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1. Introduction. David Malament (1995) has described a natural and sat-
isfying resolution of the traditional problems of Newtonian cosmology—
natural in the sense that it effects the escape by altering Newtonian grav-
itation theory in a way that leaves its observational predictions completely
unaffected. I am in full agreement with his approach. There is one part of
his account, however, over which Malament has been excessively modest.
The resolution requires a modification to Newtonian gravitation theory.
Malament presents the modification as so straightforward as to be auto-
matic. This trivializes the crucial postulate, which I shall call the “relativity
of acceleration.” It is a significant physical statement in its own right and
requires careful justification. Moreover the postulate proved easy to over-
look for decades of discussion of the paradox.! It really only becomes
natural from the perspective of the newer geometric methods Malament
exploits. There the postulate has become a commonplace. My purpose
here is to develop the following:

* While Newtonian cosmology can be repaired satisfactorily, in its
traditional form it remains deeply troubled. These troubles can be
expressed most vividly as the paradoxical contradictions indicated
below. They persist in both the integral and differential formulations
of Newtonian gravitation theory. (Section 2)

* Malament’s careful geometric treatment is necessarily dense. By tak-
ing some liberties with precision, his core result can be expressed in
a far simpler form. (Section 4)

+ Attempts to avoid the resolution Malament describes do lead to
disaster. Therefore this episode can be inverted and used as the
strongest extant argument for the relativity of acceleration in New-
tonian gravitation theory. (Section 5)

*Received February 1995.
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'The woes and triumphs of Newtonian cosmology have had a rich history, some of which
is recapitulated by Malament’s paper and this note. This history will be examined in more
detail in a study now in preparation.
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512 JOHN D. NORTON

The sketching of this last argument is the most important component of
this note.

2. The Woes of Newtonian Cosmology. In its simplest form, a Newtonian
cosmology consists of an infinite three dimensional Euclidean space with
a uniform matter distribution. The problem arises when we ask after the
net gravitational force on a test mass that results from Newton’s inverse
square law of gravitation. According to this law, the gravitational force
of attraction between any two masses of size m, and m, separated by
distance r is given as

F = Gm,m,/r? (H

where G is the gravitational constant. To recover the net force, one needs
to sum the forces between the test mass and all other masses in the uni-
verse. The infinite integral representing this sum proves not to be uni-
formly convergent: depending on how one approaches the limit, one can
recover a force of any nominated magnitude and direction.

We can see this result informally following the approach of Norton
(1993). We seck the net gravitational force on a test mass m with position
vector r in three-space, as in Figure 1. Divide the homogeneous source
mass distribution of density r into a sphere centered on some arbitrary
point ry and on whose surface the test mass sits. Locate the remaining
masses in concentric spherical shells that contain the test mass. Using a
well-known result in Newtonian gravitation theory, we conclude that the
shells each exert no net force on the test mass. The net force on the test

mass is simply the force
nly
chosen
int

Figure 1. Arbitrariness of Gravitational force F on Test Mass in Newtonian Cosmology.
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F = —m@/3)nGp(r — r,)

exerted by the sphere of matter centered on r, and on whose surface the
test mass sits. Since the position r, of the sphere’s center is arbitrarily
chosen, the force F is arbitrary in both magnitude and direction.

Thus we have:

Contradiction 1: Indeterminacy of gravitational force

The following cannot all be true:

(a) Newtonian mechanics: Newtonian kinematics plus Newton’s
three laws of motion.

(b) Newton’s inverse square law of gravitation (1).

(c) Matter is distributed homogeneously and isotropically in an in-
finite Euclidean space.

(d) There is a unique gravitational force on a test mass fixed by (b)
and (c).

Malament’s first response to this indeterminacy problem is to notice
that most treatments of Newtonian gravitation theory do not simply use
Newton’s inverse square law (1). Rather they require that the vector force
f on a unit test mass be given by the gradient — V of a new intermediate
quantity, the gravitational potential ¢, which is governed by Poisson’s
equation

V2d = 4nGp )

where p is the mass density. For the case of a homogenous, isotropic
matter distribution (i.e., p is a constant in space but not necessarily in
time), the closest we can get to a homogeneous and isotropic field that
satisfies (2) are the canonical solutions in which the field &(r) at position
ris

$r) = @3)mGp() Ir — 1ol (3)

where r, is some arbitrarily selected point in space.? The resulting force
field is given as

f= -V = —@43)nGp(ti(r — r,). 4)

It represents a force field everywhere directed towards the central point r,.
The matter density p(t) is some function of t whose form is fixed by further
assumption. We shall assume that the matter is in the form of pressureless
dust in free fall, so that the free fall motion of the dust particles will
determine how the dust cloud expands or contracts and thus the functional
form of p(t).

