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General relativity threw into physics and philosophy the antagonism that existed between the
two principle directors of geometry, Riemann and Klein. The space—times of classical
mechanics and of special relativity are of the type of Klein, those of general relativity are of the
type of Riemann. (Cartan, 1927)

Introduction
Of all the achievements of modern theoretical physics, one stands out as
unique. Without discernible intermediaries, the general theory of relativity
completely transformed our understanding ofgravitation. Gravitation ceased
to be a field in space and time like the electromagnetic field; it became the
geometric curvature of itself. And this transformation was effected
essentially by just one scientist, Albert Einstein. Nonetheless, in the eight
decades that have passed since Einstein’s achievement, a growing chorus of
voices have cried that, in spite ofhis unique success, Einstein never understood
the foundations of his own theory. The focus of these problems is Einstein’s
claims concerning relativity principles, covariance principles and coordinate
systems. Specifically, Einstein’s theory is generally covariant; its equations
remain unchanged in form under arbitrary transformations of the coord-
inates. Through this pr0perty, Einstein claimed, his theory had effected the
most complete generalization of the relativity of inertialmotion of the special
theory to a more general relativity that embraced acceleration. Thus, Fock
(1959, p. 368) remarked on this ‘. . .point of view that we cannot accept as
correct...’ and reflected

The fact that the theory of gravitation, a theory of such amazing depth,
beauty and cogency, was not correctly understood by its author, should not
surprise us. We should not be surprised at the gaps in logic, and even errors,
which the author permitted himself when he derived the basic equations of
the theory. In the history of physics we have many examples in which the
underlying significance of a fundamentally new physical theory was realized

 

1 I am grateful to Jeremy Gray and David Rowe for comments on an earlier version of this
chapter.
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not by its author but by someone else and in which the derivation of the
basic equations prOposed by the author proved to be logically inconsistent.
It is sufficient to point to Maxwell’s theory of the electromagnetic field...

We might be tempted to dismiss such an appraisal as an ill-tempered fulmi-
nation were it not now a mainstream assessment.

My task in this paper is not to exonerate or to censure Einstein. The debate
over the significance of covariance principles in relativity theory has grown
into many convolutions over the past eight decades and continues today.
Elsewhere I have surveyed and discussed these disagreements (Norton 1993,
1995). Rather my purpose here is to explain how Einstein came to make claims
that proved so controversial and to understand why they proved so fragile.2
My account will depend upon an accident of history: general relativity
emerged through the collision of two traditions in geometry, that of Felix
Klein and that of Bernhard Riemann. The account is based on two claims:

(1) Klein and Riemann employed very different strategies in deciding which of
their mathematical structures represented the physically or geometrically
real.

(2) Einstein’s pronouncements concerning relativity principles in general
relativity derive from his importing Klein’s strategy, used to good effect
in special relativity, into Riemann’s geometry, the geometry of general
relativity.

I will urge that Einstein’s use of Klein’s strategy was entirely appropriate
within the context of special relativity. For, as Minkowski showed, special
relativity provided a beautiful illustration of the power of Klein’s approach.
Since Einstein saw general relativity as a natural development of special
relativity, it was equally natural to retain Klein’s strategy of discerning the
physically real. The result, however, was an unhappy hybrid interpretation,
fated to be ostracized by later generations.

The geometrically real in Klein’s Erlangen Program
and Riemann’s inaugural address
The difference between Klein’s and Riemann’s approaches is usually under-
stood in terms of the different types ofgeometries they best addressed. Klein’s
approach flourished with geometries of uniform spaces, that is (in more
modern language), Spaces with symmetries. These included
projective geometries and the geometries ofmetrical spaces ofzero or constant
curvature. Riemann’s approach extended the methods Gauss developed to
deal with surfaces of variable curvature. Such spaces in general admit no

 

2 This paper provides the historical underpinning for the accounts first developed in Norton
(1989) and (1992).
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non-trivial symmetries. Beneath this prominent difference lies another. The
two approaches employed Opposing strategies to determine the geometrically
real. Klein employed a subtractive strategy: he would over-describe the space
and thendirect which parts of the over-description should be accepted as
geometrically real. Riemann employed an additive strategy; he would begin
with an impoverished description and then only carefully add in further
structure in an effort to ensure that all his structures had geometric sig-
nificance.

