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In response to “A Hot Mess” (Vol. 4, No. 4).

To the editors:

In his essay, John Norton presents many arguments against the

thermodynamics of computation. On the question of whether the field

lacks a consistent foundation, I am in agreement with Norton, although

occasionally for different reasons. Physicists in particular should pay close

attention to the arguments Norton provides. One of these is his no-go

result, which states that a single particle interacting with an infinite bath

cannot undergo an isothermal reversible process due to the large

fluctuations. Rolf Landauer took this process for granted in his formulation

of the thermodynamics of computation.

In order to understand Norton’s no-go result, we must begin with the work

of Albert Einstein.1 Already convinced about the statistical nature of

entropy, Einstein inverted Boltzmann’s entropy formula, S = kB log (Ω),

where kB is the Boltzmann constant and Ω denotes the number of

accessible microstates.2 The result was an expression Ω = exp (S/kB), where

exp denotes the usual exponential function. The equilibrium state

corresponds to the state with maximum number of microstates, Ωeq = Ωmax.

Due to the statistical nature of the processes, even though it is isolated, the

system will exhibit spontaneous fluctuations around the equilibrium state

such that Einstein considered the following expression,

Ωneq
Ωeq

= exp -
ΔStotal
kB

,

where Ωneq denotes the microstates of the fluctuating state away from the

equilibrium or so-called neighboring state. The total entropy change is

ΔStotal  = Seq – Sneq. To fully appreciate Einstein’s construction, consider the
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case ΔStotal  = 2.3 kB. The equation above yields a 1:10 ratio for 
Ωneq
Ωeq

. This

indicates that there is a much larger probability of the system being at

equilibrium, whereas fluctuations away from the equilibrium state are rare.

They are, nevertheless, bound to occur. The above expression indicates that

the fluctuations are more likely to occur around the close neighborhood of

the equilibrium state with maximum entropy.

The canonical version of the equation above was obtained by Richard

Tolman, so that

p λneq

p λeq
= exp(-βΔF),

where p denotes the probability and ΔF is the Helmholtz free energy

difference between equilibrium and non-equilibrium states.3 As usual, β is

the inverse temperature equal to (kB T)–1 , where the temperature is

considered to be constant. Following Norton, the states are labeled λ, which

can be any extensive variable allowed to fluctuate.

Norton states that for a reversible isothermal process with zero work done,

thermodynamic reversibility means that the net sum of the generalized

thermodynamic forces should be zero. This condition, according to Norton,

is tantamount to 
∂F
∂ λ eq

= 0. Norton further deduces 
dF
dλ = 0, such that

ΔF = 0, yielding p(λneq) = p(λeq) due to the equation above.4 The system can

be found in an equilibrium state and in a state away from equilibrium with

the same probability. This is Norton’s no-go result.

In order to see what this result implies, it is necessary to continue

following the work of Tolman. His next move was to expand the free

energy around the equilibrium,

ΔF = F λneq - F λeq =
∂F
∂ λ eq

λneq - λeq +

1
2

∂ 2F

∂ λ2
eq
λneq - λeq

2 + O( ≥ 3),

( )
( )

( )

( ) ( ) ( ) ( )

( ) ( )



where O(≥ 3) denotes terms such as (λneq – λeq)3 or higher. Following

common practice, he then drops the term 
∂F
∂ λ eq

 since there is minimal

free energy at equilibrium for a system with constant temperature. Norton,

in his derivation of the no-go result, not only sets this term to zero by

relying on thermodynamic arguments; he also adds that this term being

zero implies 
dF
dλ = 0 at all equilibrium states. According to Norton,

F(λeq) = F(λneq). An immediate obstacle now becomes apparent. The

equilibrium state is defined as the state with minimum free energy. One

wonders how these two states can ever have the same free energy because

for any state other than equilibrium one cannot attain the minimum free

energy value or any value below it.

Tolman neglects the terms of order three and higher—terms such as O(≤ 3)

—by invoking the law of large numbers so that the fluctuations are assumed

to be sufficiently small, leaving:

ΔF = F λneq - F λeq =
1
2

∂ 2F

∂ λ2
eq
λneq - λeq

2.