ZPoisson’s equation (2) leaves ¢ underdetermined up to a arbitrary, additive harmonic

function v, which satisfies V2y = 0. If one requires isotropy of the field about r, this under-
determination disappears.
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The addition of the potential ¢ and Poisson equation (2) does not ma-
terially affect the indeterminacy contradiction of Newtonian cosmology.
There are as many canonical solutions (3) as there are choices for r,. Each
distinct choice of r, leads to a different force

F= -mVd = —m@3)nGp(r — 1r,)

on the test body. This force F is precisely the same as the one computed
through Figure 1 for a test mass by means of the sphere and shells con-
struction. What has changed, however, is that once the point r, is selected,
the forces on test masses at spatial positions other than r become fixed if
we also assume that the solution is canonical.

On the basis of the naturalness of the canonical solutions, one may want
to proceed by stipulating in addition that, in Newtonian cosmology, we
proceed by picking just one canonical solution and ignoring the rest. The
troubles still remain in the oddness of the result that each canonical so-
lution has a preferred central point r, even though the space and matter
distribution that generated it are fully homogeneous and isotropic. The
inhomogeneity cuts to the heart of the theory, for at that unique central
point alone we see immediately from (4) that f = 0, so that matter in free
fall at that point alone is unaccelerated and all other matter accelerates
towards that point with an acceleration proportional to the distance from
it. This problem can be summarized as

Contradiction 2: Inhomogeneity of &

The following cannot all be true:

(a) Newtonian mechanics: Newtonian kinematics plus Newton’s
three laws of motion.

(b") The gravitational potential ¢ satisfies Poisson’s equation (2).

(c) Matter is distributed homogeneously and isotropically in an in-
finite Euclidean space.

(d") The gravitational potential ¢ is homogeneous.

3. The Relativity of Acceleration. One can only escape the contradictions
by denying one or more of the component clauses. Historically, drastic
assumptions have been invoked to effect the escape. Layzer (1954) urged
that we give up (c) and consider only huge but finite distributions of mat-
ter. Einstein (1917), in his famous cosmology paper, preferred to entertain
a slight modification to the inverse square law of gravitation (b)/Poisson’s
equation (b').?

The escape Malament urges is less drastic. While the canonical solutions
are inhomogeneous with a preferred central point r, and distinguished

3He added a cosmological term to Poisson’s equation which became V2¢ — Ad = 4nGp.

For constant p, this modified field equation admits the homogeneous, isotropic solution
b = —4nGp/i.
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from one another by the choice of r,, nothing observable depends on the
choice of r,. If we take any two points r, and r, in space, then the relative
acceleration a between any two masses in free fall at these points—the
observable quantity—is derived directly from (4) as

a = —(@43)nGp(; — 1y (%)

That is, the arbitrarily chosen point r, does not appear in the expression
for the observable a so that the choice of ry has no influence upon it. Again,
while a particle at r, is distinguished as being the only particle that moves
inertially in the field, nothing observable reveals this special status. Indeed
we could stipulate that any point, for example the r, of equation (5), is the
preferred center r, and the observable relative accelerations would be com-
patible with it. Relabelling r, as r, in (5) reduces (5) to the canonical force
field equation (4).4

In ordinary Newtonian gravitation theory, one decomposes a free fall
motion into two parts: an inertial trajectory and a deflection due the grav-
itational field. The motion at r, is distinct in so far as it is the only motion
without gravitational deflection. Since the distinctness of r, translates into
nothing observable we may suspect that whatever distinguishes the special
point 1, from all others cannot correspond to anything physical. It is
merely a conventional element of the theory. That suggestion is Mala-
ment’s proposal for the escape to both contradictions. It is a modification
to Newtonian kinematics (a):

Relativity of Acceleration

The decomposition of gravitational free fall into an inertial trajectory
and a gravitational deflection is conventional; we are free to divide
free fall motion into any combination of inertial motion and gravi-
tational deflection we please, as long as the latter corresponds to a
gravitational potential satisfying Poisson’s equation.

