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H I G H L I G H T S

• Efforts to design an infinite lottery machine using ordinary probabilistic randomizers have failed.

• The failure is explained by noting that nonmeasurable sets cannot be constructed.

• Their existence only is inferred by an application of the axiom of choice.

A B S T R A C T

The sustained failure of efforts to design an infinite lottery machine using ordinary probabilistic randomizers is traced back to a problem familiar to set theorists: we
have no constructive prescriptions for probabilistically non-measurable sets. Yet construction of such sets is required if we are to be able to read the result of an
infinite lottery machine that is built from ordinary probabilistic randomizers. All such designs face a dilemma: they can provide an accessible (readable) result with
probability zero; or an inaccessible result with probability greater than zero.

1. Introduction

Norton (2018) and Norton and Pruss (2018a) explored the physical
possibility of designing an infinite lottery machine.2 Such a machine
would choose without favor among a countable infinity of outcomes ...
1, 2, 3, … A curious anomaly appeared in these explorations. It proved
possible to find successful designs using plausible custom physics, such
as the quantum randomizer of Norton (2018, §10). However all efforts
to devise a machine using familiar probabilistic randomizers failed. The
proposals reported in Norton (2018), corrected by Norton and Pruss
(2018), were just a representative sample of many tried. Success could
not be secured even allowing for quite exotic processes. The best de-
signs that employed familiar probabilistic randomizers operated suc-
cessfully only with probability zero. The recalcitrant nature of the
failure raised the possibility that the obstacle was not merely a lack of
imagination in design. Rather its recalcitrance suggested that the failure
results from some matter of principle.

The goal of this note is to demonstrate that this is so. In any design,
the probabilistic randomizers provide us with a probability space large
enough to host the countable infinity of outcomes of the infinite lottery
machine that encode “1”, “2” and so on. These infinite lottery outcomes

must, in a general sense, be equal chance outcomes. If that equality of
chances is expressed as an equality of probabilities, then these prob-
abilities must each be zero valued. By countable additivity, it follows
that successful operation, that is, the realization of any one of them, is a
zero probability event. The escape that allows a non-zero probability of
success is to employ probabilistically nonmeasurable outcome sets for
the infinite lottery machine.

The failure of the design is now assured by a well-known problem in
set theory. If they are required, probabilistically nonmeasurable sets
must be assumed to exist, without being displayed constructively. All
known examples of nonmeasurable sets are non-constructible in the
sense that an explicit definition cannot be provided for them. There is
no complete demonstration that this non-constructibility holds uni-
versally. There are missing pieces. One is the need to assume the ex-
istence of certain exotic cardinal numbers, whose existence is increas-
ingly accepted in the literature. This non-constructibility of known
examples has remained unbreached for nearly a century and there is
little expectation that this will change. That it reflects a principled
impossibility will be assumed below.

This non-constructibility leads to a problem for infinite lottery
machines, derived from probabilistic randomizers. To know that the
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end state resulting from the operation of the machine lies in an outcome
set encoding “1” or “2” or so on, we need to be able to specify which are
these sets. But if the outcome sets are nonmeasurable, we cannot do it.
A fatal tension ensues is the form of a dilemma for probabilistic, infinite
lottery machines: these machines cannot both provide a result we can
read and also operate successfully. That is:

• If such an infinite lottery machine employs measurable outcome
sets, then they are sets of probability zero and the machine operates
successfully only with zero probability.
• If an infinite lottery machine employs nonmeasurable outcome sets,
then these outcomes cannot be defined explicitly and the result
drawn by the infinite lottery machine is not accessible.

It is a cruel twist, reminiscent of “Catch-22.” A design can provide a
result that we can read, only if the machine operates successfully with
probability zero.

The following section will present a motivating example that illus-
trates the incompatibility of success and accessibility. Sections 3, 4 and
5 develop a more general characterization of infinite lottery machines
based on probabilistic randomizers. It will be sufficient to establish the
general incompatibility of success and accessibility. Section 6 presents
another illustration of the failure in a different design. Section 7 states
conclusions. The analysis only impugns infinite lottery machines de-
rived from probabilistic randomizers. It leaves untouched the possibi-
lities of other designs. The conclusion presents an illustration of a
quantum mechanical infinite lottery machine. An appendix provides
supporting material for the characterization of Section 4.

In other work (Norton, 2018, §5; manuscript), the chance properties
of an infinite lottery are required to conform with a strong invariance
condition, “label independence.” The analysis here does not impose this
strong invariance condition. It relies only on the weaker requirement
that each individual lottery outcome “1,” “2,” “3,”… has the same
chance.

2. An illustration: A spin of a pointer on a dial

2.1. A design with probability zero of successful operation

The main ideas to be developed here appear in the following illus-
tration of a candidate infinite lottery machine, described in Norton
(2018, §2.3). It consists of a pointer spun on a dial, such that the pointer
will come to rest with a uniform probability distribution over all angles
from 0 to 360°. If the pointer halts on a rational angle, then it can be
used as an infinite lottery machine. For there are only countably many
rational angles and they can be mapped one-one to the natural num-
bers. The difficulty, however, is that the probability of selecting any
particular rational angle r out of the infinity of possible angles, rational
or real, is zero:

P(r)= 0 (1)

Since there is only a countable infinity of rational angles r, the prob-
ability that any rational angle at all is selected is the sum of a countable
infinity of zeros, which is zero.

= =
<

P success P r( ) ( ) 0
r0 1 (2)

The pointer will almost always select an irrational angle. That is, the
randomizer will operate successfully only with probability zero. For all
practical purposes, it does not function.

