations

53 Translation in (CPAE 4E, 160).

54 Michel Janssen has suggested an alternative interpretation: Einstein may merely mean that his
“Entwurf” field equations might be good empirical approximations in the domain of weaker fields for
some set of generally covariant gravitational field equations of higher order. If this interpretation is
correct, we still have ample evidence from his other remarks that Einstein also expected the
“Entwurf” field equations to be recoverable from generally covariant equations by means of a coordi-
nate condition. See, for example, the remarks quoted in section 3.6.
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of each physical field.55 In so far as the field equations, after reduction by the coordi-
nate condition, are intended to yield the Newtonian limit, they need only exhibit
covariance under linear transformation. It might just happen that the reduced field
equations exhibited greater covariance so that they might play a direct role in the gen-
eralization of the principle of relativity. But there is no reason to expect this. The only
sure way to expand the covariance of the theory is to find the unreduced, generally
covariant form of the gravitational field equations. That is the obvious and natural
way to develop the “Entwurf” theory.

This was not Einstein’s approach. Rather than seeking out these generally covari-
ant equations, he let all his hopes hang on a slender thread: the “Entwurf” equation
might just have sufficient covariance to support a generalized principle of relativity.
So Einstein devoted his efforts to two tasks, both of which came to fruition after he
had hit upon the hole argument. First he sought to discover the extent of the covari-
ance of his “Entwurf” equations, describing this, in (Einstein and Grossmann 1913,
I.§6)56 as the most important problem to be solved in the context of this theory (Ein-
stein’s emphasis).57

...the equation of the gravitational field that we have set up do not possess this property
[of general covariance]. For the equations of gravitation we have only been able to prove
that they are covariant with respect to arbitrary linear transformations; but we do not
know whether there exists a general group of transformations with respect to which the
equation are covariant. The question as to the existence of such a group for the system of
equations (18) and (21) [gravitational field equations] is the most important question
connected with the considerations presented here.

These efforts culminated in the discovery with Grossmann (Einstein and Grossmann
1914) that the covariance of his theory extends to what they call “adapted coordinate
systems;” that is, coordinate systems that satisfy

(23)

Second he threw himself into the task of establishing that whatever limited covari-
ance the “Entwurf” theory may have is good enough, for further covariance would be
physically uninteresting. Here Einstein had more success than his material warranted.
He first showed in a trivially flawed and soon retracted argument that one can expect
no more than linear covariance. Then the hole argument showed that generally cova-

55 For example, if our “field equation” is just a flatness requirement, the vanishing of Riemann-Christof-
fel curvature tensor, then one of its solutions is a Minkowski spacetime, whose coordinate representa-
tions include  and  The effect of a coordinate condition such as (11) is not to eliminate a
physical possibility such as this solution. It precludes the representation  with which is it
incompatible; but it admits 

56 Translation in (CPAE 4E, 167).

57 The continuation of the letter to Lorentz of August 14, 1913, quoted above describes some of his
efforts to uncover these covariance properties.
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riance would be physically uninteresting and his analyses of 1914 showed that the
“Entwurf” theory has the maximum covariance compatible with the hole argument.58

…is Explained

While Einstein’s approach is baffling if we assume that he had a modern understand-
ing of coordinate systems and coordinate conditions, it becomes entirely reasonable
in the light of the conjecture of this part. He believed his “Entwurf” field equations to
result from some set of unknown generally covariant equations reduced by a coordi-
nate condition, presumably what turned out to be the adapted coordinate condition
(23). In accord with (C1) and (C2), Einstein would pay no penalty in using the
reduced form of the field equations in his theory. The covariance of the theory as a
whole is just the covariance of the reduced equations (or, equivalently, the covariance
of the coordinate condition (23). So the reduced form of these equations is not
obscuring the true covariance of the theory as a whole, contrary to the modern view.
And, since the effect of a coordinate condition (23) is just to restrict the covariance of
the generally covariant equations, the reduced equations are not eliminating any
physical fields; the limitation is just that each physical field arises in the theory in
fewer coordinate representations. Thus, with the completion of the “Entwurf” theory
in mid 1913, Einstein could have entered into the search for the generally covariant
equations that correspond to his “Entwurf” equations. But there would have been lit-
tle to gain from finding them. Finding them would not alter the covariance of the the-
ory as a whole and it would not admit into the theory any new physical fields.59