Norton’s no-go result relies on ΔF being zero. In the above expression, it is

not zero at all, at least not in the presence of small fluctuations. The free

energy difference can only be zero if the second-order term is assumed to

be zero. But neglecting the second-order term would mean suppressing the

fluctuations even for large systems. Norton’s arguments would then seem

even less plausible. Tolman uses the last expression to obtain

p λneq = p λeq exp -
β
2

∂ 2F

∂ λ2
eq
λneq - λeq

2 .

He was then able to correctly calculate the deviation of the mean kinetic

energy per degree of freedom, kBT/2, as is the case for canonical settings in

general. There is no way to get rid of these fluctuations in the usual

canonical setting. This is a rigorous mathematical result known as the

central limit theorem. Contrary to Norton’s claim, the free energy

difference can never be zero in a large enough system exactly because of

the fluctuations.

I do not consider the consecutive sequences of the equilibrium states in my

argument, but rather the fact that Norton chooses 
dF
dλ = 0 as a condition for
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an equilibrum state. He obtains this formulation on purely thermodynamic

grounds because the net sum of the thermodynamic forces should be zero

at each stage of the equilibrium. This definition leaves no room for

fluctuations. To define an equilibrium state, Tolman only considered 

∂F
∂ λ eq

= 0, rather than 
dF
dλ = 0, as Norton does. In statistical mechanics,

even the free energy at equilibrium is not constant in the usual sense of the

term, but is allowed to fluctuate. The result of this small fluctuation is

underwritten all over the canonical ensemble through the central limit

theorem. Yet there is no room for fluctuations in thermodynamics.

Imagine a system at equilibrium. According to thermodynamics, if I

measure its free energy at equal time intervals, I should always obtain the

same value for the free energy. Alternatively, according to statistical

mechanics, the free energy fluctuates around its mean value. Even for an

equilibrium state, the value of the free energy is not constant. The first

point worth noting about the no-go result is that it considers the

equilibrium state as defined in thermodynamics, but then goes on to apply

this strictly thermodynamic idea to another idea in statistical mechanics

where even the thermodynamic limit does not suffice to converge.

Thus far we have considered the impact of small fluctuations and shown

that Norton’s argument can be only be correct if these fluctuations are

ignored. But Norton presents his case with large fluctuations in mind. This

leads to an even more drastic impasse. Assuming the fluctuations are not

small, in order to maintain the free energy constant at an equilibrium state,

not only the second-order term should be set to zero, but also all the other

terms, i.e., O(≤ 3) = 0. In order to achieve this, Norton would need to

suppress all terms related to the fluctuations for all orders if the

fluctuations are large, and up to second order if the fluctuations are small.

In both cases, the core of his argument would be contradicted, since he

defines the equilibrium state as the one with constant free energy.

Norton generally provides examples within a canonical setting. In this

setting, the aforementioned second-order term must be taken into account

because there will be a fluctuation on the order of kBT/2 for the deviation

of the mean kinetic energy per degree of freedom. In order to illustrate his

no-go result, Norton uses a canonical ensemble, which is valid only for

small fluctuations. Yet his no-go result is supposed to be about large

fluctuations.

Norton presents his no-go result to show that a single particle in contact

with an infinite reservoir cannot be treated as Landauer had assumed. The

use of canonical formalism involves a commitment to the small fluctuations
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regime. An equivalent question is whether a single particle can have a

canonical distribution. This is possible, provided that the bath with which

it interacts is large enough. Since one can talk about the canonical

distribution of a single particle interacting with an infinite bath, one can

also frame the issue in the regime of small fluctuations. It is the size of the

thermal reservoir that determines the distribution, provided that the heat

capacity of the bath is constant.5 If the bath is not infinite, then one might

talk about large fluctuations. When this is the case, the distribution is no

longer canonical, but follows the inverse power law.6  As a result, when the

fluctuations are indeed genuinely large, almost none of the equations in

this letter are valid, nor are any of the equations related to the no-go

result.7

G. Barış Bağcı

John Norton replies:

G. Barış Bağcı and I differ only on technical issues in the derivation of the

no-go result.

The no-go result applies to thermodynamically reversible processes

implemented in molecular scale systems. In ordinary thermodynamics, a

reversible process is one that passes through a sequence of states that come

arbitrarily close to equilibrium with each other. These equilibrium states

are of equal thermodynamic entropy S. The process can only proceed if

there is a very slight entropy increase along the sequence of actual states. If

the entropy were to remain constant, then the process would be frozen.

There would be no entropic forces to advance the process.