Klein did not initiate the use ofgroup and invariant methods in the service of
Their use was wideSpread in the nineteenth century. I will con-

centrate on Klein’s expressions of these ideas, however, since by the end of the
nineteenth century and into the next century, they became widely known and
even canonical statements of the approach—as evidenced by the remarks
quoted from Cartan (1927) above.

Klein’s subtractive strategy
Klein’s Erlangen Program was an attempt to bring systematic order to the
proliferation ofdifferent geometries emerging in the nineteenth centuries. The
key was to seek the group characteristic ofeach geometry. Once this group had
been found, the real entities of the geometry could then be recovered as the
invariants of the group. Such is the theme of Klein’s (1872, p. 463) canonical
statement of his Erlangen Program:

There are spatial transformations which leave the geometric properties of
Spatial structures completely unchanged. . .. We designate the intension of
all these transformations as the principal of spatial alterations;
geometric properties are not altered by transformations of the principle group.
Also conversely one can say: geometric properties are characterized by their
invariability under transformations of the principle group. (Emphasis in
original)

Klein’s approach provides a means of discerning geometric properties.
Implicit in this statement is the assumption that there are properties that are
not geometric and that one needs to proceed carefully in order not to confuse
the two. This was a commonplace already of the geometry of Klein’s time. In
projective geometry, one learned to discount familiar geometric notions such
as lengths on a Euclidean surface in order to attend to the properties peculiar
to the geometry, those that were unchanged under projective transformation.
Klein canonized these notions into a powerful general method. We are able to

 

3 While I never claimed otherwise, I am grateful to David Rowe and Jeremy Gray for
emphasizing the pervasiveness of these group and invariant theoretic in the
nineteenth century.
4 [Klein’s footnote] ‘That these transformations form a group is conceptually necessary’.
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in our geometrical treatises. His Erlangen Program showed us
how to subtract the non-geometric properties from these descriptions to leave
the geometric properties exposed.

Klein noted in his conclusion that his method performed a special service in
the context of analytic geometry. Here the danger of improper over-
description was greatest. His method provides a systematic escape from this
danger. In analytic geometry, one employs the resources of algebra to the ends
of geometry. The geometric space is represented by algebraic
coordinates of the space—and geometric structures in the space are repre-
sented by algebraic expressions. Klein (1872, p. 488) explained:

It has often been objected that analytic geometry privileges arbitrary
elements through the introduction of coordinate systems, and this objection
applies to every way of treating extended manifolds in which individuals are
characterized by the values of variables. While this objection was only too
often justified with the defective way in which coordinate methods were
used earlier, it vanishes with the rational treatment of the method.
The analytic expressions that can arise in the investigation of a manifold
in the sense of a group, must be, in accord with their meaning, independent
of the coordinate system, in so far as it is arbitrarily chosen, and it is
worthwhile also to make this independence formally evident. That this is
possible and how it has to happen is shown by modern algebra in which the
formal concept of the invariant, which is at issue here, is manifest most
clearly. lt possesses a general and exhaustive law of formation for invariant
expressions and Operates on principle only with them. One should also place
the same demand on formal treatments if groups other than the projective
are used as a basis. (Emphasis in original)

This case of analytic geometry is of special interest to us, for the geometric
methods that Einstein will come to use lie fully within this analytic tradition.
Klein here poses a problem central to Einstein’s work: how are we to know if
some structure described analytically in terms of coordinates has geometric
significance? Klein assures us that the method of his Erlangen Program
plies the answer: we need only check whether the expression is an invariant of
the group of the geometry.

Riemann’s additive strategy
The project of Riemann (1854), his widely celebrated inaugural address, is

familiar to modern readers. He wishes to give a description of
metrical spaces with variable curvature. This inheres in two
notions: what he calls the ‘n-fold extended manifold’ and a ‘relation of meas-
ure’. They correspond directly to a modern manifold on which
metrical structure is defined by means of a quadratic differential form.
Familiar as these notions are, what is striking in the address is the great
difficulty Riemann finds in describing his extended manifold. The
difficulty is quite explicitly addressed by Riemann. In introducing the concept
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of the n-fold extended manifold, he begins with a plea for indulgence from the
reader (p. 412)

. . . I think myself the more entitled to ask considerate judgement inasmuch
as I have had little practise in such matters of a philosophical nature, where
the difficulty lies more in the concepts than in the construction, and because
I have not been able to make use of any preliminary studies whatever aside
from some very brief hints which Privy Councillor Gauss has given on the
subject in his second essay on biquadratic residues and in his Jubilee
booklet, and some philosophical investigations of Herbart.

