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This relativistic, time-travel spacetime is everywhere metrically flat, excepting a conical

singularity. Observers following timelike geodesics can eventually encounter their past selves,

aging in the opposite time sense. The spacetime is not time orientable. # 2025 Published under an
exclusive license by American Association of Physics Teachers. https://doi.org/10.1119/5.0224022

I. INTRODUCTION

Time-travel fiction commonly depicts time travelers who
encounter their past selves or, in the grandfather paradox,
their ancestors. In traditional fictional representations of
time travel, such as in H. G. Wells’s The Time Machine,
travelers age in the same time sense as those visited in the
past and future.1 Elsewhere, fantasy fiction supplies another
possibility: the wizard Merlyn in T. H. White’s 1938 fantasy
novel, The Sword in the Stone, meets a young Arthur.
Merlyn ages in the opposite time sense to Arthur.2 Arthur’s
first meeting with Merlyn is Merlyn’s last meeting with
Arthur; and Arthur’s last meeting with him is Merlyn’s first.
We can imagine time travelers who arrive in the past to
meet their former selves, but now age in the opposite time
sense. They are still time travelers since they are meeting
their past selves. However, we have now added a twist from
another part of the fantasy literature.

We may doubt whether such differences in aging con-
forms with what we know of thermodynamics, statistical
physics, and even biology. Such was Einstein’s reaction
to G€odel’s original description of his time-travel uni-
verse.3,4 The possibility of signaling from the future to
the past, Einstein noted, contradicts the inexorable rise in
entropy for real processes in thermodynamics. It has been
traditional since G€odel’s paper to ask the simpler question
of whether general relativity admits spacetime structures
that, independently of further physics, allow time travel.
We can ask the corresponding question of whether general
relativity admits spacetime structures in which an aging
Merlyn might meet his younger self, while they age in
different time senses. The affirmative answer is supplied
in this paper.

Einstein’s general theory of relativity does admit space-
times in which time travel is possible, in the sense that they
harbor closed timelike curves. That this is so has been known
since at least G€odel’s time-travel solution of Einstein’s k-
augmented gravitational field equations. Since then, many
other time-travel spacetimes have been found within
Einstein’s theory, such as those afforded by Kerr black holes.
They have attracted considerable attention in both physics
and philosophy.5 Some proposals require exotic physics,6 to
open a wormhole that connects different parts of spacetime.
Others escape this complication in wormhole creation by
simply stipulating a topology altering connection between
two parts of the spacetime.

This paper presents one of the simplest time-travel uni-
verses admitted by Einstein’s general theory of relativity. It
is matter free and everywhere metrically flat, except for a
singular, two-dimensional surface around which timelike

geodesics are deflected back toward their past. As a pre-
view, Fig. 1 is a caricature of the time-travel spacetime. The
spacetime to the left of the figure is roughly Minkowskian
and is more accurately so as we go farther left. The usual
time direction there is left–right, as indicated by the disposi-
tion of the light cones. The spaceships shown are moving
inertially along timelike geodesics that lie within these light
cones. No rocket motors fire. As they approach the singular-
ity on the right of the figure, their geodesics are deflected so
that their motion in time is reversed, whereupon they return
to the spacetime on the left of the figure. There, time travel-
ers encounter their past selves who age in the opposite local
time sense. Merlyn, traveling in such a spaceship, would be
able to communicate with his past self, by sending him a
light signal as shown.

If the spaceship accelerates when it nears its past self, its
timelike curve would close in the sense that it intersects with
itself. The resulting closed curve is not a “closed timelike
curve” of the traditional time-travel literature in general rela-
tivity, since the curve in this new spacetime must have at
least one event at which the curve is not differentiable and
thus has no tangent vector; alternatively, it may contain one
event where the curve becomes spacelike. This difference is
a manifestation of the fact that the spacetime is not time ori-
entable. That is, no consistent division of timelike motions
into future and past is possible. Any such division will be
contradicted by the return of the motion after it passes the
singularity.

The example is offered as a pedagogically useful addition
to our repertoire of time-travel universes. In this pedagogical
application, it has several interesting features.

