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1. Introduction 
 In 1946, at the age of sixty-seven, Einstein sat down to record his autobiographical 

reminiscences of a life in science. Einstein’s scientific work had then already become a revered 

                                                
1 It is a pleasure to present this paper in honor of my colleague and friend, Michael Friedman, 
whose work on the entanglements of science and philosophy has enlightened and energized us 

all. I thank Dan Steel for pointing out to me years ago the connection between Einstein’s work of 
1905 and Hume’s critique of concepts and causality. I am grateful for helpful discussion to 

Stephen Engstrom, Don Howard, Gerald Massey, Paul Pojman and the participants in the 

conference “Synthesis and the Growth of Knowledge” (University of South Carolina, October 
103, 2004); to its tireless organizers, Michael Dickson and Mary Domski; and especially to 

Robert Rynasiewicz for his unflinching resolve in bringing criticisms of an earlier version of this 
paper to my notice, some of which proved to be correct and important.  



2 

source of stimulation for a new generation of philosophers who sought philosophical 

enlightenment in Einstein’s physical theorizing. Einstein too had long made clear that there was 
a reverse influence: he in turn drew stimulation from the philosophical literature. From as early 

as 1912, one could read in his publications in physics that his work on general relativity had been 
motivated by the writings of Ernst Mach, especially through what Einstein had come to call 

“Mach’s Principle.” In his autobiographical reminiscences, Einstein now affirmed a similar debt 

for his special theory of relativity. Though this was not the first time he had made remarks of this 
type, their prominence in an otherwise brief and authoritative account of the discovery of special 

relativity could leave no doubt of their importance. He wrote of the decisive moment in which he 
abandoned the absoluteness of simultaneity and thereby discovered special relativity (1949, p. 

51): 

Today everyone knows, of course, that all attempts to clarify this paradox [of light 
that leads to special relativity] satisfactorily were condemned to failure as long as the 

axiom of the absolute character of time, or of simultaneity, was rooted unrecognized 

in the unconscious. To recognize clearly this axiom and its arbitrary character already 
implies the essentials of the solution of the problem. The type of critical reasoning 

required for the discovery of this central point was decisively furthered, in my case, 
especially by the reading of David Hume’s and Ernst Mach’s philosophical writings. 

An earlier remark in a letter of December 14, 1915, to Moritz Schlick (Papers, A, Vol. 8A, Doc. 

165) makes the relative importance of Hume and Mach clear: 
Your exposition is also quite right that positivism suggested rel. theory, without 

requiring it. Also you have correctly seen that this line of thought was of great 
influence on my efforts and indeed E. Mach and still much more Hume, whose 

treatise on understanding I studied with eagerness and admiration shortly before 

finding relativity theory. 
It was Hume more than Mach. 

 Einstein’s avowal of intellectual debts to Hume and Mach have long been recognized and 
examined.2 My purpose in this paper is to present a more detailed account of what, I believe, 

                                                
2 This literature is enormous. For an entry into it, see Holton (1968); Stachel (1989a); and, most 
recently, Howard (2004). 
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Einstein intended with these remarks, illuminating the account with recent work in the history of 

Einstein’s discovery of special relativity. 
 I will suggest that what Einstein learned from Hume and Mach is not quite what one 

might initially expect. Einstein’s discovery is concerned with space and, more essentially, time; 
and Hume and especially Mach’s works are known for their critical analyses of the notions of 

space and time. Yet the match is not so perfect. Hume and Mach’s analyses of space and time 

address many aspects of the notions of space and time. But they pass over the specific aspect that 
was the entirety of Einstein’s conceptual breakthrough of 1905: an analysis of the simultaneity of 

distant events that shows that observers in relative motion need not agree on which events are 
simultaneous. That is not to be found in Hume and Mach’s writing. What is to be found, 

however, is an account of the nature of concepts in general: concepts are dependent entirely on 

our sense impressions or sensations; they are inapplicable as representations of reality, that is, 
fictional, in so far as they extend beyond our sense experience. 

 Neither Hume nor Mach saw this fictional character as a tool that could be used in theory 

construction; fictional concepts were false representations to be eliminated from one's account of 
nature or at best tolerated if, as Hume held of causation, the elimination was unachievable. Here 

Einstein differed. One does not have to eliminate a fictional concept. Its presence indicated an 
arbitrariness in our physical theorizing. It could be retained as long as its arbitrary character was 

recognized and it was accommodated in such a way as to preclude unwitting introduction of false 

presumptions. At the decisive moment in his discovery of special relativity, Einstein did just this. 
He recognized that the traditional concept of the simultaneity of distant events was not fixed by 

experience; and that its use had tacitly committed us to a false presumption, the absoluteness of 
simultaneity—its independence from the state of motion of the observer. So he replaced it with a 

new concept of simultaneity. It was introduced by a freely chosen definition that exploited the 

arbitrariness of the concept. That definition brought no tacit commitment to the absoluteness of 
simultaneity. In the context of the postulates of his new theory, it led to the relativity of 

simultaneity, the dependence of judgments of simultaneity of distant events on the state of 
motion of the observer. 

 This paper will tell the story of Einstein’s discovery and its debt to the writings of Hume 

and Mach. In Section 2, I will review the problems in electrodynamics that occupied Einstein for 
over seven years. Their recalcitrance finally led Einstein to seek a radical solution outside 
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electrodynamics as a last desperate measure, a reformation of our notion of time and 

simultaneity. In Section 3, I will describe how Einstein justified this extraordinary departure by 
means of an austere account of the nature of concepts in scientific theories. In Section 4, I will 

seek to show how this account drew essentially on the writings of Mach and Hume. Section 4.3 
contains some speculation over why Einstein singled out Hume over Mach. I will suggest that 

Mach’s writings may have been less important since Einstein regarded them as denying the 

freedom of concept formation Einstein needed in 1905 to introduce his new definition of distant 
simultaneity. Finally in Section 5, by way of a conclusion, I will reflect on how Einstein’s use of 

Hume and Mach’s philosophical writings was highly selective. His goals were as much to 
understand Hume and Mach's thought as to find in them ideas that may be useful in his creative 

work as a physicist. Understandably this latter goal induced Einstein to be undeterred by 

systematic problems in Hume and Mach's writings and to ignore consequences that did not suit 
his purpose of creating new physical theories. 

 To preclude confusion, let me stress here that I consider just the question of how Hume 

and Mach’s work figured in Einstein’s discovery of special relativity in 1905. I shall not consider 
the large influence of Mach especially on Einstein’s later work in general relativity. 

