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Why Monte Carlo Simulations Are
Inferences and Not Experiments
Claus Beisbart and John D. Norton

Monte Carlo simulations arrive at their results by introducing randomness, sometimes

derived from a physical randomizing device. Nonetheless, we argue, they open no new

epistemic channels beyond that already employed by traditional simulations: the inference

by ordinary argumentation of conclusions from assumptions built into the simulations.

We show that Monte Carlo simulations cannot produce knowledge other than by infer-

ence, and that they resemble other computer simulations in the manner in which they

derive their conclusions. Simple examples of Monte Carlo simulations are analysed to

identify the underlying inferences.

1. Introduction

Monte Carlo simulations exploit randomness to arrive at their results. Figuratively

speaking, the outcomes of coin tosses repeatedly direct the course of the simulation.

These Monte Carlo simulations comprise a case of special interest in the epistemology

of simulations, that is, in the study of the source of the knowledge supplied by simu-

lations. For they would seem, at first look, to be incompatible with the epistemology of

simulation we hold. Following Beisbart (2012) and Stöckler (2000), we hold that simu-

lations are merely arguments, albeit quite elaborate ones, and their results are recov-

ered fully by inferences from the assumptions presumed.

Tossing coins, rolling dice, spinning roulette wheels, drawing entries from tables of

random numbers or taking the outputs from computational pseudo-randomizers all

seem quite remote from the deliberate inferential steps of an argument. In fact, they

look much like the discoveries of real experiments, whose outcomes are antecedently

unknown to us. The outcomes of real experiments are learned only by doing the exper-

iments; they are not merely inferred.

Correspondingly, in a Monte Carlo simulation, whether the randomizer coin falls

heads or tails must be discovered by running the randomizer. As with real experiments,
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the outcomes are antecedently unknown to us. They are not derived, it would seem,

much as we do not derive the outcomes of truly novel experiments. The random

numbers are introduced, we might say, as many, little novel discoveries.

It is no surprise, then, that some authors take Monte Carlo simulations to be exper-

iments rather than inferences. Dietrich (1996, 344–347) argues that Monte Carlo

simulations share the same basic structure as controlled experiments and reports

the view among geneticists who use them that they were ‘thought to be much the

same as ordinary experiments’ (Dietrich 1996, 346–347).
1

Humphreys (1994, 112–113) does not go as far as Dietrich. He allows that Monte

Carlo simulations are not experiments properly speaking. Nevertheless, he does not

allow the natural alternative that they are merely a numerical technique of approxi-

mation, such as truncation of an infinite series of addends. Humphreys denies that

the simulations form a method of ‘abstract inference’ because they are more exper-

iment-like and generate representations of sample trajectories of concrete particles.

He concludes that Monte Carlo simulations form a new scientific method, which

occupies the middle ground between experiment and numerical methods and which

he dubs ‘numerical experimentation’. Although Humphreys is not entirely clear on

whether this middle ground employs novel epistemic modes of access to the world,

his view differs from ours in so far as he suggests that the methods of his middle

ground use more than mere inference.

The aim of this paper is to reaffirm that, as far as their epistemic access to the world

is concerned, Monte Carlo simulations are merely elaborate arguments. Our case is

twofold. First, indirectly, Monte Carlo simulations could not be anything else. In par-

ticular, they do not gain knowledge of parts of the world by interacting with them, as

do ordinary experiments. They can only return knowledge of the world external to

them in so far as that knowledge is introduced in the presumptions used to set up

the simulation. They exploit that knowledge to yield their results by an inferentially

reliable procedure, that is, by one that preserves truth or the probability of truth.

Second, directly, an inspection of Monte Carlo simulations shows them merely to be

a sequence of inferences no different from an ordinary derivation, with the addition

of some complications. These are: there are very many more individual inferences

than in derivations normally carried out by humans with pencil and paper; the

choice of which inferences to make is directed by a randomizer; and there are meta-

level arguments that the results are those sought in spite of the random elements

and approximations used.

Our thesis is a narrow one. We are concerned solely with the epistemological

problem of how Monte Carlo simulations can give us knowledge of the world.
2

We

do not deny that, in other ways, Monte Carlo simulations are like experiments that

discover novel results. We will argue, however, that these sorts of similarities are super-

ficial. They do not and cannot make them function like real experiments epistemically.

It is this epistemic aspect that is of concern in this article.

The focus of this is paper restricted to Monte Carlo simulations. Other simulations

on digital computers, which we call ‘deterministic computer simulations’, are also

inferences, we claim. We will briefly indicate below why we believe this and our
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direct case for our main thesis is based upon this claim. Readers who do not find the

claim plausible are referred to Beisbart (2012); and they should note that our indirect

case and the argument in section 6 below do not draw on the claim.

In section 2, we review briefly how Monte Carlo simulations work. In section 3, we

begin our main argument by reviewing the two modes of epistemic access open to

experiments and simulations: discovery and inference. Sections 4 and 5 make the

indirect and direct cases for our thesis. In section 6, we illustrate our thesis by recon-

structing some instances of Monte Carlo simulations explicitly as arguments. In

section 7, we respond to objections.

2. Monte Carlo Simulations

What are Monte Carlo simulations and how do they work? In a broader sense, Monte

Carlo simulation is a method that uses random numbers to carry out a calculation.
3

Monte Carlo integration is the prime example of this technique (see e.g. James 1980,

§2, for an introduction to Monte Carlo integration). In a narrower sense, Monte Carlo

simulations trace physical processes. Simulations of both these kinds are arguments, or

so we will argue.

Suppose our task is to evaluate the expectation value of a random variable f. Assume

that we have a uniform probability distribution over the interval [0, 1] and that our

random variable returns
�������
1 − x2

√
for every x from [0, 1]. We can estimate the expec-

tation value, E( f), from the average over independent realizations of the probability

model. We use N random numbers xi following a uniform distribution over [0, 1],

apply f and take the average. Our estimate is:

EN f
( )

;
1

N

∑N

i = 1

f (xi).

This is the most basic Monte Carlo method.