The ensuing discussion does not disappoint the reader expecting a laboured
development. The notion of manifold is built from general concepts allowing
‘modes ofdetermination’ and Riemann labours mightily to convey his intent.
Typical of his efforts is his explication of what we now recognize as the
dimensionality of the manifold: (p. 413)

In a concept whose modes of determination form a continuous manifold, if
one passes in a definite way from one mode ofdetermination to another, the
modes of determination which are traversed constitute a simply extended
manifold and its essential mark is this, that in it a continuous progress is
possible from any point only in two directions, forward or backward. If now
one forms the thought of this manifold again passing over into another
entirely different, here again in a definite way, that is, in such a way that
every point goes over into a definite point of the other, then will all the
modes of determination thus obtained form a doubly extended manifold. In
a similar procedure one obtains a triply extended manifold when one
represents to oneself that a double extension passes over in a definite way
into one entirely different, and it is easy to see how one can prolong this
construction indefinitely.

I need hardly point outjust how much this discussion leaves for the reader to
make precise. Just what is a ‘mode of determination’? What is ‘passing over
into another entirely different’? It seems not that difficult to answer these
questions very precisely. Indeed Felix Klein (1927, p. 289), in reporting
Riemann’s work, did exactly

Riemann laid at the foundations of his investigations n variables
. . . each of which can take all real values. Riemann denoted the

totality of their systems of values as a manifold of n dimensions; by a fixed
system of values . . . , he meant a point in this manifold. Riemann
hereby avoided expressing the word space, since he later wanted to

 

5 It has been pointed out to me by David Rowe that a literal reading of Klein’s remarks
suggests that Riemman’s manifolds are topologically R" (in the modern sense). That would
automatically prevent a single space of Riemann from representing a complete spherical space.
Since Riemann’s scheme clearly included such spaces, cannot believe that Klein intended this
implication. l presume that Klein was not attending to the issue of global versus local topology
and that his remarks were intended to apply to local patches of Riemann’s spaces.
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introduce the space given to us intuitively as a special case of a three fold
extended manifold. (Emphasis in original)

Drawing on the resources of analytic geometry, Klein identified Riemann’s
manifolds with the n-dimensional number manifolds manifold whose
points are all n-tuples of At a stroke, Klein had eliminated the vagueness
of Riemann’s exposition. Riemann’s ‘mode of determination’ is simply an

of reals, understood as a set of values of the variables . . . , A
curve in R" is Riemann’s simply extended manifold. Its extension to a surface
gives the doubly extended manifold; and so on.

Klein is correct, ofcourse, in noticing that Riemann avoided use of the term
space so that ordinary physical space could be introduced as an instance ofhis
notion of manifold. That Riemann intends the notion of manifold to cover
more than ordinary spaces is made clear by hismention (p. 413) of the colours
as forming a continuous manifold. But ifKlein is right and Riemann intended
his manifolds to be number manifolds, we must marvel at Riemann’s obsti-
nacy in avoiding theirmention in his long discussion ofSection I ofhis address
on the concept of manifold. The notion of a number manifold was quite
familiar to Riemann. He introduces it later (p. 416) in his address as a way of
fixing locations in manifolds and to enable him to avail himselfofthe resources
of algebra in the treatment of his relations ofmeasure.

Why, then, did Riemann, unlike Klein, avoid use of number manifolds in
explicating his concept of manifold? The answer is given by their
strategies of discerning the geometrically real. Number manifolds over-
describe Riemann’s manifolds. Riemann clearly did not want there to be a
notion of length intrinsic to his manifolds. His task was to add that in with
the introduction of his relations of measure. A number manifold, however, is
very rich in structure. There is a kind of notion of length built into it, for
example, that of differences of coordinate values. And there is much more.
There are preferred positions; the origin (0, 0, . . . , 0) is unique, for example.
And there are preferred directions; for example, that of the distinctive coor-
dinate axes.

For Klein the use ofnumber manifolds was natural because ofthe immediate
precision they brought. Since he favoured the subtractive strategy, he is
untroubled by the extra structure. The subtractive strategy told him how to
ignore all the structure that is deemed non-geometric. One must find the
priate this case the group of all transformations7 ——and work
solely its invariants. These are the geometrically real structures of the
manifold.

