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ABSTRACT

While there is no universal logic of induction, the probability calculus succeeds as a logic
of induction in many contexts through its use of several notions concerning inductive
inference. They include Addition, through which low probabilities represent disbelief as
opposed to ignorance; and Bayes property, which commits the calculus to a ‘refute and
rescale’ dynamics for incorporating new evidence. These notions are independent and it
is urged that they be employed selectively according to needs of the problem at hand. It
is shown that neither is adapted to inductive inference concerning some indeterministic
systems.
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1 Introduction

No single idea about induction1 has been more fertile than the idea that
inductive inferences may conform to the probability calculus. For no other
proposal has proven anywhere near as effective at synthesizing a huge array
of disparate intuitions about induction into a simple and orderly system. No
single idea about induction has wrought more mischief than the insistence
that all inductive inferences must conform to the probability calculus. For it
has obliged probabilists to stretch their calculus to fit it to cases to which it
is ill suited, and to devise many ingenious but ill fated proofs of its universal
applicability.

This article offers an alternative to this second idea. It is part of a larger
project (Norton [2003a], [2005]) in which it is urged that there is no single
logic of induction, but many varieties of logic each adapted to particular
contexts. The goal of the present article is to understand why the probability
calculus works so well as a logic of inductive inference, in the contexts in
which it does; and to try to demarcate when it does not. To this end, the article
draws on an extensive, existing literature in presenting an axiom system for
the probability calculus. However, unlike traditional axiomatizations, the goal
is not to find the most parsimonious system. Instead the individual axioms
have been carefully selected so that each expresses an intuitively natural idea
about inductive inference that can be used independently. As a result, the
ideas are logically stronger than they need be were the only purpose to deduce
the probability calculus. These ideas, as developed in the Sections 3–6, are:
Framework, Addition, Bayes property (= Narrowness + Multiplication) and
Real values.

1 The terms ‘induction’ and ‘inductive inference’ are used here in the broadest sense of any form
of ampliative inference. They include more traditional forms of induction, such as enumerative
induction and inference to the best explanation, which embody a rule of detachment; as well
as confirmation theories, such as in traditional Bayesianism or Hempel’s satisfaction criterion,
which lack such a rule and merely display confirmatory relations between sentences. Since the
assumptions of Framework (Section 3 below) lack a rule of detachment, the positive analysis of
this article uses the latter approach.
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Excepting Framework, these ideas are independent of one another.
The Bayes property, for example, is responsible for the dynamics of
conditionalization under Bayes’ theorem; it is independent of Addition and
Real values, and may be invoked independently of them. The proposal of
this article is that we should do just this. We should not assume that all
these component notions apply in every context in which we may seek to use
the probability calculus as a logic of induction. Rather we should determine
which, if any, apply in the context at hand and use those only. I will suggest
that following this course will help us avoid problems associated with the
application of the probability calculus to inductive inference.

How are we to decide which components apply in a given context? A
principled basis is supplied by what I call elsewhere a ‘material theory
of induction’ (Norton [2003a], [2005]). According to it, induction differs
fundamentally from deduction in that inductive inferences are not licensed
ultimately by universally applicable inference schemas into which particular
content may be inserted. Rather, they are licensed by contingent facts. Since
different facts obtain in different domains, we should expect different inductive
inference forms to be applicable in different domains. If we are reasoning about
stochastic systems governed by a theory with physical chances, the facts of that
theory will likely license inductive inference forms involving the probability
calculus. In domains in which different facts prevail, these forms may no
longer be licensed. Section 8 provides illustrations and argues that neither
Addition nor Bayes property is licensed for inductive inferences concerning
some indeterministic systems not governed by physical chances.2

2 Failure of demonstrations of universality

There have been numerous attempts to establish that the probability calculus
is the universally applicable logic of induction. The best known are the Dutch
book arguments, developed most effectively by de Finetti ([1937]), or those that
recover probabilistic beliefs from natural presumptions about our preferences
(Savage [1972]).3 Others proceed from natural supposition over how relations
of inductive support must be, such as Jaynes ([2003], Ch. 2).