Random variables are extremely useful in the natural sciences. A pollen particle sus-

pended in certain liquids undergoes a zigzag motion that looks random. The motion is

called Brownian, and so is the particle. Brownian motion is described by random vari-

ables. For each time t, the position of the particle is the value of a random variable X(t).

A model can relate the probability distribution over X(t) to the distribution at an

earlier time t′. In a simple discrete random walk model, time is discrete, the motion

of the particle is confined to the nodes of a grid, and at every instance of time t ¼

1, 2, . . ., the particle jumps to one of the neighbouring nodes, following some prob-

ability distribution (see Lemons 2002 for a readable introduction to the related

physics). We can use this model to make predictions, for example, about the expected

position of the particle at later times or about the probability that the particle is within

a certain region of space. We start from the initial position of the particle, X(0), and

use a sequence of random numbers to determine positions X(1), X(2), and so on

International Studies in the Philosophy of Science 405

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
48

 0
7 

M
ay

 2
01

3 



successively. This produces one sample path/sample trajectory, that is, one possible

course the particle could take. To estimate the expected position or the probability

of the particle being in a certain region of space, we average over a large number of

sample trajectories. These calculations undertaken for pollen grains are simulations

in the narrow sense because they trace a physical process. They are computer simu-

lations in the sense defined by Humphreys (2004, 110) because they evaluate a

model of a physical process in the world.

Monte Carlo methods can also be applied to problems that do not involve random-

ness. To see this, note that the expectation value E( f) can be written as

E(f ) =
∫1

0

dx
�������
1 − x2

√
p(x) =

∫1

0

dx
�������
1 − x2

√
.

The second equality holds because we have assumed a flat probability density over

[0, 1]. Consequently, our Monte Carlo method has estimated the value of the integral

∫1

0

dx
�������
1 − x2

√
, (1)

which is known to equal p/4. More generally, the value of an integral

∫b

a

dx g(x)

for an integrable function g and real numbers a , b can be approximated using

random numbers. The integral can be rewritten as

(b − a) ×
∫b

a

dx g(x) × 1

b − a

The last factor, 1/(b – a), is the probability density for a probability model with a

uniform distribution over [a, b]. To obtain the value of the integral, we use N indepen-

dent random numbers xi following a uniform distribution over [a, b] and take the

average over g(xi):

(b − a)
N

∑N

i = 1

g(xi).

This method is called Monte Carlo integration. It differs from other methods of

approximating the value of an integral numerically, such as the trapezoidal rule
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(consult Press et al. 1992, ch. 4, for details), because it uses random points instead of a

regular grid to sample the interval. Monte Carlo integration can be generalized and

refined in many ways; it is particularly successful for higher-dimensional integrals.

It has been shown that every Monte Carlo method reduces to Monte Carlo integration

(James 1980, 1148).

In applying a Monte Carlo method, we use random numbers that follow a certain prob-

ability distribution. To obtain such numbers, we can draw on the outcomes of a physical

random process (see Tocher 1975, ch. 5, for related methods). Alternatively, we can use a

pseudo-random number generator. This is a deterministic algorithm that returns a series

of numbers following a certain probability distribution.
4

In practice, it does not matter

how we obtain the random numbers as long as they follow the intended probability

model. Whether or not they do so is often ascertained using statistical tests (see e.g.

James 1980, 1170–1172). Often, the tests check whether the frequencies of the numbers

in certain intervals match those predicted by the probability model. If we have 100

random numbers with a uniform distribution over [0, 1], approximately 50 random

numbers should be in [0, 0.5]. The random numbers generated by some pseudo-

random generators have even been characterized analytically (James 1980, 1172).
5

Since a Monte Carlo integration uses random numbers, its results are random. If we

run the method twice using different random numbers, the results will differ. In either

case, the result will not coincide with the exact value of the integral. The difference

between the outcome of the method and the exact value of p/4 is called error, and, in

the case of Monte Carlo simulations, the error is statistical. In practice, the error is not

a problem since the method converges probabilistically (James 1980, 1151). Suppose

that we can only tolerate an error smaller than 1 . 0 in the evaluation of the integral

and that we want the outcome to be within this error bound with a probability of p,

say 99%. Probabilistic convergence assures us that, if we use more than some specific

number of random points, we can keep our error within the tolerable bounds with a

probability higher than p. What that number is depends on the details of our problem.

As an illustration, we have run Monte Carlo simulations to approximate the value of

p/4 (equation 1). For the pseudo-random number generator, we choose the linear

congruential generator

Xi + 1 ¼ (1664525 Xi + 1013904223) (mod 232). (2)

The resulting set of random numbers is almost perfectly uniformly distributed over

the interval [0, 232) (see Press et al. 1992, 284). Hence, the numbers ri ¼ Xi/232

follow a uniform distribution on the unit interval. The pseudo-random number gen-

erator has to be initialized using a number in [0, 232). We have used different initial

values and different values of N (the number of random numbers) to obtain Monte

Carlo estimates of the value of the integral:

p/4 =
∫1

0

�������
1 − x2

√
dx ≈ 1

N

∑N

i = 1

�������
1 − r2

i

√
. (3)

International Studies in the Philosophy of Science 407

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
48

 0
7 

M
ay

 2
01

3 



The results are shown in table 1. They illustrate that the approximations to the integral

tend to approach one another and to converge to the true value of the integral (p/4 �
0.785398), as N increases.

Monte Carlo simulations use random numbers to evaluate mathematical

expressions. These expressions may have a probabilistic meaning or not. The

method converges to the true result in a probabilistic manner as the number of

random points is increased. The last few decades have seen many further developments

of Monte Carlo methods, which we need not pursue in what follows, since they do not

alter any matters of basic principle.

3. What Powers Our Epistemic Activities

How can simulations give us knowledge of the world? We distinguish two modes as the

sole options.

3.1. Discovery

Discovery—here always understood as empirical discovery—goes directly to the

world. We observe the world to learn about it. In an experiment, we do this in a par-

ticular way. To run an experiment on a system S, we construct S or otherwise causally

interfere with S and then observe what happens (see Heidelberger 2005 and Radder

2009 for the notion of scientific experiment). In his celebrated experiments, Millikan

(1913) suspended electrically charged oil drops in an electric field to determine the

charge of a single electron. Cavendish (1798) used a torsion balance to determine

the gravitational force of attraction between lead masses. While Millikan and Cavend-

ish constructed experimental apparatuses, the outcomes depended essentially on what

then manifested in the apparatus.

