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Philosophy of Science

September, 1987

THE LOGICAL INCONSISTENCY OF THE OLD QUANTUM
THEORY OF BLACK BODY RADIATION*

JOHN NORTONT

Department of History and Philosophy of Science
University of Pittsburgh

The old quantum theory of black body radiation was manifestly logically in-
consistent. It required the energies of electric resonators to be both quantized
and continuous. To show that this manifest inconsistency was inessential to the
theory’s recovery of the Planck distribution law, I extract a subtheory free of
this manifest inconsistency but from which Planck’s law still follows.

1. Introduction. The old quantum theory of black body radiation emerged
in the first decade of this century, when it was found that the conjunction
of

1. Thermodynamics.
2. Statistical mechanics.
3. Classical electrodynamics.

led to the Rayleigh-Jeans law for the distribution of energy over the com-
ponent frequencies of black body radiation, rather than the empirically
verified Planck distribution law. To recover the Planck law, the old quan-
tum theorists simply conjoined

4. Quantum postulate.

to the above theories to form the old quantum theory of black body ra-
diation.
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328 JOHN NORTON

To the critical eye of the classical logician, this strategy is self-de-
feating and the new theory’s success suspect. For the augmented theory
had been rendered manifestly logically inconsistent. The quantum pos-
tulate 4. contradicts the continuity of energy levels posited by classical
electrodynamics 3. Any proposition, including the Planck law or for that
matter any other distribution law, can be derived from a contradiction.

In this paper I will show that the manifest inconsistency produced by
conjoining 4. to 1., 2. and 3. was inessential to the old quantum theory’s
recovery of the Planck distribution law and the results leading up to it.
To do this I will extract a subtheory from 3. which no longer posits con-
tinuity of the relevant energies and show that the Planck distribution law
can still be recovered from the conjunction of it with 1., 2. and 4. The
resulting subtheory of the old quantum theory of black body radiation
will be free of manifest inconsistency and I conjecture its consistency.

Of course in the event, the old quantum theory did not fall victim to
the logical anarchy of inconsistency. It was avoided by isolating the re-
sults of classical electrodynamics from those derived from quantum dis-
continuity in two domains of calculation. I now outline the main results
of each domain.

Classical Electrodynamic domain. This domain contained two results
constraining the functional form of the distribution law. They were the
Stefan-Boltzmann law of 1879/1884 and the Wien displacement law of
1894, a more general law entailing the former law. The Stefan-Boltzmann
law asserted that the total energy density of black body radiation u is
proportional to the fourth power of temperature 7:

u=oT* (1)

where o is a constant. The Wien displacement law amounted to the as-
sertion that the energy density of black body radiation of temperature T
at a given frequency f, u,, must be a function g of a single variable

up(T) = fg(f/T) @3

Upon integration over all values of f, equation (2) reduces to equation
1.

There were two further relations in this domain. Planck’s celebrated
analysis (1900) of black body radiation assumed that the radiation was in
equilibrium with a large number of electric resonators within the cavity
enclosing the radiation. The energy density u; of the radiation at fre-
quency fin equilibrium with a resonator of energy U had been determined
from classical electrodynamics in Planck’s earlier work, where he as-
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sumed that the energy U could vary continuously. He found
up = @mf’/)U 3

In an alternate approach, used by Rayleigh (1900) for his derivation of
the Rayleigh-Jeans distribution law, one took enclosed radiation at equi-
librium to consist of a superposition of independent “normal modes of
vibration” or, as I shall call them, radiation oscillators. The density of
radiation oscillators in the cavity was calculated essentially by requiring
that the wavelength of each oscillator present fit an integral number of
times into the cavity. The volume density n, of oscillators per unit fre-
quency is

ny = 8mf*/c? 4

Quantum domain. In this domain, the average energy of a resonator U
or radiation oscillator E in thermal equilibrium at temperature T is de-
termined by assuming that each can only adopt, with equal a priori prob-
ability, energy levels which are an integral multiple of some energy ele-
ment g. It follows that

U = q/(exp(q/kT) — 1) (5)

and similarly for E. (k is Boltzmann’s constant.) Classical electrodynam-
ics requires that the energy levels of both types of system can vary con-
tinuously, that is ¢ = 0. With this condition, (5) reduces to the classical
equipartition result for a system with two degrees of freedom, U = kT.
The inconsistency of the quantum and classical electrodynamic domains
follows directly from the nonzero value accorded g in the quantum do-
main.

The Planck distribution law was derived by importing the results of the
classical electrodynamic domain into the quantum domain. According to
whether the quantization was carried out over resonators or radiation os-
cillators, results (3) or (4) respectively were conjoined with (5) to give
an expression for u,. Comparison with the Wien displacement law (2)
then required g to be set proportional to frequency f, the constant of pro-
portionality 4 being given the value of Planck’s constant by comparison
with experimental results. Thus the Planck distribution law

up = @Bmhf/c’) - (1/(exp(hf /KT) — 1)) (6)

was recovered.

Derivations of this type involving quantization over resonators were
given by Lorentz (1910) and Larmor (1909), for example, and those in-
volving direct quantization of the radiation oscillators were given by Eh-
renfest (1906) and Debye (1910).
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The response of the physicists concerned to the inconsistency inherent
in their theory was somewhat varied. Planck’s own attitude has become
the focus of some attention following Kuhn’s disputed claim (1978) that
Planck believed his analysis of 1900 and 1901 to be thoroughly classical,
whatever quantum discontinuity it contained being a result of the mis-
application of Boltzmann’s method. For discussion, see Klein, Shimony
and Pinch (1979).