2.2. The extended design: improving the probability of success

The difficulty would seem to be easily solved. We take the infinite
lottery outcome sets, that is, those sets of randomizer outcomes to
which the lottery outcomes 1, 2, 3, …are associated. We enlarge or

extend them to include irrational angles. To each rational angle r, we
attach some suitable set of irrational angles extend(r), such that the sets
extend(r) partition the set of all angles. Then each spin of the pointer
must halt in one of these sets extend(r). The associated rational r is then
read off as the result of the infinite lottery machine. This extended
design will always succeed, for every angle must belong to just one of
the infinite lottery outcome sets, extend(r).

A concern is that we cannot assign any definite probability to each
outcome set, extend(r). For if we assign zero probability to each set,
then the probability of successful operation is zero, as (1) and (2) show.
We would now also contradict the normalization of the probability
distribution to unity. If we assign a probability greater than zero, say
ε > 0, no matter how small:

P(extend(r))= ε > 0 (3)

Then the sum of only finitely many of these probabilities will exceed
one, in contradiction with the normalization of the probability dis-
tribution to unity. Choose any natural number N > 1/ε. Summing over
N infinite lottery outcomes yields

> =P extend r( ( )) . (1/ ) 1
N (4)

We are caught in a dilemma:

Probability assignment dilemma: the probability of each infinite lot-
tery outcome is either zero or non-zero. In both cases, if the outcome
sets partition the outcome space, the normalization to unity of the
probability distribution is contradicted.

What follows will provide an escape from dilemma.

2.3. Extension by Vitali sets

A simple scheme for this extension is provided by the Vitali sets. To
implement the scheme, we take the angles from 0 to 360° and rescale
them to 0 to 1.3 We partition the set of angles into equivalence classes,
such that two angles belong to the same equivalence class just if they
differ by a rational angle. That is, angles x and y are in the same
equivalence class, just if y= x ⊕ r, where r is a rational angle. (Addition
“⊕” is modulus 1 addition, so all angles x, y remain constrained as
0≤ x,y < 1.) Writing “[x]” for the equivalence class that contains x,
we can give the formal definition:

[x]= {y | there is a rational r such that y= x ⊕ r}

All the rational angles form one such equivalence class, [0]. Irrational
angles form other equivalence classes such as [1/e] and [1/√2].

A Vitali set is formed as the set assembled from the following se-
lections:

Choice: select just one angle from each of these equivalence classes
[x].Just how this selection is made will prove to be the essential
point, to which we will return shortly. Call Vit(0) a Vitali set formed
under some selection that contains the rational angle 0. We can
generate another Vitali set from this first Vitali set merely by adding
a rational angle r, modulo 1, for some 0≤ r < 1, to each element of
Vit(0). Call this new set Vit(r). Each real angle r in 0≤ r < 1 defines
a distinct Vitali set.4

Since the collection of Vitali sets Vit(r) partitions the full set of

3 To avoid duplication with 0, 360° and 1 are excluded.
4 For otherwise if there were two such rationals r and s such that Vit(r)= Vit

(s), then the set would contain two distinct rationals r and s drawn from [0],
contrary to the definition of a Vitali set.
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angles, we can effect the extension envisaged by setting extend(r)= Vit
(r), for all 0≤ r < 1. A key property of the Vitali sets is that, by con-
struction, they are invariant under a rotation by any rational angle.
That is, any Vitali set Vit(r) can be mapped to any other Vitali set Vit(s)
by a rotation through the angle s-r. The probability distribution that
governs the spins is also invariant under these rotations. If a subset of
angles has probability p, then any subset produced by rotating that
original subset by any angle will also have probability p. It follows that
an infinite lottery machine, operating with these extended outcome
sets, is choosing its outcome without favor.

The discussion above rehearses a familiar starting point in treat-
ments of measure theory.5 The Vitali sets provide the standard, in-
troductory example of outcome sets to which no probability measure
can be assigned. For, by rotational invariance, we must assign the same
probability to each Vitali set. Replicating the computations of (1)–(4), if
we assign zero probability to each, then their countably infinite sum is
zero, contradicting the requirement that the probability of the total
space is unity. If we assign any probability greater than zero to each,
then summing finitely many will be sufficient to yield a sum greater
than one, once again contradicting the requirement that the probability
of the full outcome space is unity.

That the Vitali sets are nonmeasurable is usually taken as a negative
result, restricting the scope of measure theory. Here it is a positive re-
sult. It provides a path between the horns of the Probability assignment
dilemma above. It supplies infinite lottery outcomes to which no prob-
abilities need to be assigned. The dilemma no longer troubles the ex-
tended design. The device is still an infinite lottery machine. For its
indeterministic dynamics selects without favor among the infinite lot-
tery outcomes in virtue of the rotational symmetry of the dynamics.

2.4. Inaccessible results

A problem remains for the extended design; and it is fatal. If an
infinite lottery machine is to operate successfully, we must be able to
read its result. Let us assume that we can read the exact angle on which
the pointer halts. Then the result of the original infinite lottery machine
of Section 2.1 can be read. However we have no way of reading the
result of the infinite lottery machine with the extended design. For the
prescription (“Choice”) above does not give us an explicit definition of
the Vitali sets used. Rather their existence only is inferred from the
assumption that such a choice is possible. Thus, even if infinite preci-
sion measurements tell us that the spinning pointer halted on the ir-
rational angle 1/e, we cannot know which of the Vitali sets Vit(r) the
angle 1/e is a member. Thus we cannot read the outcome of the infinite
lottery machine with the extended design. The machine does not op-
erate successfully.

