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The End of the Thermodynamics of

Computation: A No-Go Result
John D. Norton*
The thermodynamics of computation assumes that computational processes at the mo-
lecular level can be brought arbitrarily close to thermodynamic reversibility and that ther-
modynamic entropy creation is unavoidable only in data erasure or the merging of computa-
tional paths, in accord with Landauer’s principle. The no-go result shows that fluctuations
preclude completion of thermodynamically reversible processes.Completion canbe achieved
only by irreversible processes that create thermodynamic entropy in excess of the Lan-
dauer limit.

1. Introduction. Electronic computers degrade work to heat, and the need
for its removal sets a practical limit to their performance. The study of the
thermodynamics of computation, surveyed in Bennett ð1982Þ, seeks the lim-
its in principle to reduction of this dissipation. Since dissipation reduces with
size, the most thermodynamically efficient computers are sought among those
that use individual molecules, charges, or magnetic dipoles as memory stor-
age devices.
These molecular-scale processes are treated like macroscopic ones in

one aspect: they can be brought arbitrarily close to the most efficient, non-
dissipative processes, those that are thermodynamically reversible. Their de-
fining characteristic is that they are at equilibrium at every stage. They are
brought slowly from start to finish by the successive nudges of miniscule
disequilibria. It is assumed that the dissipative effects of these nudges can
be made arbitrarily small by indefinitely extending the time allowed for the
process to reach completion.
Some form of dissipation, however, is judged unavoidable. The control-

ling idea of the thermodynamics of computation is that the creation of ther-
modynamic entropy or its passage to the environment and the associated
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need to pass heat to the environment must arise with logically irreversible
operations. These include the erasure of data and the merging of computa-

END OF THERMODYNAMICS OF COMPUTATION 1183
tional paths. The amount of thermodynamic entropy created is quantified
by Landauer’s principle. It asserts that at least kln2 of thermodynamic en-
tropy is created when one bit of data is erased. The result is an elegant ac-
count of the bounds to the thermodynamic efficiency of computation. They
are independent of the physical implementation but are set by the logical
operations comprising the computation.
Alas, this image of a well-developed science is an illusion. The thermo-

dynamics of computation is an underdeveloped muddle of vague plausibil-
ity arguments and misapplications of statistical physics. Earman and Norton
ð1998, 1999Þ track the science’s history through the Maxwell demon prob-
lem and find it rife with circular reasoning and question begging. Norton
ð2005, 2011Þ urges that the arguments used to support Landauer’s principle
are fallacious and have never successfully advanced beyond flawed plausi-
bility arguments. Erasure may reduce the range of possible values for data in
a memory. But this reduction is not a compression of the accessible phase
space of thermodynamic components that can be associated with a change
of thermodynamic entropy. The volume of accessible phase space remains
unchanged in erasure. Before erasure, we may also be unsure as to the data
stored and assign probabilities to the possibilities. That sort of probability,
however, is not associated with a thermodynamic entropy.
Finally, Norton ð2011Þ describes a “no-go” result—that thermodynami-

cally reversible processes at molecular scales are precluded from proceed-
ing to completion by fluctuations. Individual computational steps can only
be completed if they are sufficiently far from equilibrium to overcome fluc-
tuations. As a result they create quantities of thermodynamic entropy in ex-
cess of those tracked by Landauer’s principle. It follows that the lower limit
to thermodynamic entropy creation is not set by the logical specification of
the computation but by the details of the particular physical implementation
and the number of discrete steps it employs, whatever their function.
This article will develop the no-go result. It is motivated and stated in the

next section and then illustrated in section 3.

2. The No-Go Result.

2.1. A Preliminary Form. In a thermodynamically reversible process, all
component systems are in perfect equilibrium with one another at all stages.1

1. Typical erasure processes begin with a thermodynamically irreversible process in
which the memory device is thermalized. For example, the wall dividing a two-chamber

memory cell is raised so the molecule can access both chambers. The resulting uncon
trolled, thermodynamically irreversible expansion creates the kln2 of thermodynamic
entropy tracked by Landauer’s principle. As Norton ð2005, sec. 3.2Þ argues, a mistaken
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As result, they are impossible processes.2 Nothing changes. Heat will not
spontaneously pass from one body to another if they are at the same tem-