2. Einstein’s Electrodynamical Pathway to Special Relativity 
 Einstein (1952) recalled the long years of intense effort that preceded his 1905 discovery 

of special relativity—“the seven and more years that the development of the Special Theory of 

Relativity had been my entire life.” Here I will review what we know of the struggles of these 
years, emphasizing that they were devoted almost entirely to grappling with problems in 

electrodynamics. That the real issue lay in a reconceptualization of the notion of simultaneity 
entered only in the final five to six weeks of his seven or more years of work. This review will 

help us to appreciate just what, on my best account, lay behind his reconceptualization of 

simultaneity and his drawing on the philosophical work of Hume and Mach. It was not an 
impulsive experiment in speculative philosophy. It was the culmination of years of labor, the 

adoption of a new approach to an old problem to which he was compelled by the failure of all 
other avenues. We might well suppose that the courage to take this step was supplied as much by 

his desperation to solve a stubbornly recalcitrant problem as by the persuasiveness of Hume and 

Mach’s writings. 
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 While the review of this section gives a specific context for Einstein's reconceptualization 

of simultaneity in 1905, the account of later sections does not depend on the details of how 
Einstein came to identify simultaneity as the stumbling block. Perhaps all that really matters is 

that it came after years of failure with ordinary solutions, so that Einstein was willing to entertain 
something extraordinary. 

2.1 The Magnet and Conductor Thought Experiment 
 Our documentation of Einstein’s interest in the problems that led to special relativity 
begins with events as early as the summer of 1895, when a sixteen year old Einstein wrote an 

essay proposing experimental investigation of the electromagnetic ether, the medium proposed 
by 19th century theories as the carrier of electromagnetic fields and light. (Papers, Vol. 1, Doc. 

5) This ether supplied a preferred state of rest for the universe, but a long tradition of 

experiments in the 19th century had failed to detect this state of rest. In the introductory section 
of the paper in which Einstein unveiled special relativity, “On the Electrodynamics of Moving 

Bodies,” Einstein (1905) pointed to these experiments as grounds for doubting that there is an 
ether state of rest and as evidence for the principle of relativity, the assertion of the equivalence 

of all inertial states of motion. Traditional textbook accounts give pride of place to one of these 

experiments, the Michelson-Morley experiment. We now know that the experiment played only 
a minor role in Einstein’s thoughts. (See Holton, 1969; Shankland 1963/73; Stachel 1987.) 

Einstein did know of the experiment prior to 1905 (as was finally revealed by Einstein’s 

correspondence of 1899—see Papers, Vol. 1, Doc. 57). However it appeared to Einstein to do 
little more than support the idea that physics must conform to the principle of relativity; it did not 

establish the constancy of the speed of light, as later textbook accounts commonly assert. 
 These 19th century experiments played some role in Einstein’s thought. Einstein (1920) 

made clear, however, that another reflection provided the real impetus: “The phenomenon of 

magneto-electric induction compelled me to postulate the (special) principle of relativity.” Here 
Einstein referred to the magnet and conductor thought experiment that Einstein laid out in the 

opening sentences of his “On the Electrodynamics of Moving Bodies.” While 19th century 
experiments had revealed no ether state of rest, the theoretical structure of Maxwell’s 

electrodynamics seemed to depend upon it. When a magnet is at rest in the ether, it is surrounded 

by a magnetic field. If the magnet is set in motion, however, the magnetic field changes in 
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strength with time, as the magnet moves past some fixed point in the ether. That change, 

according to Maxwell’s theory, causes a new entity to appear, an induced electric field as shown 
in Figure 1. (Einstein noted that the induced electric field has “a definite energy value,” as if to 

emphasize its reality.) 
 

 
Figure 1 Magnets at rest and moving in the ether 
 

One might suppose that this induced electric field would be an unequivocal indicator of whether 
the magnet is at rest in the ether or not, giving a direct observational means for distinguishing 

motion from rest in the ether. What Einstein realized was that this induced electric field could 

not be used as such an indicator because of an almost conspiratorial coincidence. To take a 
slightly simpler case than the one Einstein considered in 1905, imagine that an observer located 

on the magnet tries to test whether the induced electric field is present by looking for the current 
it engenders in a conductor: 

• If the magnet is at rest in the ether, there would be no current simply because there is no 

induced electric field.  
• If the magnet is moving in the ether, there would be an induced electric field and that field 

would generate a current in the conductor. However a second effect, the motion of the 
conductor in the magnet's own magnetic field, would also induce a second current of exactly 

equal magnitude but opposite direction. The two currents would cancel and there would no 

net electric current in the conductor. 
The electrodynamics of Einstein's time treated motion and rest of a magnet in the ether as very 

different cases. But as far as observables were concerned--the measurable current in a conductor-

-the two cases were the same. Once again experiment fails to reveal motion with respect to the 
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ether state of rest. Einstein saw this as a strong indication that electrodynamics must somehow be 

modified so as to eradicate its dependence of this elusive state of rest; that is, it must be 
conformed to the principle of relativity. 

 The magnet and conductor thought experiment did a great deal more than just give 
Einstein the impetus to this conclusion. It also gave him a theoretical device that would later 

form an essential part of his completed theory. Classically, an electric field is an absolute 

quantity. Either it is present or not; and all observers, whatever their states of motion, would 
agree on its presence or absence. This is contrasted with relative quantities, such as the kinetic 

energy of a body. These quantities vary with the state of motion of the observer. A roadside 
observer will assign a large kinetic energy to a speeding car. The car occupants, however, will 

assign the car no kinetic energy, for the car is at rest with respect to them. Einstein’s early 

deliberations on the magnet and conductor thought experiment revealed to him that an electric 
field had a similar relative existence. If one were at rest relative to the magnet, the field 

surrounding the magnet would manifest as a pure magnetic field. If one were in motion relative 

to the magnet, that same field would manifest as a magnetic field with an electric field. That is, 
the state of motion of the observer would determine whether or not the one field would appear to 

have an electric field within it or not. 
 The importance of this insight into field transformations was that it provided Einstein a 

theoretical device with which to implement the principle of relativity in electrodynamics, as has 

been pointed out by Earman et al. (1983) and Rynasiewicz (2000). The induced electric field of 
the magnet and conductor need no longer be regarded as revealing the absolute motion of the 

magnet. It now merely revealed the relative motion of magnet and observer—an effect fully in 
accord with the principle of relativity. All that was required was to find the general 

transformation law that would work in all cases and eliminate the need for an ether state of rest 

in the theory. 
 One might hope that this device could be used to implement the principle of relativity 

within Maxwell’s electrodynamics and it is natural to suppose that Einstein explored the 
possibility. As I have shown in Norton (2004, Section 2)3, the exploration would be encouraging, 

initially. Maxwell’s electrodynamics is based on four field equations. Two only are needed to 

                                                
3 For a simplified account, see Norton (forthcoming, Section 4). 
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analyze the magnet and conductor thought experiment. As long as we consider them alone, it 

proves quite easy to find a field transformation law that allows an account of the magnet and 
conductor thought experiment, fully in accord with the principle of relativity. Further exploration 

rapidly generates disastrous consequences, however, and the most important is the following. 
The other two of Maxwell’s equations can also be treated in a way that is in accord with the 

principle of relativity. However one must use a different field transformation law for these other 

two equations. So Maxwell’s theory cleaves into two parts, each of which can be made to 
conform to the principle of relativity, but not when they are joined. While Einstein would have 

had every reason to think that there was something very right in this notion of field 
transformations, he would also have had to see that something more was needed if 

electrodynamics was to be rendered compatible with the principle of relativity. 