It is a natural student question to ask how time travel
comes about in such time-travel spacetimes. The simplest
case takes a Minkowski spacetime and merely identifies
two spacelike hypersurfaces, so that the present evolves
back to itself. This “cylinder” universe has the global
topology of S�R3. While such stipulations produce
spacetimes that are, in my view, admissible within
Einstein’s theory, one could be forgiven for the sense that
time travel has been introduced artificially into the theory
by our meddlesome stipulation as opposed to a sound rea-
son for physics. Earman et al., in Ref. 5, have reviewed
the difficult and still open question of whether we could
do something that might bring about a time machine, that
is, bring about closed timelike curves. At least some time-
travel universes are so structured that we can point to a
cause of the temporal anomaly. In Tipler’s proposal,7

frame dragging effects are produced by a rapidly rotating
cylinder of matter and they are sufficient to lead to closed
timelike curves.
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In the spacetime of this paper, as Fig. 1 shows, we can, if
we are so inclined, attribute the possibility of time travel to
the disturbing influence of the singularity.* The spacetime is
otherwise unremarkable, in being everywhere locally flat,
like the spacetime of special relativity.

Section II gives a specification of the intrinsic geometry of
the spacetime, including the intrinsic metric, its metrical cur-
vature, the disposition of its timelike geodesics, and its light
cone structure. Providing this specification usually requires
more elaborate computations, such as setting up and solving
applicable differentiable equations. Sections III–VI, how-
ever, show that the entire specification can be recovered by
elementary means involving little more than coordinate
transformations. The pedagogic value of these constructions
is that they give a more immediate sense of how the time-
travel properties of the spacetime come about.

Finally, the paper addresses a more sophisticated problem
of pedagogic interest. A conical singularity is singular in its
extrinsic curvature. What of the geometry intrinsic to the
surface? In what sense is it singular? The spacetime geome-
try is metrically flat in all neighborhoods arbitrarily close to
the apex. It follows that the intrinsic metric is flat all the way
along any path leading to the singularity. Thus, it would
seem that taking the limit along the paths to the singularity
would assign a flat spacetime intrinsic metric to it. Section
VII shows in detail that the limits taken along all paths do
not converge to a unique metric, which establishes the sense
in which a singularity is present.

II. THE SPACETIME

The geometrical structure of the spacetime is given by the
line element for the interval s,

ds2 ¼ ðr2=4Þ cos hdh2 � cos hdr2

þ r sin hdhdr � dy2 � dz2; (1)

where polar coordinates r, h have values r> 0 and 0 � h
< 2p. Cartesian coordinates y, z have values �1 < y, z
<1. The metrical coefficients in a coordinate basis xi

¼ (h, r, y, z) are

gik ¼

r2

4
cosh

1

2

� �
r sin h 0 0

1

2

� �
r sin h �cosh 0 0

0 0 �1 0

0 0 0 �1

2
666666664

3
777777775
: (2)

This coordinate system, shown in Fig. 2, “goes bad” at the
origin r¼ 0, since an event there would be assigned all val-
ues of the angle coordinate h. It will turn out, as shown in
Sec. VII, that there is a singularity at r¼ 0 in the sense that
taking a continuous limit from the surrounding spacetime
provides no unique extension of the metrical structure to
events that we might suppose to be labeled by r¼ 0. For all

Fig. 1. Time travel in the time-travel spacetime.

Fig. 2. Cylindrical coordinates of the spacetime and its singularity.

*Such attributions are, in my view, purely of heuristic value. That they seek

a notion of causal influence over and above the relations already provided

by the prevailing physical theory is yet another of the many attempts at a

priori physics, all of which have met with little success over millennia.

See John D. Norton “The metaphysics of causation: An empiricist cri-

tique,” in Alternative Approaches to Causation, edited by Yafen Shen

(Oxford University Press, Oxford, 2024), pp. 58–94.
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events other than at r¼ 0, it will become apparent in Sec. III
that the spacetime is metrically flat with the usual Lorentz
signature of a Minkowski spacetime. That is, any open R4

neighborhood of the spacetime excluding r¼ 0 is isometric
with an open R4 neighborhood of a Minkowski spacetime.
Thus, it satisfies Einstein’s unaugmented, source-free field
equations with vanishing curvature everywhere, except at
r¼ 0. However, as Fig. 1 already suggests, the spacetime is
not time orientable.