Bağcı considers a special case not mentioned in the main article but treated

by me elsewhere. If the system is in thermal equilibrium with a large heat

bath at temperature T, with which it exchanges heat but no work, then the

condition of increasing entropy of the total system is expressed by a

condition of decreasing free energy F of the system, excluding the heat

bath.

These are equivalent conditions. In both cases, a reversible process is

characterized by the fact that each of its stages comes arbitrarily close to

states with the same entropy of the total system, or with the same free

energy of the system excluding the heat bath, in the general and special

cases, respectively.



The no-go result arises from the fact that thermal systems have molecular

constitutions. A new effect, thermal fluctuations, enables the process to

move among its states. This second process is active even if the stages of

the process achieve the states of equal entropy or free energy. In this case,

the probability W that fluctuations deliver the system to any particular

stage is given by the familiar formulas. That is, either the inverted

Boltzmann formula, W = exp(S/k), or the version of it that Bağcı uses, W =

exp(–F/kT). Since the entropy S or free energy F at each of the stages is the

same, all the stages are of equal probability. Fluctuations dominate and

move the process with equal probability to each of its stages, undoing the

possibility of any assured completion.

Bağcı’s concern is how to arrive at the constancy of free energy F over all

the stages. It is built in from the start through the definition of a reversible

process. The constancy comes from ordinary thermodynamics. If the free

energies of the stages of a process are equal, then the sum of

thermodynamic forces acting at each stage is zero. Each stage is in static

equilibrium, and the process does not advance. When that equality is

implemented in statistical physics, it requires only that the mean value of

the sum of these forces is zero. Fluctuations around the mean will produce

momentary, non-zero driving forces that will advance or retard the process.

In place of this reasoning, Bağcı tries to derive the constancy of the free

energy from a power series expansion that relates the free energy of an

equilibrium state to that of the non-equilibrium states to which it

fluctuates. As he recounts, the effort fails and for the reason he indicates:

the fluctuation states involved are not small fluctuations amenable to

power series analysis. I am not clear on the details of Bağcı’s application of

this power series expansion to the case at hand. His analysis considers an

equilibrium state and fluctuations from it. But in statistical physics, all the

stages become non-equilibrium fluctuation states. There is, however, a

single equilibrium state from which they arise as fluctuations.

Since fluctuations can cause the process to migrate over all its stages, these

stages can be taken together to form a single, larger thermal system at

equilibrium. The individual stages are then states to which the system

migrates through fluctuations. One might try to use Bağcı’s power series

expansion to recover the free energies and probabilities of the various

stages. A more straightforward method is simply to apply directly to the

fluctuation states the free energy analog of Boltzmann’s S = k ln W. This is

the canonical expression for free energy mentioned above. It is given more

fully as F = –kT ln Z, where Z is the partition integral over the subvolume

of phase space corresponding to the fluctuation state. It is also the

probability of the fluctuation state up a constant, normalizing factor.



A simple example illustrates how the combined stages of the process form

one larger system at thermal equilibrium. It is perhaps the simplest possible

example: a Brownian particle in a Petri dish of water. When the dish is

level, all positions of the particles are states of equal entropy or free energy.

To have a process that moves the particle across the dish, one must tilt the

dish, introducing a dissipative entropy gradient. If the molecular character

of the thermal system is added in, the dish does not need to be tilted for the

particle to move. Thermal fluctuations lead it to jiggle about in the

celebrated effect of Brownian motion. Over a long period, the particle will

fully explore the dish and with equal probability in all its parts. Over this

long timescale, the Brownian particle behaves like a single molecule of gas.

If the desired process is to move the particle assuredly from one side of the

dish to the other, the dish must be tilted enough to overcome the Brownian

motion that would deflect the particle away from the final position sought.

This results in added entropy, creating dissipation whose magnitude can be

computed from the formula in the no-go result using the probability of

completion sought.

For a microscopically visible particle, the overall effect is small. It will take

a long time for the Brownian particle to explore the whole dish. For smaller

particles approaching molecular scales, the motion becomes more rapid

and the amount of tilting needed becomes significant. In the extreme case

of a molecule in air, mere tilting no longer suffices. A dissipative process

that creates considerable amounts of entropy must be employed to confine

the particle.8

G. Barış Bağcı is a professor in the Department of Physics at Mersin

University.

John Norton is Distinguished Professor in the Department of History and

Philosophy of Science at the University of Pittsburgh.
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