In the spacetime approach, the specification of which motions are inertial
is made by the affine structure, represented by the derivative operator V,,
and the arbitrariness of the decomposition into inertial and gravitational
parts appears in our freedom to adjust V, by the term Ce,, = —t,.V*d in
Malament’s “geometrization lemma.” In the geometrized case, we choose
to attribute all the free fall motion to inertial motion so that all gravita-
tional deflections vanish. In this case, what is customarily thought of as
gravitational effects arise as a geometric curvature in the affine structure;
the gravitational field has been geometrized.

What makes this escape more attractive than the others is that it leaves

“What is essential in deriving this result is that the masses of the bodies at r, and r, do not

appear in equation (4). This follows from the celebrated equality of inertial and gravitational
mass in Newtonian gravitation theory.
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the observational consequences of Newtonian gravitation theory un-
touched. What remains to be shown is that this escape does succeed.

4. Malament’s Core Proposition. Malament’s core proposition is stated in
his Section 4. Its principal burden is to show that the relativity of accel-
eration is indeed sufficient to eliminate both indeterminacy and inhomo-
geneity contradictions. Loosely it states that a canonical solution is ho-
mogeneous in its physically significant properties if we accept the relativity
of acceleration. This immediately resolves the inhomogeneity contradic-
tion, since whatever inhomogeneity is present in a canonical solution is
merely an artifact of our conventional choice of decomposition of free fall.
It also follows from the homogeneity that all canonical solutions (based
on the same p) are the same physically. Thus the indeterminacy contra-
diction is resolved: the different gravitational forces assigned by different
canonical solutions only reflect differences in our conventional choice of
decomposition of free fall motion.

The essence of Malament’s core proposition can be captured in non-
geometric terms as a simple covariance property of canonical solutions.
To see it, take some particular canonical solution and consider an inertial
frame of reference I in which the cosmic matter at the central point r, is

x=0 x=X(1)

tT spacetime
coordinate
woridline = system
of cosmic adapted to
matter — frame |
hypersurfaces
of constant x
absolute time —_—
\
\
=0

[ R \
o~
) =

1 1T 11
\-space-
space

E N

Figure 2. Canonical solution in Frame of Reference I.
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at rest.’ This is depicted in a spacetime diagram in Figure 2. Let (x,y,z,t)
be a coordinate system adapted to this inertial frame in the usual sense.®
The central point ry has coordinates x =y=2z=0so we haver, = 0. In this
coordinate system, the gravitational potential is given by

&(r,t) = (2/3)nGp(t)r ©
where 1> = x2 + y? + z2. The free fall trajectories of matter are governed
by

dr/de2 = —(4/3)nGp(t)r )
As before, the functional form of p(t) will follow from the free fall motion
of the cosmic dust. Select some arbitrary point R in space other than r, at
the instant t = 0. The trajectory of free fall of the cosmic matter through

this point will be described by some functions R(t) = (X(t), Y(t), Z(t))
governed by (7) so that

d?R(t)yde? = —(4/3ynGp(HR(1) ®)

We now transform to an accelerating frame of reference I’ with adapted
coordinates (x',y’,z',t") in which the free fall trajectory through R is at
rest. See Figure 3. The transformation is given by

' =x - X(t) y =y — Y(@®) z' =z — Z(1) t' =1t (9

It follows from (9) that r = r" + R(t), where r' = (x,y',z'), so that (7)
can be rewritten as

d?(@’ + R())/dt> = —(@4/3)nGpt)x’ + R(L)).
With substitution from (8) and settingt’ = t and p’(t") = p(t), we recover

dar'/dt’? = —(4/3)nGp'(t" )’ )
which derives from the gravitational potential
$'(r',t") = (2/3)nGp'(t)r"> (6"

Tacit in equation (6") is that the gravitational potential ¢ has not trans-
formed in the usual manner of Newtonian theory as a scalar. Rather it
transformed as’

b—= ¢ = ¢ + rd?R/AE + dR) 10)

SHere a frame of reference is understood as a set of non-intersecting timelike worldlines
that fill the spacetime. In an inertial frame, the trajectories are inertial. What motivates this
definition is the picture of a frame of reference as a body (of possibly negligible material)
filling the space and with some definite state of motion. The worldlines of the frame are the
worldlines of the individual points in the body.