Perhaps Einstein’s attitude was the most enlightened. In his 1905 light
quantum paper (1905), he stated more clearly than anyone else the failure
of a purely classical analysis and concluded that classical electrodynamics
could only hold for the time average of quantities. Thus he noted else-
where (1906), (1909) that strictly speaking Planck’s relation (3) must be
posited independently, although its applicability for equilibrium calcu-
lations was justified by the assumed correctness of classica! electrody-
namics for time average quantities. His later “A and B coefficient” de-
rivation of the Planck distribution law (1916) tried to solve the consistency
problem through replacing use of the results of classical electrodynamics
by statistical analysis of quantized absorption and emission of radiation.
But he still invoked the Wien displacement law without offering a non-
classical derivation of it.

The most widespread attitude seems to have been the one familiar to
us through the well-known textbook accounts of the theory, such as Becker
(1982, pp. 277-292). One was free to pick and choose from the results
of classical electrodynamics. The logical inconsistency of this procedure
was more an inconvenience around which one negotiated and which was
to be eliminated—eventually.

What made this attitude possible and enabled any application of the
theory at all was a generally careful but inarticulated control on which
results could be exported from one domain to the other. Whilst the Wien
displacement law (2), the Planck resonator formula (3) and radiation os-
cillator density relation (4) could be imported freely by the quantum do-
main, other classical results involving an explicit assertion of the conti-
nuity of energy levels of resonators, for example, were prohibited entry.

However since the rules governing these exchanges were never made
explicit, the soundness of the strategy and therefore of the theory as a
whole was by no means obvious.

Rescher and Brandom (1980) have offered a nonstandard semantics that
can tolerate logical inconsistency. In their system, the truth of a propo-
sition P in one consistent collection of propositions and the truth of its
negation in another consistent collection does not enable us to infer the
truth of the conjunction (P & not-P) in the combined collections, even
though the syntactic derivability relation still allows P, not-P +- (P & not-
P). Their nonstandard semantics distinguishes the distributed truth of two
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propositions P and Q of two different collections from the collective truth
of the conjunction (P & Q). The distributed truth of P and Q does not
guarantee the collective truth of (P & Q). This device enables logical
inconsistency to be tolerated without anarchy and provides the kind of
rule needed to govern exchanges of propositions between the classic and
quantum domains.

Unfortunately the old quantum theorists did not adhere to Rescher and
Brandom’s nonstandard semantics. For example, they took (2) and (3)
from the classical domain and (5) from the quantum domain and con-
joined them to arrive at the Planck distribution law (6). From the dis-
tributed truth of (2), (3) and (5), they immediately inferred the collective
truth of the conjunction in (6).

2. The Subtheory Outlined. The key to constructing the subtheory is
the recognition that the physicists of the old quantum theory extravagantly
overcommitted themselves in incorporating all of classical electrodynam-
ics into their theory. One only needs a minimal characterization of elec-
tromagnetic radiation to enable the recovery of the Planck distribution
law and the results leading up to it. Thus the subtheory is formed as the
conjunction of

1. Thermodynamics
2. Statistical mechanics

with a short list of properties of a form of matter to be called “radiation”.
Planck’s electric resonators are also introduced in the list as “generalized
Planck resonators”. This list is a subtheory of 3. Classical electrodynam-
ics and 4. Quantum postulate, which it replaces. It is summarized in Ta-
ble 1 along with the results that can be derived from it.

The manifest inconsistency of the original theory stemmed from the
assumption in 3. Classical electrodynamics, of continuous energy levels
in contradiction with 4. Quantum postulate. This inconsistency no longer
troubles the subtheory since no assumption is made about the continuity
of energy levels in the list, apart from the quantum postulate itself. The
simplicity and parsimony of the list make plausible the conjecture that
the subtheory is consistent.

It is convenient to think of the subtheory as the thermodynamic analysis
of the general forms of matter described by the list. Statistical mechanical
arguments are used only at one point in the analysis. In Section 8 for
reasons given there, I shall indicate how they can be dispensed with.

We shall see that radiation comprises a more general class of zero rest
mass matter than the electromagnetic radiation of classical theory. It is
characterized by a two-parameter family of types, the two parameters
being “f-type” and “h-type”. The f parameter corresponds to the fre-
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TABLE 1. PROPERTIES POSITED FOR RADIATION AND GENERALIZED
PLANCK RESONATORS AND THE RESULTS RECOVERED FROM THEM

PROPERTY RESULTS RECOVERED

Radiation

(i) Rest mass property: Radiation has
Zero rest mass.

(ii) Frequency Property: There is a
family of types of radiation,
parameterized by the positive
real-valued index “frequency” f.

(iii) Spatial superposition property: From (i), (ii), and (iii).
The mixing of radiation of Kirchhoff’s laws
different frequencies and of Stefan-Boltzmann law

different directions occurs
reversibly, without requiring or
releasing energy.

(iv) Frequency characterization: The From (i), (ii), (iii) and (iv):
ratio of energy E to frequency f of | Wien displacement law (WDL)
a unidirectional, monochromatic u; = fe(f/T)
element of radiation is a Lorentz for some function g
invariant.
(v) Quantum postulate:
a. Radiation oscillators can only From WDL and (v):
take energies that are an Average radiation oscillator energy (AROE)

integral multiple of an energy E; = hf/(exp(hf/kT) — 1)
element ¢, that is 0, g, 2q, 3q, and g = hf

b. In determining the statistical
equilibrium of a system of
radiation oscillators, each of the
accessible energy levels has
equal a priori probability.