 

6 In order to avoid confusion over my very specific use of term ‘number manifold’, I
that a number manifold is a manifold whose point set literally is a set of n-tuples of numbers
(real or complex). It is not merely a manifold that is R", that is, a topological space
that can be coordinatized locally or globally by R".
7 What determines the extent of ‘all’ is notoriously vague. Are continuity and
conditions imposed? Are the transformations transformations?
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Riemann’s project was devoted to a different strategy of defining the geo-
metrically real; I have called it his ‘additive strategy’. Its whole point was to
built up the geometry in two steps. The first defined the notion of n-fold
extended manifold whose intrinsic properties were just continuity and
dimensionality and nothing more. In particular, there is no notion of length
intrinsic to these manifolds. The second step then added this geometric notion
of length, which was introduced on a highly localized basis. It would be
antithetical to this project to begin its first phase with a number manifold so
rich in superfluous structure. The starting point of the project is a manifold
free of metrical notions. Thus Riemann could not avail himself of the group
and invariant strategy of discarding superfluous structure, because he was
pursuing the implications of a vastly general vision of He was
reduced to the tortured gr0pings of his efforts to describe manifolds with just
the amount of geometric structure he wanted and no more.

Special relativity and Klein’s Erlangen Program
The primary burden of Einstein’s 1905 special theory of relativity was to deny
physical significance to the cosmic state of rest presumed by then current
theories of the electromagnetic aether. To do this he showed in his celebrated
1905 ‘On the electrodynamics of moving bodies’ that Maxwell’s electro-
dynamics did satisfy a principle of relativity, as long as one recognized the
group of transformations of the coordinates of space and time that properly
represented the relativity of inertial motion. That group proved to be the
Lorentz group and not the Galilean group assumed in classical physics. Ein-
stein showed that the equations of Maxwell’s electrodynamics retained their
form under Lorentz transformation and embarked on the project ofmodifying
the remainder of physics so that it too would satisfy this requirement of
Lorentz covariance. As Einstein p. 329) later summarized it, this
requirement was the essence of the

The content of the restricted relativity theory can be summarized in one
sentence: all natural laws must be so conditioned that they are
with respect to Lorentz transformation.

 

8 Editor’s remark: It is also worth noting that the first rigorous analysis of the simplest type of
magnitude, length on a line, and the identification of the line with the real number continuum,
date from the work of Cantor and Dedekind. This work, let alone its general acceptance, dates
from after Riemann’s death; Riemann could reasonably have rejected the glib identification of
the two current in his day.
9 An almost identical formulation appears in Einstein (1952, p.148), an appendix to his
popular text on relativity theory: ‘The whole content of the Special theory of relativity is
included in the postulate: The laws of Nature are invariant with respect to the Lorentz
transfonnations.’
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This covariance entailed that no state of rest could have physical significance,
for no law embodying such a state of rest could retain covariance under the
Lorentz transformation.

Einstein’s strategy lay close to that ofKlein’s Erlangen Program. Einstein
reserved physical significance for laws that remained unchanged by the
transformations of the relevant group. Correspondingly Klein distinguished
the geometric properties as those that remained unaltered by the transform-
ations of the group of the geometry. This much of the similarity was evident in
1905. But there was a deeper connection to be found. It was already fore-
shadowed by Klein’s pronouncements decades earlier on the Erlangen Pro-
gram. In his original manifesto, Klein had all but reduced geometry to the
study of the invariants of groups. He wrote (1872, p. 463):

The following all embracing problem arises as the generalization of
geometry: Let there be given a manifold and a group of transformations on
it; one should investigate the structure belonging to the with regard to
such properties as are not changed by the transformations of the group.
(Emphasis in original)

By giving the Lorentz group such privileged position in his theory, Einstein
had brought it to the threshold of Klein’s geometry. It was Hermann
Minkowski, mathematician and colleagueofKlein at who then took
the theory past the threshold. In his famous popular lecture of 1908, he sought
to motivate his new space—time approach to special relativity by reflecting on
Newtonian mechanics. That theory’s equations, he noted, exhibit a twofold
invariance; they are unaltered under arbitrary change of position and under
transition to arbitrary states of uniform motion. He continued (1909, p. 1)

We are accustomed to look upon the axioms of geometry as finished with,
when we feel ripe for the axioms of mechanics, and for that reason the two
invariances are probably rarely mentioned in the same breath. Each of them
by itself signifies, for the differential equations of mechanics, a certain group
of transformations. The existence of the first group is looked upon as a
fundamental characteristic of space. The second group is preferably treated
with disdain, so that we with untroubled minds may overcome the difficulty
of never being able to decide, from physical phenomena, whether space,
which is supposed to be stationary, may not be after all in a state of uniform
translation. Thus the two groups, side by side, lead their lives entirely apart.
Their utterly heterogeneous character may have discouraged any attempt to
compound them. But it is precisely when they are compounded that the
complete group, as a whole, gives us to think.