2 The idea that one should investigate induction locally has been considered in the literature that
gives a probabilistic analysis of induction, but without forgoing the idea that the probability
calculus underwrites inductive inference even locally. For an entry to this literature, see Kyburg
([1976]).

3 Strictly speaking, these arguments purport to establish only that degrees of belief, as made
manifest by a person’s preferences and behaviors, must conform to the probability calculus on
pain of inconsistency. They become arguments for universality if we add some version of a view
common in subjectivist interpretations that degrees of belief are only meaningful insofar as they
can be manifested in preferences and behaviors.
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2.1 Working backwards

These demonstrations are ingenious and generally quite successful, in the
sense that accepting their premises leads inexorably to the conclusion that
probability theory governs inductive inference. That, of course, is just the
problem. The conclusion is established only insofar as we accept the premises.
Since the conclusion makes a strong, contingent claim about our world, the
demonstrations can only succeed if their premises are at least strong factually.4

That makes them at least as fragile as the conclusion they seek to establish.
Since they are usually created by the simple expedient of working backwards
from the conclusion, they are often accepted just because we tacitly already
believe the conclusion.

For these reasons, all demonstrations of universality are fragile and defeated
by a denial of one or more of the premises. A few examples illustrate this
general strategy for defeating the demonstrations. Dutch books arguments are
defeated simply by denying that some beliefs are manifested in dispositions to
accept wagers. Or their results can be altered merely by adjusting the premises
we will accept. Dutch book arguments commonly assume that there are wagers
for which we are willing to accept either side. That assumption is responsible
for the additivity of the degrees of belief the argument delivers. Its denial
involves no incoherence in the ordinary sense. It just leads us to a calculus that
is not additive. (See Smith [1961]) Similarly, there is no logical inconsistency in
harboring intransitive preferences. They will, however, not sustain a recovery
of transitivity of beliefs in Savage’s ([1972], §3.2) framework, which is necessary
for beliefs to be probabilistic.5 Finally, Jaynes ([2003], §2.1) proceeds from the
assumption that the plausibility of A and B conditioned on C (written ‘(AB|C)’)
must be a function of (B|C) and (A|BC) alone, from which he recovers the
familiar product rule for probabilities, P(AB|C) = P(A|BC)P(B|C). That this
sort of functional relation must exist among plausibilities, let alone this specific
one, is likely to be uncontroversial only for someone who already believes that
plausibilities are probabilities, and has tacitly in mind that we must eventually
recover the product rule.6

4 There is no escape in declaring that good inductive inferences are, by definition, those governed
by the probability calculus. For any such definition must conform with essentially the same
facts in that it must cohere with canonical inductive practice. Otherwise we would be free to
stipulate any system we choose as the correct logic of inductive inference.

5 Savage’s framework harbors a circularity. In its barest form, it offers you a prize of $1, say, for
each of the three acts fA, fB and fC, if uncertain outcomes A, B or C happen, respectively. You
prefer fA to fB just in case you think A more likely than B. So your preferences on fA, fB and fC
will be transitive just in case you already have transitive beliefs on the possibilities of A, B and
C.

6 A simple illustration of an assignment of plausibilities that violates the functional dependence
is ‘Plaus.’ It is generated by a probability measure P over propositions A, B, . . . as a coarsening,
with only two intermediate values: Plaus(A|B) = ‘Low’ when 0 < P(A|B) < 1/2; and Plaus(A|B)
= ‘High’ when 1/2 < P(A|B) < 1
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The fragility of these demonstrations is very similar to the failure of
attempts to show that Euclid’s fifth postulate of the parallels is the only
postulate admissible in geometry. These attempts started by denying Euclid’s
fifth postulate in the context of the other postulates, and inferring from the
denial some unusual geometric propositions that, we were to suppose, are
incoherent. It was eventually realized in the nineteenth century that the denial
of Euclid’s fifth postulate involved no inconsistency; it merely led us to different
geometries.