“The coordinates (x,y,z) are Cartesian coordinates of the space, t coincides with absolute
time and the curves of constant (x,y,z) coincide with the worldlines of the inertial frame.

"Since ¢ + r-d®R/dE2 + ¢R) = (2/3mGp(r* — 2r-R + R?) = (2/3)aGp (r — R)? = &',
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Figure 3. Canonical solution in Frame of Reference I'.

The additional terms in the transformation law (10) exploit our freedom
to adjust the gravitational potential in any way that does not disturb the
observables, the relative accelerations of equation (5). They are unaffected
by the addition of a constant field $(R). They are also unaffected by the
addition of the term r-d?R/dt2. It merely corresponds to the addition of a
homogeneous field d2R/dt? to the field strength, which becomes

-V'¢' = —Vo — d*R/dt?

Since this homogeneous field accelerates all bodies alike in space, its pres-
ence is invisible to the observable relative accelerations of equation (5).
Comparing equations (6) and (7) with equations (6') and (7'), we see
that the free fall trajectories and cosmic matter density appear identical in
the frame I and the frame I'. That is, select any trajectory of the cosmic
matter in the canonical solution and align the rest frame with it according
to the transformation (9). In any such frame, the canonical solution will
look exactly the same; the cosmic matter will now be accelerated in the
same manner towards the arbitrarily selected matter at r = R. In tradi-
tional approaches, one had to allow that some difference remained. At
most one of the frames so selected—the frame 1 in this case—could be
inertial, so the point at r = r, = 0 was the unique point at which the
cosmic matter moved inertially. Any other I' must be non-inertial and the
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cosmic matter at the corresponding center point r = R accelerated. Ac-
cording to the relativity of acceleration, however, we are free to stipulate
which of these frames is inertial. In particular, we may choose to nominate
either I or I’ as inertial. Therefore mere conventional stipulation is all that
accords preferred status to the central point in a given frame dependent
description of the canonical solution.

This result gives us the sense in which the canonical solution is homo-
geneous. No point in space is distinguished as the preferred center. Any
point can take on that role merely by a suitable stipulation as to which
frame is inertial.

More formally Malament’s core proposition is a symmetry principle.?
It asserts that a canonical solution admits a rich class of symmetry trans-
formations, under which the canonical solution remains unchanged. These
symmetry transformations include that given by (9) which maps the frame
I into the frame I'. This type of symmetry principle is familiar to us as a
relativity principle. The most famous example is the relativity principle of
special relativity, which expresses the equivalence of all inertial frames of
reference. The relevant symmetry transformations comprise the Lorentz
group. They map arbitrary inertial frames into arbitrary inertial frames.
The accelerating frames of the canonical solutions are equivalent in pre-
cisely the same sense as the inertial frames of special relativity are equiv-
alent. Thus we can think of Malament’s core result as stating a relativity
principle which extends the relativity of motion to acceleration in New-
tonian gravitation theory—but only within the narrow confines of the
canonical solutions of Newtonian cosmology.

5. The Case for the Relativity of Acceleration. The relativity of accelera-
tion—that we are free to stipulate which are the inertial motions—is a
standard assumption of the geometrized theory of Newtonian spacetime.
But what justifies this assumption? Malament follows the standard ap-
proach in noting (Section I, footnote 8) that observation cannot pick out
which are the true inertial motions. All the different decompositions of
free fall into an inertial motion and a gravitational deflection are obser-
vationally equivalent. While this observational equivalence certainly in-
clines us toward accepting the relativity of acceleration, the mere fact of
observational equivalence alone cannot decide the issue. In recent philos-
ophy of space and time there have been two prominent conventionality
claims and both have been supported by an observational equivalence of

#In developing Malament’s core proposition, we have purchased simplicity of expression
at the cost of some imprecision. In the formulation given above it is only implicit that the
symmetry transformations also preserve absolute time and the Euclidean geometry of the
hypersurfaces of simultaneity. Also one must exercise care in expressing true relativity prin-
ciples as covariance principles for not all covariance principles express relativity principles.
This has been a subject of decades of controversy. See Norton 1993a, especially Section 6.