Minkowski proceeded to treat both groups on a par by compounding them.
The group of spatial translations was associated with the geometry of space.
That group was expanded by the group of transformations between uniform
states ofmotion. The result defined, in accord with Klein’s prescription, a new

now it was not the geometry of space, but of space—time. The
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concern with groups and geometry led directly to a new notion offundamental
importance, space—time.

Writing shortly afterwards, Klein was clearly delighted that his geometric
methods had found application at the forefront of physics. To draw

space—time formulation closer to his geometry, Klein (1910,
p. 539) provided a briefscheme for translating between the relativity talk ofthe
physicists and his preferred geometric language:

What the modern physicists call ‘relativity theory’ is the theory of invariants
of a four dimensional x, y, (the ‘world’)
with respect to a particular group of collineations, namely the ‘Lorentz
group’; —-—or more generally, and turned round the other way:
If one wants to make a point of it, it would be all right to replace the phrase
‘theory of invariants relative to a group of transformations’ with the words
‘relativity theory with respect to a group.’

The generalization of special relativity: the taming
of coordinate systems
The special theory of relativity was the first step for Einstein. He turned
almost immediately to the task offinding a new theory that would extend the
principle of relativity to acceleration. His first published step came in a 1907
review article (Einstein, 1907/08); after much labour and misadventure, the
theory reached its final form in November 1915 and was summarized in a well-
known review article the following year (Einstein, 1916). The nature and
significance of the generalization achieved has been the subject of continued
debate. Thus we must attend carefully to how Einstein understood his
generalization.

Einstein’s methods in special relativity—both before and after
were algebraic: in geometry they were the methods of analytic geometry. His
spaces or space-times are represented by algebraic variables, the coordinates
of space, time or space—time. Thus his approach risked the danger that Klein
had discussed decades before when introducing his Erlangen Program. Each
coordinate system introduces arbitrary elements; we must be alert not to
accord improper significance to them. In Einstein’s coordinate formulations
of special relativity, each coordinate system tacitly defined a state of rest-
points whose spatial coordinates are constant are at rest according to that

 

10 In a recent study of work in relativity physics, Leo Corry (manuscript) has
emphasized that the Erlangen Program played only a small part in efforts. His
deeper motivation lay in the desire to axiomatize and thereby clarify physical theory. Corry also
suggests that, by Minkowski’s time, the connection of groups and geometry was a topic of
general interest, not so strongly connected with the Specifics of Klein’s Erlangen Program. I will
persist here, however, with Special attention to Klein, since he was one of the most visible
proponents of this viewpoint and he provides us very clear statements of the connection between
groups and geometry and of the subtractive strategy.
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coordinate system. The content of the principle of relativity is to deny physical
significance to this coordinate-based notion of rest. Thus Einstein’s for-
mulations of the principle of relativity are propositions about coordinate
tems. For example, his popular text, Einstein (1917, p. 13), puts it so:ll

If, relative to [Galileian coordinate system] K, K’ is a uniformly moving
co-ordinate system devoid of rotation, then natural phenomena run their
course with respect to K’ according to exactly the same general laws as with
reSpect to K. This statement is called the principle of relativity (in the
restricted sense). (Emphasis in original)

He proceeded to explain (p. 14) that, were this principle to fail, then all
Galileian coordinate systems would cease to be equivalent for the description
of natural

In this case we should be constrained to believe that natural laws are
capable of being formulated in a particularly simple manner, and of course
only on condition that, from amongst all possible Galileian co-ordinate
systems, we should have chosen one of a particular state ofmotion as
our body of reference. We should then be justified (because of its merits for
the description of natural phenomena) in calling this system ‘absolutely at
rest’, and all other Galileian systems K ‘in motion’. (Emphasis in original)

Einstein used Klein’s strategy to deny physical reality to this coordinate-based
state of rest. Physical reality accrues only to that which is common to all
Galileian coordinate system, that is, to the invariants of the Lorentz trans-
formation.