2.2 An Emission Theory of Light 
 Using his device of field transformations, Einstein could bring conformity with the 

principle of relativity to one part of Maxwell’s theory or to the other; but not to both together. It 
takes only a little reflection to see that this circumstance is inevitable. A theory that implements 

the principle of relativity in the context of ordinary Newtonian space and time must treat 

velocities in a quite particular way. Assume an observer watches a gun fire a bullet. The bullet 
velocity, as determined by the observer, must be given by the velocity of the bullet with respect 

to the gun added vectorially to the velocity of the gun with respect to the observer. 

 Now Maxwell’s electrodynamics is also a theory of light; according to it, light consists 
merely of waves that propagate in the electromagnetic field. In the Newtonian context, the 

velocity of the propagation of light must be treated just as the velocity of everything else. By 
direct analogy with the bullet and gun, to determine the observed velocity of light we must add 

vectorially the velocity of propagation of light with respect to its emitter to the velocity of the 

emitter with respect to the observer. This rule is the characteristic property of a so-called 
“emission” theory of light. Any theory of light that implements the principle of relativity in the 

Newtonian context—that is, any “Galilean covariant” theory—must be an emission theory (but 
not conversely). 

 The difficulty Einstein faced is that Maxwell’s electrodynamics cannot be an emission 

theory. One of the most important consequences of the theory is that light in a vacuum always 
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propagates at the same speed, c=186,000 miles per second, with respect to the ether. Its velocity 

of propagation is unaffected by the velocity of the emitter. So Maxwell’s theory cannot conform 
to the principle of relativity in a Newtonian context. This might not be apparent if we only look 

at each of the two parts of Maxwell’s theory mentioned above individually. For neither part 
alone is sufficiently rich to determine a velocity of propagation for light. But the two parts 

combined are able to do this. 

 Einstein’s response, as John Stachel (1982) emphasized, was to seek to modify 
Maxwell’s theory in such a way as to convert it into an emission theory. Einstein left us no direct 

record of his explorations. The strongest clue of their contents lies in his repeated remarks that 
they were like those of Walter Ritz (1909, 1909a), who, subsequently to the advent of special 

relativity, sought to construct a Galilean covariant, emission theory of electrodynamics and light. 

In Norton (2004, Sections 3-4; forthcoming, Section 4.3), I have put considerable effort into 
reconstructing the sort of theory that Einstein explored. It turns out that there is a single quite 

plausible theory that exploits Ritz’s key theoretical maneuver while at the same time leaving 

unchanged that part of Maxwell’s theory that treats the magnet and conductor, so that Einstein’s 
device of field transformations could still be employed. While initially promising, this and all 

other Galilean covariant theories of electrodynamics prove unsatisfactory. 
 Combing through Einstein’s later correspondence and writings we find a plethora of 

reasons given for the failure of an emission theory of light. The theory must fail, Einstein 

asserted, because the physical state of a light ray must be determined completely by its intensity, 
color and polarization; and an emission theory cannot be formulated as a field theory governed 

by differential equations; and an emission theory would allow light to back up on itself, in the 
sense that light emitted earlier by accelerating sources could be overtaken by light emitted later; 

and there would be problems with shadow formation. It is not at all straightforward to see how 

the objections work. I have urged (Norton, 2004, Sections 5-6; forthcoming, Section 4.3) that 
they can be put into cogent and compelling form if we embed them in Einstein’s famous chasing 

a light beam thought experiments of his Autobiographical Notes (1949, pp. 49-50). Indeed, I 
suggest, if we don’t, it is hard to understand the importance Einstein accords to the thought 

experiment in his recollections. 
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 For our purposes, what matters most is that these explorations, however they may have 

proceeded, required years of effort4 that brought Einstein mounting frustration and a willingness 
to entertain to a radical solution. 

2.3 “The Step”5: The Relativity of Simultaneity 
 The breakthrough came some five to six weeks prior to completion of special relativity. 

Einstein faced an impasse in two incompatible demands. He felt compelled to conform 

Maxwell’s electrodynamics (in the form given by Lorentz) to the principle of relativity, but that 
seemed impossible since Maxwell’s electrodynamics required a constant speed for light. Yet all 

his efforts to modify Maxwell’s electrodynamics to an emission theory had failed. The tension 
could be reduced to the incompatibility of two requirements: the principle of relativity and the 

constancy of the speed of light.6 Einstein suddenly realized these two requirements were not 

                                                
4 As a footnote to Einstein’s (1920) recollection of the magnet and conductor thought experiment 
he wrote “The difficulty to be overcome lay in the constancy of the velocity of light in a vacuum, 

which I first believed had to be given up. Only after years of [jahrelang] groping did I notice that 

the difficulty lay in the arbitrariness of basic kinematical concepts.” Wertheimer (1959, p. 216) 
also reports on the strength of interviews with Einstein in 1916 that Einstein was occupied with 

the problem “for years.” 
5 As Pais (1982, p. 163) reports Einstein called the breakthrough. 
6 Knowing what is about to ensue, it is hard for modern readers to do anything but applaud 

Einstein’s stubborn insistence that we eliminate the ether state of rest from physics in favor of 
the principle of relativity. But the situation was not so straightforward in 1905. Physicists had 

learned to accommodate principles whose truth was contradicted by the basic entities of the 

science. For example, the second law of thermodynamics, Carnot’s principle, assured us of an 
inexorable rise in entropy with time. The atomic theory of matter, however, asserted that this rise 

was only very probable, with that assertion resting on the existence of atoms that were by 
supposition so small as to elude direct detection. 
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incompatible after all. The circumstances of this realization have become part of the heroic lore 

of discovery. Einstein recounted the story in a lecture in Kyoto on December 14, 1922:7 
 Why are these two things inconsistent with each other? I felt that I was facing an 

extremely difficult problem. I suspected that Lorentz’s ideas had to be modified 
somehow, but spent almost a year on fruitless thoughts. And I felt that was a puzzle 

not to be easily solved. 

 But a friend of mine living in living in Bern (Switzerland) [Michele Besso] helped 
me by chance. One beautiful day, I visited him and said to him: ‘I presently have a 

problem that I have been totally unable to solve. Today I have brought this “struggle” 
with me.’ We then had extensive discussions, and suddenly I realized the solution. 

The very next day, I visited him again and immediately said to him: ‘Thanks to you, I 

have completely solved my problem.” 
 My solution actually concerned the concept of time. Namely, time cannot be 

absolutely defined by itself, and there is an unbreakable connection between time and 

signal velocity. Using this idea, I could now resolve the great difficulty that I 
previously felt. 

 After I had this inspiration, it took only five weeks to complete what is now known 
as the special theory of relativity. 

What Einstein alluded to was his recognition, laid out in detail in Section 1 of his 1905 relativity 

paper, that the principle of relativity and the constancy of the speed of light could be rendered 
compatible if one was willing to allow that observers in relative motion might disagree on which 

spatially distant events are simultaneous. He argued that the simultaneity of spatially distant 
events could not be directly experienced. So we had to specify by a definition which spatially 

distant events were simultaneous.8 Einstein’s definition, in slightly modified form, is shown in 

                                                
7 The story quoted is from notes taken by Jun Ishiwara. Multiple translations of uncertain quality 

can be found. The one give is from Stachel (2000, p. 185).  
8 In this sense, Einstein deemed judgments of the simultaneity of distant events to be 
conventional. To what extent did his views conform to the thesis of the “conventionality of 

simultaneity,” as developed by Reichenbach and many others? (See Janis, 2002.) One might 
think that Einstein would have to subscribe to this thesis were he only to pursue the logical 
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Figure 2. An observer at the midpoint of a platform will judge the emission of light signals at 

clocks A and B at either end to be simultaneous, if those light signals arrive simultaneously at the 
observer. 