While I believe all these demonstrations fail in establishing universality, they
still have great value. For we learn from them that, in domains in which their
premises hold, our inductive inferences must be governed by the probability
calculus.

2.2 The surface logic

There is a second sort of argument for universality, mostly suggested indirectly
by impressive catalogs of the success of Bayesian analysis at capturing our
intuitions about inductive inference. All these intuitions so far have been
captured by the probability calculus; so, the thought goes, we should expect
this success to continue.

In my view, the success is overrated and does not sustain the probability
calculus as the unique logic of induction. In many cases, the success is achieved
only by presuming enough extra hidden structures—priors, likelihoods, new
variables, new spaces—until the desired intuition emerges. That does not
mean that the logic on the surface is probabilistic, but only that this surface
logic can be simulated with a more complicated, hidden structure that employs
probability measures.

Two examples will illustrate the concern. Take Hempel’s original question
of whether a nonblack, nonraven confirms that all ravens are black. A
probabilistic analysis gives an intuitively very comfortable result. But it only
succeeds by adding a great deal of new structure to the original problem:
populations with different distributions of ravens and black objects and a
presumption that we are sampling randomly from them. That changes the
problem to a new one amenable to probabilistic analysis. (For a survey, see
Earman [1992], §3.3.) Consider ignorance, which, I argue below in Section 4.2,
is not represented in an additive calculus. It may be introduced by associating
beliefs with convex sets of probability measures. While additive measures were
used to produce them, the sets themselves no longer conform to a logic with the
formal property of Addition as defined below. Additive measures are merely
the device used to generate a new system governed by a different surface logic.

Once again, there is a geometric analogy. We can recover many non-
Euclidean geometries by considering curved surfaces embedded in a higher
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dimensioned Euclidean space. That does not mean that Euclidean geometry
is the universal geometry. It is not the geometry intrinsic to the surface.
However, we learn that Euclidean geometry can be used as a tool to generate
that geometry, as could other geometries.

3 Framework

The system of properties for confirmation relations to be described here draws
on the extensive literature in axioms for the probability calculus already
developed. See especially Cox ([1961]) and, for surveys, see Fine ([1973]) and
Fishburn ([1986]).

3.1 The properties

The framework assumes a set of propositions A1, A2, . . . closed under the
familiar Boolean operations ∼ (negation), ∨ (disjunction) and & (conjunction).
Where the context calls for it, the set will be assumed to be closed under
countable disjunction. The universal proposition is ! = A1 ∨ A2 ∨ . . .

Implication ⇒ is stronger than material implication; A ⇒ B means that
propositions are so related7 that ∼A ∨ B must always be true; that is,
∼A ∨ B = !. The universal proposition, !, is implied by every proposition in
the algebra and is always true. The proposition, Ø, implies every proposition
and is always false.

The symbol [A|B] represents the degree to which proposition B confirms
proposition A. It is undefined when B is of minimum degree, which means
that B = Ø or there is a C such that B ⇒ C and [B|C] = [Ø|C]. The relation on
these degrees

[A|B] ! [C|D]

(or equivalently [C|D] " [A|B]) is interpreted informally as ‘D confirms C at
least as strongly as B confirms A.’ It satisfies:

F. Framework

F1. Partial order. The relation ! is a partial order. That is, for any admissible8

propositions A, B, C, D, E and F:

F1a. Reflexivity. [A|B] ! [A|B]

7 For example, if we associate propositions with the sets of worlds in which they are true, then
A ⇒ B obtains just if A’s worlds are a subset of B’s.

8 Here and henceforth, ‘admissible’ precludes formation of the undefined [·|B], where B is of
minimum degree.
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F1b. Antisymmetry. If [A|B] ! [C|D] and [A|B] " [C|D] then [A|B] = [C|D]

F1c. Transitivity. If [A|B] ! [C|D] and [C|D] ! [E|F] then [A|B] ! [E|F]

Antisymmetry allows us to define < and > in the usual way.9 We also
suppose:

F2. For all admissible propositions A and B:

F2a. [Ø|!] ! [A|B] ! [!|!]