There was a more pressing problem that had to absorb his immediate attention.
Einstein did not know the covariance of the “Entwurf” theory. According to (C3),
Einstein hoped that this covariance would extend to include transformations repre-
senting acceleration, for otherwise Einstein’s hopes of extending the principle of rel-
ativity to acceleration would not be met by his theory. More was at stake. Einstein
believed that his “Entwurf” gravitational field equation were unique; that is, they
were the only equations employing a gravitation tensor of form (8) compatible with
energy-momentum conservation.60 Thus if the “Entwurf” equations failed to have
sufficient covariance, then Einstein’s entire project would be called into doubt. He
could not just reject the “Entwurf” field equations and seek a better alternative. He
now believed that he had no option other than the “Entwurf” equations. Thus Einstein

58 For discussion, see (Norton 1984, §6).

59 Or more simply, if Einstein was unaware of the use of coordinate conditions, the use of the generally
covariant field equations, unsupplemented by adapted coordinate condition (23), would be incompati-
ble with recovery of the Newtonian limit, since those equations would be unlikely to have the Newto-
nian form (8).

60 The uniqueness of these equations is suggested by the description of the identities (12) of Einstein and
Grossmann (Einstein and Grossmann 1913, §5) used in the derivation of these equations as “uniquely
determined” and then directly affirmed by Einstein (Einstein 1914b, 289). See (Norton 1984, §4) for
discussion; the equations prove not to be unique, although this is not easy to see.
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had to find the covariance of the “Entwurf” equations and, if his efforts to extend the
principle of relativity were to succeed, it had to include acceleration transformations.

Thus the conjecture explains exactly the direction of Einstein’s research on com-
pletion of the “Entwurf” theory.61 He would gain nothing of significance from find-
ing the generally covariant equations corresponding to his “Entwurf” equations. The
problem urgently needing his attention was the discovery of the extent of the covari-
ance of his “Entwurf” equations. These efforts of discovery soon transformed into the
arguments that sought to established the need, in physical terms, for a restriction on
covariance: that is, the arguments from the conservation laws and the hole argument.
As Einstein’s remarks from early 1914 quoted above indicate, these arguments estab-
lish that the quest for the generally covariant equations is of “no special interest”—a
conclusion that I urge had already been forced implicitly by his according indepen-
dent physical reality to the coordinate systems arising in the process of extracting the
Newtonian limit.

3.6 Einstein’s Pronouncements on the Selection of Specialized Coordinate Systems

The conjecture advanced here requires that Einstein’s 1912–1915 understanding of
coordinate systems in quite irregular. It is essential that this conjecture be compatible
with Einstein’s pronouncements on coordinate systems from this period. As it turns
out, Einstein made few such pronouncements—so few, that it was initially thought in
the history of science literature that Einstein was unaware of how to use four condi-
tions to constrain the choice of coordinate systems. My purpose in this section is to
review Einstein’s most important pronouncements on the selection of specialized
coordinate systems from this period and to show that they are quite compatible with
the conjecture advanced here, although they neither speak for nor against it.

Two Ways to Introduce Specialized Coordinate Systems

Best known of these pronouncements is a distinction made in (Einstein 1914a, 177–
178). Since this last pronouncement turns out to be a somewhat awkward statement
of the same distinction explained more clearly in a later letter to Lorentz, I shall con-
sider the later remarks first. In a letter of January 23, 1915, to Lorentz (CPAE 8,
Doc. 47) Einstein sought to explain that his “choice of coordinates makes no assump-
tion physically about the world.” He used a “geometric comparison” to illustrate the
possibilities:

I have a surface of unknown kind upon which I want to carry out geometrical investiga-
tions. If I require that a coordinate system  on the surface can be so chosen that

61 A supposed lack of awareness of the use of coordinate conditions would also explain this direction.
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then I thereby assume that the surface can be developed onto a plane. However if I
require only that the coordinates can be so chosen that

i.e. that the coordinates are orthogonal, I thereby assume nothing about the nature of the
surface; one can realize them on any surface.

Einstein’s remark is a commonplace of differential geometry and applies equally in
the geometry of two-dimensional surfaces and in the geometry of spacetimes. In pre-
suming the existence of a particular coordinate system, we might be tacitly restricting
the geometry of the space, or we might not. So, as in Einstein’s first example, if we
assume that there is a coordinate system in which the metrical coefficient  are
constant, then we are assuming that the space is also metrically flat.62 For constancy
of the  is necessary and sufficient for metrical flatness. Other coordinate systems,
however, can be realized in any space, so that the presumption of their existence does
not restrict the geometric properties of the space.