1184 JOHN D. NORTON
perature. In ordinary thermodynamics, this awkwardness is overcome by in-
troducing a slight disequilibrium. We minutely raise the temperature of the
first body and let that minute temperature gradient drive the heat transfer,
slowly. Because heat is now passing spontaneously from hot to cold, this
is a dissipative process. The thermodynamic entropy created measures the
amount of dissipation. For theoretical analyses, this entropy creation can
be neglected since it can be made as small as we like by making the driv-
ing temperature difference appropriately small. The process will still go for-
ward, but more slowly.
Matters are different when we allow for the molecular constitution of

matter. For now the equilibrium of a thermodynamically reversible process
is dynamic. If two bodies at the same temperature are in thermal contact,
energy will spontaneously pass to and fro between them as energy fluctua-
tions due to random, molecular-scale events. If we are to assure that heat
passes from the one to the other, we must arrange for a disequilibrium that
is sufficiently great to overcome the fluctuations.
Boltzmann’s Principle, “S 5 klnW,” that is, “entropy5 klnðprobabilityÞ,”

measures the dissipation needed. An isolated system is to pass from state 1
with total thermodynamic entropy S1 to state 2 with total entropy S2. The
inverted principle tells us that, if the system can spontaneously move be-
tween the two states, then the probabilities P1 and P2 of the two states are
related by

P2

P1

5 exp
� S2 2 S1

k

�
: ð1Þ

In macroscopic terms, negligible thermodynamic entropy creation is suffi-
cient to drive processes to completion. If S2 2 S1 5 10k, a macroscopic-
ally negligible amount, we find P2=P1 5 22; 026, so that the final state 2
is strongly favored.
At the molecular level, these amounts of thermodynamic entropy are

large. They exceed the entropy change of kln25 0:69k tracked by Lan-
dauer’s principle. They must exceed it, for creation of merely k ln2 of en-
tropy is insufficient to assure completion of a process. Then P2=P1 5
exp ðk ln2=kÞ5 2. The process is only twice as likely to be in its final
state 2 as in its initial state 1. This is a fatal result for the thermodynamics

tradition misidentifies this thermalization as thermodynamically reversible since the re-
2. For an analysis of thermodynamically reversible processes, see Norton ð2014
sec. 3Þ.

placing of the partition supposedly returns the original state of “random data.”
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of computation. If we have any computing process with multiple steps op-
erating at molecular scales, we must create thermodynamic entropy in each

END OF THERMODYNAMICS OF COMPUTATION 1185
step if the process is to go forward, quite aside from any issues of logical
irreversibility.

2.2. The Main Result. Boltzmann’s Principle in the form ð1Þ applies to
isolated systems. In the thermodynamics of computation, the computing
systems are treated as open systems, in equilibrium with a heat bath at the
ambient temperature T. The main result arises when we adapt these con-
siderations to such systems.
A computer is a system consisting of many interacting components, in-

cluding memory cells, systems that read and write to the memory cells, and
other control components to implement the computer’s program. At any
moment, the combined system is in thermal equilibrium with the environ-
ment at temperature T. Hence, the system is canonically distributed over
its phase space, according to the probability density

pðx; pÞ5 expð2Eðx; pÞ=kTÞ
Z

;

where Z is the normalizing partition function and x and p are multicom-
ponent generalized configuration and momentum coordinates.
Each computational step is carried out by a thermodynamically revers-

ible process, whose stages are parameterized by l. Fluctuations will carry
the system spontaneously from one stage to another. As a result, the system
is probabilistically distributed over the different stages. The probabilities
are computed by Einstein’s method, as adapted by Tolman ð1938, 637–38Þ,
and conform to the probability density

pðlÞ5 constant � ZðlÞ; ð2Þ

where ZðlÞ is given by

ZðlÞ5 E
l

exp
�2Eðx; pÞ

kT

�
dx dp:

This last integral extends over the volume of phase space accessible to the
system when the process is at stage l.
In the Einstein-Tolman analysis, each of these stages is given a thermo-

dynamic description as if it were an equilibrium state, even though it may
have arisen through a fluctuation. The canonically distributed system at
stage l is assigned a canonical free energy
This content downloaded from 136.142.187.197 on Thu, 9 Jan 2014 10:25:10 AM
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FðlÞ5 2kT lnZðlÞ; ð3Þ

1186 JOHN D. NORTON
treating ZðlÞ as a partition function, where the free energy is defined as

FðlÞ5 EðlÞ2 TSðlÞ:

Here EðlÞ and SðlÞ are the mean energy and the thermodynamic entropy
assigned to the system in stage l. It now follows from ð2Þ and ð3Þ that

pðlÞ5 constant exp
�2FðlÞ

kT

�

and that the probability densities for the system fluctuating between stages
l1 and l2 satisfy

pðl2Þ
pðl1Þ 5 exp

�
2
Fðl2Þ2 Fðl1Þ

kT

�
: ð4Þ

The process is thermodynamically reversible. Hence, it is in equilibrium
at every stage. Equilibrium requires the vanishing of the generalized ther-
modynamic force XðlÞ acting on the system:3

XðlÞ5
���� yyl

����
T

FðlÞ5 0:

Integrating over l, we find that the free energy FðlÞ is constant over the
stages of the process:

FðlÞ5 constant Fðl1Þ5 Fðl2Þ: ð5Þ

From ð4Þ, we have that

pðlÞ5 constant pðl1Þ5 pðl2Þ: ð6Þ

This last result ð6Þ is the no-go result. It precludes thermodynamically re-
versible processes proceeding as we expect.
Our default expectation is that these processes are in a quiescent equi-

librium at every stage l, perhaps with a slight disturbance due to fluctua-

3. At equilibrium, the total entropy Stot of the system Ssys and the environment Senv is sta-
tionary. Writing d 5 y=yljT , that amounts to 05 dStot 5 dSsys 1 dSenv. By supposition,

the computer system exchanges no work with the environment but only heat in a ther-
modynamically reversible process. Hence, dSenv 5 dEenv=T 52dEsys=T , where the last
equality follows from conservation of energy: dEenv1 dEsys 5 0. Combining, we have
05 dSsys 2dEsys=T. Hence, the condition for equilibrium is 05 dðEsys 2 TSsysÞ52Xsys.
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tions. We expect to bring the process from its initial to its final stage by
minute disequilibrium nudges that advance the process arbitrarily slowly

END OF THERMODYNAMICS OF COMPUTATION 1187
in the tiniest of steps. What ð6Þ tells us is that fluctuations obliterate the
quiescent equilibrium. If the system is in one stage l at some moment, it is
equally likely to be found at the next moment in any other stage. If we set
up the process in its initial stage, it is as likely to leap by a fluctuation to the
final stage as it is to stay where it is. If the process has arrived at the final
stage, it is as likely to be flung by a fluctuation back to its initial stage as
it is to stay where it is. In a slogan, fluctuations obliterate thermodynami-
cally reversible processes.
Fluctuations are temperature sensitive. Hence, we might expect the con-

founding effects of fluctuations to be calmed and controlled by cooling the
processes, perhaps even close to absolute zero. A review of the calculation
above shows that the no-go result ð6Þ obtains no matter what the tempera-
ture, even if it close to absolute zero.4

2.2. What It Takes to Beat Fluctuations. If fluctuations obliterate ther-
modynamically reversible processes, how is it possible for these processes
to figure in thermodynamic analysis at all? The answer is that the disequi-
librium required to overcome fluctuations is negligible macroscopically. While
the no-go result applies to macroscopic systems, it is overcome by disequi-
libria too small to trouble us. However, at the molecular scale explored
by the thermodynamics of computation, the situation is reversed. There, the
disequilibria needed to overcome fluctuations dominate. Most important,
it requires thermodynamic entropy creation in amounts that well exceed
those tracked by Landauer’s principle.
A few computations illustrate this answer. Relation ð4Þ tells us that

we can probabilistically favor the end stage l2 over the initial stage l1 if
the end stage free energy Fðl2Þ is smaller than the initial stage free energy
Fðl1Þ. A decrease of 3kT is sufficient for a modest favoring in the ratio
of 20:1, for then

pðl2Þ
pðl1Þ 5 exp

�
2

23kT

kT

�
5 expð3Þ5 20:

The dissipation associated with the reduction in free energy Fðl2Þ2 Fðl1Þ
5 23kT is a minimum increase in the thermodynamic entropy of 5

4. Temperature does affect the free energy needed to override the fluctuations. We see

below that a probabilistic favoring of 20:1 is achieved by a free energy reduction of 3kT .
This reduction diminishes as T decreases. However, the thermodynamic entropy created
remains at least 3k, independent of the temperature.