F2b. [Ø|!] < [!|!]

F2c. [A|A] = [!|!] and [Ø|A] = [Ø|!]; and

F3. Universal comparability. For all admissible propositions A, B, C and D

[A|B] ! [C|D] or [A|B] " [C|D];

and

F4. Monotonicity. For all admissible propositions A, B and C, if A ⇒B ⇒C,
then [A|C] ! [B|C].

3.2 Boundaries

While these properties are natural, they, nonetheless, have significant content,
and it is far from clear that they will be applicable to all cases of inductive
inference. Two properties are especially vulnerable, F3. Universal comparability
and F1c. Transitivity, as is possibly F4. Monotonicity.

3.2.1 Universal comparability
We cannot presume, as Keynes ([1921], Ch.3) correctly urged, that all degrees
of confirmation are comparable. A tacit expectation of universal comparability
is natural as long as we think of degrees of confirmation as real valued. The
expectation rapidly evaporates once we use more complicated structures.
Imagine, for example, that the degrees are real intervals in [0,1] with the size
of the interval betokening something about the bearing of evidence. Take two
intervals [0.01, 0.99] and [0.49, 0.51]. If they must be comparable, the only
relation that respects the symmetry of dispositions about the midpoint 0.5 is
that they are equal. But that contradicts the presumption that the size of the
interval represents some sort of difference in the degrees of confirmation.

However, even if degrees of confirmation are real valued, it does not follow
that they are comparable. For two degrees to be comparable in the relevant

9 [A|B] < [C|D] and [C|D] > [A|B] just in case [A|B] ! [C|D] but not [A|B] = [C|D].
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sense, they must measure essentially the same thing. The mere fact that two
scales employ real values is not enough to assure this. One hundred degrees
Celsius on the mercury thermometer scale and on the ideal gas thermometer
scale are equivalent since they measure the same thing, temperature. They are
none of equivalent to, less than or greater than one hundred degrees Baumé
of specific gravity.

Propositions can bear, evidentially, on one another in many ways, and the
range of variation is sufficiently great that we can surely not always presume
comparability of the degrees, even if both are measured on the same numerical
scale. Consider the hypothesis H that the half-life of radioactive decay of
Radium 221 is 30 seconds and the evidence E that some Radium 221 atom
did decay in a time period of 30 seconds. The two degrees, [E|H] and [H|E],
are very different. In the first, we take certain laws of physics, with their
characteristic constants, as fixed and distribute belief over possibilities (decay
in 30 seconds, decay in 40 second, etc.). Those laws provide physical chances
for the possibilities and the bearing of H on E is detailed for us completely
as a matter of physical law.10 In the second, we take an experimental fact as
fixed and must now distribute belief over the possibility of different half-lives
for Radium 221. No physical law can fix the bearing of E on H, for now the
range of possibilities must involve denial of physical laws; there is only one
correct value for the half-life. Even exactly how we are to conceive that range
is unclear. Will we try to hold all of physics fixed and just imagine different
half-lives for Radium 221? Or should we recall that the physical properties of
Radium 221 are fixed by quantum physics and chemistry, so that differences
in half-lives must be reflected in differences throughout those theories. And
how should those differences be effected? As alterations just to fundamental
constants like h and c? Or in alterations to Schrödinger’s equation itself?
My point is not that we cannot answer these questions, but that answering
them engages us in a very different project that is a mixture of science and
speculative metaphysics. The way H bears on E in [E|H] is very different from
the way E bears on H in [H|E].11

So, if we expect the degrees of confirmation simply to measure the bearing
of evidence, as an objectivist about probability like Keynes would, then
we should not expect the two sets of degrees always to be comparable. A
subjectivist about probabilities has no easy escape. Of course, the subjectivist

10 Or, more cautiously, Lewis’s ([1980]) ‘principal principle’ in effect enjoins us to endow our
degrees of confirmation with the properties of a physical chance.