To proceed to Einstein’s (1914) remarks, we express the constraint that picks out
a coordinate system in which the metrical coefficients are all constant as

(24)

This condition is equivalent to metrical flatness, which is a condition that can be
given in invariant or generally covariant form, that is, as the vanishing of the Rie-
mann-Christoffel curvature tensor

(24’)

However the now familiar

(11)

consumes just the four degrees of freedom available in selection of a coordinate sys-
tem in any four-dimensional spacetime and thus places no restriction on its geometry.
Whatever (11) states cannot be re-expressed by a non-vacuous invariant or generally
covariant relation.

Working Backwards

This is the distinction that Einstein describes in (Einstein 1914a, 177–178).63 The
difference is that Einstein starts with an expression of restricted covariance and then

62 That a surface “can be developed onto a plane” is synonymous with flatness.

63 Translation in (CPAE 4E, 284).
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works backwards, asking if the expression came from a generally covariant expres-
sion by restriction of the coordinate system.64

If we are given equations connecting any quantities whatsoever65 that are valid only for a
special choice of the coordinate system, then one has to distinguish between two cases:

1. To these equations there correspond generally covariant equations, i.e. equations valid
with respect to arbitrary reference systems;

2. There are no generally covariant equations that can be deduced from the equations
given for the specially chosen reference frame.

In case 2, the equations say nothing about the things described by the quantities in ques-
tion; they only restrict the choice of reference system. If the equations say anything at all
about the things represented by the quantities, then we are dealing with case 1, i. e., in
that case, there always exist generally covariant equations between the quantities.

The constraint (24) is an instance of a non-generally covariant equation of case 1. Its
existence does restrict the quantities involved, for it entails the flatness of the metric.
Thus there is a corresponding generally covariant relation (24’). The requirement
(11), however, generates no restriction on these quantities and thus corresponds to no
(non-vacuous) generally covariant requirement.

The distinction outlined here does not bear on the reading of coordinate restric-
tions I urge Einstein held in 1912–1915. The requirement (11), places no restriction on
the geometric properties represented by the metric  That is an issue independent
of how the requirement picks out particular coordinate systems. To parrot Einstein, the
requirement “says nothing” about the metrical quantities, but it certainly “says some-
thing” about the coordinate systems, for it admits some and precludes others. Decid-
ing just what it says about them is the issue that defeated Einstein in 1912–1915.

Specialized Coordinate Systems and Nordström’s Theory of Gravitation

There is an important instance of case 1 in (Einstein and Fokker 1914), submitted for
publication in February 1914, a month after the submission of (Einstein 1914a). Their
work pertains to Nordström’s latest theory of gravitation, which Einstein judged the
most viable of the gravitation theories then in competition with the Einstein and
Grossmann “Entwurf” theory.66

Nordström’s theory had been developed by Nordström and Einstein as a Lorentz
covariant theory of gravitation. With Fokker, Einstein now showed that the theory
could be recovered in the generally covariant framework of the “Entwurf” theory,
complete with its generally covariant energy conservation law. In place of the Einstein-

64 Einstein’s purpose is to assert that his non-generally covariant gravitational field equations of the
“Entwurf” theory do make some assertion about the quantities involved. Thus they are an instance of
case 1. and there must exist corresponding generally covariant equations.

65 Einstein’s footnote: “Of course, the transformation properties of the quantities themselves must be
considered here as being given for arbitrary transformations.”

66 For an account of Nordström’s theories, see (Norton 1992; 1993).
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Grossmann gravitational field equations, Einstein and Fokker adopted the single field
equation  where  is the Riemann curvature scalar,  the trace of the stress-
energy tensor and  a constant. That single equation would be insufficient to fix the
ten coefficients of the metric tensor, so additional constraints were needed. “It turns
out,” Einstein and Fokker observed in their introductory summary (page 321), “that
one arrives at the Nordström theory instead of the Einstein-Grossmann theory, if one
makes the sole assumption that it is possible to choose preferred coordinate systems in
such a way that the principle of the constancy of the speed of light obtains.” They inter-
preted the presumption of such a coordinate system as equivalent to assuming the
existence of coordinate systems in which the spacetime’s line element has the form67

(25)

That a spacetime admits a line element of this form greatly restricts its geometry; it is
equivalent to conformal flatness. As Einstein suggests, this restriction can be written
in generally covariant form. It was later found to be equivalent to the vanishing of the
Weyl conformal tensor.