In pursuing his quest for a generalized principle of relativity, Einstein’s
strategy remained exactly the same. The coordinate systems of special rela-
tivity still harboured illegitimate elements. In particular, each Galileian
coordinate system defined a state of rest. The class of all such states of rest
formed the class of inertial motions. These inertial motions were accorded
physical reality in special relativity since the class as a whole remained
invariant under Lorentz transformation. An extension of the principle of
relativity to acceleration must deprive these inertial motions of their preferred
status. This would be achieved by an expansion of the covariance group ofhis
theory beyond the Lorentz group. Einstein (1919, p. 230) described his
program in impassioned rhetorical questions:

Should the independence of physical laws of the state of motion of the
coordinate system be restricted to the uniform translatory motion of
coordinate systems in respect to each other? What has nature to do with our

 

11 A coordinate system is an inertial coordinate system.
12 Pedants will note that Einstein’s argument is fallacious, but inessentially so for our

The failure of the principle of relativity does not entail the existence of a single state of
rest. The relativity of inertial motion may prevail in just one direction of space, for example.
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coordinate systems and their state of motion? If it is necessary for the
purpose of describing nature, to make use of a coordinate system arbitrarily
introduced by us, then the choice of its state of motion ought to be subject
to no restriction; the laws ought to be entirely independent of this choice
(general principle of relativity).

Success in the quest for the generalization ofprinciple of relativity lay in the
achievement of general covariance. Having introduced the notion of the
arbitrary coordinate system ofGauss’ theory ofsurfaces, Einstein (1917, p. 97)
stated the principle that was satisfied by his general theory of relativity:

The following statement corresponds to the fundamental idea of the general
principle of relativity: ‘All Gaussian coordinate systems are essentially
equivalent for the formulation of the general laws of nature.’

Through its general covariance, Einstein’s general theory of relativity had
succeeded in denying physical reality to the arbitrary elements of Einstein’s
space—time coordinate systems. Only invariants of Einstein’s arbitrary

may have physical reality. The only elements of the coord-
inate systems that may have physical reality are their topological properties,
such as their dimensionality and continuity.

Success and failure: Klein meets Riemann
While Einstein had been euphoric over his success in formulating a generally
covariant gravitation theory, his interpretation of its general covariance was
almost immediately challenged. The locus of this challenge is
Kretschmann (1917). It was the first major statement ofa critical position that
grew slowly from a minority opinion to a mainstream judgement. I have
reviewed this critical tradition elsewhere in detail (Norton, 1993, 1995), so I
need only mention here the two themes that pervade it. First, the achievement
of general covariance is typically regarded as failing to contribute to the
physical content of a theory. It proved easy to find generally covariant for-
mulations of commonly known theories of space and time, both special rela-
tivity and Newton’s, for example. Thus whatever physical could be
associated with general covariance would have to be a part ofall these theories
as well. Second, the tradition sought to dissociate covariance principles from
relativity principles. The latter are symmetry principles expressing a uni-
formity of structure. In standard formulations ofspecial relativity,
the covariance groupjust happens to be the same as the symmetry group of the
Minkowski space—time. But this coincidence no long occurs in the case of
general relativity. While the covariance group has grown to hold arbitrary
transformations, the space—times of general relativity typically admit no

 

13 Einstein does not make clear precisely which group he intends.
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symmetries at all. In many space—times, the symmetry group will just be the
identity group.

So how are we to understand Einstein’s achievement? Did his attainment of
general covariance serve the sort ofpurpose he intended. In one sense, it did—
and completely so. To see that sense, we need to recall the focus of Einstein’s
work, the coordinate system. I have gone to pains to show that Einstein’s
target was illegitimate elements in these coordinate systems. In attaining
general covariance, Einstein did succeed in his aim of denying these elements
physical reality. But that success was a narrow one. The inertial structure
encoded in Einstein’s coordinate systems is essential for his general theory of
relativity; it defines the free fall trajectories of the theory. Had Einstein been
successful in eliminating this structure from his theory, he would merely have a
topological space as his impoverished a structure to stand as
a gravitation theory.