(vi) Classical limit property: Radiation | From (i), (ii), (iii), (iv) and (vi):
for which ¢ = h = 0 is classical Radiation oscillator density formula (RODF)
electromagnetic radiation. n, = 8mf?/c’
(See Section 8 for alternate From AROE and RODF:
macroscopic quantum postulate) | Planck distribution law (PDL)

u, = (8mf?/c)hf/(exp(hf/kT) — 1)

quency of radiation of the classical theory, although very few of the char-
acteristically wavelike properties associated with frequency are posited
for radiation. The value of the s parameter determines whether the ra-
diation energies are continuous or quantized and to which degree. h = 0
radiation is not quantized. Radiation for which 4 takes the value of Planck’s
constant, that is 4 = 6.63 X 107% erg sec, is quantized in accord with
our experience of the real world.

Similarly, generalized Planck resonators represent a general class of*
nonzero rest mass systems which can exchange energy with radiation.
They are characterized analogously by “f-type” and “h,-type”, where f,
corresponds to the resonant frequency of classical electric resonators and
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(Continued)

PROPERTY

| RESULTS RECOVERED

)

(UD)

"

"

Generalized Planck Resonators

Rest mass property: Generalized
Planck resonators are systems
containing energy of nonzero rest
mass.

Resonant frequency property:

There is a family of types of

generalized Planck resonators,

parameterized by the positive real
valued index “resonant

frequency”, f,.

Resonant frequency

characterization: The ratio of

energy U to resonant frequency f,

of a generalized Planck resonator

is a Lorentz invariant.

Quantum postulate for generalized

Planck resonators:

a. Generalized Planck resonators
can only take energies that are
an integral multiple of an
energy element g¢,, that is
0, g, 2q,, 3¢, . . .

b. In determining the statistical
equilibrium of a system of
generalized Planck resonators,
each of the accessible energy
levels has equal a priori
probability.

From (i), (ii") and (iv'):

Wien displacement law for resonators
(WDLR)

U = g(f/T)

for some function g

From WDLR and (v'):

Average generalized Planck resonator energy
(AGPRE)

U = h.f/(exp(h f,/kT) = 1)

and g, = h.f,

(vii) Compatibility conditions:

a. A generalized Planck resonator
of type A, can only interact
with a radiation system of type
h, if h, = h.

b. A generalized Planck resonator
of resonant frequency f, can
only come to equilibrium with
radiation of frequency f,
provided f, = f in the
resonator’s rest frame.

FROM PDL, AGPRE and (vii):
Planck resonator formula (PRF)
u = Bmf?/cU

h, determines the degree of quantization. The 4, and A values of resonators
and radiation which interact are equal, so that the degree of quantization
of each can be represented by the value of /4 alone.

The subtheory relies on invoking the requirement of Lorentz invari-
ance. This requirement did not always figure explicitly in work in elec-
trodynamics and the old quantum theory in the relevant historical period.
However such work was typically implicitly Lorentz invariant. Here I am
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concerned only with those versions of the old quantum theory that were
Lorentz invariant, whether implicitly or explicitly so.

There has been some confusion over the correct Lorentz transformation
formulae for temperature and heat, with Ott (1963) challenging the tra-
ditional formulae of Planck and Einstein. I shall avoid adopting any par-
ticular transformation for temperature and heat. The required results will
be derived from the assumed Lorentz invariance of entropy. The latter
assumption agrees with both Ott and the practice of the old quantum the-
ory. It can be derived by demonstrating that one can construct the Lorentz
boost of a system by a reversible adiabatic acceleration. For further dis-
cussion of this general area, see Earman (1980).

How does the reconstruction vindicate the original theory?

First, it shows that the original theory’s manifest inconsistency was ines-
sential to its recovery of the Planck distribution law and the results lead-
ing up to it. For these results can be derived from a subtheory, free of
manifest contradiction.

Second, it explains retrospectively how the old quantum theorists came
to introduce inconsistency into their theory and why this move was not
fatal to the theory. Their task was the discovery of the behavior of quan-
tized systems with A equal to Planck’s constant. However their existing
theoretical knowledge was almost exclusively limited to classical systems
of & = 0 in the form of classical electrodynamics. Fortunately certain
crucial results already recovered for # = O systems—such as the Wien
displacement law (2) and the Planck resonator formula (3)—turned out
to hold for systems of arbitrary & as well. In the absence of a general
characterization of arbitrary-A systems and troubled by the departure from
classical ideas in quantization, they took an expedient course: they ig-
nored that these results then had only classical derivations and applied
them to quantum systems as well. Naturally only very few classically
derived results could be treated this way. Therefore, they required the
tacit introduction of domains of calculation and a careful if inarticulated
control over just which results could be exported from the classical to the
quantum domain.

Third, the reconstructed theory provides a simple and now obvious rule
for governing the exchange of results between these domains:

Only results that hold for systems of all h can be exchanged freely
between classical and quantum domains.

This rule does not eliminate the fallacy of using classical derivations for
quantum results. Rather it enables us to review the manipulations of the
old quantum theorists and to decide whether a result transferred falla-
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ciously from a classical to a quantum domain is true in the latter domain.

For the remainder of the paper, I turn to the task of showing that the
properties listed in Table 1 are sufficient to yield the Planck distribution
law and the results leading up to it.

3. Kirchhoff’s Laws and the Stefan-Boltzmann Law. Radiation is as-
sumed to have the following properties:

(i) Rest mass property: Radiation has zero rest mass.

It follows immediately that radiation propagates at the invariant speed ¢
in empty space. To see this well known result recall that the zero rest
mass condition asserts merely that the energy-momentum vector of a small
element of unidirectional radiation is a null vector. Therefore its four-
velocity vector is also a null vector. No assumptions are made as yet
about the interaction between radiation and the matter upon which it is
incident. In general it may be absorbed—partially, completely or not at
all.

(ii) Frequency Property: There is a family of types of radiation,
parameterized by the positive real valued index “frequency” f.