A complication is that most experiments are not purely discovery. What people call

an experimental result is commonly obtained with the help of inferences. To declare an

experimental result for the universal natural constant e, the ‘elementary electric

charge’, Millikan had to generalize the behaviour of the few electrons measured in

his apparatus to all electrons. Cavendish required some delicate inferences to calibrate

his torsion balance. We will not pursue these inferences here since they merely mould

and generalize what powers the experiment epistemically: the novel experience

Initial value X0 N 5 100 N 5 1,000 N 5 10,000 Value of p/4

0 0.816315 0.795922 0.785052 0.785398

1 0.773266 0.774889 0.787492 0.785398

Table 1 Results of several Monte Carlo integrations of the integral in equation 1, which

equals p/4. We obtain random numbers following equation 2 for various combinations of

the initial value X0 and the number N of random numbers used.
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provided by the behaviour of the apparatus. They are not essential to an experiment.

What is essential is only that the system experimented on is manipulated and then

observed.

3.2. Inference

The second mode requires no contact with the world and thus is not self-sufficient. It

transforms knowledge of the world already gained. If this transformation is to be

reliable, it must be truth-preserving, and hence a deductive inference, or preserving

of the probability of truth, and hence an inductive inference of great strength. Inves-

tigations in this mode are powered epistemically by the knowledge of the world intro-

duced at the outset. They can nevertheless produce new knowledge simply because the

results inferred were not known prior to the investigations.

Thought experiments, Norton (1996, 2004) maintains, operate in this way. They are

merely picturesque arguments that make inferences from presumptions implicit in the

description of the thought experiment scenario. Since human imaginative powers do

play a role, it is not immediately apparent that prosaic inference is all that is employed.

It is fashionable and enticing to imagine that thought experiments are able to tap into

some mysterious new epistemic channel. Norton requires fairly elaborate argumenta-

tion to establish that they do not do this.

As Beisbart (2012) has argued, the case of computer simulations is more straight-

forward than that of thought experiments. How simulations work is transparent in

the sense that they consist of a large number of simple steps, typically programmed

into a computer. A sufficiently patient monitor could trace the entire simulation

step by step from start to finish. No peculiarly human powers of imagination

enter. A simulation does not differ in kind from a derivation from some suitably

collected set of assumptions. Rather it differs in degree. It tends to use simpler

and weaker steps, but compensates for their weakness by employing very many

of them.

An example illustrates this. The angular displacement u of a simple pendulum of

length L at time t is governed by the differential equation

d
2
u/dt

2
¼ – (g/L) sin u,

where g is the gravitational acceleration at the surface of the earth. One can determine

the motion for small displacements by approximating sin u ≈ u and noting that the

equation is reduced to

d
2
u/dt

2
¼ – (g/L) u.

It is solved, for example, by

u(t) ¼ umax cos ((g/L)1/2t)
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for umax, the maximum displacement. This argument is recognized as a classic deri-

vation in mechanics. Meta-analysis restricts the domain in which the result can be

used with acceptable error.

Alternatively, one can perform a stepwise integration. In the simple but inefficient

Euler method, one starts from momentary rest at t ¼ 0 at the maximum displacement

u(0) ¼ umax, where the initial angular velocity is zero and the angular acceleration is

– (g/L) sin umax. One can then approximate the motion over the next small time inter-

val Dt by assuming that the acceleration is unchanged. One recovers

u(Dt) ¼ umax – (1/2) (g/L) sin umax (Dt)
2
.

The process is iterated to recover the angular position and speed for later times 2Dt,

3Dt, 4Dt, 5Dt, . . . If this stepwise integration is performed on a computer, we have a

simple computer simulation. Meta-analysis is also needed to assure us that the errors

introduced by the approximations are acceptably small. For the inefficient Euler

method, a standard theorem (Young and Gregory 1972, 447) assures us that, for gen-

erically well-behaved systems, the error in integrating over some fixed time increases

roughly linearly with the step size Dt. As a practical convenience, we can estimate the

size of the error by halving the step size and checking how much the final result

changes. That change is, very roughly, half the total error of the original estimate.

Clearly there are great pragmatic differences between the two procedures of deri-

vation and stepwise integration. The first is easy for a human to carry out with

pencil and paper. The second requires assistance from some computing device.

However, they do not differ in the epistemic element of concern to us here: they

both proceed as inferences from the presumption of the original differential equation.

The derivation proceeded from the approximation sinu ≈ u. It converted the equation

into one whose solution is in the standard repertoire of introductory mathematics

texts. The simulation employed a coarser and less powerful approximation of the con-

stancy of acceleration over a short time period. It enabled us to look forward by a small

time interval after which the approximation needed to be repeated. Meta-analysis—

sometimes trivial, sometimes not—is needed in each of these cases to determine the

accuracy of the results.

3.3. The Only Possibilities

These two modes—discovery and inference—exhaust those suitable for the epistem-

ology of simulation. To see that they are exhaustive, note that all suitable modes

must belong to one of two classes: those that depend essentially on contact with the

world; and those that do not. In the first class, we require that contact to be either

passive or active. Passive contact is observation. Active contact, or at least active

contact that improves epistemically on passive contact, is experimentation. So the

first class is what we have called discovery. In the second class, we must proceed

without any new contact with the world. The obvious way to do so is to transform
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what we already know by a procedure that preserves truth or its probability. Thus, our

second class is inference. There may be other epistemic modes. In the context of

thought experiments, Brown (2004) has proposed that we can learn of the world

through a Platonic perception of the ideal forms of the laws of nature. Because of

the transparency of the individual steps of simulations, we believe that there is no

role for these modes in our case. We will thus assume in our indirect argument

below that discovery and inference exhaust the relevant possibilities.