In Fig. 2, the singularity at r¼ 0 is drawn as a line within
a three-dimensional space. The figure suppresses one dimen-
sion of the four-dimensional spacetime by collapsing the y-
and z-axes. Thus, the singularity is really a two-dimensional
surface enclosed within a four-dimensional space.

It follows immediately from Eqs. (1) and (2) that the met-
rical structure is translation invariant in the y and z direc-
tions. That is, y! (y þ constant) and z! (z þ constant) are
both isometries. The interesting, time-travel related physics
happens in surfaces of constant y and z; that is, in surfaces
spanned by the coordinates r and h.

We shall see in a simple construction given in Sec. V that
two families of intersecting lightlike curves in these surfaces
are given by

r ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin h
p ; r ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin h
p (3)

for k> 0. The light cones adapted to these curves are illustrated
in Fig. 3 for a surface spanned by the coordinates r and h:

The Cartesian coordinates shown in Figs. 2 and 3 are
defined by

u ¼ r sin h; x ¼ r cos h; y ¼ Y; z ¼ Z: (4)

Briefly, at h¼ 0, the light cones indicate a timelike direction
orthogonal to the radial direction. As we proceed in both the
þh and �h directions, the light cones tip toward the singu-
larity at r¼ 0. At h¼6p, they meet such that timelike
curves can pass directly into the singularity. If the lightlike
curves intersect the x axis at x¼6k, then they intersect the u
axis at u¼6k /

ffiffiffi
2
p

and are asymptotic to x¼6k
ffiffiffi
2
p

.
The region of spacetime for very negative x coordinates

will appear much like an ordinary Minkowski spacetime.

That is, for regions of very large, negative x in the vicinity of
the x-axis, h � p, cos h � �1, and sin h � 0, the line element
Eq. (1) then approximates the Minkowskian ds2¼ dr2 � dv2

– dy2 – dz2 if we introduce the new coordinate v such that
dv¼ rdh. It is only for events near the singularity at x¼ r¼ 0
that the light cones tip toward the -x-axis and such that light-
like curves are eventually deflected around the singularity.

Timelike geodesics, similarly, behave much like in an
ordinary Minkowski spacetime for the region with very
negative x coordinates. As we enter regions close to the
singularity at x¼ u¼ r¼ 0, the timelike geodesics are
deflected around the singularity and reversed in their direc-
tion. More precisely, we shall see herein that a family of
timelike geodesics, for arbitrary fixed values of y and z, is
given by

r ¼ k=cosðh=2Þ; (5)

where k> 0 is an arbitrary constant. The disposition of these
geodesics is shown in Fig. 4.†

The geodesics intersect the x axis at x¼ k, the u axis
at u¼ k

ffiffiffi
2
p

, and, as they extend in the -x direction, are
asymptotic to u¼62k. While these geodesics do not form
closed curves, if we adopt a position far enough in the -x
direction, the two parts of each geodesic can be connected
by another timelike curve, shown as a dashed curve in Fig. 4.
If we connect parts of these curves in obvious ways, we get
closure in the sense of a single timelike curve that intersects
its past self.

An observer whose worldline coincides with one of these
timelike geodesics, needs no acceleration to travel back in
time. After sufficient proper time has passed, that observer
will encounter the observer’s past self, but aging in the oppo-
site time sense.

More generally, this spacetime is not time orientable in
the usual sense of the existence of an everywhere non-
vanishing, continuous, timelike vector field. That is, if we
stipulate that some timelike vector, at some event, points in

Fig. 3. Light cone structure in a surface of constant y and z.

†Caution is advised in reading these diagrams. The polar coordinates r and

h and Cartesian coordinates u and x do not have their usual metrical signif-

icance. Metrical judgments using them should be mediated by the line ele-

ment Eq. (1) and metric components in Eq. (2).
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the future direction, parallel transporting that vector along
one of these timelike geodesics in both directions will even-
tually return it to a neighborhood where it has a contradicting
time sense.