The problem is grave. It is worse than the technical problem of the
infinite precision needed if a measurement is to read the specific angle
on which the pointer halts. For this angle has a definite value. It is there
to be read, if only we can figure out how to do it. The Vitali sets Vit(r) of
the above construction are not uniquely specified. Each Vitali set con-
tains an uncountable infinity of elements, each chosen from a countable
infinity of angles. There are very, very many sets that could serve as
each Vit(r). The prescriptions employed above place no restriction on
which is implemented. Even extravagant idealizations of our powers of
measurement are ineffective if the target of our measurement is not
uniquely specified.

One might imagine that this lack of unique specification is a minor
obstacle. Might not more careful attention to the construction give us
explicitly defined sets extend(r)? It turns out that no way has been found
of providing explicit definitions of nonmeasurable sets like extend(r).
Their existence is always assumed without the provision of an explicit
recipe for constructing them. That the selections of Choice are possible

without explicit prescription is widely accepted. It is one of the axioms
of Zermelo-Fraenkel set theory, the “axiom of choice.” It was for-
mulated over a century ago in Zermelo (1904) and was controversial
from the outset. Zermelo (1908) had to mount a vigorous defense of its
use. As we shall see below, the ingenuity of generations of mathema-
ticians since has failed to find explicit recipes that can specify how the
choices should be made. Theorems in set theory to be discussed below
suggest but do not definitely prove that this failure is a necessity of the
mathematics.

In sum, infinite lottery machines derived from the probabilistic
randomizer, the spin of a pointer on a dial, must fail. A successful de-
sign must employ infinite lottery outcome sets that are probabilistically
nonmeasurable, since otherwise the machine operates successfully only
with probability zero. However, if we employ nonmeasurable outcome
sets in the design, then we cannot read the result. The machine fails to
operate successfully once again.

3. The physical description

3.1. The specification

The failure of this last design of an infinite lottery machine does not
derive, I contend, from a poor choice of the design specifics. Rather, any
design for an infinite lottery machine based on probabilistic randomi-
zers will fail in the same way. To arrive at this conclusion, we will first
see a general physical description of the common features of all such
lottery machines.

The randomizer. The machine consists of a device that is initialized in
one initial state and then evolves according to a known physical
theory (classical mechanics, quantum theory, etc.) to one of many
possible end states, whose totality forms the randomizer outcome
space.

Probabilities. The stochastic properties of the time evolution of the
device6 induce a countably additive probability measure over the
randomizer outcome space.

Infinite lottery outcomes. A countable infinity of disjoint sets of end
states is designated as the set of outcomes comprising the possible
selections of the infinite lottery machine.

Dynamical symmetries. These are functions that map invertibly the
outcome space back onto itself, while preserving probabilities. That
is, each symmetry maps any subset of the outcome space for which a
probability is induced by the dynamics to another subset of the same
probability.

Equal favoring of lottery outcomes. For any pair of infinite lottery
outcomes, there is a dynamical symmetry that maps the first onto
the second.

Accessibility of the result. There is a unique prescription for num-
bering the infinite lottery outcomes as 1, 2, 3, …so that a definite
result of the operation of the infinite lottery machine can be read.

Successful operation. The operation of the machine returns a result
with probability greater than zero.

This description is already rich enough to realize the Probability as-
signment dilemma above. The only probability assignment that conforms
with the equality of chances and the normalization to unity of the
probability distribution, is one that assigns zero probability to each of
the infinite lottery outcomes:

5 See Rosenthal (2006, pp. 3–4), Wagon (1985, pp. 7–8).

6 While familiar randomizers governed by classical physics (coin tosses, die
rolls, etc.) are only pseudo-randomizers, I accept the conclusion of Poincaré’s
method of arbitrary functions, such as elaborated in Myrvold (2016), that these
randomizers provide probabilities objective enough for present purposes.
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P(1)= P(2)= P(3)=…= 0

Since successful operation requires that one of the infinite lottery out-
comes be realized, the infinite lottery machine can operate successfully
only with probability zero.

P(success)= P(1) + P(2) + P(3) + …= 0 (5)

Following the escape described in Section 2.3 above, we arrive at a
general result that will prove of central importance:

Infinite lottery outcomes are nonmeasurable. If an infinite lottery ma-
chine derived from probabilistic randomizers operates successfully
with greater than zero probability, it employs probabilistically
nonmeasurable infinite lottery outcomes.

3.2. A restriction to finite additivity does not help

The analysis here presumes countable additivity of the probability
measures. It does that since this is the common assumption for prob-
ability measures and the one that applies to all familiar probabilistic
randomizing machines. One might well ask whether dropping it in
favor of mere finite additivity will allow a more appealing escape from
the dilemma of Section 1 above. Finite additivity allows us to sum the
probabilities of only finitely many disjoint outcomes to arrive at the
probability of their disjunction. The summations (2) and (5), however,
sum a countable infinity of such outcomes and are no longer permitted.

A restriction to finite additivity escapes the probability assignment
dilemma of Section 2. We can assign zero probability to each of a
countable infinity of disjoint outcomes of the lottery, "1", "2," "3," ...
However we can still assign unit probability to their disjunction. That
is, with the weaker finitely additive probability measure, can no longer
infer that the device operates successfully only with zero probability.
Merely finitely additive probability measures appear to open a place for
infinite lottery machines in probability theory.7 De Finetti (1972,
§5.17) used this fact to motivate a restriction to finite additivity. A
further appeal of finitely additive measures is that every outcome in
them can be assigned a probability. There are no probabilistically
nonmeasurable outcomes.

Promising as this sounds initially, a restriction to finite additivity
provides no respite from the problems of the dilemma of Section 1. The
problem is that the outcome sets associated with the infinite lottery
outcomes "1," "2," "3," … are still not constructible. That a merely fi-
nitely additive measure can assign a probability to them has not ex-
panded our capacities for identifying sets. These non-constructible sets
remain as non-constructible as before.