11 Humphreys ([1985]) uses related illustrations to object to the propensity interpretation of
probability. For example, if proposition S asserts that a person is a smoker and C that the
person has an undiscovered lung cancer, then the causal propensity of a smoker to have an
undiscovered lung cancer is expressed by the direct probability P(C|S). Yet, precisely because
this causal propensity is unidirectional, the inverse probability P(S|C) does not express a causal
propensity of people with undiscovered lung cancer to smoking.
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simply supposes comparability and stipulates real valued prior probabilities
that lead to real values for both [E|H] and [H|E] upon conditionalization. The
hope is that the subjectivist’s assignments will eventually betoken something
more than arbitrary numbers as the accumulation of evidence ‘washes out the
priors’ and leads to a convergence of values for all subjectivists. If the very
idea that the two degrees are comparable entered originally as a supposition
without proper grounding, the convergence does not remove its arbitrariness.
Oranges are not apples, even if we end up agreeing on how many apples make
an orange.

3.2.2 Transitivity
The prevalence of real values for degrees of confirmation can also mislead us
into expecting their transitivity universally. That expectation fades once we
entertain the possibility that these degrees have more complicated structures.12

For example, that some hypothesis H entails true evidence E is generally taken
to confirm H. Some hypotheses, however, are routinely assessed as being
more deserving of support if they manifest certain virtues in the context of
the successful deduction. These virtues include: simplicity, scope, fecundity
and explanatory power, with the latter engendering the account of induction
known as ‘inference to the best explanation.’ So three hypotheses H1, H2 and
H3 may score differently with regard to three virtues V1, V2 and V3. Allowing
for three values, ‘high,’ ‘medium’ and ‘low,’ we may end up with the following
assignments:13

Table 1 Intransitive degrees

V1 V2 V3

[H1|E] High Medium Low
[H2|E] Medium Low High
[H3|E] Low High Medium

Following a simple rule that the majority wins, [H1|E] > [H2|E], since [H1|E]
outscores [H2|E] in two of three virtues. Similarly, [H2|E] > [H3|E] and [H3|E]
> [H1|E], which violates transitivity. Indeed, if we assign equal importance to
the three virtues and require a rule of comparison to rank solely on the basis
of the values in the table, then any rule that yields [H1|E] > [H2|E] must also
generate the intransitivity. For there is a cyclic symmetry in the values in that

12 The discussion of Section 4 below raises the possibility of degrees of confirmation with a
two-dimensional structure, where lower degrees represent some mix of disbelief and ignorance.

13 These virtues are discussed further in Section 5.3.3 below.
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[H1|E] relates to [H2|E] in the same way as [H2|E] relates to [H3|E] and [H3|E]
relates to [H1|E].

3.2.3 Monotonicity
Monotonicity prohibits evidence from confirming a proposition more strongly
than its deductive consequences. Yet, as Tversky and Kahneman ([1982])
showed in psychological experiments, people are easily led to violate this
prohibition. If she is described appropriately, subjects will judge it more
probable that Linda is a bank teller and a feminist than that Linda is a bank
teller. Tversky and Kahneman interpret this to mean that people conflate
probability with representativeness. Might there be a calculus of confirmation
that violates monotonicity in that degrees of confirmation measure, in part,
goodness-of-fit, in which Linda, the bank teller and feminist, would be a better
fit to the evidence than Linda the bank teller? That could arise in a system of
inductive inference with a rule of detachment that forces us to select among
well-confirmed hypotheses, using quantities [H|E] as scores. On evidence E =
‘the coin did not fall heads,’ it may score H = ‘the coin fell tails’ higher than
H’ = ‘the coin fell tails or on edge.’ For if we must choose just one hypothesis
to detach from E, it would, in ordinary circumstances, be H and not H’, even
though H entails H’.

4 Addition

4.1 The property: disbelief versus ignorance

The range of degrees of confirmation for some proposition A spans from the
maximal [A|!] = [!|!] to the minimal [A|!] = [Ø|!]. Do these extreme values
correspond to justification of complete belief in A and complete disbelief in
A? Or do they correspond to complete belief in A and complete ignorance
concerning A? The signal feature of a probability measure is that it is an
additive measure and we shall see that this property is derived from choosing
the first option:

Underlying intuition of Addition: The range of degrees of confirmation
span justification of complete belief and complete disbelief.