III. CONSTRUCTING THE SPACETIME

The narrative so far has given no clue to the mode of con-
struction of the spacetime. That has been done with the hope
that the resulting spacetime will be assessed on its merits and
not discounted because of the simplicity of the construction
method. We arrive at the spacetime of Eq. (1) by an identifi-
cation on a familiar Minkowski spacetime in the following
way. This “source” Minkowski spacetime has the line
element

ds2 ¼ dT2 � dX2 � dY2 � dZ2; (6)

where, as usual, �1 < T, X, Y, Z <1. The “target” space-
time of Eq. (1) is recovered by introducing the coordinate
systems of (1) and (4) in such a way as to cover the half of
the source Minkowski spacetime specified by X� 0, as illus-
trated in Fig. 5.

The construction requires identification of each event
of Eq. (6) (T, X¼ 0, Y, Z) with (�T, X¼ 0, Y, Z). That
is, the left half of the Minkowski spacetime,

corresponding to X< 0, is excised, as indicated on the
left of Fig. 5. Events connected by the double-headed
arrows are identified to yield the target spacetime shown
on the right of Fig. 5.

To give further details, it is convenient to replace the T, X
coordinates of Eq. (6) with polar coordinates r, /, defined by

T ¼ r sin / X ¼ r cos /; (7)

where r> 0 and 0 � / < 2p. The mapping from the half-
plane of the source Eq. (6) to the full plane of the target Eq.

Fig. 4. A family of timelike geodesics.

Fig. 5. Construction of the time-travel spacetime.
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(1) is carried out by taking the metrical structure of the half
Minkowski spacetime of Eq. (6) at the event (/, r, Y, Z) and
mapping it to the event (h¼ 2/, r, y, z) in the target space-
time. Loosely speaking, the new metrical structure Eq. (1) is
recovered by a doubling expansion of the angle variable
about /¼ 0 of the source Minkowski spacetime. It can be
written compactly as

h ¼ 2/: (8)

IV. RECOVERING THE METRICAL STRUCTURE

AND ITS FLATNESS

The line element Eq. (1) can be recovered from the line
element Eq. (6) of the source Minkowski spacetime by a
two-step transformation. First, cylindrical coordinates are
introduced into Eq. (6) by the transformation Eq. (7). From
Eq. (7), we have

dT ¼ r cos /d/þ sin / dr;

dX ¼ –r sin /d/þ cos / dr: (9)

After substitution and some manipulation, the Minkowksi
line element Eq. (6) becomes

ds2 ¼ r2 cosð2/Þd/2 � cosð2/Þdr2

þ 2r sinð2/Þd/ dr � dY2 � dZ2: (10)

The second step maps half the source Minkowski spacetime
to the target spacetime by the substitutions

h ¼ 2/; r ¼ r; y ¼ Y; z ¼ Z: (11)

The expression for the line element Eq. (10) becomes the
corresponding expression Eq. (1),

ds2 ¼ ðr2=4Þ cos h dh2– cos hdr2 þ r sin h dh dr

� dy2 � dz2: (1)

Since the source Minkowski metric is everywhere flat and
the target spacetime is produced by a coordinate transforma-
tion, it follows that the new spacetime is also everywhere
flat, excluding the singularity at r¼ 0.

V. RECOVERING THE LIGHT CONE STRUCTURE

This mapping Eq. (8) shows how deflections of the light
cone structure of Fig. 2 arise. We simply need to track how
the light cones of the source half Minkowski spacetime are
relocated and reoriented in the target spacetime under the
mapping Eq. (8), as shown in Fig. 6.

As shown on the left of Fig. 6, light cones on the posi-
tive x-axis of the spacetime are unchanged from those in
the source spacetime along its positive X-axis. Light
cones on the u-axis of the target spacetime are mapped
from rotated light cones in the X> 0 region of the source
spacetime. As shown on the right of Fig. 6, light cones
on the negative x-axis of the target spacetime are mapped
from rotated light cones on the U-axis of the source
spacetime.