The reasoning that led to their non-constructibility can be restored,
but now using countably additive probability measures merely as
mathematical adjuncts. This is permissible, since the inferences that led
to non-constructibility do not require that the countably additive
probability measure be the true measure of the stochastic dynamics of
the system.

Consider some candidate infinite lottery machine. Its operation
employs a dynamics that leads it to settle into some end state within a
larger outcome space. The outcome space contains disjoint infinite
lottery outcome sets “1,” “2,” “3,” … Since the lottery machine is fair,
its dynamics makes it equally likely that the end state is any of these
infinite lottery outcomes sets. This is expressed as a symmetry over the
outcome space: we can switch around the number labels on these
outcomes without affecting the chances of the outcomes associated with
the labels. By supposition, the chances are expressed by a finitely ad-
ditive probability measure that is induced by the dynamics. Since it is

induced by the dynamics, the measure shares the same symmetries.
For example, the pointer on a dial randomizer comes to rest in way

that favors no part of the dial. Infinite lottery outcome sets associated
with “m” and “n” are so chosen that none are favored. The symmetry
that expresses this is just a rotation of all outcomes by some fixed angle.
It is implemented by adding a rational number r modulo 1 to all the
angles. That means that whichever outcome set is associated with some
“m” can be taken to an outcome set that is associated with some other
outcome “n” merely by a rotation. The induced probability measure
also respects this symmetry. It follows that the probability associated
with infinite lottery outcome “m” must equal that associated with
outcome “n.”

Returning to the general case, the finitely additive measure must
assign zero probability to each of the infinite lottery outcomes. We
construct a new, countably additive measure from the finitely additive
measure by eliminating just sufficient of its probability assignments
that the remaining assignments can be consistently extended by coun-
table addition. This elimination must remove the probabilities assigned
to at least some of these infinite lottery outcomes. Otherwise the
countably infinite sum of the zero probabilities of each the infinite
lottery outcomes would be zero. That zero would contradict the non-
zero probability of the outcome space or the subspace partitioned by
the infinite lottery outcomes. But now we have concluded that at least
some of the infinite lottery outcomes are non-measurable in an in-
extendible, countably additive probability measure. Such outcome sets
are non-constructible.

We can extend this reasoning from the case of some infinite lottery
outcomes to all by employing different adjunct, countably additive
measures. To do this we employ the symmetry transformation described
above. If we have a countably additive measure that leaves infinite
lottery outcome “m” nonmeasurable, choose a symmetry transforma-
tion that takes “m” to outcome “n” and apply it to the countably ad-
ditive measure. The result is a countably additive measure in which
infinite lottery outcome “n” is non-measurable and thus also non-con-
structible.

For example, in the pointer on a dial randomizer, a finitely additive
measure must assign zero probability to each of the extend(r) outcome
sets that partition the outcome space. To recover a countably additive
measure from this finitely additive measure, we must eliminate the
probability assignments to at least some of the sets extend(r), rendering
them nonmeasurable in an inextendible, countably additive measure
and thus non-constructible. Assume some particular extend(r) is non-
measureable with respect some countably additive probability measure.
What of another set extend(r’)? We apply a rotation by adding a rational
number r’ – r (modulo 1) to the angles that will map the set extend(r) to
the set extend(r’). This set extend(r’) will be nonmeasurable with respect
to the rotated countably additive measure8 and so non-constructible.

4. An abstract description of the outcome spaces

The description of infinite lottery machines given in Section 3.1 is
incomplete. It employs terms with vague referents. Just what is a “de-
vice”? What are its initial and end states? What is the scope of “known
physical theory”? We need a more precise, abstract description of the
probabilistic randomizer outcome spaces. To that end, we make the
further supposition that:

Outcome space I. The probabilistic randomizer outcome space can be
represented mathematically as sets, sets of sets, and so on. The set
elements include natural numbers, rational numbers, real numbers,
finite or infinite sequences of them and their finite-dimensioned
Cartesian products. The outcomes that comprise the results of an

7 It is argued in Norton (Manuscript) that this is a misleading appearance. An
infinite lottery machine respects label independence. It precludes even finite
additivity for the infinite sets of outcomes.

8 Briefly, if the measure assigns probability P to some set of angles S, then the
measure rotated by t assigns the same probability P to the rotated set S={a’|
a’ = a ⊕ t and a ∈S}.
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infinite lottery machine form a countable set of disjoint subsets
within the probabilistic randomizer outcome space.

This supposition strengthens the description of infinite lottery ma-
chines given in Section 3.1 above in the particular aspects needed for
the analysis that follow. Since the full scope of just which sets are in-
cluded is still incompletely specified, this is the first version, labeled “I”.
It will be made more precise shortly.

The adequacy of this abstract description must be supposed. The
vagueness of the description in Section 3.1 precludes anything more.
However the supposition can be motivated by a review given in the
Appendix. It shows that each of the probabilistically based designs for
infinite lottery machines in Norton (2018) conform with the descrip-
tion. All the designs considered that provide accessible results operate
successfully only with probability zero.

5. Nonmeasurability precludes accessibility

5.1. Zermelo-Fraenkel set theory

To proceed, we need greater clarity concerning the above abstract
description of the outcome spaces in terms of mathematical sets. There
are two, distinct questions: First, which structures exist? Among these
will be found the probabilistic randomizer outcomes spaces. Second,
which structures are explicitly definable? Among these will be found
infinite lottery outcomes that can figure in an infinite lottery machine
whose results are accessible.