(iii) Spatial superposition property: The mixing of radiation of dif-
ferent frequencies and of different directions occurs reversibly,
without requiring or releasing energy.

A familiar instance of the reversibility of this mixing is the separation of
visible light into its spectral components by a prism and their subsequent
recombination by a lens and second prism. A surface is a reflector by
definition, if radiation incident upon it when it is at rest is not absorbed
but reradiated with its frequency unchanged. The index fis virtually un-
determined by these properties, which permit reparameterization by ar-
bitrarily many new indices generated through appropriate functions of f.

It follows from Property (iii) that, when a system of radiation is gen-
erated by mixing components of various frequencies and directions, the
energy of each component retains its identity in the sense that it can be
recovered by a reversible process requiring or releasing no work and in
the form of radiation of the same frequency and direction. Thus we can
speak of the energy and entropy of each component of the mixed system
and note that each component behaves like an independent thermody-
namic system. Energy can only be exchanged between different com-
ponents, for example, through some external medium such as an enclos-
ing cavity wall. In the context of the quantum postulate, these components
will also be called “radiation oscillator”.

Properties (i), (i) and (iii) are sufficient for the derivation of Kirch-
hoff’s laws by the well-known thermodynamic arguments. See, for ex-
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ample, Sommerfeld (1955, pp. 136~138). These arguments enable us to
infer that radiation can be emitted by matter, provided that this matter is
capable of absorbing radiation. More specifically we conclude that: for
isotropic radiation enclosed in an isothermal cavity with at least a small
quantity of absorbing matter (“cavity radiation”), the volume energy den-
sity per unit frequency u; is a function of f and 7, the temperature of the
cavity wall, but not of its composition or shape; that the ratio of absorp-
tivity to emissivity of a given body is independent of its composition; and
that cavity radiation has the same constitution as radiation emitted by a
perfectly absorbing body of the same temperature, that is, as “black body
radiation”.

For a given total energy, the spectral energy distribution of black body
radiation has the maximum entropy. This follows since radiation of any
other spectral energy distribution, enclosed in a cavity with reflecting
walls, can be made to revert irreversibly to the black body distribution
by the introduction of a minute speck of radiation absorbing matter. Thus
the entropy S of a fixed volume of black body radiation satisfies 6S = 0
where 0 is any variation of the spectral energy distribution under the con-
straint of constant total energy. It follows from the usual methods that
black body radiation satisfies'

8s,/éu; = 1/T (7

where s; is the entropy density per unit frequency.

To recover the Stefan-Boltzmann law (1), we can use the well known
derivation of Sommerfeld (1959, pp. 139-140). We consider the revers-
ible adiabatic expansion of enclosed black body radiation, driven by ra-
diation pressure, and arrive at (1) from the requirement of the exactness
of the entropy differential, expressed as a function of pressure and tem-
perature changes. In this standard derivation, classical electrodynamics is
needed only to provide the crucial expression for radiation pressure p as
a function of total radiation energy density u,

p=u/3 (8)

Here however we recover (8) directly from property (i) and the assumed
isotropy of the instances of radiation in question. We write the compo-
nents of the stress-energy tensor 7}’ for radiation in space-time coordi-

'After Planck (1959, pp. 92-93). Alternately consider a cavity with reflecting walls
containing radiation of frequency f only. It communicates with a system of black body
radiation at 7" through a filter that passes radiation of frequency fonly. T increases infinitely
slowly. Result (7) follows from writing the rate of increase of entropy density s with energy
density u; in the cavity, using the relation ds/du, = 1/T.
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nates appropriately adapted to the world line of the observer’ and can
read off the locally observed radiation energy density # and pressure p
as

u=T,°
—pP= T,'= Tz2 = Ta3

The equality of these last three components follows immediately from
isotropy. But property (i) asserts that the trace of T}’ vanishes, that is

TO+T,'+T,>+T*=0

from which (8) follows.

4. The Wien Displacement Law. Properties (i), (ii) and (i) are not
sufficient for recovery of the Wien displacement law (2). These properties
admit many reparameterizations of frequency f. But the majority of them
will be inconsistent with (2), if (2) held for the original parameterization.
In traditional treatments such as Born (1960, pp. 453-455), which follow
Wien’s original method (1894), the further characterization of f needed
for recovery of (2) is provided by assuming that the frequency of radiation
is Doppler shifted upon reflection from a moving mirror. (2) then follows
from the consideration of the reversible, adiabatic expansion of black body
radiation in a mirrored cavity.?

However characterization of f in terms of the Doppler effect, as it is
usually understood, commits us to assumptions about the wavelike nature
of radiation which are unnecessary for the derivation of (2). Rather, we
require only the following property.

(iv) Frequency characterization: The ratio of energy E to frequency
f of a unidirectional, monochromatic element of radiation is a
Lorentz invariant.

The sufficiency of this property to yield the Doppler shift behavior for
radiation and thus also the Wien displacement law follows from two re-
sults already noted by Einstein in his original 1905 paper on special rel-
ativity: light energy and frequency share the same Lorentz transformation
law and a Doppler shifted light ray is just a Lorentz boosted light ray.
An alternate motivation for property (iv) is the fact that E/Af, where A is

*These coordinates are normal coordinates, where the timelike vector of the orthonormal
tetrad defining them as tangent to the observer’s world line.

*An alternate procedure is based on a dimensional analysis of the quantities concerned
and rests heavily on assumption about the number and nature of the physical constants
involved. See Sommerfeld (1955, pp. 140-145).
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Planck’s constant, is just the number of quanta contained in the energy
element.*

Derivation of the Wien Displacement Law. The derivation given is based
on a simple device. I will describe it in some detail here since similar
devices will be employed twice more in the sections following.