The mappings shown on the right of Fig. 6 are two-to-one
mappings. They concern the light cones mapped under

/¼p/2! h¼p and those mapped under /¼�p/2
! h¼�p. Since h¼ p and h¼�p are the coordinates of the
same event (if the other coordinates are equal), it is essential
that the two different mappings yield the same light cone.
The two mappings deliver light cones such that one is the
temporal inverse of the other. But since the light cones are
time inversion invariant, the two mappings yield the same
result. Hence, the ensuing metrical structure is fully regular
at all events h¼6p (where r> 0). It is this inversion, how-
ever, that precludes the new spacetime being time orientable.

The analytic expressions Eq. (3) for the lightlike curves of
Fig. 2 are recovered from this mapping. First consider
“future” (¼þT) directed lightlike curves in the source
Minkowski spacetime

T ¼ X þ k (12)

for constant �1 < k < 1. In polar coordinates introduced
by Eq. (7), the curves are

r sin / ¼ r cos /þ k (13)

or

r ¼ k

sin /� cos /
; (14)

where the range of values of / to which this formula applies
must be restricted to ensure that r remains positive. (The
case of k¼ 0 is excepted and addressed below.) Under the
mapping Eq. (8) and similar angle restrictions, the expres-
sion becomes the first formula of Eq. (3),‡

r ¼ k

sin
h
2

� �
� cos

h
2

� � ¼ jkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin h
p ; (15)

where the restriction to the absolute value of k is all that is
needed in the final sinh formula to ensure positive values for
r. Applying this formula is complicated by the fact that two
lightlike curves of the source Minkowski spacetime are
mapped to form a single lightlike curve in the target space-
time. That is, the lightlike curves T¼Xþ k and T¼X – k for
k> 0 are mapped under Eq. (8) to give a single curve of Eq.
(3). These curves are illustrated in Fig. 7.

Fig. 6. Mapping of light cone structure.

‡The second equality requires the trigonometric half angle identity, sinh
¼ 2 sin(h/2) cos(h/2).
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The mapping of the two lightlike curves from the source
Minkowski spacetime joins at u¼ 0, x¼�k in the target
spacetime to yield a single curve. The resulting lightlike curve
in the target spacetime diverges in the þu direction. That it is
asymptotic to x¼6k

ffiffiffi
2
p

cannot be recovered directly from
Eq. (3). It can be affirmed by re-expressing Eq. (3) in the
Cartesian coordinates u, x of Eq. (4) and considering the limit
as u!1.

An analogous computation gives similar results for the
“past” (¼–T) directed timelike curves T¼ –Xþ k for con-
stant �1 < k < 1. We recover the second expression of
Eq. (3),

r ¼ k

sin
h
2

� �
þ cos

h
2

� � ¼ jkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin h
p : (16)

Once again, two lightlike curves of the source Minkowski
spacetime, T¼ –Xþ k and T¼ –X – k for k> 0, are mapped
under Eq. (8) to give a single curve of Eq. (3). These curves
are illustrated in Fig. 8.

The resulting curve in the target spacetime diverges in the
–u direction and is also asymptotic to x¼6k

ffiffiffi
2
p

.
The special case of k¼ 0 corresponds to the two lightlike

curves T¼X and T¼�X. The formulae Eq. (3) are degener-
ate for them. It is easy to see however that these two curves
map under Eq. (8) to the lightlike curves h¼ p/2 and
h¼�p/2, that is, curves that lie on the u axis.

A check on the consistency of these results for lightlike
curves employs the line element (1). If we set ds2¼ 0, the

line element provides a differential equation that character-
izes lightlike curves in the r, h plane,

dr

dh

� �2

� r tan h
dr

dh
� r2

4
¼ 0: (17)

Some manipulations affirm that the expressions Eq. (3) each
solve this equation.

VI. RECOVERING TIMELIKE GEODESICS

This same mapping makes recovery of timelike geodesics
straightforward. In the source Minkowski spacetime of Eq.
(6), a family of geodesics is defined by X¼ k, that is,

r cos / ¼ k (18)

for fixed values of Y and Z and for k> 0. These correspond
under Eq. (8) to

r cosðh=2Þ ¼ k (19)

in the target spacetime. Figure 9 shows a geodesic in the
source Minkowski spacetime on the left and in the target
spacetime on the right.