Axiomatic set theory provides a well-developed answer to both
questions. The list of axioms of Zermelo-Fraenkel set theory with choice
(“ZFC”) are given by Hrbacek and Jech (1999, Ch. 15) as

Existence, Extensionality, Schema of Comprehension, Pair, Union,
Power Set, Infinity, Replacement, Foundation, Choice

Other texts, such as (Enderton, 1977, pp. 271–72) give equivalent
formulations, but with slight variations in terminology. The standard
project is to show that the existence and properties of structures used in
familiar mathematics can be derived within this axiomatic system. The
project has deceptively simple beginnings. Both Hrbacek and Jech
(1999, Ch.3) and Enderton (1977, Ch.4) begin by defining the number 0
as the empty set ∅, so that 0=∅, where the existence of the empty set
is asserted by the first axiom, the Axiom of Existence. The remaining
numbers are then defined as 1= {0}, 2= {0, 1}, 3= {0, 1, 2}, and so
on. The natural number n+1 is defined as a union of sets n+1 = n ∪
{n}. The existence of the union of sets invoked at each stage is assured
by the Axiom of Union. The project continues with the rational num-
bers, the real numbers and well beyond. We have the assurance of
Hrbacek and Jech (p. 268) of a far-reaching success that extends to the
fundamental objects of topology, algebra and functional spaces, as well
as demonstration of the widely accepted theorems that govern them.

5.2. Limits to what is explicitly definable

There is a strong temptation to replace the above characterization of
the randomizer outcome spaces with something that is much more than
ample: the sets that comprise the outcome spaces of the probabilistic
randomizers are derivable within ZFC. Tempting as it may seem, this
characterization cannot stand. For within this outcome space we must
be able to specify accessible infinite lottery outcomes.

The difficulty that this further requirement brings will not be ap-
parent in the early stages of the construction of the natural numbers
sketched above. The sets comprising the natural numbers 1, 2, 3, …are
defined explicitly. The number 3 is defined explicitly as the set {0, 1,
2}. The axiom system is especially amenable to explicit definition
through the Axiom Schema of Comprehension or Separation. It lets us
take any property P(x) for an entity x (which will always be a set in
axiomatic set theory) and use it to define a new set as a subset of a

larger set: the defined set contains just those elements of the larger set
that satisfy P. The possibilities for property P are very great. It can be
anything that can be written in first order predicate logic using the
predicates of axiomatic set theory. Is it an axiom schema, not an axiom,
since each such property defines a new axiom. This descriptive flex-
ibility is encouraging for efforts to specify the infinite lottery outcomes,
for they are introduced as subsets of the larger outcome space of the
probabilistic randomizers. For example, in the infinite lottery machine
of Section 2.1, the set of lottery outcomes was introduced as a subset of
real numbers in [0,1) by the property P(x)= “x is a rational number.”
The individual lottery outcomes were introduced by restricting P to
specific rational numbers.

The trouble starts with the “C” in ZFC. It designates the Axiom of
Choice. A choice function for some system of sets is a function that
maps each set in the system to one of that same set's elements. The
axiom just says (Hrbacek & Jech, 1999, p. 268):

Axiom of Choice: Every system of sets has a choice function.

In more informal terms, the axiom just tells us that, if we have a col-
lection of sets, we can form a new set by picking one element from each
of the sets. At first look, this axiom seems plausible and innocent.

The hidden peril is that the axiom does not define which is that
choice function. It merely asserts that, whenever we have a system of
sets, we can assume the existence of a choice function. That is what
made the axiom so controversial. It means that, if we use the axiom to
assert the existence of a lottery outcome set, we have not specified
which that set is, but only that it exists. An assurance of existence is cold
comfort if we are trying to read the result of an infinite lottery machine.
We may be assured that the outcome is in some infinite lottery outcome
set, but since we do not know which these sets are, we cannot know the
lottery outcome. The danger is real. We saw in Section 2.3 above that a
choice function was used to construct the Vitali sets. That yielded a
design for an infinite lottery machine whose result was inaccessible.

There is no simple escape. The axioms of Zermelo-Frankel set theory
excluding the Axiom of Choice (“ZF”) are too weak. We cannot replace
the results derived from the Axiom of Choice by some more inventive or
ingenious use of the axioms in ZF alone. Important theorems due to
Kurt Goedel and Paul Cohen show that the Axiom of Choice is logically
independent from the other axioms collected in ZF.9 We can add either
the Axiom of Choice or its negation to ZF, without contradiction, as
long as ZF itself is already consistent. Either choice will lead con-
sistently to different sets of result. Thus, to secure all the results derived
from the Axiom of Choice, we have to add it to the other axioms.

We require the infinite lottery outcomes to be accessible, so that the
results of the infinite lottery machine can be read. Characterizing the
outcome space as all structures arising in ZFC opens the possibility that
the infinite lottery outcomes of interest to us are not explicitly defined
and thus inaccessible. The risk is quite real. The Vitali sets of Section 2.3
can be introduced in ZFC, yet all efforts to provide explicit definitions
for them have failed. On the expectation that failures like this will
persist, we have to narrow the characterization of the randomizer
outcomes spaces:

Outcome space II. The sets that comprise the probabilistic randomizer
outcome space and the infinite lottery outcomes are derivable
within ZF.

The scope of sets so definable is expansive. The Axiom Schema of
Comprehension allow us to separate out sets by means of any set the-
oretic predicate, definable in first order logic.