 

 
Figure 2. Einstein’s definition of simultaneity 

 

Innocuous as the definition may seem, Einstein proceeded to show that it yielded a startling 
conclusion if we also adhered to the principle of relativity and the constancy of the speed of 

light. Consider that same synchronization procedure, as it would appear to an observer who 

moves uniformly to the left. What that observer would see is shown in Figure 3. 
 

 
Figure 3. Einstein’s procedure as seen by a moving observer 

 

                                                                                                                                                       
consequences of his assertion that distant simultaneity can be introduced by a definition. He 

would then be committed to many of the familiar consequences of the thesis, such as the 
admissibility of non-standard ε-coordinate systems and the division of all physical quantities into 

factual two-way quantities and conventional one-way quantities. Yet outside of the first part of 
his 1905 paper, Einstein makes no systematic acknowledgement of this distinction of one-way 

and two-way quantities; and his treatment of coordinate systems is sufficiently different from our 
modern approach as to make it unlikely that he would have regarded a non-standard ε-coordinate 

system as licit in special relativity. (See Norton, 1989, 1992.) 
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The new observer would judge the platform observer to be moving away from the signal emitted 

by clock A and towards the signal emitted by clock B. So, the fact that the signals arrive 
simultaneously at the platform observer shows that the two emission events were not 

simultaneous. The emission event at clock A must have happened earlier to give the light signal 
time to catch up with the fleeing platform observer; and the emission event at clock B must have 

happened later to compensate for the approach of the platform observer.  In Figure 3, the signal 

from A must cover the greater distance AO and the signal from B must cover the lesser distance 
BO. Thus the platform and resting observer disagree on whether the two emission events are 

simultaneous, an illustration of the relativity of simultaneity.9 
 This inference requires the constancy of the speed of light; the moving observer must also 

assign the same speed c to light in a vacuum. Thus a signal traversing the greater distance AO 

requires more time than one traversing the lesser BO. The deduction would fail if we assumed an 
emission theory since the moving observer would assign unequal speeds to the two signals. It 

also invokes the principle of relativity, in so far as both observers use the same definition of 

simultaneity. 
 What Einstein’s analysis shows is that the inconsistency of the principle of relativity and 

the constancy of the speed of light is only apparent. They can co-exist if we give up the notion 
that simultaneity is absolute, that is, the notion that all observers must agree on whether two 

events are simultaneous. That recognition also answers the obvious objection to attempts to 

retain both the principle of relativity and the constancy of the speed of light. If we conjoin them, 
we are to believe that all inertial observers will measure the same speed for light. But how can 

that be possible? If an observer chases after light at great speed, would not the moving observer 
measure a speed for light less than that of a resting observer? We can now see why that slowing 

need not happen. All judgments of the speed of light depend upon measurements of time that use 

                                                
9 Note that this deduction requires the constancy of the speed of light; the moving observer must 

also assign the same speed c to light in a vacuum. Thus a signal traversing the greater distance 

AO requires more time than one traversing the lesser BO. The deduction would fail if we 
assumed an emission theory since the moving observer would assign unequal speeds to the two 

signals. It also invokes the principle of relativity in so far as both observers use the same 
definition of simultaneity. 
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synchronized clocks. We might see how much time a light pulse takes to traverse a platform, 

such as shown in Figures 2 and 3, by comparing the times read by clocks A and B as the light 
pulse passes. If the two observers are in relative motion, they will disagree on the simultaneity of 

distant events. As a result, they will synchronize their clocks differently. If they both use 
Einstein’s procedure of Figure 1 to synchronize their clocks, it is easy to see that each has 

adjusted the synchrony of their clocks in just the right way to ensure that each will measure the 

same constant c for the speed of light.10 
 Since judgments of simultaneity arise throughout kinematics, Einstein now needed to 

ascertain how our traditional notions of space and time must be modified to accommodate this 
new result of the relativity of simultaneity. That accommodation is the working out of the special 

theory of relativity, a new theory of space and time. The new theory solves Einstein’s original 

problem of conforming Maxwell’s electrodynamics to the principle of relativity. As Einstein 
showed in his 1905 paper, it turns out that, within the new theory of space and time, Maxwell’s 

electrodynamics already conforms to the principle of relativity; all that was needed was the 

selection of the appropriate transformation rules for electric and magnetic fields. Indeed, as I 
show in a simple thought experiment in Norton (forthcoming, Section 4.2), the field 

transformation laws Einstein considered necessitate modifications to notions of simultaneity if 
they are used within Maxwell’s theory. 

3. Einstein’s New View of Concepts 

3.1 Concepts Must be Grounded in Experience 
 What licensed Einstein’s taking of “the step” is a new approach he explicitly decided to 
adopt towards concepts such as simultaneity in physical theory. The view is quite simple: a 

                                                
10 Does this mean that the constancy of the speed of light is a conventional artifact of how we set 

our clocks? It does not. Einstein’s definition of simultaneity requires certain facts to obtain. It 

would fail if an emission theory of light were true, since such a theory allows light to have many 
speeds. And it would fail in an ether theory, with light propagating at c with respect to the ether. 

For observers moving at c would find light frozen and be unable to use it to determine the 
simultaneity of events. 
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concept can properly represent something physically real only in so far as the concept is 

grounded in experience. That adopting this view enabled “the step” is expressed quite clearly in a 
1924 recollection:11 

After seven years of reflection in vain (1898-1905), the solution came to me suddenly 
with the thought that our concepts and laws of space and time can only claim validity 

insofar as they stand in a clear relation to experiences; and that experience could very 

well lead to the alteration of the concepts and laws. By a revision of the concept of 
simultaneity into a more malleable form, I thus arrived at the special theory of 

relativity. 
And Einstein elaborated the view in his 1916 interview with Max Wertheimer who reported:12 

…an illustration which Einstein offered in discussion. Suppose somebody uses the 

word ‘hunchback.’ If this concept is to have any clear meaning, there must be some 
way of finding out whether or not a man has a hunched back. If I could conceive of 

no possibility of reaching such a decision, the word would have no real meaning for 

me. 
‘Similarly,’ Einstein continued, ‘with the concept of simultaneity. The concept really 

exists for the physicist only when in a concrete case there is some possibility of 
deciding whether the concept is or is not applicable. Such a definition of simultaneity 

is required, therefore, as would provide a method for deciding. As long as this 

requirement is not fulfilled, I am deluding myself as physicist (to be sure, as non-
physicist too!) if I believe that the assertion of simultaneity has real meaning.’ 

This view about the meaning of concepts can be found in Einstein’s more general writings. His 
popular text on relativity theory (Einstein 1917, §8) asserts at the relevant moment: “The concept 

[of simultaneity] does not exist for the physicist until he has the possibility of discovering 

whether or not it is fulfilled in an actual case.” 