Einstein does not mention the Nordström theory in remarks in a letter to Planck
July 7, 1914 (CPAE 8, Doc. 18), written about six months after publication of Ein-
stein and Fokker’s paper. However his remarks describe exactly the specialized coor-
dinate system introduced in the Einstein-Fokker formulation of the Nordström theory.

There is a fundamental difference between that specialization of the reference system
that classical mechanics or [special] relativity theory introduces and that which I apply in
the theory of gravitation. That is, one can always introduce the latter, no matter how the

 may be chosen. However the specialization introduced by the principle of the con-
stancy of the speed of light presumes differential relations between the  and indeed
relations whose physical interpretation would be very difficult. The satisfaction of these
relations cannot be enforced for every given manifold through suitable choice of the ref-
erence system. According to the latter understanding, there are two heterogeneous condi-
tions for the  
1) the analog of Poisson’s equation

2) the conditions that enable the introduction of a system of constant 

These two “heterogeneous conditions” correspond exactly with the two laws of the
Nordström theory. The first, the field equation  is the analog of Poisson’s
equation. The second is the presumption that we can introduce a coordinate system in
which the line element takes the conformally flat form (25). Its introduction is
enabled by further conditions, which were later found to be expressible as “differen-
tial relations between the  the vanishing of the Weyl conformal tensor.

67 Then a light signal, for which  propagates with unit coordinate velocity. For example, if it
propagates along the  axis, the light signal satisfies 
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3.7 Was Einstein Really Defeated by According an Independent Reality to 
Coordinate Systems?

That is, is the conjecture of this part true? In sum, the answer is similar to the one
given in section 2.4 to the question of whether Einstein was aware of coordinate con-
ditions. There is no decisive piece of evidence for or against, but there are indications
that point in both directions. Again, our ultimate assessment depends in some signifi-
cant measure on issues of plausibility. My view is that the latter favor the conjecture. 

The Notebook and the “Entwurf” Theory

If we accept that Einstein was aware of the use of coordinate conditions in the note-
book and later, then we have several incongruities to explain. Why does he abandon
their use so precipitously? Why does his later correspondence discount a perfectly
serviceable extraction of the Newtonian limit from the candidate gravitation tensor

 Why is his discussion of the “Entwurf” theory, prior to his discovery of general
arguments against general covariance so indifferent to the recovery of the generally
covariant gravitational field equations he allowed must exist? The conjecture of this
part supplies an explanation that answers all of these questions.

Before we embrace that explanation, however, we should note that there is no
direct evidence that Einstein did accord an independent reality to coordinate systems
in the relevant context of the Newtonian limit. That is, we do not have unequivocal
remarks by Einstein announcing it or a calculation whose only reasonable interpreta-
tion is that independence. It is hard to know how seriously to take this omission.
Since Einstein was not using coordinate conditions to recover the Newtonian limit in
his “Entwurf” theory, he had no occasion to undertake calculations that would
unequivocally display an independent reality accorded his limit coordinate systems.
What Einstein does give us are the manipulations of the hole argument. It is quite evi-
dent that he does there accord independent reality to the coordinate systems and his
later admissions affirm this. Similarly, there were few occasions for Einstein to dis-
cuss how coordinate conditions could be used to recover the Newtonian limit, for this
was not the construction he used in the “Entwurf” theory. On the few occasions in
which he discussed general principles surrounding specialization of the coordinate
system (see section 3.6 above), he makes no mention of an independent reality of the
specialized coordinate systems. But then we would not expect him to. In section 3.1
we saw Einstein’s difficulty in making explicit just how the manipulation of the hole
argument depended on the independent reality of the coordinate system. If Einstein
had such difficulty describing that independent reality when it was the essential point
of the calculation, why should we expect him to express it clearer elsewhere?