5. To see this, use F 5 E 2 TS to rewrite Fðl2Þ2 Fðl1Þ523kT as Sðl2Þ2 Sðl1Þ2
ðEðl2Þ2 Eðl1ÞÞ=T 5 3k. We have DSsys 5 Sðl2Þ2 Sðl1Þ. By conservation of energy,
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DStot 5 DSsys 1 DSenv 5 3k;

1188 JOHN D. NORTON
where the change D is applied to the entropy of the universe as a whole
Stot, which is the sum of the system entropy Ssys and the environment entropy
Senv. Even though this modest probabilistic favoring by no means assures
completion of the process, the entropy creation of at least 3k is many times
greater than the kln25 0:69k of entropy tracked by Landauer’s principle
in a single bit erasure.
Since the ratio of probability densities grows exponentially with free en-

ergy differences in ð4Þ, further creation of thermodynamic entropy can bring
probability density ratios that strongly favor completion of the process. For
example, if we increase the free energy difference to 25kT , then the end stage
is strongly favored, for

pðl2Þ
pðl1Þ 5 exp

�
2

225kT

kT

�
5 expð25Þ5 7:2 � 1010:

Inmacroscopic terms, however, 25kT of free energy is negligible. This quan-
tity, 25kT , is the mean thermal energy of 10 diatomic molecules, such as
10 oxygen molecules. Hence, there is no obstacle to introducing a slight dis-
equilibrium in a macroscopic system in order to nudge a thermodynami-
cally reversible process to completion.

3. Illustrations of the No-Go Result for a One-Molecule Gas. This no-go
result applies to all thermodynamically reversible processes in systems in
thermal equilibrium with their environment. However, its derivation and its
statement as ð6Þ is remote from its implementation in specific systems. It
is helpful to illustrate how fluctuations obliterate a simple process described
in the thermodynamics of computation, the thermodynamically reversible,
isothermal expansion and compression of a one-molecule gas. The analy-
sis of the last section provides the precise computation. Here I give simpler
estimates of the disturbing effects of fluctuations.

3.1. Reversible, Isothermal Expansion and Compression. A monatomic
one-molecule gas is confined to a vertically oriented cylinder, and the gas
pressure is contained by the weight of the piston. The process intended is
a thermodynamically reversible, isothermal expansion or compression of
the gas. Our expectation is that this process will proceed indefinitely slowly,

2ðEðl2Þ2 Eðl1ÞÞ is the energy gained by the environment. By supposition, this energy

is passed by heat transfer only. In the least dissipative case of a thermodynamically revers-
ible heat transfer that corresponds to the minimum increase of entropy, DSenv 52ðEðl2Þ
2 Eðl1ÞÞ=T .
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with the weight of the piston maintained just minutely away from the equi-
librium weight so that the expansion or compression is only just favored.

END OF THERMODYNAMICS OF COMPUTATION 1189
As the piston is raised in an expansion, it draws work energy from the one-
molecule gas, and this energy is restored to the one-molecule gas as heat
from the environment. The gas exerts a pressure P5 kT=V , for V, the vol-
ume of the gas. Thus, the work extracted in a doubling of the volume and
thus also the heat passed to the gas is given by ∫

2V

V kT=V 0 dV 0 5 kT ln2. The
thermodynamic entropy change in the gas is the familiar kln2.
That is our expectation. It is confounded by fluctuations. Consider the

piston first. It is a thermal system that is Boltzmann distributed over its
height h ≥ 0 above the piston floor, according to

pðhÞ5
�Mg

kT

�
exp

� 2Mgh

kT

�
;

where M is the piston mass. The mean of this distribution is kT=Mg, and
its standard deviation is also kT=Mg.
This latter number measures the extent of thermal fluctuations in the

height of the piston. For a macroscopic piston, M will be very much larger
than kT=g, and the extent of fluctuations in height will be negligible. How-
ever, in this case of a one-molecule gas, the piston must be very light if it
is to be suspended at equilibrium by the pressure of the one-molecule gas.
Hence, its M is small, and the fluctuations in height will be great. They can
be estimated quantitatively as follows. The weight of the piston is Mg. The
mean force exerted by the gas pressure is ðkT=V ÞA5 kT=h, where A is the
area of the piston and h its height above the base of the cylinder, so that
V 5 Ah. Setting these two forces equal as the condition for equilibrium,
we recover the equilibrium height as6

heq 5
kT

Mg
:

Remarkably, this quantity heq is just the same as the mean height and stan-
dard deviation of the above distribution, both of which are also given by
kT=Mg.
This extraordinary result can be expressed more picturesquely as fol-

lows. If we set up the piston so that its weight perfectly balances the mean
pressure force of the one-molecule gas, it will not remain at the equilibrium
height but will fluctuate immediately through the entire volume of the gas. It