                                                
11 This is a translation in Papers Vol. 2, p. 264, of a voice recording, transcribed and presented in 
the German in Herneck (1966). 
12 While Wertheimer presents the remarks as a quotation, they are more likely recreations from 
notes. 
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3.2 The Purging of the a priori from Concepts 
 Einstein’s principal concern was the danger accompanying the use of concepts not 
properly grounded in experience. Use of a concept in a physical theory typically requires some 

sort of factual presumption. The danger was that use of a concept in a physical theory might 
inadvertently commit us to false physical presumptions, which we would introduce unwittingly 

as a kind of priori knowledge, since it entered our theorizing merely through our choice of 

concepts and not through empirical investigation of the presumption. For example, before 
relativity theory, simultaneity was taken to be a two place relation between events. Events A and 

B could be simultaneous simpliciter; after relativity theory, it was recognized that events A and 
B can be simultaneous only with respect an observer or frame of reference. So use of the older 

concept had required the tacit presumption that judgments of simultaneity are independent of 

observer or frame of reference. 
 Here is how Einstein (1936, p. 299) recounted our failure to recognize the inadequate 

grounding in experience of distant simultaneity prior to relativity theory: 
The illusion which prevailed prior to the enunciation of the theory of relativity—that, 

from the point of view of experience the meaning of simultaneity in relation to 

spatially distant events and, consequently, that the meaning of physical time is a 
priori clear—this illusion had its origin in the fact that in our everyday experience we 

can neglect the time of propagation of light. We are accustomed on this account to 

fail to differentiate between "simultaneously seen" and "simultaneously happening"; 
and, as a result, the difference between time and local time is blurred. 

 The lack of definiteness which, from the point of view of its empirical significance, 
adheres to the notion of time in classical mechanics was veiled by the axiomatic 

representation of space and time as given independently of our sense experiences. 

Such a use of notions—independent of the empirical basis to which they owe their 
existence—does not necessarily damage science. One may, however, easily be led 

into the error of believing that these notions, whose origin is forgotten, are logically 
necessary and therefore unalterable, and this error may constitute a serious danger to 

the progress of science. 

 Einstein urged that we preclude such unwitting introduction of a priori presumptions by 
proper attention to the experiences needed to warrant the application of the concept. Where no 
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such experiences are possible, the concept is fictional or arbitrary. In his analysis in “On the 

Electrodyanamics of Moving Bodies,” Einstein had no difficulty identifying the experiences 
needed to warrant application of the concept of simultaneity for events at the same place. 

However he could not identify experiences sufficient to warrant application of the concept of 
simultaneity for events at different places; so that concept is fictional or arbitrary. At this point, 

someone of a Machian bent would call for the purging of the concept from the theory as idle 

metaphysics with no grounding in experience. Einstein, however, was willing to retain the 
concept as long as its arbitrary character was recognized and in a way that no longer allowed the 

unwitting introduction of a priori presumptions. In the case of distant simultaneity, Einstein 
achieved this by introducing distant simultaneity through a definition—a freely chosen 

stipulation—carefully designed to minimize the danger of introducing false physical 

presumptions. In the context of Einstein’s two postulates, his definition of simultaneity had the 
consequence that judgments of simultaneity of distant events would vary with changes of the 

state of motion of the observer. Einstein’s procedure had purged kinematics of the false 

presumptions about simultaneity that permeated the Newtonian view of space and time.  

4. The Debt to Mach and Hume 
 We have seen that Einstein expressed a debt to the philosophical writings of Hume and 
Mach in his discovery of special relativity. We are now in a position to see what that debt was. 

For the demand that concepts must be properly grounded in experience permeates both of their 

writings. Indeed much of their philosophical critiques amounts to the purging of a priori 
elements from concepts that do not meet this demand. 

 Because of the prominence of this view of concepts in Einstein’s recollections of the 
breakthrough of 1905 and also in Hume and Mach’s writings, I believe this view was the debt 

Einstein acknowledged to Hume and Mach, rather than any particular analysis by Hume and 

Mach of the notion of time. Of course, it is not so easy to disentangle the particular analyses of 
the notion of time from the general view of concepts. Mach’s (1960, Ch. 2, §VII) celebrated 

critique of Newton’s Absolute Space is simply a direct application of the general view. Newton’s 
concept, Mach complains, is a fiction not given in the facts of experience. With only a little more 

effort, one finds Hume also applying his view of concepts to time in ways we could imagine 
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impressing a young Einstein.13 Since none of these analyses explicitly treat simultaneity, even if 

they were the ones that impressed him, Einstein would still need to abstract their general 
approach to concepts and then apply that abstracted approach to distant simultaneity in order to 

make the breakthrough of 1905. 

4.1 Mach 
 While Einstein attributed greater influenced to Hume, it is easier for us to see that 

Einstein found this view of concepts in Mach’s writings. The reason is an appreciation Einstein 
wrote of Mach’s work as Einstein’s 1916 obituary for Mach. We need not read Mach’s writings 

and try to ascertain how Einstein may have read or misread them and what in them attracted him. 
The obituary tells us directly how he read Mach’s work and what he valued in it. What looms 

large in his appreciation is Mach’s treatment of concepts just along the lines sketched above. 

Einstein (1916) described Mach’s general orientation towards concepts, which contains the basic 
doctrine that concepts have meaning only in so far as they are empirically grounded:14 

Science is, according to Mach, nothing but the comparison and orderly arrangement 
of factually given contents of consciousness, in accord with certain gradually 

acquired points of view and methods…. 

                                                
13 Having asserted that we have no means to ascertain exact equality of measure for geometrical 
figures, Hume (1978, Book 1, Part II, Section IV) urged that the idea of a perfect correction of 

imperfect, real measures “is a mere fiction of the mind, and useless as well as 

incomprehensible.” 
He then extended the critique to the notion of the duration of time:  

This appears very conspicuously with regard to time; where tho’ ‘tis evident we have 
no exact method of determining the proportions of parts, not even so exact as in 

extension, yet the various corrections of our measures, and their different degrees of 

exactness, have given us an obscure and implicit notion of a perfect and entire 
equality. 

I am grateful to Gerald Massey for drawing my attention to this discussion. 
14 The translations that follow are based loosely on Engel (1997). 
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…concepts have meaning only in so far as they can be found in things, just as they 

are the points of view according to which these things are organized. (Analysis of 
concepts) 

He proceeded then to find in Mach the warning against the use of concepts disconnected from 
their experiential grounding: 

Concepts that have proven useful in ordering things can easily gain authority over us 

such that we forget their worldly origin and take them as immutably given. They are 
then rather rubber-stamped as a ‘necessity of thought’ and an ‘a priori given,’ etc. 

Such errors often make the path of scientific progress impassable for a long time. 
And then Einstein found in Mach the license to purge our theories of concepts that extend 

beyond their experiential grounding or to alter them to bring them into accord with that 

grounding: 
Therefore, it is not at all idle play if we are trained to analyze long familiar concepts, 

and to point out upon which circumstances their justification and usefulness depends; 

and how they evolved in particular from the givens of experience. Thereby their all 
too powerful authority is broken. They are removed, if they cannot properly be 

legitimized; they are corrected if their association with given things was too sloppy; 
they are replaced by others if a new system can be established that, for various 

reasons, we prefer. 