The entropy S of a unidirectional monochromatic element of radiation
must be some function of its energy E and frequency f.” That is

S = G(E.f) ®

for some function G of two variables. But since this law must obey Lor-
entz invariance, the Lorentz invariant S in (9) must be set equal to another
Lorentz invariant. Thus we can reduce the function G to a function G*
of one variable

S = G*(E/f) (10)

since E/f is the only Lorentz invariant that can be formed out of E and
f (up to an arbitrary function of E/f, which can be trivially absorbed into
G*).

This reduction in the number of variables is essentially all the content
of the Wien displacement law. This derivation can be modified to yield
the more familiar but less transparent form of the law (2) for the case of
black body radiation. The modification requires the three steps indicated
and the supplying of the missing mathematical detail.

(a) The replacement of entropy S and energy E with the appropriate en-
tropy and energy densities, s, and u,, the volume densities per unit fre-
quency and solid angle. Consider an element of unidirectional, mono-
chromatic radiation. s, will be some function of u, and f. This functional
relation is required to be Lorentz invariant. Therefore the same relation
will hold for the corresponding quantities s, u, and f' of the image under
Lorentz boost of the original element of radiation to velocity w in its
direction of propagation. It follows that

Ds iy = (3S4s/dtt) Dugs + (35,/f)Df
where D is the operator (d/dw)|,—. Substituting for Ds,;, Du, and Df

*Ehrenfest (1911), (1923) also derived the Wien displacement law on the basis of the
adiabatic invariance of this same ratio E/f. Property (iv) entails the adiabatic invariance
of E/f for radiation enclosed in a mirrored chamber.

° ignore the possibility of volume dependence, which will be ruled later by the quantum
postulate (v). In any case it is irrelevant to the density form of the law (12) and (13).
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using the values in the appendix, we recover

(35a/f)/ (3 In ) + (854/f*)/(9 Inf?) =0 an
which is equivalent to requiring that s satisfy®
Sor/f? = H(utog/f) (12)

where H is an undetermined function of one variable. Equation (12) is
the analog of equation (10) with the Lorentz invariants s,;/f> and u,/f"
replacing the Lorentz invariants S and E/f.

(b) Conversion to the case of isotropic radiation, through the substitution
of the relations s, = 4ms,, and u, = 4s,, into (12). We recover

si/f? = Kuy/f) (13)

for some undetermined function K.

(¢) Conversion to the case of black body radiation, which, unlike iso-
tropic radiation simpliciter, has a definite temperature 7. Using (7) to
replace the entropy density s; in (13) with T, we recover

1/T = 3s;/our = (1/1)K' (us/f?)

where K’ is the derivative of K with respect to its argument. Inverting
the function K’ in the second equality yields the Wien displacement law
in the form (2).

Unfortunately expressing the law in a form that holds only for isotropic
radiation, masks the fundamental connection between it and Lorentz in-
variance. For example, (13), unlike (10) and (12), no longer explicitly
relates a Lorentz invariant to a Lorentz invariant. Neither S;/f* nor u,/f’
is a Lorentz invariant. Also the form of the law now varies with the
dimensionality of space, unlike the simple form (10). The three-dimen-
sionality of space enters this derivation through the use of the solid angle
densities s, and u,. In a two-dimensional space (planar angle densities)
or one-dimensional space (no angle densities), the forms of the law cor-
responding to (13) and (2) would be altered by factors of f and f~.

Laue (1943) was the first to derive the Wien displacement law from
Lorentz invariance arguments. Here I have tightened his procedure some-
what by replacing his juggling of Lorentz invariants with a mechanical
procedure which yields the differential equation (12). Unfortunately Laue’s

®To see the equivalence, note that (12) entails (11) through direct evaluation of the partial
derivatives. The converse entailment follows from re-expressing the partial derivatives in
(11) as partial derivatives of the two new variables In (u,/f°) and x, where x is any suitably
different function of u,and f. Equation (11) then reduces to (3/8x)(s,/f>) = 0. This entails
that s,./f* is a function of the variable In (u,/f*) alone, from which (12) follows.
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derivation seems to have drawn little lasting interest, although it was
probably well known informally in earlier years. In his 1921 Encyklo-
paedie article on relativity for example, Pauli (1958, p. 95) refers to the
invariance of E/f with a remarkably cryptic single sentence, “Wien’s law
is connected with it.”

5. Radiation Oscillators. We can recover the expression (4) for the density
of radiation oscillators at frequency f up to a multiplicative constant from
the properties of radiation posited so far. We consider n,, the volume
density of these oscillators per unit frequency and solid angle, and use
the following two-step argument.

(@) nyis a function of frequency f only, even though in principle it could
also depend on u, and direction and indirectly on the shape, velocity or
other properties of an enclosing cavity.

To see this result, note that in the case of black body radiation, com-
ponents of the maximum possible number of different frequencies and
directions will be present. Therefore n, will take a maximum value. Con-
sider a system of black body radiation whose radiation oscillators cannot
exchange energy through any external medium. Now increase or decrease
the energy of any of the radiation oscillators present. It follows from
property (iii) that this change cannot affect the value of n,, since no new
oscillators can be formed. Of course we can reduce the energy of any
given oscillator to zero. But provided we allow that n, counts such zero
energy oscillators, the value of n, still remains unaffected. Since such a
manipulation can convert the black body energy distribution into any
nominated equilibrium distribution u,, it follows that n, is independent
of u,. Finally we have that black body radiation is isotropic and its n,
is independent of the properties of an enclosing cavity. Hence the same
holds for n, in the general case. Thus n, can depend only on f.