9 See Hrbacek & Jech, 1999, p. 269. The literature on the axiom of choice is
enormous. For more, see Jech (1973). The axiom's status remains troubled in
part for its essential role in counterintuitive constructions such as used in the
Banach-Tarski “paradox.”
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5.3. Limits to measurable sets

The restriction to ZF alone may not seem so harmful. The damage
becomes apparent when we consider nonmeasurable sets. We saw
above in Section 3.1 that a successfully operating infinite lottery ma-
chine must employ infinite lottery outcomes that are nonmeasurable.
Yet nonmeasurable sets cannot be derived within ZF.

This impossibility is a hard won realization of set theory. When set
theory goes beyond ZF with the axiom of choice, it brings with it the
possibility of nonmeasurable sets. That in turn enabled unexpected
geometrical constructions, such as the Banach-Tarksi “paradox” or,
better, the Banach-Tarski theorem, since there is no real paradox, just
an odd result. Using as parts nonmeasurable sets authorized by the
Axiom of Choice, it is possible to take a sphere in three dimensional
Euclidean space, decompose it into five parts and then reassemble them
into two spheres, each of the same size as the first.10

The weakness of the theorem is that suitable nonmeasurable sets are
assumed to exist, under the Axiom of Choice, but are not defined ex-
plicitly. This provided a stimulus for resisting Banach and Tarski's re-
sult. At the same time, it gave strong motivation to efforts to give ex-
plicit definitions for the nonmeasurable sets. No such efforts succeeded.
That they must fail was all but shown by a theorem due to Solovay
(1970). He showed (with the qualification below) that the proposition
that all subsets of the reals are measurable could be added to ZF without
contradiction, as long as ZF itself is consistent. Thus it is not possible to
derive a proposition in ZF that asserts: “This subset S of real numbers is
nonmeasurable.” For that would contradict Solovay's added proposi-
tion.

Solovay's theorem “all but” shows the impossibility since there are
loopholes. First, one of its premises is that there exists an uncountable,
inaccessible cardinal number. Its existence is generally expected, but no
proof of it is possible11. Second, even if the Axiom of Choice is needed
in the larger logical system in which nonmeasurable sets arise, Solo-
vay's result does not rule out the possibility that the strengthened
system allows explicit definition of some nonmeasurable sets.

Much more can be said on these issues. For a review, see Wagon
(1985, Ch. 13). What we have seen so far, however, is sufficient for
present purposes. I will proceed with the presumption that non-
measurable sets cannot be constructed in ZF and that the expansion to
ZFC will not provide for nonmeasurable sets that are explicitly defin-
able. Both these presumptions might be false, but their falsity would be
surprising.

5.4. Accessibility and measurability

We can now assemble the results of the set theoretic analysis. If an
infinite lottery machine, based on a probabilistic randomizer, is to yield
an accessible result, we must restrict our outcome space, abstractly
described, to sets that are derivable in ZF. If we impose that restriction,
then the infinite lottery outcomes will be measurable. If the infinite
lottery outcomes are measurable, then (from Section 3.1) the infinite
lottery machine operates successfully with at best zero probability.

These last inferences give us the precise basis for the incompatibility
of accessibility and successful operation. If the outcome of an infinite
lottery machine is accessible, the machine cannot operate successfully
with more than probability zero. If the machine operates successfully

with more than probability zero, its result is inaccessible and cannot be
read by us.

6. Pruss’ well-ordered reals infinite lottery machine

A design for an infinite lottery machine by Alexander Pruss (2014)
illustrates the incompatibility just described. Assume that we have a
countable infinity of randomizers each of which picks a single real
number in (0,1) with a uniform probability density over (0,1). We may
use a spin of a pointer on a dial. Or each randomizer may consist of a
countably infinite sequence of coin tosses. If we encode heads and tails
as 1 and 0, the ensuing sequence, read as a binary fraction, identifies a
real number in (0,1). For example <H, T, H, T, H, T, …> is read as
0.10101010… which equals 2/3 in decimal notation. If the real num-
bers picked by randomizers 1, 2, …., n, …are r1, r2, …, rn, …, then they
form a set of real numbers in (0,1).12 We can now proceed with two
versions of the infinite lottery machine:

6.1. A design that provides an accessible result with probability zero

Among this set of real numbers, {r1, r2, …, rn, …}, we choose the
number that is arithmetically the smallest, say rN. The number N of the
randomizer that picked rN is the outcome of the infinite lottery.

The complication is that most of these infinite sets of real numbers
have no smallest element. There will be a smallest real in the set with
probability zero. The pertinent outcome space consists of all sequences
of randomizer numbers, ordered arithmetically. If that order gives us
r101 < r3 < r24= r7 < r47 < …, then the outcome is the se-
quence<101, 3, {24, 7}, 47, …> . The measure zero case of two
randomizers, 24 and 7, picking the same real number is accommodated
by including those outcomes as a set in the sequence. The infinite lot-
tery outcome N corresponds to all those sequences whose first term is N.
Since a symmetry of the selection of the real numbers in {r1, r2, …, rn,
…} is an arbitrary permutation of the order of the randomizers, each of
these lottery outcomes must have the same probability. Since their sum
cannot exceed unity, it follows that the probability of each infinite
lottery outcome N is zero.13 Summing, the probability that the lottery
machine returns any of these as a result is also zero.

6.2. A design that provides an inaccessible result with probability one

This last failing of the lottery machine design can be remedied if we
replace the arithmetic ordering by a “well-ordering” on (0,1). It is a
transitive, irreflexive relation on (0,1) such that every subset of (0,1),
including (0,1) itself, has a (unique) least element. The ordinary ar-
ithmetic “less than” relation is not a well-ordering on (0,1), since there
is no arithmetically smallest real number in (0,1) or in any of its open
subintervals. Under this well-ordering, every infinite set {r1, r2, …, rn,
…} of reals selected by the randomizers has a unique least member.