These remarks refer to Mach’s historico-critical approach to understanding our present scientific 
concepts through an account of their historical development , a central theme in Mach’s critical 

writings on physics, whose importance Einstein recognized. Einstein then proceeded to illustrate 
how Mach applied this view in his well-known critiques of Newton’s absolute space and time 

and mechanics (Mach, 1960, Ch. 2.VII Newton’s Views of Time, Space and Motion). The 

illustrations, quoted at length, are too well known to bear repetition here. Judgments of time are 
revealed to be really just expressions of dependence of one thing on another, such as the 

oscillations of a pendulum or the position of the earth; Newton’s bucket experiment reveals only 
what happens when there is relative rotation between the water and the rest of the universe; it 

does not reveal an absolute motion, which has no grounding in sense experience. 

 Einstein here attributes to Mach the view of concepts that Einstein found decisive in his 
discovery of special relativity: concepts must be properly grounded in experience and there are 
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great dangers in using concepts that fail to be so grounded. Einstein clearly made this same 

connection, for he proceeded to aver that Mach had just the critical apparatus needed to discover 
special relativity, if only he had worked in another time: 

It is not improbable that Mach would have hit upon relativity theory if, in the time 
that he was of young and fresh spirit, physicists would already have been moved by 

the question of the meaning of the constancy of the speed of light. In this absence of 

this stimulation, which follows from Maxwell-Lorentz electrodynamics, even Mach’s 
critical urge did not suffice to arouse a feeling for the necessity of a definition of 

simultaneity for spatially distant events. 
We must recall the context of Einstein’s remarks, an obituary written to honor Mach. So we 

might well understand that Einstein here overlooked Mach’s opposition to introducing arbitrary 

concepts into theories. Einstein was more forthright about the lack of fertility of Mach’s 
approach the following May when he wrote to his friend Besso “I do not inveigh against Mach’s 

little horse; but you know what I think about it. It cannot give birth to anything living, it can only 

stamp out harmful vermin.”15; and again when he averred in a lecture in Paris of 6 April 1922 
“…in fact what Mach has done is to make a catalog, not a system.”16 

4.2 Hume 
 We saw above that Einstein informed Schlick in 1915 that Hume had “still much more” 

influence than Mach. However there is some uncertainty over just the work to which Einstein 

referred. He informed Schlick that he studied Hume’s “treatise on understanding,” “shortly 
before finding relativity theory.” But does that betoken Hume’s A Treatise of Human Nature? Or 

is it Hume’s later An Enquiry concerning Human Understanding? I will follow the editors of 
Papers, Vol. 2, who decide the former is intended. They note (pp. xxiv-xxv) that the first part of 

Hume’s Treatise of Human Nature was then available in a recently published German 

translation; that Einstein recalled reading Hume in German translation; and that it was known to 
belong to the reading list of the Olympia Academy, the small reading group formed by Einstein 

and his friends Conrad Habicht and Maurice Solovine in 1902. 

                                                
15 13 May 1917; Papers, Vol. 8a, Doc. 339. Translation from Holton (1968, p.240). 
16 As quoted in Holton (1968, p.239). 
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 If we turn to Hume’s Treatise, we find that Hume’s entire approach is based on a view of 

concepts that agrees with that of Einstein and Mach in the essential observation that concepts 
(“ideas”) are grounded in sense experience (“impressions”). Hume concluded his introductory 

section (Book 1, Part 1, Section 1) with the synoptic assertion: 
…all our simple ideas proceed either mediately or immediately, from their 

correspondent impressions. 

     This then is the first principle I establish in the science of human nature… 
Hume then unleashed this basic principle upon the ideas of metaphysics, demanding that they all 

derive from impressions. Hence, he noted, the idea of time depends upon our having changing 
impressions (Book 1, Part II, Section III): 

As ‘tis from the disposition of visible and tangible objects we receive the idea of 

space, so from the succession of ideas and impressions we form the idea of time, nor 
is it possible for time alone ever to make its appearance, or be taken notice of by the 

mind. 

…time cannot make its appearance to the mind either alone, or attended with a steady 
unchangeable object, but is always discover’d by some perceivable succession of 

changeable objects. 
What of ideas that extend beyond their grounding in impressions? These are denounced as 

falsehoods, as, for example, in the case of those who try to apply the notion of duration in time to 

perfectly unchangeable objects (Book 1, Part II, Section III): 
I know there are some who pretend, that the idea of duration is applicable in a proper 

sense to objects, which are perfectly unchangeable…But to be convinced of its 
falsehood we need but reflect on the foregoing conclusion, that the idea of duration is 

always deriv’d from a succession of changeable objects, and can never be convey’d to 

the mind by any thing stedfast and unchangeable. For it inevitably follows from 
thence, that since the idea of duration cannot be deriv’d from such an object, it can 

never in any propriety or exactness be apply’d to it, nor can any thing unchangeable 
be ever said to have duration. Ideas always represent the objects or impressions from 

which they are deriv’d, and can never without a fiction represent or be appl’d to any 

other… 
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This mode of analysis—illustrated here in its application to the notion of duration—is repeated 

throughout Hume’s Treatise. What of the idea of substance, a substratum that carries properties? 
“We have therefore,” Hume ( Book 1, Part 1, Section VII) assures us, “no idea of substance, 

distinct from that of a collection of particular qualities, nor have we any other meaning when 
either talk or reason concerning it.” Most famously this is the basis of Hume’s celebrated critique 

of causation. There is no necessary connection relating cause to effect beyond the habit of mind 

that assigns it to the sorts of constant conjunction in sense experience that we call causal (Book 
1, Part III, Sections XIV, XV). 

4.3 Why Hume more than Mach? 
 Why was it that Hume influenced Einstein “still much more” than Mach in Einstein’s 

discovery of relativity?17 It might just have been happenstance. Perhaps Einstein read Hume at 

just the moment in his work on electrodynamics that reflections on the origin of our concepts 
were apposite. Or perhaps there is a relevant, systematic difference between Hume and Mach’s 

writings that might explain why Einstein found more inspiration in Hume. 
 There is such a difference. At the decisive moment, Einstein realized the fictional 

character of the concept of the simultaneity of distant events. He exercised the freedom implicit 

in this fictional character to assert through definition which distant events are simultaneous. The 
exercising of this freedom in turn calls to mind Einstein’s frequent characterization of the 

concepts of scientific theories as "free creations of the human spirit." (For discussion, see 

Howard, 2004, Section 2). While Einstein seems to have found this freedom to conform with 

                                                
17 The remark is repeated in a somewhat vaguer context in a letter by Einstein to his old friend 

Besso of 6 Jan. 1948 (Speziali, 1972, Doc. 153). Responding to a suggestion by Besso of Mach’s 
influence, Einstein responded: 

“Now, as far as Mach’s influence on my development is concerned, it was certainly 

great. … How far [Mach’s writings] influenced my own work is, to be honest, not 
clear to me. In so far as I can be aware, the immediate influence of D. Hume on me 

was greater. I read him with Konrad Habicht and Solovine in Bern. However, as I 
said, I am not in a position to analyze what is anchored in unconscious thought.” 
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Hume’s writings and perhaps even to be encouraged by them, he found it directly contradicted in 