(b) The requirement of Lorentz invariance, yields the functional depen-
dence of n, on f. In brief the only Lorentz invariant that can be formed
out of n, and f is n,/f*, which must equal a constant. That is, n,, must
be proportional to f°. This result is now derived more mechanically.

A system of radiation at equilibrium is Lorentz boosted to velocity w.
The density 7, of unidirectional radiation oscillators whose directions lie
in the direction of the boost must satisfy

Dny = (dny/df)Df
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where D = (d/dw)|,-o. Substituting for the D terms from the appendix,
we have

dny/df = 2n/f

which can be solved directly to yield n,, = A’f* where A’ is a constant.
Finally from the isotropy of n, we have n; = 47mn, and therefore

ny=Af? (14)

where A = 47A".

The essential result leading up to (14)—that n, and n, depend only on
f—is already familiar from classical electromagnetism. There #; is de-
termined solely from the requirement that the wavelength (=c/f) of any
radiation oscillator present fit an integral number of times into the en-
closing cavity. The independence of the result from the shape of the cav-
ity follows from Kirchoff’s laws as above. See Bohm (1951, Ch.1), for
example.

6. The Quantum Postulate. In order to introduce the quantum postulate
in the traditional manner and complete the derivation of the Planck dis-
tribution law, we depart from a purely macroscopic thermodynamics and
posit that thermodynamic quantities, such as energy, entropy and tem-
perature, are derived from the most probable behavior of a large number
of systems. The quantum postulate for radiation is:

(v) Quantum postulate:
a. Radiation oscillators can only take energies that are an in-
tegral multiple of an energy element g, that is 0, q, 2q, 3q,

b. In determining the statistical equilibrium of a system of ra-
diation oscillators, each of the accessible energy levels has
equal a priori probability.

Consider a system of radiation oscillators that have come to a ther-
modynamic equilibrium at temperature 7. From the usual methods,
it follows that the probability P(i) that a radiation oscillator of fre-
quency f has energy ig, for i a nonnegative integer, is proportional to
exp(—iq/kT). The average energy E; of each radiation oscillator of fre-
quency f is 2 igP(i) which evaluates to expression (5). Combining with
the expression (4) for the density of radiation oscillators, we find that the
spectral energy distribution of black body radiation at temperature 7T is

u, =n;E;=Af>(q/(exp(q/kT) — 1))
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From a comparison with the form of the distribution law specified by the
Wien displacement law (2) we can now conclude that ¢ must depend on
f according to

q="n 5)

for 4 a nonnegative constant.

Setting 4 to some allowed value determines the value of g at any given
frequency. Thus we can use 4 to classify radiation into a one-parameter
family of “h-types”. & = O gives us the nonquantized limiting case. Set-
ting & = 6.63 X 107% erg sec, the value of Planck’s constant, gives us
the radiation of our actual world.

The black body radiation law now becomes

u; = Ahf’ (1/(exp(hf/kT) = 1)) (16)

The value of the constant A, first introduced in the radiation oscillator
density equation (14) above, can be determined by a limiting property of
radiation:

(vi) Classical limit property: Radiation for which ¢ = h = 0 is clas-
sical electromagnetic radiation.

By comparing equation (14) with its classical limiting case, equation (4),
we conclude that A = 87/c’ through which equation (16) reverts to the
Planck distribution law (6).

7. Generalized Planck Resonators. The electric resonators of the old
quantum theory shall be represented here as “generalized Planck reso-
nators”, with the following properties:

(i'") Rest mass property: Generalized Planck resonators are systems
containing energy of nonzero rest mass.

(ii") Resonant frequency property: There is a family of types of gen-
eralized Planck resonators, parameterized by the positive real
valued index “resonant frequency,” f,.

(") Resonant frequency characterization: The ratio of energy U to
resonant frequency f, of a generalized Planck resonator is a
Lorentz invariant.

As the numbering indicates, the properties of generalized Planck res-
onators are closely analogous to those of radiation. The principal differ-
ence lies in their differing rest mass properties. In addition I have not
specified any properties pertaining to the spatial superposition of the res-
onators, since we shall only deal with resonators at different spatial lo-
cations. Thus no assumptions analogous to property (iii) for radiation
need be made.
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Proceeding as in the case of radiation, we can now derive a result cor-
responding to the Wien displacement law. In general, the entropy S of a
generalized Planck resonator can be a function of its energy U, its res-
onant frequency f, and its velocity v.

S =G, f,v)

for some function G. As before, the requirement of Lorentz invariance
will lead us to replace this general function G by a function of Lorentz
invariants only, so that the Lorentz invariant S is itself set equal to a
Lorentz invariant.

The need to consider a velocity as an argument of the entropy function
did not arise in the radiation case, which makes the present calculation
more complex. But the result is much the same. For we shall see that the
requirement of Lorentz invariance eliminates v from the arguments of G
and reduces the function to one of a single variable, U/f,. This last quan-
tity is the only Lorentz invariant that can be constructed from the three
quantities U, f, and v—a result which is by no means obvious, but re-
turned to us quite mechanically from the calculation which follows.