This first option is characterized by a reciprocal relationship between degrees
of confirmation for A and for its negation, ∼A. Complete disbelief in A corre-
sponds to complete belief in ∼A. As the degree of confirmation [A|!] weakens
from the maximum [!|!] that justifies complete belief, then the degree of con-
firmation [∼A|!] must strengthen accordingly from the minimal [Ø|!] that
justifies complete disbelief. We should expect, under the above intuition, that
this reciprocal relation between degrees of confirmation will also hold when we
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divide any proposition B into two, exhaustive and mutually exclusive logical
parts, A&B and ∼A&B; and that it will obtain when we conditionalize on any
background C. The map that takes us from [A&B|C] to [∼A&B|C] will, in gen-
eral, differ according to [B|C], since the maximum degree that can be assigned
to [A&B|C] or [∼A&B|C] is set by [B|C] under F4. Monotonicity. So there is a
family of functions, f[B|C](·). We express the above intuition by requiring:

A’. Addition. For any propositions A and B and any admissible C, there exists
a function [∼A&B|C] = f[B|C]([A&B|C])

where f is strictly increasing in [B|C]14 and strictly decreasing in [A&B|C].15

To convert this form of Addition into a more familiar one, we note that,
since f is strictly increasing in [B|C], the function f can be inverted in this
argument.16 That is, there exists a function g, such that [B|C] = g([A&B|C],
[∼A&B|C]) where g is strictly increasing in both [A&B|C] and [∼A&B|C]. This
last function is presented in a more familiar way as an addition operator in a
property equivalent to A′ Addition:

A. Addition. For any admissible proposition Z and mutually contradictory
propositions X and Y, there exists an addition operator ⊕ such that

[X ∨ Y |Z] = [X|Z] ⊕ [Y |Z]

where ⊕ is strictly increasing in both [X|Z] and [Y|Z].

This second form justifies the name Addition, since it displays the sense in
which the degree of confirmation of a proposition is fixed by the ‘adding up’
of degrees of confirmation of its logical parts.

Properties that ⊕ must carry for compatibility with the Framework F.
are readily deduced from the logical properties of propositions, such as
X ∨ Y = Y ∨ X, U ∨ V ∨ W = (U ∨ V) ∨ W = U ∨ (V ∨ W), X ∨ Ø = X and
X ∨ ∼ X = !:

[X|Z] ⊕ [Y|Z] = [Y|Z] ⊕ [X|Z]

[U|Z] ⊕ [V|Z] ⊕ [W|Z] = ([U|Z] ⊕ [V|Z]) ⊕ [W|Z] = [U|Z] ⊕ ([V|Z] ⊕ [W|Z])

[X|Z] ⊕ [Ø|Z] = [X|Z]

[X|!] ⊕ [∼X|!] = [!|!]

14 That is, for each y, if x′>x, then z′>z, where z′ = fx′ (y) and z = fx(y).
15 That is, for each x, if y′>y, then z′<z, where z′ = fx(y′) and z = fx(y).
16 If it were not invertible, there would be unequal values x and x′ such that fx′ (y) = fx(y), which

would violate the strict increase of f in x.
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4.2 Boundaries

The obvious limitation of any calculus of inductive inference that employs A.
Addition is that it will be unable to incorporate directly, degrees of confirmation
that support ignorance, as opposed to disbelief. To see the difference, imagine
that we have an atom of Radium 221 with a half-life of 30 seconds. On
that background evidence, we assign familiar probabilities to the outcomes of
radioactive decay in the next 30 seconds (D) or no decay in the next 30 seconds
(∼D):

P(D) = 0.5 P(∼D) = 0.5 P(D ∨ ∼D) = 1

Now consider an atom of the first radioactive element to be mentioned in the
first textbook of nuclear chemistry that will be published in the year 2100.
One might reasonably protest that the evidence given supports no real belief
towards either of the corresponding propositions D′, that an atom of this
element decays in a 30 second time period, or ∼D′. Assigning a probability of
0.5 to each seems excessive. We certainly do not believe the consequence often
associated with probabilities that, in situations like this, decay will happen
roughly one in two times. But then if we assign a probability of less than
0.5 to one of D′ or ∼D′ to flag our uncertainty, because of the additivity of
probabilities, we must assign a probability greater than 0.5 to the other over
which we are equally uncertain.