Einstein did not eliminate this inertial structure in his transition from special
to general relativity. To see why, we need to review how Einstein proceeded
from special to general relativity. We now tend to think of special relativity as
the theory of a Minkowski space—time endowed with a flat,
Lorentz signature metric. But Einstein’s 1905 Lorentz covariant formulation
of special relativity made no explicit mention of such a metric. Its structures
were there implicitly, of course. Indeed they could be recovered directly from
the covariance group: the Minkowski line element of Minkowski’s space—time
formulation (where the coordinates (t, x, y, have the usual meaning)

(5.1)

is an invariant of the Lorentz group and thus automatically accorded physical
reality in the theory. In the transition to a generally covariant formulation, this
Minkowski line element (5 . 1) would lose physical reality, since it would cease
to be an invariant of the allowed coordinate transformations. But then
the metrical structure it represents would be lost. So Einstein replaced the
Minkowski line element (5.1) with the familiar

(5.2)

where the coefficient of the space—time metric transform covariantly
accordingly to the rules for the transformation of covariant, second rank
tensors. This insertion of an explicit space-time metric preserves the inertial
structure (and more) that a transition to general covariance would otherwise
have denied physical reality.

However, in formulating a space—time theory based on an invariant line
element (5.2), Einstein had left the geometric tradition of Klein and entered
that ofRiemann. Klein’s group-based method ofdiscerning the physically real
no longer functions without significant modification. Therein lie the inter-
pretative woes that Einstein brought on his head. Ofcourse Klein’s subtractive
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strategy still works as far as the coordinate systems are concerned. Their
physically real properties are just the invariants of the theory’s group. Since
that group admits arbitrary transformations, the pr0perties are merely
t0pological. But in the Riemannian program, this topological space is the first
step in the construction of the space. Physically or geometrically real structure
is then added to this space by means of a quadratic differential form—in the
case of general relativity, the line element (5.2). Because of the way this line
element behaves under coordinate transformation, it is immune to the
tractive strategy.

One way to see this breakdown ofKlein’s subtractive strategy is to compare
two versions of special relativity each formulated in the manner of Riemann.
The first is Lorentz covariant; its metrical structure is introduced by positing
the line element (5.1). The second is generally covariant; its metrical structure
is introduced by positing the line element (5.2). (The must here represent a
flat metric, of course.) In Klein’s approach, an expansion of the group of a
geometry has the effect of subtracting from the physically real. But the phys-
ical content of the line elements (5.1) and (5.2) remain unaltered by the
expansion of the theory’s group from the Lorentz group in (5.1) to the general
group in (5.2); the alteration of the line element by the introduction of the
matrix ofcoefficient has the effect ofprotecting the content of(5. 1) from the
subtractive stratagem. A simpler way to see the failure of Klein’s strategy is
this. In a Lorentz covariant theory, in Klein’s approach one need not posit the
line element (5.1). If the geometric structure of the theory is the invariants of
the group, then one can derive this line element. The same thinking is of no
avail in general relativity. That theory’s group is the general group; but that
group does not define for us a unique line element (5.2).

In sum, the transition from special to general relativity is not marked by the
overall denial of physical reality to theoretical structures; rather it is char-
acterized by a in the methods used to represent the physically
real. Coordinate systems are deprived of all but t0pologica1 properties as
physically according to the subtractive strategy of Klein; but many
of these properties are reintroduced by the explicit introduction ofa quadratic
differential form—this according to the additive strategy of Riemann.

Number manifolds and Einstein’s causal argument
This last summary is an unforgiving over-simplification of Einstein’s treat-
ment of the physically real in relativity theory. It ignores at least two cir-
cumstances: the first is a matter of historical contingency in the history of
mathematics, the second is what would probably be Einstein’s own response to
this summary.

Riemann’s Spaces have two parts: a manifold and a quadratic differential
form. The manifold is required to have just topological properties. We have
seen how Riemann laboured to explain the notion ofa manifold withjust these
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properties. As late as the early 1910s, when Einstein developed general rela-
tivity, a mathematically clean description ofsuch manifolds was not part ofthe
standard repertoire of applied mathematics. When a precise mathematical
representation of a manifold was needed, one proceeded as Riemann even-
tually had to in his inaugural address: one introduced a number manifold such
as R". It was quite common as late as the to define a manifold as
This was certainly the practice that Einstein found in Minkowski’s geometrical
formulation of special relativity, for he would have heard in Minkowski’s
(1908, p. 76) famous popular lecture:ls

We will try to visualize the state of things by the graphic method. Let x, y,
be rectangular for space and let t denote time. . .. A point of
space at a point of time, that is, a system of values x, y, z, t, I will call a
‘world-point’. The manifold of all thinkable x, y, z, t systems of values we
will christen ‘the world’.