4. Monte Carlo Simulations Are Arguments: The Indirect Case

Our claim is that, epistemically, Monte Carlo simulations are arguments. We assert this

even though they are in many ways unlike other, more familiar arguments. They are

hugely complex so that it is impractical for a human to follow through their steps,

whereas arguments are normally carried out by humans. They are distinctive in that

their steps are governed by random or pseudo-random processes, whereas ordinary

argumentation does not include randomly chosen inferences. However, these differ-

ences are unimportant for our concern of what powers Monte Carlo simulations

epistemically. They are arguments. They deliver their results by transforming pre-

sumptions built into their set ups in a way that preserves truth (deductive inference)

or a way that preserves its probability (strong inductive inference).

We make our case indirectly and directly. Indirectly, we argue in this section that

they could be nothing else. Directly, in the next section, we review the operation of

Monte Carlo simulations and find that they are merely many inferences assembled.

Indirectly, we arrive at the conclusion that Monte Carlo simulations are arguments

by elimination, that is, by a disjunctive syllogism. The first premise is that Monte Carlo

simulations are powered epistemically either by what we have called ‘discovery’ or by

what we have called ‘inference’ in the previous section, whose principal burden was to

establish that premise. The second premise is that Monte Carlo simulations are not

powered epistemically by discovery. Hence, by disjunctive syllogism, they are

powered by inference.

The second premise requires a little discussion. For Monte Carlo simulations can

employ real physical systems as randomizers. This is a type of contact with the external

world. However, it is not the type that is required for discovery. A method only

includes discovery if hitherto unknown properties characteristic of a particular phys-

ical system are recorded. It is the incorporation of these previously unknown proper-

ties that furnishes discovery its epistemic power. Monte Carlo simulations, by contrast,

are not supposed to deliver any new information about the randomizer. Everything

that matters epistemically is already known in advance, namely that the random

numbers follow a certain distribution. As a result, Monte Carlo simulations can use

any of many possible physical randomizers without the change of randomizer

making any difference to the outcome. The randomizer can vary from truly random

processes provided by quantum systems, such as the random clicks of a Geiger

counter near a radioactive source; to the effectively random processes supplied to

thermal noise in an electronic circuit; to properly executed casino randomizers,
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such as roulette wheels. All that matters is that the devices provide numbers with the

requisite distribution, which has been specified ahead of any physical contact with the

randomizer. Thus the randomizers are designed to suppress empirical discoveries that

would uncover hitherto unknown physical properties of the randomizer.

Finally, a physical randomizer can be replaced entirely by the computer code of a

pseudo-randomizer without any harmful effect or even any discernible effect on the

Monte Carlo simulation. That replacement displays most clearly that a Monte Carlo

simulation does not require contact with the randomizer as an external physical

object. Hence the simulation cannot implement ‘discovery’ for that mode requires

such contact.

5. Monte Carlo Simulations Are Arguments: The Direct Case

In so far as Monte Carlo simulations carry out calculations that trace the dynamics of a

system, direct examination shows them to be arguments or inferences. As with deter-

ministic simulations based upon the Euler method described in section 3.2 above,

Monte Carlo simulations derive approximate solutions to equations that connect

physical characteristics of the target system. What remains to be shown here is that

the introduction of randomization does not change this assessment.

We can break the problem down into two subproblems according to whether the

Monte Carlo simulation is used merely to compute some mathematical quantity or

to imitate a physical system. In both, following the discussion of section 4, we will

not distinguish physical randomizers from pseudo-randomizers, since the difference

between them is immaterial to the functioning of Monte Carlo simulations.

5.1. Computing a Mathematical Quantity

We have seen in section 2 that Monte Carlo simulations can be used merely to compute a

mathematical quantity. The simulation employs mathematical structures only: sets,

functions, and the like. The simulation consists of computations or mathematical deri-

vations—inferences—that employ these structures. Randomization adds the compli-

cation that the final outcome must be interpreted probabilistically: the result is likely

not exactly correct, but very likely close to the correct result. This assurance is recovered

from a meta-level inference about the derivation. The entirety of the simulation, if a

pseudo-random number generator is used, simply is a derivation in mathematics.

This is illustrated in the Monte Carlo computation of p/4 in section 2 above. The

basic structure is the set {ri}, generated by the formula in equation 2, and the sum-

mation over it of equation 3. The resulting values of table 1 are generated by direct

computation. A metalevel argument assures us that the numbers in the set {ri} are

uniformly distributed over the unit interval for most of the initial values X0 that we

may use to seed the generator of equation 2 and that, as a result, the summation of

equation 3 will be very close to p/4.

That the introduction of randomization is benign can be illustrated with a simple

but computationally impractical example in which we introduce randomization in

412 C. Beisbart and J. D. Norton

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
48

 0
7 

M
ay

 2
01

3 



two steps. Consider the problem of summing all the integers from 1 to 1,000,000. We

could find it directly by summing 1 + 2 + 3 + · · · Or we could use a randomizer to

select a different order in which to sum, say 56,723 + 2 + 899,765 + · · · In this

second case, the intrusion of randomness does not alter the outcome; addition is

associative and gives the same result whatever the order. Using a randomizer to

select the order corresponds, figuratively, to putting all the numbers in an urn,

drawing them randomly without replacement and adding them in the order they

are drawn. A more efficient process requires us to draw a small random sample of

the entire set, sum them and scale up the sum of the sample to estimate the sum of

the totality. It turns out that a very small sample, drawn with replacement, is sufficient

to get a good estimate. Merely drawing 10,000 numbers, which is just 1% of the total-

ity, will yield a result that is likely within 1.15% of the correct answer.
6

This last pro-

cedure corresponds to a Monte Carlo simulation of the integral
�1,000,000.5

x = 0.5
dx x.

5.2. Simulating a Physical System

Consider now the case of Monte Carlo simulations of real physical systems. This case

can be dealt with quickly, for it reduces to the case of computing a mathematical quan-

tity of section 5.1. Recall that every Monte Carlo simulation is just a Monte Carlo inte-

gration. The preparation for a Monte Carlo simulation of some real physical system is

the developing of a mathematical description of the system. The Monte Carlo simu-

lation itself is merely the derivation within this mathematical description of some

quantity, exactly akin to what we have seen in section 5.1.