Copryright © 1995. All rights reserved.



520 JOHN D. NORTON

the different choices. They are Reichenbach’s celebrated claims for the
conventionality of geometry and for the conventionality of simultaneity
in special relativity. In spite of support from observational equivalence,
the acceptability of the conventionality claims remains a matter of ex-
tended debate (see Norton 1992, 1994).

Thus, even though two theoretical descriptions may be observationally
equivalent, it would seem that there may remain other grounds for decid-
ing between the two descriptions and that observational equivalence does
not automatically license a conventionality claim. The various choices of
simultaneity relation in special relativity may be observationally equiva-
lent, for example. Yet Malament (1977) has argued that there are com-
pelling reasons for preferring just one of them, the so-called standard si-
multaneity relation.® Such distinguishing grounds seem readily available
in Newtonian gravitation theory also—at least in the examples most com-
monly considered. The most familiar application of the theory is the grav-
itational field of a body such as the sun. In the geometrized spacetime
view, one routinely assumes that the free fall trajectories of the field can
be decomposed conventionally into inertial trajectories and gravitational
deflection. However just one decomposition stands out. In regions of
spacetime remote from the source mass, one naturally assumes that there
is no gravitational deflection and it follows that the inertial structure is
affinely flat. It seems natural to require that this flatness persists as we
proceed into regions close to the source mass and also that the deflecting
gravitational field be distributed isotropically in the space surrounding the
source mass, refiecting the isotropy of the matter distribution. These two
requirements—affine flatness of the inertial structure and isotropy of the
gravitational field—pick out a unique decomposition.!® Is this decompo-
sition just the simplest of a range of conventional choices? Or does it reflect
a deeper aspect of physical reality? Are we in fact free to choose the de-
composition of free fall by convention? If we had to decide this question
on the basis of the familiar example of the gravitational field of the sun,
then we may well expect a somewhat tortured debate, revolving at least
in part on a determination of how closely the conventionality claimed in
the relativity of acceleration is like that of the conventionality of geometry
or simultaneity.

The whole question looks quite different when we turn to the example
of Newtonian cosmology. The challenges to the conventionality of a

SGlymour (1977) and Malament (1977a) describe another striking case. There are relativ-
istic spacetimes which are observationally indistinguishable but which have distinct global
structure.

Affine flatness alone is not strong enough for uniqueness of decomposition. It follows
from Malament’s Geometrization Lemma (G3) that one can always decompose a flat affine
structure into a second flat affine structure plus the gravitational deflection of a uni-
directional gravitational field that satisfies V,V2d = 0.
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choice all depend on there being some basis for picking between the
choices. If observation cannot pick between simultaneity relations, then
Malament (1977) showed that the requirement of definability in terms of
causal structure does force a single choice. And the requirements of flat-
ness and field isotropy forces a particular decomposition of free fall mo-
tion in the field of the sun. In both cases some condition stated in terms
of theoretical structure was used to pick out a unique choice. In the case
of Newtonian cosmology this cannot be done. Our choice is to decide
which in the class of frames related by the group of transformations (9) is
to be designated as inertial. Prior to the decision of which are the inertial
motions, no condition stated in either observational or theoretical terms can
pick between the frames of reference in question. Every frame in the class
relates to the canonical solution in an identical way, on both the obser-
vational and theoretical level—this is the force of Malament’s core prop-
osition. Any condition that points to a frame I on the basis the observa-
tional or theoretical structure of the canonical solution must, therefore,
also point to all other frames I’ related to I by the symmetry transfor-
mation (9). Because the transformation (9) is a symmetry of the canonical
solution, the situation is akin to that in special relativity. No observational
or theoretical condition within the theory can pick between the inertial
frames and lead to the selection of one as a preferred rest frame.

With the example of Newtonian cosmology in hand, let us return to the
strongest claim:

Absoluteness of Acceleration

In Newtonian gravitation theory, it is always possible to decompose
gravitational free fall non-conventionally into a unique inertial tra-
jectory and gravitational deflection.

The case of Newtonian cosmology provides a clear counterexample to this
absoluteness claim. At best we might hope to salvage the absoluteness by
requiring that, in some cases, there is a non-conventional decomposition.
But we must surely find our confidence shaken in an absolute that is only
absolute some of the time.
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