Consider a generalized Planck resonator Lorentz boosted by a velocity
w in the direction of its own velocity v. From the requirement of Lorentz
invariance, it follows that

DS = (3S/9U)DU + (3S/df,)Df, + (3S/dv)Dv

where D = (d/dw)|,-, as before. We have from the appendix that
DS=DU=Df, =0, Dv=1-Vv/c

After substituting these values we recover
aS/ov =10

from which it follows that S is not a function of v.
To complete the calculation, we must consider DS, where D* =
(d*/aw?*)|,—o. Allowing that DU = Df, = 0, we have

D’S = (35/9U)D*U + (3S/0f,)D’,
Substituting for the D* terms from the appendix, we have
aS/0InU + 3S/dInf, =0

This is equivalent to requiring that S be some function H of the single
variable U /f,

S=HU/f) a7
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which is the simplest form of the Wien displacement law for resonators,
analogous to equation (10) for radiation. We can now replace S by the
temperature T through the relation dS/dU = 1/T. Differentiating (17)
with respect to U we have

1/T = £H'U/f)

where H' is the derivative of H with respect to its argument. Inverting
the function H' we recover the Wien displacement law for generalized
Planck resonators in its final form

U/f, = &(f/T) (18)

where g = (H’')"! is some function of a single variable.
Generalized Planck resonators are also governed by a quantum pos-
tulate:

(v") Quantum postulate for generalized Planck resonators:
a. Generalized Planck resonators can only take energies that
are an integral multiple of an energy element q,, that is 0,
qr qu, 3qr’ CEE
b. In determining the statistical equilibrium of a system of gen-
eralized Planck resonators, edch of the accessible energy levels
has equal a priori probability.

Following a procedure analogous to that of the previous section we now
find that the average energy U of a set of resonators at temperature 7' is
given by

U = q,/(exp(q,/kT) — 1)

It follows immediately from the Wien displacement law for resonators
(18) that g, must depend on f, according to

g, = hf, (19)
for &, a nonnegative constant. Thus U is equal to
U = hflexp(h f,/kT) — 1) (20)

We can now classify generalized Planck resonators according to the
value of A, into h,-types. Planck’s original classical resonators are of type
h, = 0, since they can adopt a continuous range of energy levels.

So far, generalized Planck resonators have been treated independently
of their interaction with radiation. To complete their treatment we now
need to recover the Planck resonator formula (3) and show that it holds
for both quantized and classical systems.

This formula applies to resonators in equilibrium with radiation. To
recover it, it must be posited that resonators in equilibrium with radiation
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satisfy two compatibility conditions. The first ensures that the quantiza-
tion of any resonator and radiation system which interact are well adapted.
It will forbid, for example, any interaction between a nonquantized reso-
nator (A, = 0) and quantized radiation (42 > 0). The second determines
which f,-types of resonators can come to equilibrium with which f-types
of radiation.

(vii) Compatibility conditions:
a. A generalized Planck resonator of type h, can only interact
with a radiation system of type h, if h, = h.
b. A generalized Planck resonator of resonant frequency f, can
only come to equilibrium with radiation of frequency f, pro-
vided f, = f in the resonator’s rest frame.

Since the a. condition ensures that the 4, and & values of any interacting
system of resonator and radiation will agree, we can speak of the & value
and A-type of any such system as a whole and for most purposes drop
the distinction between 4, and 4.

The b. condition must be limited to the rest frame of the resonator since
the equation f, = f can only hold in one frame, due to the different trans-
formation properties of f, and f. The two conditions combined entail that
g, = q in the resonator rest frame. It also follows from b. that a resonator
can only reach equilibrium with radiation oscillators of a single frequency
(measured in the resonator rest frame) but with arbitrary directions of
propagation.

Consider a volume V of radiation of frequency f in equilibrium with N
generalized Planck resonators at rest with respect to one another. Let the
system increase in temperature quasi-statically so that the radiation fre-
quency remains constant and the radiation remains in equilibrium with
the resonators. The rate of increase of total radiation energy with tem-
perature T is Vdug/dT and the rate of increase of total resonator energy
is NdU/dT. These quantities can be evaluated through equations (6) and
(20) respectively. With the application of the compatibility conditions, it
then follows from these evaluations that

(c3/877f2)(duf/dT) = d/dT (hf/(exp(hf/kT) — 1)) = dU/dT
in the resonators’ rest frame. It then follows that
dug/dU = 87f?*/c’

Upon integration, recalling that the frequency f is held constant during
the change of temperature, we recover

u; = (8mwf?/c’) U + constant
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The constant of integration can be set to zero to recover (3) by noting
that as T approaches zero, it follows from equations (6) and (20) that u,
and U also approach zero.

8. A Macroscopic Quantum Postulate. Both the original and recon-
structed theories of radiation are essentially macroscopic thermodynam-
ical theories. However with the introduction of the quantum postulate
(v)/(v") to enable derivation of the energy formula (5), an excursion is
made into the statistical mechanical reduction of thermodynamics. What
is not entirely satisfactory about this excursion is the paucity of the mi-
croscopic picture involved. For example there is no clear picture of the
time evolution of each microscopic component system. This picture is
sometimes provided by adopting the phase space of the corresponding
classical system and dividing it into quantum cells. But the use of this
hybrid phase space simply restates the original inconsistency in more so-
phisticated form. Thus I shall now ask how the statistical quantum pos-
tulate (v)/(v") can be replaced by a purely macroscopic postulate.

An elegant macroscopic postulate can be found for the classical limiting
case of ¢ = 0 of the quantum postulate:

Equipartition postulate: The energy of a generalized Planck reson-
ator and radiation oscillator depends only on its temperature.

This assumption is made routinely but rarely explicitly in the standard
statistical derivation of the equipartition theorem. Given the Wien dis-
placement law, the above equipartition postulate already forces the equi-
partition energy up to a multiplicative constant. In the case of a gener-
alized Planck resonator, the independence of energy U from resonant
frequency f, enables the identification of the undetermined function g in
the Wien displacement law (18) as the inverse function (up to a multi-
plicative constant). Thus U = KT, where K is an undetermined constant.
A similar argument holds in the case of radiation oscillators.

I have been unable to find a macroscopic quantum postulate that is
equally simple. Perhaps the quantum postulate finds its most informative
expression in the statistical form of postulate (v)/(v'). Indeed it has been
known from the early days of quantum theory that the discreteness of
energies in postulate (v)/(v') is not only sufficient but necessary for the
Planck distribution law, under a quite general statistical model. See Poin-
caré (1911), (1912) and Ehrenfest (1911).