For example, we may model Brownian motion as a discrete random walk as

described in section 2. Then each possible trajectory of the particle over 1,000

time units is represented by adding 1,000 numbers, each number representing a

possible step. The related addition is a purely mathematical operation. The statisti-

cal parameters of the motion, such as its mean, its variance, the mean time for

return to the origin, and so on arise from sums over all possible trajectories.

Monte Carlo simulations estimate the related sums by summing only over a ran-

domly selected subclass of possible trajectories. This is analogous to summing

over a random selection of numbers to obtain the value of a sum or an integral.

This example also illustrates why every Monte Carlo method performs a Monte

Carlo integration.

6. What Is the Inference of a Monte Carlo Simulation?

There is direct and indirect evidence then to the effect that a Monte Carlo simulation is

an argument. But what exactly is this argument? We have argued that it has two parts:

the inferences of the computation itself, typically carried out by an electronic compu-

ter, and the arguments of a meta-analysis that assure us that the intended results have

been attained. The purpose of this section is to display the arguments in our main

examples of Monte Carlo simulations.
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We return first to the Monte Carlo integration that estimates the numerical value of

p/4. Consider the integration with initial value X0 ¼ 0 and N ¼ 10,000 random

numbers (see table 1). The primary argument consists in the computation of the

members of the set of random numbers {ri} by the linear congruential generator (4)

and its substitution into the summation formula
1

N

∑N

i = 1

�������
1 − r2

i

√
to arrive at the

result 0.785052. This argument is merely a large set of simple arithmetic inferences

performed by an electronic computer. It would be impractical and unilluminating

to display them here. The argument of the meta-analysis is more delicate and more

interesting. It assures us that the result 0.785052 has the significance intended. That

argument is reconstructed in outline as:

P1. The 10,000 random numbers {ri} are uniformly distributed over [0, 1].
P2. Substituting these random numbers into the Monte Carlo estimator

1

n

∑n

i = 1

�������
1 − r2

i

√
gives the value 0.785052.

P3. If the set {ri} is large and uniformly distributed, the Monte Carlo estimator
1

n

∑n

i = 1

�������
1 − r2

i

√
of the integral p/4 =

�1

0

�������
1 − x2

√
dx very probably approxi-

mately equals its true value p/4.
C. p/4 very probably is approximately 0.785052.

The conclusion C states the result of the Monte Carlo simulation. It is qualitative. One

reason is that the error tolerance is not specified numerically. It is chosen by the

working scientists and reflects their goals and interests.

The conclusion C is probabilistic in character. While we cannot enter here into the

thorny problem of explicating probability, it is sufficient for our purposes that an

objective notion is used and that this objective notion assures us of a close association

between the relative frequencies of random numbers and the corresponding probabil-

ities for large sets of random numbers.

Conclusion C is probabilistic because of premise P3, which asserts mere probabil-

istic convergence for the Monte Carlo integration. That Monte Carlo integration con-

verges probabilistically has been proven quite generally, at least if the function to be

integrated is well behaved (see James 1980, 1150). This general result does not

entail how quickly a particular Monte Carlo integration converges. For some appli-

cations of the method, it is possible to obtain exact bounds on the error and the

respective probabilities. For other applications, no such bounds are known, but they

may be estimated from simulations.

The Monte Carlo simulation that estimates p/4 is merely a mathematical compu-

tation. We argued in section 5.2 above that Monte Carlo simulations of physical

systems reduce to analogous mathematical computations, using Brownian motion

as an illustration. But since the results of such Monte Carlo simulations have empirical

meaning, we can reconstruct the arguments associated with such simulations in a

more illuminating way. We consider a simulation that provides the expected position

of a Brownian particle after 1,000 time steps.

A Monte Carlo simulation of Brownian motion depends on the probability model

that specifies the probability distribution p for the Brownian particle moving to each
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accessible position at some time t, given its position at an immediately antecedent time

t – 1. The computation within the simulation that delivers the position for one sample

trajectory after 1,000 time steps implements an argument that can be summarized as:

P1′. The initial position of the sample trajectory at time t ¼ 0 is X(0) ¼ 0 (in suit-
able units and coordinates).

P2′(t). (t ¼ 0 to 999) If the position of the sample trajectory at time t is X(t), then
its position at time t + 1, X(t + 1) ¼X(t) + rt , where the rt sample the prob-

ability distribution p.
7

Cc′. The position of the sample trajectory at time t ¼ 1,000 is r ¼
∑1,000

t = 1
rt .

The premises P2′(t) follow the same scheme that yields 1,000 individual premises as t

takes values from 0 to 999. The conclusion Cc′ follows from these premises in conjunc-

tion with P1′.
8

The computation of a single sample trajectory is, in general, not useful by itself,

since trajectories will vary considerably in their details. Our goal in the simulation

is to obtain statistical features of the entirety of sample trajectories. These are recovered

from statistical estimators. We may estimate the expected or mean final position by

computing the average of the final positions of many—N, say—trajectories. An argu-

ment in the meta-analysis assures us of the final result:

P3′. The expected final position of the particle is very probably the average final pos-
ition of the large number of N randomly chosen sample trajectories of the prob-
ability model.

P4′. The average over N such randomly chosen sample trajectories takes the value rav.
C′. The expected position of the particle, kX(1,000)l, very probably is approxi-

mately rav.

Premise P4′ asserts the average of the results of the conclusions of the many arguments

P1, P2′(t), Cc′ associated with the many simulations of the N individual trajectories.

Altogether, we have two kinds of argument: a series of arguments that derive the

final positions of sample trajectories; and a meta-level argument that infers the

result. The execution of the former, lower-level arguments requires the most compu-

tational effort. The meta-level argument is essential if we are to obtain the final result.

7. Distractions and Objections

We believe that we have established that Monte Carlo simulations are merely argu-

ments like other simulations. Nonetheless, there are distractions that still may

appear to press Monte Carlo simulations towards real experiments. We list some

here and respond to them.