The construction in the center shows how one can recover
qualitative features of the transformed geodesic without cal-
culation by inspection of the figure. It shows radial lines of
constant h that identify a timelike geodesic in the source
Minkowski spacetime. The image of the radial lines and the
timelike geodesic in the target spacetime is shown on the

Fig. 8. Second mapping of lightlike curves.Fig. 7. Mapping of lightlike curves.

Fig. 9. Timelike geodesics.
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right of Fig. 9. The two radial lines h¼p and h¼�p in the
source Minkowski spacetime are parallel to the geodesic.
Since these two radial lines coincide with the -x-axis in the
target spacetime, we can conclude that the geodesic mapped
to the target spacetime will approach lines parallel to the -x-
axis for very negative x. Similar interpretations can be
applied to Figs. 7 and 8.

VII. THE SINGULARITY

The status of the target spacetime at r¼ 0 is, so far,
unclear. That the polar coordinates “go bad” at r¼ 0 may
merely be an artifact of that coordinate system and may not
represent a pathology of spacetime. Such a benign result
arises when polar coordinates are used in a Euclidean space.
That is not the case here. There is a singularity in the metri-
cal structure of Eq. (1) at r¼ 0. It is the type of singularity
that is found in the intrinsic geometry of a cone.

The simplest cone singularity is produced, figuratively,
by taking a flat sheet of paper, excising a pie-shaped seg-
ment, and connecting the exposed edges to form a cone,
as shown in Fig. 10. There is an extrinsic curvature singu-
larity at the pointy apex. The intrinsic geometry of the
surface of the cone remains everywhere flat. However,
something also goes awry in the intrinsic geometry at the
apex. The familiar way to illustrate it is to note that
the circumference of a circle, centered on the apex, no
longer obeys the Euclidean result of (circumference)¼ 2p
(radius).

In Fig. 10, the cone is formed after a quarter of the circle
has been excised. If instead a half of the circle had been
excised, then we could use the transformation h¼ 2/ of Eq.
(8) to represent the formation of the cone. That is, we use a
standard radial coordinate r and angle coordinate / on the
original sheet of paper, where r¼ 0 is the center for the cir-
cle. Its Euclidean line element is ds2¼ dr2 þ r2d/ 2. Since
half the sheet is excised, the remaining half is covered by the
angle coordinate / in the interval 0 � / � p. When
the exposed edges of the sheet are joined to form the cone,
the points with coordinates /¼ 0 and /¼ p (and equal radial
coordinate r) are identified. To ensure that an angle coordi-
nate on the surface takes on values in the range 0 to 2p, we
replace the old angle coordinate / by the new angle coordi-
nate h¼ 2/ of Eq. (8). The radial coordinate r remains
unchanged. Under this transformation, the line element for
the cone is

ds2 ¼ dr2þ r2d/2 ¼ dr2þ r2dðh=2Þ2 ¼ dr2þ r2=4 dh2:

This last transformation is analogous to the above-mentioned
transformation from Eq. (10) to Eq. (1).

A fuller analysis shows that the singular character of the
geometry intrinsic to the cone’s surface resides in a failure
of uniform convergence of its metrical properties. The
pathology is not limited to a curvature singularity in the sur-
face’s extrinsic curvature.§ That is, if we seek to assign a
metric to the apex by taking the limit of the metrical struc-
ture on radial paths leading to the apex, we find different
metrics according to the radial path chosen.

Since the construction of the time-travel spacetime is simi-
lar to that of the cone, the same sort of cone singularity arises
at r¼ 0 in Eq. (1). Spacetime singularities of this type have
been investigated by Ellis and Schmidt.8 That something is
amiss at r¼ 0 follows if we seek to assign light cones to
events at r¼ 0. At all regular events in the spacetime where
r> 0, timelike curves through the event form the familiar
double cone, no matter how close that event is to r¼ 0. If we
collect the timelike curves converging toward an event at
r¼ 0, they form a single cone. Whatever metrical structure
we might try to assign to events at r¼ 0, that structure will
be unlike the metrical structure at all neighboring events
since it must produce a single-lobed light cone.