A complication is that this least real may be the outcome chosen by
more than one randomizer, sayM and N, for which rM= rN. In this case,
the outcome of the lottery is not unique. This confounding will only

10 The literature on Banach-Tarski is enormous. See Wagon (1985) for a
thorough treatment and Wapner (2005) for a delightful, more popular account.
Lest the theorem appear an affront to reason, at root it is no more bizarre that
this construction. Take a countable infinity of marbles, numbered, 1, 2, 3, 4, …
Divide them into the even and odd numbered sets, 2, 4, 6, 8, …and 1, 3, 5, 7, …
Renumber the even set as 1, 2, 3, 4, …and the odd set as 1, 2, 3, 4, …We have
now duplicated the original set of marbles.

11 The impossibility follows from Goedel’s second incompleteness theorem. (I
thank an anonymous referee for this clarification.)

12 With probability zero, the pointer on a dial may return 0 and the coin tosses
0= 0.00000… or 1=0.11111… We excise these cases manually by spinning
or tossing again whenever they occur.

13 More directly, partition the real number interval (0,1) into a countable
infinity of subintervals, …, [1/8, 1/4), [1/4, 1/2), [1/2, 1). Also divide up the
infinity of randomizers into a countably infinite set of countably infinite sub-
sets. Match the subsets of randomizers one-one to the intervals. With prob-
ability one, the subset of randomizers matched to [1/2, 1) will return a real in
that interval at least once. For they fail to do so with probability (1-1/2)∞=0.
Continuing with the other intervals, there is a probability one that each interval
contains a real returned by some randomizer. Combining, with probability one,
each interval contains a real selected by a randomizer. In this probability one
case, there is no smallest real.
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happen with probability zero. For the probability that any two nomi-
nated randomizers choose the same real number is zero; and there are
only a countable infinity of pairs of randomizers. Thus, with probability
one, this design of randomizer will return a result.

However, the individual infinite lottery outcomes can be seen to be
nonmeasurable using the same argument as used in Section 2.3 for the
Vitali sets. They partition the outcome space, setting aside the measure
zero sector in which a unique lottery outcome fails to arise. Hence their
probabilities must sum to unity. However each infinite lottery outcome
must also have the same probability. Since there is a countable infinity
of infinite lottery outcomes, neither a zero nor a non-zero value for the
probability can lead to this unit sum. No probability can be assigned
consistently to them.

If the design has probability one of success, then we should expect
its result to be inaccessible. That is, even given a specification of the
infinite set of real numbers chosen by the randomizers, {r1, r2, …, rn,
…}, it must turn out that we are unable to ascertain just which is the
infinite lottery outcome. This proves to be the case, since it turns out
that there is no finite way to specify the well-ordering of (0,1) needed.
Indeed, in results tracing back to Zermelo (1904), it turns out that the
existence of a choice function of the Axiom of Choice is equivalent to
the existence of a well-ordering of the set.14 Since a choice function is
presumed to exist for (0,1) but cannot be displayed explicitly, the same
is true of the well ordering of (0,1). Thus the outcome of the well-or-
dered reals infinite lottery machine may exist, but its value is in-
accessible to us.

7. Conclusion

This analysis shows that the project of designing an infinite lottery

machine using ordinary probabilistic randomizers is fraught with dif-
ficulties. However it does not impugn the very idea of such a machine.
If “possible” means that the machine can be implemented in some
plausible physical theory, then the quantum mechanical infinite lottery
machine of Norton (2018, §10) suffices. Perhaps the simplest im-
plementation of this quantum type of infinite lottery machine is pro-
vided by an ordinary quantum particle in a momentum eigenstate. If we
treat just one dimension of space with coordinate x and time t, then the
wave function of the particle with energy E and momentum p is spread
over all space as

Ψ(x, t)= exp(2πi(px – Et)/h)

where h is Planck's constant. Divide the possible spatial positions x into
a countable infinity of intervals [n, n+1) of equal size, where n=…
−2, −1, 0, 1, 2, …Taking the Born rule as our guide, the chance that
the particle manifests in any of these intervals is proportional to the
integral of the norm of Ψ (x, t) over this interval:

+ = = =
+ +

Chance n n x t x t dx dx([ , 1]) ( , ) ( , ) 1. 1
n

n

n

n1 1

It is the same for all the intervals. If we use some scheme to number the
intervals 1, 2, 3, 4, …, then the lottery outcome is just the number
assigned to the interval in which the particle position manifests. Each
arises with equal chance.

The notion of chance employed is not probabilistic. For the wave
function Ψ (x, t) cannot be normalized and, thus, a full application of
the Born rule is not possible. For an elaboration of the notion of chance
that is applicable, see Norton (manuscript).

Appendix. Abstract Descriptions of the Infinite Lottery Outcome Spaces

Spin of a pointer on a dial. 15 The outcome space consists of the angular position at which the pointer halts. The physical angles from 0 to 3600 can
be represented by the half open interval of real numbers, [0,1). There is a uniform probability distribution over this interval. The rational valued
outcomes employed as infinite lottery outcomes are all probability zero. One of them arises only with probability zero.

The jumping flea.16 A flea jumps from cells 1 to 2 to 3 to …, choosing to make each jump or not according to a probabilistic formula. The schedule
of jumps is accelerated so that an infinite number can be made in finite time. If the flea halts on cell n, then the outcome is represented by the
sequence< 1, 2, …, n> . The full outcome space consists of all finite sequences:< 1> ,< 1, 2> ,<1, 2, 3> ,<1, 2, 3, 4> , … and the infinite
sequence< 1, 2, 3, …> . Probability zero is assigned to each of the finite sequences and probability one to the infinite sequence. This last infinite
sequence represents the case of the flea never halting. With probability one, this design fails to return a result.