Einstein’s Later Discussion

Once Einstein had discovered his errors and returned to general covariance, he again
had the opportunity to admit that he had accorded an independent reality to his coor-
dinate systems. There were two prime occasions for such admission: his paper of
November 4, 1915, and his letter to Sommerfeld of November 28, in which he
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explained his rejection of the candidate gravitation tensor  In both places, how-
ever, he emphasized the  prejudice as the source of his mistake. What is odd about
both sources is that neither seek to explain the most public conceptual error of his
“Entwurf” theory, the hole argument. At the time of the November 4 paper, Einstein
had not yet discovered his misconception about static fields. As far as we know, the
hole argument was the only foundational error of principle in the “Entwurf” theory,
short of the ultimate mistake of choosing the “Entwurf” equations of restricted cova-
riance. Since the error of the hole argument and the conjectured misuse of coordinate
conditions are closely related, hesitancy in discussing the one should be expected to
accompany hesitancy in discussing the other. And there was great hesitancy.

There are early published remarks that amount to the briefest retraction of the
hole argument. But they offer little to explain the error of the argument. They appear
in Einstein’s celebrated computation of the anomalous motion of Mercury, in a paper
presented to the Berlin Academy on November 18, 1915, (Einstein 1915b, 832).
There Einstein considers the gravitational field of a point mass at the origin of spatial
coordinates, which he takes to be the sun. Solving for this case, even in lower order
approximation, involves a system analogous to the hole of the hole argument. The
field is constrained by Minkowskian boundary conditions at spatial infinity, just as
the field in the hole is constrained by the surrounding matter distribution. In addition
the field of the sun is constrained by the requirements that it be static and spatially
symmetric about the origin. These additional requirements do not preclude all trans-
formations; a spatial radial coordinate  could be arbitrarily transformed as long as
the transformation does not disturb the limit at spatial infinity and preserves unit
modulus by, say, corresponding adjustments elsewhere. Einstein remarked:

We should however bear in mind that for a given solar mass the that the  are still not
completely determined mathematically by the equations (1) and (3).[68] This follows
since these equations are covariant with respect to arbitrary transformations of determi-
nant 1. We may assume, however, that all these solutions can be reduced to one another
through such transformations, so that they differ from one another only formally but not
physically (for given boundary conditions). As a result of this conviction, I am satisfied
for the present to derive a solution without being drawn into the question of whether it is
the only possible [solution].

If the covariance of the field equations is to block determination of the field in this
case, it must be through the hole construction, so we have many solutions mathemat-
ically in the one coordinate system. Einstein parries the threat by observing that these
solutions “differ from one another only formally but not physically” and the same
remark would serve as an escape from the hole argument. Only a quite attentive
reader would see the connection and even then such a reader may well find the
remark unconvincing. Certainly Ehrenfest needed a more elaborate account of the
failure of the hole argument before he was satisfied.69 Yet Einstein concluded by

68 Einstein’s equations are  and  which are covariant under unimodular transforma-
tions.
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explicitly disavowing any further discussion This neglect is striking in comparison to
the careful self diagnosis elaborated as the  prejudice.

Why might he be reluctant to discuss the error of the hole argument? He may just
have been reluctant to relive a painful experience, especially if he saw no benefit from
it. Or perhaps he had some difficulty formulating precisely what the error was, even
after he knew of it. It was sufficient that he knew that the hole construction did not
produce physically distinct fields. If he had suffered this difficulty it would explain
why he delayed detailed discussion of the error of the hole argument for nearly two
months after his public announcement of his return to general covariance. As far as
we know from documents available to us, the first detailed discussion comes in his
letter of December 26, 1915, to Ehrenfest (see section 3.2).

Whatever may have underpinned his reluctance to discuss the error of the hole
argument, the same reason would surely induce a similar reluctance to discuss the
closely related error conjectured here.

Einstein’s Letter to de Sitter

According to the conjecture of this part, there is a close connection between two of
Einstein’s errors: the notebook rejection of the candidate gravitation tensor  and
the hole argument. We would hope to see some trace of that connection. Such a trace
may appear in a letter Einstein wrote to de Sitter on January 23, 1917.

To see how this letter can be interpreted, we must recall Einstein’s return to gen-
eral covariance in the Fall of 1915. In several places, Einstein listed the clues that
forced him to accept the inadequacy of his “Entwurf” theory.70 In particular, Einstein
had erroneously convinced himself that the “Entwurf” theory was covariant under
rotation transformation (18).71 The discovery of this error cast Einstein into despair
over his theory, as he confided to his astronomer colleague Erwin Freundlich in a let-
ter of September 30, 1915 (CPAE 8, Doc 123). In it, he was reduced to a despondent
plea for help. He was not frozen into inactivity, however. A little over a month later, on
November 4, he announced his return to general covariance and the adoption of  as
his gravitation tensor.