1. Monte Carlo simulations depend upon randomness, which is non-inferential.
So how can they be arguments?

It is true that Monte Carlo simulations appear, initially, to be quite different from

other simulations because of the essential role of randomness. This appearance is

deceptive, for randomness can have no role or only a minimal one in the final

results if they are to be credible. Otherwise Monte Carlo simulations would be little
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better than forecasting by reading tea leaves or shuffling tarot cards, whose results are

mostly expressions of random chance. The results of a good Monte Carlo simulation

are not. They are repeatable and reliable.

While one properly generated random number is unpredictable, the behaviour of a

large collection of independent random numbers is highly regular. This fact is well

known from the laws of large numbers (see e.g. Feller 1968, ch. 10). Exploiting this

regularity is what enables Monte Carlo simulations to eliminate the vagaries of

chance and to return reliable, repeatable results.

As we have shown above, a well-designed Monte Carlo simulation minimizes the

role of randomness. Probabilistic convergence of Monte Carlo simulations guarantees

that the errors become arbitrarily small. It is true that there is always a small prob-

ability of a Monte Carlo simulation producing an incorrect result. But this probability

can be made arbitrarily small. In this sense, the role of randomness is minimized. As

James aptly comments, the name ‘Monte Carlo simulation’ is particularly fitting

‘because the style of gambling in the Monte Carlo casino, not to be confused with

the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and sophis-

ticated’ (James 1980, 1151).

2. The randomness within Monte Carlo simulations is akin to the unpredictable,
novel character of data supplied by real experiments. So why are Monte Carlo
simulations not better thought of as real experiments?

In real experiments, the unpredictable and novel character of the data is the source of

the final experimental result. In a Monte Carlo simulation, the unpredictable and

novel character of the random numbers is minimized and plays almost no role in

the final result.

We should also guard against an equivocation on the term ‘experiment’. It may

mislead us with the wrong sense of novelty. In one use of the term, ‘experiment’

denotes any activity whose outcome is unknown at the outset. In that usage, generating

a random number is an experiment, since we ought not to know which one will be recov-

ered. Finding the square root of 234,398 would likewise count as an experiment. The use

of ‘experiment’ in this paper is narrower and epistemically richer. It denotes the activity

of observing some arrangement in the world in order to discover how it will behave, and,

in some cases, of generalizing the result to similar systems.

Thus, while the random numbers employed as intermediates in a Monte Carlo

simulation may be unpredicted and unexpected, the sense of novelty is different

from that associated with a real experiment.

3. Derivations and arguments are transparent in that they are carried out by
humans and can be grasped by them. Monte Carlo Simulations are opaque
in that we humans cannot grasp the course of the simulations. So how can
they be arguments?

There is no requirement that an argument be humanly comprehensible. All that is

required is that it is a sequence of propositions conforming to the rules of the appli-

cable logic. That the entirety can be encompassed and comprehended in all detail by a

human mind is not required.
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Modern mathematics is now well into a revolution in its methods that is dispensing

with this feature of proofs. Theorems are being demonstrated by proofs that are so

complicated that no human can comprehend them. Thomas Hales (2005), for

example, provided a proof of Kepler’s conjecture on the maximum density of the

packing of spheres. The proof employed a computer to solve about 100,000 linear pro-

gramming problems pertaining to different configurations of spheres. It was published

only after scrutiny by a panel of 12 referees over four years, although they could not

affirm the correctness of the entirety of the proof (see Tymoczko 1979 for philosophi-

cal reflections about computer-based proofs in mathematics).

4. Monte Carlo simulations can employ physical randomizers such as coin tossers,
roulette wheels, Buffon’s falling needles, Geiger counters, and so on. So why are
these simulations not experiments on these physical randomizers?

They fail to be experiments on these randomizers for two reasons. First, the point of an

experiment is to discover something about the system upon which we experiment and,

perhaps, to make an inference to other systems. But a Monte Carlo simulation does

not produce any novel knowledge about the randomizer. Working scientists do not

use the random numbers to learn about the randomizer.
9

In fact, a well-designed

Monte Carlo simulation will return a result that is largely independent of the physical

randomizer used. Approximately the same result will be returned whether the rando-

mizer is a coin tosser or a Geiger counter. An essential part of the good design of

Monte Carlo simulation is to suppress discoveries about the peculiarities of the par-

ticular randomizer used, while ensuring the presence of some predetermined,

desired property, such as the uniformity of distribution of the random numbers

over some interval.

Second, most Monte Carlo simulations use a pseudo-random number generator

implemented in software. These simulations are clearly not experiments. Further, if

physical randomizers are used in a simulation at all, they are entirely dispensable.

They can always be replaced by a suitably designed pseudo-random number generator

without any epistemic loss.
10

Consequently, the physical randomizer is not the subject

of the inquiry, and Monte Carlo simulations that use such a randomizer cannot be

experiments on them.

5. A Monte Carlo simulation produces its result using sample trajectories of con-
crete particulars. This is very different from other numerical techniques used to
approximate solutions to equations. Thus, while other numerical methods can
be understood as carrying out an inference, Monte Carlo integrations cannot.

11

This objection misuses an analogy between real experiments and Monte Carlo simu-

lations. Real experiments often lead to results by generalizing from particulars, where

the particulars are individual runs of a physical experiment. Monte Carlo simulations

lead to results also by generalizing from particulars, where these particulars are compu-

tational surrogates of the individual runs of a physical experiment. Often, experiments

and Monte Carlo simulations use the same statistical techniques to arrive at their results.

But there is a crucial difference between the two methods. In experiments, each particu-

lar is an instance of the physical systems whose properties are sought. Hence their
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investigation conforms to the epistemic mode we have called ‘discovery’ that is used by

real experiments. In Monte Carlo simulations, each sample trajectory is a mere surro-

gate. As we have shown in section 6, the surrogates are generated inferentially from

assumptions about the target system. When they are combined with further inferences

in the Monte Carlo simulation, they yield the result of the simulation. Consequently,

epistemically, the whole process of a Monte Carlo simulation is fully inferential.
12

6. Monte Carlo simulations must be experiments because they can take the same
role as experiments.

13

That two things can take the same role does not show them to be identical. It only

shows them to be similar in some aspect relevant to the role. Experiments and

Monte Carlo simulations still differ in the epistemic aspect of interest here. Exper-

iments are powered epistemically by discovery and simulations by inference.