6. Hence, the mean energy of height isMgheq 5 kT . While this energy is associated with

a single degree of freedom of the moving piston, it differs from the familiar equiparti-
tion mean energy per degree of freedom ð1=2ÞkT because the relevant term of the piston’s
Hamiltonian, Mgh, is linear in h and not quadratic, as the equipartition theorem assumes.
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will perhaps be suddenly flung skyward by a collision with molecule, and
it may then fall precipitously between collisions. The intended process of a

1190 JOHN D. NORTON
gentle, indefinitely slow expansion or contraction is lost completely behind
the wild gyrations of the piston over the full volume of the one-molecule
gas.
Similar results hold for heat transfer between the one-molecule gas and

its environment. Since it is monatomic, the Boltzmann distribution of the
gas energy E is

pðEÞ5 2

�
E

p

�1=2
ðkTÞ23=2exp

�
2E

kT

�
:

The mean of this distribution is the familiar equipartition energy ð3=2ÞkT,
and the standard deviation is ð3=2Þ1=2kT 5 1:225kT .7 Hence, simply by vir-
tue of its contact with the environment at temperature T, the one-molecule
gas energy will be swinging wildly through a range comparable in size to the
total mean energy of the gas.
We had expected that we would track a quantity of heat kT ln25 0:69kT

while the piston slowly and gently moves to halve or double the volume of
the gas. What we find is that the piston is wildly and randomly flung to and
fro through the entire volume of the gas, while the gas energy fluctuates sim-
ilarly wildly over a range greater than the 0:69kT of heat transfer we track.
We had expected a process that proceeds calmly at arbitrarily slow speed
from start to finish. Instead we find a chaos of wild gyrations with no dis-
cernible start or finish.
This is a rough analysis. To maintain the equilibrium of a thermodynam-

ically reversible process would require that the weight Mg be adjusted
as the volume V changes since the gas pressure will vary inversely with vol-
ume. Norton ð2011, sec. 7.5Þ replaces the uniform force field of gravity with
another force field that varies with height in precisely the way needed to main-
tain mean quantities at equilibrium.

3.2. Generality. A one-molecule gas confined in a cylinder by a piston
is fanciful and cannot be realized practically. It is, however, one of the most
discussed examples in the thermodynamics of computation because it is
easy to visualize. Its statistical and thermodynamic properties mimic those

7. This and the earlier energy standard deviation can be computed most rapidly from

Einstein’s energy fluctuation theorem, which identifies the variance of the energy with
kT 2dhEi=dT , where hEi is the mean energy. For the piston, hEi5 kT , so the variance is
ðkTÞ2 5 ðMgheqÞ2. For the monatomic gas, hEi5 ð3=2ÞkT , so the variance is ð3=2ÞðkTÞ2.
The standard deviation is the square root of the variance.
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of more realistic systems with few degrees of freedom. We may model a
memory device as a two-chambered cell with a single molecule trapped in

END OF THERMODYNAMICS OF COMPUTATION 1191
one part. A more realistic implementation of the memory device is a sin-
gle electric charge trapped by a potential well in a solid-state medium or
a magnetic dipole aligned into a specific orientation by a magnetic field.
The thermodynamic operations carried out on the one-molecule gas have

analogs in the more realistic implementations. Mechanical variables such
as volume and pressure are replaced by electric and magnetic correlates.
The general results remain the same. If we halve the range of possible states
of a memory device, we reduce its thermodynamic entropy by kln2, just as
we do when we halve the volume of a one-molecule gas. The large fluctua-
tions exhibited by the one-molecule gas derive from its small number of de-
grees of freedom. Correspondingly, the more realistic implementations will
exhibit similarly large fluctuations.
The two processes investigated were heating/cooling and expansion/

contraction of the gas. These are instances of the two processes that appear
in all thermodynamically reversible processes: heat transfer and exchange
of generalized work energy. As a result, the analysis here has a quite broad
scope. Consider thermodynamically reversible measurement in which one
device reads the state of another. For example, a magnetic dipole reads the
state of a second dipole when the two slowly approach and align in a pro-
cess that maintains equilibrium throughout. This detection or measurement
process is a reversible compression of the phase space of the reader dipole
and is thermodynamically analogous to compression of a one-molecule gas.
As a result, this measurement process will be fatally disrupted by fluctua-
tions. While a standard claim of the thermodynamics literature is that these
measurements can be performed without dissipation, the no-go result shows
that dissipation is required if the fluctuations are to be overcome and the
process driven to a correct reading.
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