That one discovery of the lack of rotational covariance of the “Entwurf” theory
seems to have been a powerful stimulus. Two things followed rapidly after it. He
returned to general covariance (and therefore rejected the hole argument) and he
readmitted the gravitation tensor  as gravitation tensor. If the original rejection of

 had been due to improperly according independent reality to coordinate systems,
then we may readily conceive natural scenarios that connect the two. For example,

69 See section 3.2 and (Norton 1987, §4).

70 See (Norton 1984, §7).

71 Janssen (Janssen 1999) supplies a fascinating chronicle of this episode. It includes display of calcula-
tions in Einstein’s hand apparently from June 1913 in which Einstein erroneously affirms that 
is a solution of the “Entwurf” gravitational field equations and then a repetition of the same calcula-
tion probably from late September 1915 in which Einstein finds the error.
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lack of rotational covariance would be fatal to Einstein’s hopes of generalizing the
principle of relativity to acceleration. So if he now realized that his “Entwurf” theory
could not supply it, he might well return to the last candidate gravitation tensors con-
sidered in the context of the rotation transformation (18). That would be  and the
related proposals around page 22 of the notebook. Now wiser and desperate and sus-
picious of all his methods and presumptions, Einstein might just finally be able to see
past his objection to the coordinate condition (11) to the recognition that there was
something improper in the core of his objection, his interpretation of what I have
called the hole construction. That realization would have simultaneously allowed him
to see that the hole argument does not succeed in showing the inadmissibility of gen-
erally covariant gravitational field equations. For it also depends on the same inter-
pretation of the hole construction. Because of the close connection between the two
errors, some such scenario among many obvious variants is credible.

As we saw in section 3.2, Einstein gave several accounts of the error of the hole
argument. None mentioned above contain autobiographical remarks on how Einstein
found the error. There is one exception, a recollection in a letter of January 23, 1917,
to de Sitter (CPAE 8, Doc. 290) concerning the errors of Einstein (Einstein 1914c)

...there were the following two errors of reasoning [in (Einstein 1914c)]: 

1) The consideration of §12 [the hole argument] is incorrect, since occurrences can be
uniquely determined without the same being true for the functions used for their descrip-
tion. 

2) In §14 at the top of page 1073 is a defective consideration. 

I noticed my mistakes from that time when I calculated directly that my field equations
of that time were not satisfied in a rotating system in a Galilean space. Hilbert also found
the second error. 

Here Einstein assures us that he found the errors of his 1914 review article, with the
hole argument listed as the first of the two errors, because he discovered the lack of
rotational covariance of his “Entwurf” field equations.72 Without the conjecture of
this part, it is hard to see why Einstein would proceed without great detours from that
lack of rotational covariance to the rejection of the hole argument.

What is More Plausible?

In the absence of decisive evidence, we once again ask after the plausibility of the
conjecture. To my mind, the one factor that speaks against the conjecture is this very
lack of evidence. Things might have transpired as conjectured without more decisive
evidence surviving. Einstein was not obligated to annotate his private calculations or
later recount every misstep, so as to save the labor of future historians. The resulting

72 By a “Galilean space,” Einstein refers to a Minkowski spacetime in the coordinates of (5). The second
error is presumably the one Einstein discusses with Hilbert in a letter of March 30, 1916, to Hilbert
(CPAE 8, Doc. 207) and concerns the failure of a variation operator to commute with coordinate dif-
ferentiation. For discussion, see (Norton 1984, end of §6).
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paucity of evidence, however, is also compatible with a simpler explanation: things
just did not go as conjectured. One factor makes this case a little different from the
earlier deliberations on Einstein’s supposed unawareness of the use of coordinate
conditions: the conjecture ties Einstein’s misturnings to the error of the hole argu-
ment. In that case we have no doubt of Einstein’s reticence to leave later traces of his
error and that reticence would carry over to the related rejection of the tensor 
But now we tread on dangerous ground. We offer an account that also predicts that it
will be difficult to find evidence for that account. Such accounts can be correct. They
can also be signal that a defective account has been protected illegitimately from ref-
utation. There are earnest accounts of how our small planet is routinely visited by
aliens intent on abductions. They face a sustained lack of concrete evidence. So we
are assured that no irrefutable evidence of the visits survives because of a massive
government conspiracy or the ingenuity and thoroughness of the aliens in eradicating
all such traces!