7. Monte Carlo simulations allow one to manipulate the initial conditions, as do
experiments. Hence, Monte Carlo simulations are experiments.

14

Once again, two things that share a feature need not be the same. Hence, even though

we can explore differing initial set-ups in experiments and in Monte Carlo simu-

lations, this does not show that the latter are experiments. In simulations, the initial

conditions are only set up in a model, and not in reality, as it is the case in experiments.

8. In a Monte Carlo simulation, things can go wrong in a physical sense. For
instance, the physical randomizer or the hardware may fail to function in the
way they are supposed to. This dependence on the physical implementation
makes Monte Carlo simulations experiments.

15

We agree that we can trust a simulation only if we can trust that the physical rando-

mizer and the hardware function properly. But this does not imply that the simulation

is an experiment on the randomizer and the computer hardware. We have already

shown that the randomizer is not the subject of empirical discovery during a simu-

lation. Nor is the computer hardware. The working scientist does not seek to learn

about the processors of computers. Rather, the randomizer and the hardware are tech-

nical means to carry out a calculation. Clearly, the means have to work properly if the

calculation is to be successful, and this explains why scientists who run simulations are

concerned about failures of the randomizer or the hardware.

The objection that we consider would also lead to implausible consequences. When

a computer program like Mathematica calculates 4,668,570,242 plus 6,980,836,254,

things can go wrong due to a hardware failure. But this does not show that the sum-

mation is an experiment.

9. In analog simulations we carry out an experiment on one system to learn about
a system to which it is (supposedly) formally analogous. So why are not Monte
Carlo simulations analog simulations? They include an experiment on a rando-
mizer; a formal analogy is then used to infer something about the target
system.

16

Monte Carlo simulations are quite different from analog simulations. In a paradig-

matic example of a formal analogy (Humphreys 2004, 125–129), two systems are

418 C. Beisbart and J. D. Norton

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
48

 0
7 

M
ay

 2
01

3 



well described using the same type of differential equation, e.g. an equation for a

damped harmonic oscillator. This fact can be used to make an inference from one

system to the other. Things are different in typical Monte Carlo simulations. The ran-

domizer (say, a roulette wheel) and the target of the simulations (say, a Brownian par-

ticle) do not obey the same type of equation. It need not even be the case that the

outcomes of the randomizer and some aspect of the target follow the same probability

distribution, for the random numbers from the randomizer are often transformed

considerably by the simulation program. For instance, random numbers with a

uniform distribution over [0, 1] are transformed into random numbers with a

normal distribution (e.g. James 1980, 1179–1183). The outcome is that a formal

analogy between the target and the randomizer is not required for the functioning

of Monte Carlo simulations.

8. Conclusion

Monte Carlo simulations are, we urge, merely rather complicated arguments and have

no epistemic powers beyond those of an argument. We may well ask what we gain from

this deflationary conclusion. For, we might say, Monte Carlo simulations are interest-

ing in so far as they differ from our normal modes of investigation. Our deflationary

conclusion merely identifies how they are the same.

We agree that there is much interesting novelty in Monte Carlo methods and much

to be found in investigating how they differ from other modes. In particular, they

deliver results that other methods find difficult or even impossible in practice; and

they are distinctive in their dependence on the novel computational technology of

our modern era.

The danger is that we are swept up by the excitement of this novelty into believing

that we have found some qualitatively new mode of investigation. We read our defla-

tionary result as placing a bound on these enthusiasms. It shows that the epistemic

gains supplied by Monte Carlo simulations are pragmatic. They open no new episte-

mic channels.
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Notes

[1] Morrison (2009) maintains that many computer simulations, Monte Carlo or not, are exper-
iments because they draw on models in the same way as experiments do. See Giere (2009) for
a reply to Morrison.

[2] There are many other fascinating aspects to Monte Carlo simulations. See e.g. Humphreys
(1994) and Galison (1997, ch. 8). See also Anderson (1987), Eckhardt (1987), the chapters
in the first part of Gubernatis (2003), and Hitchcock (2003) for the history of Monte
Carlo simulations.
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[3] A more appropriate expression is ‘Monte Carlo method’ or ‘Monte Carlo technique’. See e.g.
James (1980), 1147, for a definition. Consult Hammersley and Handscomb (1967), Halton
(1970), and James (1980) for reviews of this method.

[4] See e.g. Hammersley and Handscomb (1967, ch. 3), Tocher (1975, ch. 6), James (1980, 1165–
1167), and Knuth (2000, ch. 3) for the generation of pseudo-random numbers.

[5] Here we define random numbers probabilistically. That is, a sequence of numbers is random
just if they fit the requisite probabilistic model. It is a matter of considerable discussion just
what it is for random numbers to fit some probabilistic model. These issues go beyond the
scope of the present paper and will not be addressed here. It is sufficient for our purposes
that, as a practical matter in Monte Carlo simulations, a large sequence of numbers would
not be accepted as conforming to a uniform distribution over [0, 1] if all the numbers are
clustered close to some particular value, such as 0.25, even though there is some very
small probability that just such a clustering may happen. This sequence and other pathologi-
cal sequences like it would be rejected in favour of ones whose members are more uniformly
distributed over [0, 1].

[6] The N random variables Xi, i ¼ 1, . . ., N are uniformly and independently distributed over the

integers {1, . . ., M ¼ 1,000,000}. The estimate of the sum
∑M

i = 1

i = M(M + 1)/2 is
M

N

∑N

i = 1
Xi,

which has a mean M(M + 1)/2 and a variance
M2(M2 − 1)

12N
. Two standard deviations,

expressed as a fraction of the mean, is approximately 2/
����
3N

√
, which supplies the 1.15%

error of the text when N ¼ 10,000.
[7] As explained in section 2 above, this is meant to say that certain frequencies in the random

numbers ri closely match those predicted by the probability model p.
[8] A similar type of argument is carried out by a computer simulation that uses deterministic

equations to follow the dynamics of a system (Beisbart 2012).
[9] The only exception is when the random numbers from a randomizer are tested for their stat-

istical properties. If an independence test fails, we do learn something about the randomizer,
namely that the trials are not independent. Such tests are necessary to underwrite the premise
that the random numbers follow a certain probability model. However, such a test is not a
proper part of every Monte Carlo simulation. Once we are confident that a certain randomi-
zer produces random numbers with a certain distribution, we can use the randomizer
without testing the random numbers actually produced.