The infinitely accelerated random walk. At each stage, a walker chooses probabilistically to step left (“-1”), step right (“+1”) or stay put (“0”) on an
infinite road, marked off into a countable infinity of cells. The schedule of stages is accelerated so that infinitely many are completed in finite time.
The probability distributions over walker position approaches arbitrarily closely to a uniform distribution as the number of stages grows large. If we
take the outcome space just to consist of the final positions of the walker, as noted in Norton (2018, §8), we do not arrive at a well-defined space with
a uniform probability measure. For almost all the motions fail to converge to a well-defined final position for the walker. A better choice of outcome
space consists of all possible infinite sequences of −1, +1, 0, such as<+1, +1, 0, −1, 0, +1, …> , tracking the successive motions of the walker.
Almost all of these sequences will correspond to a failure of the walker position to converge to one cell. Convergence is required since the resulting
cell is the infinite lottery outcome. Convergence will arise only in cases of sequences with an infinite tail of 0's. For example<+1, +1, +1, −1, 0,
0, 0, 0, 0, 0, ….> corresponds to a walker halting at two positions to the right of the start. Each of these convergent sequences is a probability zero
outcome. Since there is only a countable infinity of them,17 there is a probability zero that any arises and, a fortiori, a probability zero that the infinite
lottery machine returns any of the requisite infinite lottery outcomes.

The infinite array of coin tosses. The randomizer consists of an infinity of coin toss outcomes, arranged in one quadrant of a two dimensional array.
Representing heads by “1” and tails by “0”, the outcome space consists of infinite two dimensional arrays of 1 and 0. The infinite lottery outcomes are
encoded in rows with particular configurations. The outcome n is encoded in a row whose first n elements are 1 and all of whose remaining elements
are 0. Thus the row<1, 1, 1, 1, 1, 0, 0, 0, 0, 0, …> encodes the lottery outcome 5. The outcome provided by the lottery machine is the number

14 Proof sketch: If a set is well ordered, then the least element of each subset defines a choice function. If there is a choice function on a set, then the value it assigns
to the whole set is the first element in the well-ordering. The next element in the well-ordering is the value assigned to the set with that first element removed. And so
on until the set is exhausted.

15 The accounts given here are minimal. For further details, see Norton (2018).
16 Both this jumping flea and random walk design fail to meet the requirement of equality of chances, even though their lottery outcomes are all probability zero,

since the dynamical evolutions leading to the lottery outcomes are not related by symmetries of the dynamics.
17 Proof: each convergent sequence has a finite initial sequence of +1, −1 and 0. Taking them as the digits of a base 3 ternary arithmetic and reading the initial

sequence in reverse, each convergent sequence can be encoded by a unique natural number.
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encoded in the first row of the array that encodes a number. Once the correction of Norton and Pruss (2018) is accommodated, there is a probability
of zero that there is such a row in the array, so that the machine operates successfully only with probability zero. For the probability that any
nominated row encodes some fixed number is zero. Since there is a countable infinity of possible numbers to be encoded, there is a probability zero
that some nominated row encodes any number. Finally, since there is a countable infinity of rows, there is a probability zero that any of them encode
a number.18

Hansen's reversed supertask. An urn initially contains a countable infinity of numbered balls. In a reversed supertask, actions are undertaken at
times …, 1/n, …, 1/4, 1/3, 1/2. At time 1/n, an urn that contains exactly n+1 balls arrives. One ball is chosen with equal probability and removed,
so that an urn with only n balls is passed on to time 1/(n-1). At time 1, there is only one ball left in the urn and it has been chosen by a process that
favors all balls equally. In spite of its ingenuity, this design is not successful since, as described in Norton (2018, §9), it fails to specify a way for the
process to start at time 0 so that the urn at any time 1/n can pass on an urn containing just n balls. However its outcome space still conforms with the
above description. If we write Sn for the nmembered set of numbers of the n balls passed on at time 1/n, then the abstract description of the outcome
space consists of all possible infinite sequences of sets of natural numbers<…, Sn, Sn-1, …, S3, S2, S1> , such that …⊃ Sn ⊃ Sn-1 ⊃ …⊃ S3 ⊃ S2 ⊃
S1.

If this is the total space, there is no well-defined probability measure over it that conforms with the design specification. The specification only
provides conditional probabilities connecting successive stages. For example, for any specific outcome “k”, that is, that S1= {k}, for k any nominated
natural number, we must have the conditional probability

P(S1= {k} |k ∈ Sn)= 1/n

since the dynamics of ball removal does not favor any ball. These conditional probabilities cannot be combined into an unconditional probability
measure. For such an unconditional probability measure over the whole space, if it exists, would satisfy

P(S1= {k})=Ʃ P(S1= {k} |k ∈ Sn) x P(k ∈ Sn)= 1/n Ʃ P(k ∈ Sn)

where the summation extends over all n-member sets Sn containing k. Since the summed probabilities in this formula must be less than or equal to
one, it follows that P(S1= {k})≤ 1/n. Since there are infinitely many stages, n can be set as large as we like, so that P(S1= {k})= 0. Since there are
only countably many k and one of them must be realized, these probabilities P(S1= {k}) must sum to unity if the unconditional probability measure
is to normalize. However since each P(S1= {k}) equals zero, they sum to zero.19

This failure is not the same as the nonmeasurable character of the Vitali sets. For in the latter case there is a probability measure over the entire
space in which the Vitali sets are subsets. In the present case, what does not exist is the probability measure over the entire space.
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