Mach’s writings. 
 Let us take Einstein’s view of Mach first. As we saw in Section 4.1, Einstein may well 

have felt it inappropriate to dwell on Mach’s philosophical weakness in writing Mach’s obituary. 
However Einstein felt no such reservation years later in private correspondence with his old 

friend Besso. He wrote to Besso on 6. Jan. 1948 (Speziali, 1972, Doc. 153; translation Holton, 

1968, p. 231): 
[Mach] took convincingly the position that these conceptions, even the most 

fundamental ones, obtained their warrant only out of empirical knowledge, that they 
are in no way logically necessary. … I see his weakness in this, that he more or less 

believed science to consist in a mere “ordering” of empirical “material”; that is to say, 

he did not recognize the freely constructive element in the formation of concepts. In a 
way he thought that theories arose through discoveries and not through inventions. He 

even went so far that he regarded “sensations” not only as material which has to be 

investigated, but, as it were, as the building blocks of the real world; thereby, he 
believed, he could overcome the difference between psychology and physics. If he 

had drawn the full consequences, he would have had to reject not only atomism but 
also the idea of a physical reality. 

Mach’s view of science as the mere ordering of sensations left Einstein no room for invention, 

the freedom of construction of concepts invoked in his 1905 definition of distant simultaneity.  
 Hume is mentioned in one other place in Einstein’s Autobiographical Notes. Einstein 

noted (p.13): 
Hume saw clearly that certain concepts, as for example that of causality, cannot be 

deduced from the material of experience by logical methods. 

A familiar aspect of Hume’s view (e.g. Hume, 1978, Book 1, Part III, Section IV, pp. 165-66, 
170) is that we proceed from sense impressions to the concept of cause by custom or habit. That 

aspect might well suggest to Einstein the sort of freedom in concept formation that Einstein 
invoked in his 1905 definition of simultaneity. At least Hume’s view would seem compatible 

with this freedom, for Hume does not call upon us to eradicate the notion of causation as 

necessary connection, but merely to recognize its true origin and nature. However Einstein read 
Mach’s strict anti-metaphysical attitude as directly contradicting this freedom. 
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4.4 Taking the Step 
 We saw above that Einstein reported to Schlick that he had studied Hume’s writing 
“shortly before finding relativity theory.” So we can well imagine how the decisive moment 

came. After exploration upon exploration had led to nothing, Einstein finally saw that Maxwell’s 
electrodynamics already conformed to the principle of relativity. That it appeared not to, he now 

saw, was an illusion fostered by the false presumption of absolute simultaneity. With the support 

of his readings of Hume and Mach, he determined that the concept of absolute simultaneity was 
fictional and he found the courage to discard it. In its place, he introduced a new definition of 

distant simultaneity, exercising the freedom to modify concepts that may have been encouraged 
by his reading of Hume, but not of Mach. 

 We have essentially no further clues as to the nature and even order of his deliberations at 

this moment. Since Einstein’s later reporting of the relativity of simultaneity is routinely given in 
terms of clocks and how light signals may be used to synchronize them, it is easy to presume that 

Einstein discovered the relativity of simultaneity by reflection on clocks and light signals.18 

                                                
18 In this regard, we may well wonder if Einstein was informed by Poincaré’s earlier analysis of 
Lorentz’s local time in terms of light signals and clocks. More generally, we may wonder 

whether Einstein drew on Poincaré’s conventionalist views when Einstein invoked the freedom 

to fix the concept of simultaneity through a chosen definitions. If Einstein hit upon the relativity 
of simultaneity without reflecting on clocks and light signals, a possibility we cannot rule out, 

then there would be no significant role for Poincaré’s analysis of local time. Moreover, if a 

reading of Poincaré’s work was important to Einstein’s taking of the step, we should ask why he 
acknowledges help only from Hume and Mach in stating the philosophical debts incurred in the 

discovery of special relativity. Einstein did elsewhere acknowledge a debt to Poincaré. For 
example, writing to Besso on 6 March 1952 (Speziali, 1972, Doc. 182) of his early readings with 

Habicht and Solovine, he noted: “These readings [of Hume] were of considerable influence on 

my development—along with Poincaré and Mach.” But nothing in this acknowledgement 
specifically suggests the discovery of special relativity. Poincaré’s name is not mentioned 

elsewhere in Autobiographical Notes. Poincaré does figure prominently in the appended “Reply 
to Criticisms” (1949a). But Poincaré is discussed only for his contribution to the discussion of 
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Elsewhere I have urged caution in making this presumption and explored other possibilities 

(Norton, 2004, Sections 7-8; forthcoming, Sections 4.5, 6). None of the deliberations Einstein 
reported prior to the step involve clocks and light signals. They pertain to light as a waveform 

extended in space, rather than as a signal, a spatially localized pulse.19 There are other pathways 
Einstein could follow that did not require contemplation of clocks and synchronization by light 

signals. Lorentz’s (1895) Versuch, which Einstein had read, used Lorentz’s “theorem of 

corresponding states” to establish that optical experiments would not reveal the motion of the 
earth  as long as it was slow.20 Lorentz’s result depended essentially on his use of “local time,” 

which mathematically served precisely the same function as the relativity of simultaneity in 
special relativity. All that was needed was to give a different physical interpretation to Lorentz’s 

mathematics. Might the step have been taken by Einstein, emboldened by Hume and Mach, 

recognizing that Lorentz’s local time was just time and not a mathematical contrivance? 
 There is even an observational pathway to this conclusion. Einstein recalled two 

experiments as having been important in guiding him to special relativity: Fizeau’s experiment 

on the speed of light in moving water and the observation of stellar aberration, the deflection of 
starlight due to the relative motion of the earth and the star. What is distinctive about the 

observed effects in both experiments is that they arise entirely from Lorentz’s local time. That 
means that, in the context of special relativity, they arise entirely from differences in judgments 

of simultaneity by observers in relative motion. In the case of stellar aberration, for example, a 

wave front changes its direction of propagation as we transform between observers in different 
state of motion. The change of direction arises entirely because the two observers use different 

                                                                                                                                                       

the conventionality of geometry. For further discussion, see Darrigol, 1996, p. 302; Darrigol, 
2004. 
19 Einstein recalled in several places that the insight came to him suddenly, suggesting that he 
may not have needed to develop a new framework of clocks and synchronization procedures to 

see it. See Einstein’s 1922 recollections in Kyoto above “…and suddenly I realized the 

solution…” and in the 1924 recording “…the solution came to me suddenly with the thought that 
our concepts…”. 
20 More precisely, there would be no observable effect to first order in v/c where v is the speed of 
the earth. 
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judgments of simultaneity in assembling the local fragments of the wave into a spatially 

extended wavefront at one instant. If Einstein noticed this, he would have found an observational 
basis for the relativity of simultaneity, largely independent of the details of Maxwell’s 

electrodynamics and requiring no thought of clocks and their synchronization by light signals. 
My conjecture is that just such a recognition explains Einstein’s attribution of importance to 

these two experiments. 