[10] A possible exception is a case in which it is known that a physical randomizer produces the
right sort of random numbers, but in which the pertinent probability model is unknown
such that one cannot generate the random numbers using software. This case is rather
peculiar though and not typical of Monte Carlo simulations. In this peculiar case, we
would not object to the suggestion that we have a real experiment.

[11] Humphreys (1994, 112) puts the objection thus: ‘It is the fact that they [Monte Carlo simu-
lations] have a dynamical content due to being implemented on a real computational device
that sets these models apart from ordinary mathematical models, because the solution
process for generating the limit distribution is not one of abstract inference, but is available
only by virtue of allowing the random walks themselves to generate the distribution.’ Hum-
phreys is here concerned with Monte Carlo simulations that trace a probability distribution.
The particular interest is the final distribution.

[12] It is true that drawing random numbers (particularly with the aid of a physical gambling
device) is not an argument. But a Monte Carlo simulation is much more than drawing
random numbers, and what is epistemologically decisive is inference, as we have argued in
section 4.

[13] For instance, Dietrich (1996, e.g. 341) reports that certain Monte Carlo simulations were
used as a benchmark for theoretical work in the same way experiments are.
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[14] As Dietrich (1996, 346) puts it, ‘Monte Carlo experiments share this basic structure of
independent variables, dependent variables, and controlled parameters’ known from
experiments.

[15] This argument applies not just to Monte Carlo simulations, but to every computer simu-
lation. See Parker (2009, 488–491) for a similar argument.

[16] To outline the objection, we rely on a proposal due to Guala (2002, 66–67) and an emenda-
tion by Winsberg (2010, 57–58). A formal analogy contrasts with a material one. The distinc-
tion between these analogies goes back to Hesse (1966, 68). Consult also Trenholme (1994)
for analog simulations.

References

Anderson, H. L. 1987. Metropolis, Monte Carlo, and the MANIAC. Los Alamos Science 14: 96–107.
Beisbart, C. 2012. How can computer simulations produce new knowledge? European Journal for

Philosophy of Science 2: 395–434.
Brown, J. R. 2004. Why thought experiments transcend empiricism. In Contemporary debates in the

philosophy of science, edited by C. Hitchcock, 23–44. Malden, MA: Blackwell.
Cavendish, H. 1798. Experiments to determine the density of the earth. Philosophical Transactions of

the Royal Society of London 88: 469–526.
Dietrich, M. R. 1996. Monte Carlo experiments and the defense of diffusion models in molecular

population genetics. Biology and Philosophy 11: 339–356.
Eckhardt, R. 1987. Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Science

15: 131–141.
Feller, W. 1968. An introduction to probability theory and its applications, vol. 2. 3rd ed. New York:

Wiley.
Galison, P. 1997. Image and logic: A material culture of microphysics. Chicago, IL: University of

Chicago Press.
Giere, R. N. 2009. Is computer simulation changing the face of experimentation? Philosophical

Studies 143: 59–62.
Guala, F. 2002. Models, simulations, and experiments. In Model-based reasoning: Science, technology,

values, edited by L. Magnani and N. Nersessian, 59–74. New York: Kluwer.
Gubernatis, J. E., ed. 2003. The Monte Carlo method in the physical sciences: Celebrating the 50th anni-

versary of the Metropolis algorithm. Melville, NY: American Institute of Physics.
Hales, T. 2005. A proof of the Kepler conjecture. Annals of Mathematics 162: 1065–1085.
Halton, J. H. 1970. A retrospective and prospective survey of the Monte Carlo method. SIAM Review

12: 1–63.
Hammersley, J. M., and D. C. Handscomb. 1967. Monte Carlo methods. London: Methuen.
Heidelberger, M. 2005. Experimentation and instrumentation. In Encyclopedia of philosophy, edited

by D. Borchert, appendix, 12–20. New York: Macmillan.
Hesse, M. B. 1966. Models and analogies in science. Notre Dame, IN: University of Notre Dame Press.
Hitchcock, D. B. 2003. A history of the Metropolis–Hastings algorithm. American Statistician 57:

254–257.
Humphreys, P. 1994. Numerical experimentation. In Patrick Suppes: Scientific philosopher, edited by

P. Humphreys, vol. 2, 103–118. Dordrecht: Kluwer.
———. 2004. Extending ourselves: Computational science, empiricism, and scientific method.

New York: Oxford University Press.
James, F. 1980. Monte Carlo theory and practice. Reports on Progress in Physics 43: 1145–1187.
Knuth, D. E. 2000. The art of computer programming. Vol. 2, Seminumerical algorithms, 3rd ed.

Upper Saddle River, NJ: Addison-Wesley.
Lemons, D. S. 2002. An introduction to stochastic processes in physics. Baltimore, MD: Johns Hopkins

University Press.

International Studies in the Philosophy of Science 421

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
Pi

tts
bu

rg
h]

 a
t 1

5:
48

 0
7 

M
ay

 2
01

3 



Millikan, R. A. 1913. On the elementary electrical charge and the Avogadro constant. Physical Review
2: 109–143.

Morrison, M. 2009. Models, measurement and computer simulation: The changing face of exper-
imentation. Philosophical Studies 143: 33–57.

Norton, J. D. 1996. Are thought experiments just what you thought? Canadian Journal of Philosophy
26: 333–366.

———. 2004. Why thought experiments do not transcend empiricism. In Contemporary debates in
the philosophy of science, edited by C. Hitchcock, 44–66. Malden, MA: Blackwell.

Parker, W. S. 2009. Does matter really matter? Computer simulations, experiments, and materiality.
Synthese 169: 483–496.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical recipes in C: The
art of scientific computing. 2nd ed. Cambridge: Cambridge University Press.

Radder, H. 2009. The philosophy of scientific experimentation: A review. Automatic Experimentation 1.
Available from http://www.aejournal.net/content/1/1/2; INTERNET.
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