These serious hesitations should be weighed against the need for some account of
Einstein’s twisted path. Again we risk a pitfall. If we are willing to multiply the errors
Einstein is supposed to have committed, there is scarcely any pathway that we could
not explain. What is appealing about the conjecture is that it requires us to posit no
new errors. Aside from outright blunders of calculation and self deception, as docu-
mented in (Janssen 1999), Einstein was led astray for nearly three years by two
groups of misconceptions. The first surrounded his presumptions on the form of the
static metric and the weak field equations. The second pertained to the hole argument
and the independent reality of the coordinate systems.

To arrive at the second, we need only ask that Einstein was consistent and thor-
ough in his support of the misconception the hole argument. Then just one error leads
Einstein to reject the use of coordinate conditions, to acquiesce to the gravely
restricted covariance of the “Entwurf” theory and not to pursue its generally covariant
generalization. The recognition of that same error both frees Einstein from the hole
argument late in 1915 and allows him to propose  as his gravitation tensor.73 If I
must choose an account, I find this one plausible.

CONCLUSION

Why did Einstein reject the candidate gravitation tensor  in the notebook? His
own answer emphasized his “fateful prejudice,” the  prejudice. He did not see that
the Christoffel symbols are the natural expression for the components of the gravita-
tional field. As a result he could not properly relate the gravitation tensor to the
requirement of energy conservation. Instead he was tempted to multiply out the

73 For comparison, consider the alternative account in which Einstein is just unaware of the use of coor-
dinate conditions. This awareness must come if  is to be admissible as a gravitation tensor. So the
preparation for the new proposals of November 1915 must include recognition of two independent
errors, that of the hole argument and the neglect of coordinate conditions.

T il
x .

T il
x

T il
x

T il
x

{}



WHAT WAS EINSTEIN’S “FATEFUL PREJUDICE”? 65

Christoffel symbols to recover expressions explicitly in the metric tensor that would
prove unwieldy.

That may well have been all that it took to convince Einstein to abandon the pro-
posal. We must then discount as unrelated his anomalous concern with questions of
covariance on the pages surrounding page 22R on which the gravitation tensor is ana-
lyzed. While Einstein had clearly mastered the mathematical manipulations needed to
apply a coordinate condition to expressions of general or near general covariance, his
treatment of them suggests that his interpretation of the conditions was idiosyncratic.
His concern for their covariance properties cannot be reconciled with his later attitude
to them. So we have presumed that his treatment and interpretation of these coordinate
condition supplied a further fateful prejudice that precluded admission of the candi-
date gravitation tensor  by somehow obstructing his extraction of the Newtonian
limit. The supposition of this additional fateful prejudice makes Einstein appear far
less capricious. In finding the gravitation tensor  he had circumvented the tangled
cluster of problems he had imagined facing the Ricci tensor as gravitation tensor. We
suppose that he abandoned the new proposal not just because the calculation looked
complicated but because deeper matters of principle also seemed to speak against it.

Just how did Einstein’s treatment of coordinate conditions defeat him? There is
clear evidence in the notebook that Einstein used the requirements as what we call
“coordinate restrictions”: they are not just applied in the case of the Newtonian limit
but universally. That alone does not explain why Einstein would think his candidate
gravitation tensor unable to yield the Newtonian limit in a satisfactory manner. We
have found two additional hypotheses that would supply the explanation. The first
supposes an obtuse Einstein, overlooking a natural option. It supposes he just persis-
tently failed to see that coordinate conditions could be invoked selectively as part of
the restriction on covariance imposed in recovery of the Newtonian limit. The sec-
ond, which I favor, portrays an excessively acute Einstein, zealously consistent even
in his errors. He would soon improperly accord an independent reality to coordinate
systems in the hole argument and the conjecture is that he did the same thing earlier
in applying coordinate conditions. Both hypotheses have the same outcome. Einstein
would come to an impossible demand: the requirement that reduces the candidate
gravitation tensor to a Newtonian form must have sufficient covariance to support a
generalization of the principle of relativity to acceleration. The first is a dim Einstein,
felled by overlooking a standard device in general relativity that he later used without
apology. The second in an Einstein of Byzantine sophistication, pursuing his errors,
even when only dimly aware of them, to their farthest catastrophe. Perhaps another
Einstein, the real Einstein, neither dim nor Byzantine, still waits to be discovered.
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