The construction of this single-lobed cone is shown in
Fig. 11. The left of the figure shows timelike curves in the
source Minkowski spacetime that will transform to this sin-
gle cone in the target spacetime. The right of the figure
shows these curves after they are transformed under Eq. (8)
in the target spacetime.

Proceeding more fully, we cannot use the cylindrical coor-
dinate system of Eq. (1) to show the singular character of
Eq. (1) at r¼ 0, since that coordinate system is badly
behaved at r¼ 0. Instead, we stipulate that there are mani-
fold points at r¼ 0. We seek to investigate the metrical struc-
ture there using the Cartesian coordinate system u, r, y, z
defined in Eq. (4), since that coordinate system is regular at
r¼ 0.

We transform the line element Eq. (1) to this new coordi-
nate system using differentials derived from Eq. (4),

dh ¼ ðx=r2Þdu� ðu=r2Þdx dr ¼ u=rð Þduþ ðx=rÞ dx:

(20)

Fig. 10. The simplest cone singularity.

§This is not assured. A pathology in the extrinsic geometry may not be

reflected in the intrinsic geometry. A sharp, linear crease in the sheet of

paper is singular in its extrinsic curvature, but remains regular in the intrin-

sic geometry.
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After considerable manipulation, the line element Eq. (1)
transforms to**

ds2 ¼ x

r

x2=4

u2 þ x2

� �
du2 � x

r

3u2

4
þ x2

u2 þ x2

2
4

3
5

dx2

� u

r

u2 þ 3x2

2
u2 þ x2

2
4

3
5

dudx� dy2 � dz2; (21)

where, as before, r¼ (u2 þ x2)1/2. Using Eq. (4) and with
some manipulation, this form of the line element can be
rewritten in terms of h as

ds2¼ cosh ðcos2hÞ=4
� �

du2

� cosh 3=4ð Þ sin2h þ cos2h
� �

dx2

�sin h sin2h þ 3=2ð Þ cos2h
� �

dudx�dy2�dz2: (22)

Its metrical coefficients in a coordinate basis xi¼ (u, x, y, z)
are

gik ¼

cos h cos2hð Þ=4 � sin hð Þ=2 sin2hþ 3

2

� �
cos2h

� �
0 0

� sin hð Þ=2 sin2hþ 3

2

� �
cos2h

� �
�cos h

3

4

� �
sin2hþ cos2h

� �
0 0

0 0 �1 0

0 0 0 �1

2
6666666664

3
7777777775
: (23)

The distinctive property of this form of the line element is not
so much the specific values that these metrical coefficients take.
Rather it is just that these coefficients are functions of h only
and they are different for different values of h.

This fact reveals the character of the singularity at r¼ 0. We
may try to define a metrical structure at r¼ 0 in the time-travel
spacetime by the requirement of continuity with the metrical
structure at neighboring events. That is, we seek to assign a met-
ric to the event r¼ 0 as the limit of the metric taken along a con-
stant h, radial path, terminating in r¼ 0. It now follows that this
requirement of continuity produces a different metrical structure
according to the radial path of constant h along which we
approach r¼ 0.†† The singular character of the metrical struc-
ture at r¼ 0 resides in its necessary discontinuity with the metri-
cal structure of neighboring events.

VIII. CONCLUSION

What do we learn from this example? In my view, we
reaffirm a familiar result: that the spacetimes of general

relativity admit time travel. Whether one finds this example
more or less illuminating than others is, in the end, decided
by what each of us finds more or less natural or intuitive. In
this regard, I find it appealing since the spacetime is locally
everywhere flat excepting for the singular surface whose
presence makes the difference between an everywhere flat
Minkowski spacetime without time travel and one with time
travel.

One possible reaction—heard anecdotally—is that this
spacetime is somehow lesser since it is “unphysical” or, in a
different but related concern, “artificial.” This notion of
being “physical” is an important part of the pragmatics of
practical physics. It is invoked to dismiss some particular
result from consideration in the particular context at hand.