To see the result, let g(E) be the relative a priori probability or weight
of energy E for a radiation oscillator.” Consider a system of oscillators

"The considerations of the remainder of this section apply equally to generalized Planck
resonators. Their differing transformation properties are irrelevant here.
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of the same frequency at thermal equilibrium. Defining the partition func-
tion

Z(» = j g(E) exp(—Et) dE @21
0
where ¢t = 1/kT, it follows that the average energy of each oscillator is
E = —d/di(In Z). If E has the quantum value (5), it follows that
Z(@) = 1/(1 — exp(—q1)
1 + exp(—gt) + exp(—2qt) + exp(—3qt) + . . . (22)

Il

up to an arbitrary multiplicative constant. We recover the weight function
associated with this partition function by noting that Z(f) as defined in
(21) is just the Laplace transform of g(E). Inverting (22) term by term
we recover

QE)=8E)+8E—q)+&E—-29)+8E -3¢ +... (23)

where & is the Dirac delta function. (23) amounts to the quantum postulate
).

The fact that Z(¢) is just the Laplace transform of g(E) affords a natural
means of finding a macroscopic quantum postulate.® We can take the
micro-quantum postulate expressed in terms of g(E) in (23) and use the
Laplace transformation to translate it into a macro-postulate in terms of
Z@).°

First note that (23) is ec ent to the two requirements

I. g(E) has period ¢g: g(E + ¢q) = g(E) for E = 0
II. The period integral J = [§ exp(—Et) g(E) dE is independent of
temperature ¢.

The equivalence with (23) depends on the fact that the Laplace transform
of the periodic condition I. is

Z(1) = J/(1 — exp(—q). 24
Second, given a system with any E(T) and corresponding Z(#), we can

®An alternate route to a macro quantum postulate rests on positing that the inverse tem-
perature heat capacity dU/dr is independent of frequency in the equipartition case and
varies linearly with it in the general quantum case. Its connection with the traditional
micro-postulate is less clear however.

°In spite of its micro origins, the partition function Z(f) = —exp [ E(¢)dt is just as much
a macro-quantity as energy and entropy.
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describe a “g-shifted” system satisfying E“(T) = E(T) + ¢ for all T by
setting

ZUtH) = exp(—gHZ(1) (25)

Finally, combining (24), the Laplace transform of the periodic condi-
tion I., with (25) and condition II., we recover a macroscopic translation
of (23):

Macroscopic quantum postulate: Each radiation oscillator has a
characteristic energy element q such that (Z° — Z)/q is independent
of temperature.

In the limit of ¢ = 0, this postulate yields an alternate equipartition pos-
tulate in which the macro-postulate’s finite difference constraint is re-
placed by a differential constraint:

Equipartition postulate: (dZ°/ dq)|q:0 is independent of temperature.

This macro version of the equipartition postulate is a translation of the
equivalent micro-postulate, which requires that g(E) is a constant.

9. Conclusion. This case study shows that the logical inconsistency of
a theory need not automatically render it physically uninteresting. The
analysis provides a strategy for dealing with such inconsistency: the elim-
ination of the inconsistency discovered by the extraction of a subtheory
free of it but which still contains the results of interest.

This stragey must be used with some care. Classically any inconsistent
theory contains all propositions. Therefore trivially every inconsistent the-
ory contains a subtheory with any nominated result of interest and which
is potentially free of inconsistency. For example, every inconsistent the-
ory contains a subtheory whose sole proposition is the Planck distribution
law.

This trivial strategy was not used here. The old quantum theory of
black body radiation was logically inconsistent in so far as it contained
both a proposition P and its negation not-P. But one could not derive any
proposition within the theory because of the tacit introduction of a non-
classical device, the two domains of calculation with inarticulated restric-
tions on the exchange of results between them.

In any case, the subtheory was constructed prior to the appearance of
the manifest logical inconsistency. This inconsistency arose only with the
conjoining of the original theory’s four components described in the in-
troduction. The subtheory was produced by first taking a smaller sub-
theory of the third component, classical electrodynamics, and only then
conjoining the four components, their conjunction now being free of the
original inconsistency.
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APPENDIX: LORENTZ BOOST FORMULAE

An element of monochromatic radiation of zero rest mass energy E, entropy S, volume
V and frequency f has its directions of propagation enclosed within a very small conically
shaped solid angle a and contains »n radiation oscillators. Under a Lorentz boost to a ve-
locity w in the average direction of propagation, these quantities take the primed values

E=EVU1+w/o)/d -w/e) f =fVA+w/c)/d—-w/c) §'=S§

V' = \/V(l - w/o)/(1 +w/c) a =all —w/c)/(1+w/c) n=n

Note that the expression for V' is peculiar to volumes that propagate at c. Thus the volume
densities per unit frequency and solid angle of E, S, and » transform respectively as

W o = (1 + w/c) /(1 — w/c)*?
'y = sg(1 + w/c) /(1 — w/c)
'y =nul+w/o)/(1 —w/c)

It follows that u,/f°, s,/f* and n,/f* are Lorentz invariants.
If U is the energy of a generalized Planck resonator of resonant frequency f, and velocity
v, then under Lorentz boost by velocity w in the direction of v, we have:

U =U/V1-w/* £ =£/V1I=-w/ v =u+w/1+w/c?)
Defining the operators D = (d/dw)|,= and D* = (d*/dw?)},-o, we find
Dugs = 3u,/c  Dsy= 2s,/c Dny = 2ny/c

DU=0 DU =U/¢*  Df=flc
Df,=0 D, =f./c Dv=1-v/c
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