Minkowski’s ‘world’ is the system of thinkable values of the four real-valued
coordinates x, y, z, t; that is, it is

This use ofnumber manifold brought the familiar risk ofarbitrary elements.
Klein’s subtractive strategy controlled them for Minkowski: only those elem-
ents of his number manifolds that were invariant under Lorentz transforma-
tion could claim physical reality. This problem persisted as Einstein proceeded
to general relativity. He needed to supply his theory with a manifold suitable
for the construction of a space—time by Riemann’s methods. That is, the
manifold had to have only topological properties so that an appropriate line
element could be introduced to carry the metrical structure. Since Einstein,
like Minkowski, continued to use number effect his coordinate

a manifold was needed, he had to be sure that he denied
physical reality to their arbitrary elements. Coordinate differences could not
represent physical times elapsed or distances traversed; straights in the number
manifolds could not be free fall trajectories. Such times, distances and free fall
trajectories were all to be defined by the line element. So it was entirely
appropriate for Einstein to invoke Klein’s subtractive strategy and deny
physical reality to all those elements of his number manifolds that were not
invariant under the arbitrary transformations of his theory.

In hindsight, it seems so clear that the structure denied physical reality in the
number manifolds was merely reintroduced in the line element (5.2). They had
not been eliminated; they had been relocated. I am fairly sure how Einstein
would respond to this assessment. He would object that the structure re-
introduced in the line element has been decisively altered in its physical

 

Such, for example, is the definition given in Levi-Civita (1925, p. 1). For a more extensive
discussion of the development of the notion of manifold see Norton (1989, Section 3).
15 l have replaced the Perrett and Jeffrey translation of as
‘multiplicity’ with ‘manifold’.
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properties—and in this alteration we find the true advance of general rela-
tivity. He explained this in a 1954 appendix to his text on relativity theory
(Einstein, 1953, pp. 139—40):

It is the essential achievement of the general theory of relativity that it has
freed physics from the necessity of introducing the ‘inertial system’ (or
inertial systems). This concept is unsatisfactory for the following reason:
without any deeper foundation it singles out certain co-ordinate systems
among all conceivable ones. It is then assumed that the laws of physics hold
only for such inertial systems (e.g. the law of inertia and the law of the
constancy of the velocity of light). Thereby, space as such is assigned a role
in the system of physics that distinguishes it from all other elements of
physical description. It plays a determining role in all processes, without in
its turn being influenced by them. Though such a theory is logically
possible, it is on the other hand rather unsatisfactory. (Emphasis in original)

That is, he would agree that the transition to general covariance had deprived
certain properties ofcoordinate systems ofphysical reality, most notably any
association with coordinate straights and the free falls of inertial motion. But
he would insist that the inertial structure restored through the line element was
of a quite different kind. It responds dynamically through the Einstein field
equations to the physical content of space-time. Thus this inertial structure is
deflected towards the Sun by the Sun’s mass. The inertial structure associated
with coordinate systems is not influenced causally by the processes occurring
within space—time; the inertial structure of the line element (5.2) of general
relativity is so influenced. This change, Einstein assures us, is the essential
achievement of general relativity.
These causal considerations were not the last-minute excuses ofan Einstein

seeking to repair an ailing interpretation. They persist throughout the corpus
ofhis writing on general relativity. (See Norton, 1993, 3.9). In so far as we can
find a satisfying account of Einstein’s causal concerns and its relation to a
generalized principle of relativity, it is through Anderson’s notion of the
‘absolute object’. However, the interpretative program based on this notion
remains controversial. (See Norton, 1993, Section 8; 1995, Section 6).

Conclusion
In his general theory of relativity, Einstein bequeathed us an uncomfortable
mix ofstrategies for discerning the physically real. He used Klein’s subtractive
strategy to deprive his coordinate systems ofall but topological properties. He
used Riemann’s additive strategy to locate metrical properties in a quadratic
differential form of his invariant line element. His proclamations on the
physical content of the theory, however, seem only to acknowledge the import
of the first strategy: the expansion of the covariance group deprives much
mathematical structure ofphysical reality. But they seem to ignore that much
ofwhat was denied physical significance is restored by its incorporation into
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the line element. This tension has defined the ensuing debate over the correct
understanding of Einstein’s relativity principles.
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