In another application, four different, precise senses for
the notion have been identified.9 None apply here in so far as
the goal is merely to explore the range of spacetimes admit-
ted by general relativity. There is no proposal that this form
of time travel is realized in our universe. The situation is
analogous to the intrinsic geometry of the cone of Fig. 10. It
may or may not be the geometry of our space. Nonetheless,
its analysis lies within the scope of geometry and that is
underscored by the fact that we can build something close to
it in a paper model. This example is connected to what is
possible in our world by a slender thread: it is a model of our
current best theory of space and time, general relativity. In
that, however, it keeps company with many other much
stranger models.

Fig. 11. Degenerate light cone structure.

**This formula explains why the light cones in Fig. 3 appear distorted. If

we solve for ds2¼ 0, we find for light cones on the x-axis, where u¼ 0,

that du/dx¼ du/dy¼ du/dz¼62. The distortion is a coordinate artifact.

††These metrics, with different values of h, are isometric, since all are flat.

If one realizes all of them at the origin, however, different norms will be

assigned to the same vector. The vector (1, 0, 0, 0) will be assigned the

norm cosh [(cos2h)/4], for example. This is an invariant failure to agree.

248 Am. J. Phys., Vol. 93, No. 3, March 2025 John D. Norton 248

 22 February 2025 20:48:23



ACKNOWLEDGMENTS

My thanks to John Earman, David Malament, and John
Manchak for helpful comments on an earlier draft; and to
Bob Wald for helpful discussion on characterizing conical
singularities.

AUTHOR DECLARATIONS

Conflict of Interest

The author has no conflicts to disclose.

a)ORCID: 0000-0003-0936-5308.
1H. G. Wells, The Time Machine (Henry Holt & Co. New York, 1895).
2T. H. White, The Sword in the Stone (Philomel, New York, 1993).
3“Reply to criticisms,” in Albert Einstein-Philosopher Scientist, edited by P.

A. Schilpp (The Library of Living Philosophers, Evanston, Illinois, 1949),

pp. 687–88.

4Kurt G€odel, “An example of a new type of cosmological solutions of

Einstein’s field equations of gravitation,” Rev. Mod. Phys. 21(3), 447–450

(1949).
5For reviews, see John Earman, Christian W€uthrich, and J. B. Manchak,

“Time machines,” The Stanford Encyclopedia of Philosophy, edited by

Edward N. Zalta (2022). <https://plato.stanford.edu/archives/spr2022/

entries/time-machine>; Christopher Smeenk, Frank Arntzenius, and Tim

Maudlin, “Time travel and modern physics,” The Stanford Encyclopedia of
Philosophy, edited by Edward N. Zalta and Uri Nodelman (2023). <https://

plato.stanford.edu/archives/spr2023/entries/time-travel-phys/>.
6Michael S. Morris, Kip S. Thorne, and Ulvi Yurtsever, “Wormholes, time

machines, and the weak energy condition,” Phys. Rev. Lett. 61(13),

1446–1449 (1988).
7Frank J. Tipler, “Rotating cylinders and the possibility of global causality

violation,” Phys. Rev. D 9(8), 2203–2206 (1974).
8See Sec. III in George F. R. Ellis and B. G. Schmidt, “Singular spacetimes,”

Gen. Relativ. Gravitation 8(11), 915–953 (1977).
9See Sec. III B in John D. Norton, “The dome: An unexpectedly simple fail-

ure of determinism,” Philos. Sci. 75(5), 786–798 (2008).

249 Am. J. Phys., Vol. 93, No. 3, March 2025 John D. Norton 249

 22 February 2025 20:48:23

https://doi.org/10.1103/RevModPhys.21.447
https://plato.stanford.edu/archives/spr2022/entries/time-machine
https://plato.stanford.edu/archives/spr2022/entries/time-machine
https://plato.stanford.edu/archives/spr2023/entries/time-travel-phys/
https://plato.stanford.edu/archives/spr2023/entries/time-travel-phys/
https://doi.org/10.1103/PhysRevLett.61.1446
https://doi.org/10.1103/PhysRevD.9.2203
https://doi.org/10.1007/BF00759240
https://doi.org/10.1086/594524