5 Conclusion: Einstein as Physicist and Philosopher 
 When Einstein expressed a debt to the philosophical writings of Hume and Mach in his 

discovery of special relativity, he did not refer to a particular doctrine about space and time in 
their writings. While both cast their critical eyes on the notions of space and time, neither gave 

the sort of analysis of the concept of simultaneity that Einstein needed. Rather, what Einstein 

found helpful in their writings was a view about concepts. They must be grounded in experience 
and, in so far as they extended beyond that grounding, they are fictional or arbitrary. Rather than 

merely abjuring these fictional concepts (Mach) or at best tolerating them (Hume), Einstein saw 
them as revealing an arbitrariness in our physical theorizing. The fictional concept could still be 

introduced through a freely chosen definition, as long as the definition did not tacitly commit us 

to false presumptions. That view of concepts enabled Einstein to abandon the notion of absolute 
simultaneity when he finally realized that this notion was all that obstructed his conforming of 

Maxwell’s electrodynamics to the principle of relativity. He replaced it by a new notion of 

simultaneity introduced through a definition that did no commit him to the absoluteness of 
simultaneity. 

 In his “Reply to Critics” in the volume Albert Einstein: Philosopher-Scientist, Einstein 
(1949a) mused that a scientist “must appear to the systematic epistemologist as a type of 

unscrupulous opportunist,” drawing selectively on the views of the realist, idealist, positivist and 

Platonist as it suited the scientist’s purposes. As Howard (2004) has noted, this selectivity may 
not betoken an incoherent position rather than one that agrees partially with each of the views 

listed. Nonetheless Einstein’s selectivity is surely evident in the present episode in Einstein’s use 
of the work of Hume and Mach. He takes those parts that serve his purpose in physical theory. 

But he ignores other less helpful consequences of their critiques and leaves the systematic 
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elaboration of the philosophical doctrines to others. And we can hardly blame him since his goal 

is to develop new physical theories, not new philosophies. 
 To see the selectivity, consider a problem that Einstein did not address and which arises 

directly from the severity of Hume’s critique. The application of his view of concepts led Hume, 
as we saw above, to the view that it is meaningless to apply the notion of duration in time to 

unchanging bodies. Einstein never seemed to adopt the full consequences of that conclusion; and 

if he had, it would have crippled his subsequent theorizing. It contradicts directly his famous 
cosmology of 1917 (Einstein, 1917a), which models the universe as a uniform distribution of 

matter in space, both of which remain perfectly changeless over an infinity of time. Indeed 
Einstein introduced this model exactly because he felt it met the demands of Mach’s critique of 

inertia. 

 There is a deeper systematic difficulty. In formulating the view as requiring concepts to 
be ‘grounded’ in sense experience, I have chosen a somewhat vague locution. Just what does this 

grounding amount to? In the narrowest view, the meaning of the concept simply is the actual 

sense experience that grounds it. If that is the view, we must ask whether and how we can arrive 
at concepts that are universally meaningful when all our experiences are, it would seem, specific? 

Take two people who have sense experience of what we would ordinarily say are different 
instantiations of the same concept. In the narrowest view just mentioned, these two people would 

form different concepts on the basis of their sense experience. Yet if we reject this narrowest 

view, what sorts of extensions beyond the grounding experiences are admissible and why are 
they admissible? 

 This problem is tackled by Hume with some energy. He maintained that a concept can 
meaningfully extend beyond the specific impressions that ground it. While we cannot experience 

directly every one of the infinitely many shades of blue, Hume urged in the Treatise (Book 1, 

Part I, Section I) that we can readily conceive of a missing shade in a gradation of shades of blue 
presented to us, even though we may never have experienced this particular shade directly. It is 

not just that we can generalize from many instances of the same shade to the concept of that 
shade; we can also proceed to different shades. 

 Mach inclines towards a very lean reading of the grounding in experience. Science, he 

urged, was merely economical description of experience. He wrote (1882, pp. 197, 207) that 
"Physics is experience, arranged in economical order." and "The goal which it [physical science] 
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has set itself is the simplest and most economical abstract expression of facts." Thus he did deny 

the applicability of physical science beyond the actual facts at hand, this being the foundation of 
his critique of Newton’s ideas of absolute space and time. 

 Mach’s celebrated analysis of Newton’s bucket experiment offers a clear statement of his 
resistance even to small extensions beyond actual fact, just as it shows that this austerity was too 

radical for Einstein. The relevant fact in the experiment is that, when a bucket of water rotates 

with respect to the remainder of the universe, there is a concavity formed in the surface of the 
water. Might this concavity be due to some sort of interaction between the water in the bucket 

and the distant stars? Would such an interaction mean that the walls of the bucket, if made 
leagues thick, would drag the water with it through this interaction when the walls were rotated?  

Mach recognized the temptation to guess at the possibility. However, in his celebrated remark on 

Newton’s bucket, Mach denounced such theorizing. Or that, I believe, is the only reading that 
conforms to Mach’s other pronouncements on science as economical summary of experience. 

Mach (1960, p. 284) wrote: 

Newton's experiment with the rotating vessel of water simply informs us, that the 
relative rotation of the water with respect to the sides of the vessel produces no 

noticeable centrifugal forces, but that such forces are produced by its relative rotation 
with respect to the mass of the earth and the other celestial bodies. No one is 

competent to say how the experiment would turn out if the sides of the vessel 

increased in thickness and mass till they were ultimately several leagues thick. The 
one experiment lies before us, and our business is, to bring it into accord with the 

other facts known to us, and not with the arbitrary fictions of our imagination. 
As I have discussed in detail elsewhere (Norton, 1993), Einstein’s response to this same problem 

is revealing. He chose to endorse exactly the speculation that Mach disavowed. Einstein inferred 

that the walls of a very massive bucket, if rotating, would drag the water, attributing this same 
conclusion to Mach. That conclusion became his “relativity of inertia” and later “Mach’s 

principle,” the notion that drove Einstein through years of theorizing on general relativity, before 
he abandoned it. 

 Einstein chose fertility for a new physical theory over philosophical cogency. So how did 

Einstein explain that concepts can supply us meaningful content beyond the experiences that 
ground them? He wrote (1936, p. 292): 
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The very fact that the totality of our sense experiences is such that by means of 

thinking (operations with concepts, and the creation and use of definite functional 
relations between them, and the coordination of sense experiences to these concepts) 

it can be put in order, this fact is one which leaves us in awe, but which we shall 
never understand. One may say "the eternal mystery of the world is its 

comprehensibility."…In speaking here of "comprehensibility," the expression is used 

in its most modest sense. It implies: the production of some sort of order among sense 
impressions, this order being produced by the creation of general concepts, relations 

between these concepts, and by definite relations of some kind between the concepts 
and sense experience. It is in this sense that the world of our sense experiences is 

comprehensible. The fact that it is comprehensible is a miracle. 

His explanation—that it is a wondrous miracle beyond our comprehension—would surely be the 
last resort of a desperate philosopher. But it is a comfortable resting point for a physicist whose 

real concern lies in physical theory and who wants to call up philosophical analysis only when it 

suits his physical ends.21 
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