The Shafer–Dempster theory of belief functions (Shafer [1976], pp. 23–4)
was devised to accommodate just such a situation. In it, we may represent
ignorance by assigning beliefs as:

Bel(D) = 0 Bel(∼D) = 0 Bel(D ∨ ∼D) = 1

where the last assignment reflects our certainty in the logical truth D ∨ ∼D.
Or, if on the evidence of present day textbooks, we incline slightly to believing
that the textbooks of 2100 will favor discussion of very short-lived elements,
we may shift our belief just a little toward D:

Bel(D) = 0.1 Bel(∼D) = 0 Bel(D ∨ ∼D) = 1

These belief functions Bel are nonadditive. They violate the property A.
Addition; Bel(D ∨ ∼D) is not a strictly increasing function of Bel(D) and
Bel(∼D).

While this example does not show precisely what formal properties are to be
associated with ignorance,17 it does display how deviations from A. Addition
do allow some sort of representation of ignorance.

17 That project is reserved for Norton ([unpublished]).
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It is common to form convex sets of probability distributions as a way of
representing ignorance in probabilistic analysis. If Px is the distribution that
assigns Px(D) = x and Px(∼D) = 1 − x, then we may represent complete
ignorance over D as the convex set spanning the two extreme cases of P0 and
P1; that is, the set {Px : 0 ! x ! 1}. This proposal has the very real advantage
of allowing us to deal with ignorance in a systematic way. However it is
not helpful for the present project of understanding formally the various
components ideas that have led to the success of the probability theory as a
calculus of induction. First, the representation is not literally correct. That
is, ignorance is not the maintaining of all possible beliefs at once; it is the
maintaining of none of them. So we should regard the device of convex sets
as a way of simulating ignorance through a convenient fiction. And it is an
arbitrary one, since it corresponds to a uniform distribution over all beliefs
in that each member in the set enters equally. We could certainly define a
nonuniform distribution and have another way of approaching ignorance.
The real difficulty in the present context is that use of these convex sets diverts
us from the question of what formal property should replace A. Addition if
our calculus is to allow representations of ignorance directly. Indeed, as noted
in Section 2.2 above, since the device employs additive measures to simulate a
new surface logic, we may even end up overlooking that A. Addition, or some
analog of it, must be violated in this surface logic.

5 Bayes property

5.1 The property

The characteristic of the Bayesian approach to induction is that the
import of new evidence is incorporated into the probability distributions
by conditionalization and that the dynamics of this incorporation is governed
by Bayes’ theorem. In developing what is called the ‘Bayes property’ here, we
shall see here that these dynamics can be inferred from a simple model of how
hypotheses are confirmed by their true deductive consequences.

Underlying intuition of Bayes’ property. An hypothesis accrues inductive
support from evidence just if it has a disjunctive part that entails the
evidence.

(narrowness) The presence of other disjunctive parts logically incompatible
with the evidence does not affect the level of support.

(‘refute and rescale’) Evidence bears on hypotheses that entail it by
refuting those logically incompatible with it and uniformly redistributing
support over those that remain; this uniform redistribution is carried
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out everywhere in the same way and preserves the relative ranking of
hypotheses that entail the evidence.18

We will reexpress this intuition in more formal terms as two properties. To
arrive at the first, note that an hypothesis H that is logically compatible with
evidence E can be divided into two disjunctive parts, H&E and H&∼E. The
first entails the evidence E. So we have:

N. Narrowness. For any proposition A and any admissible B,

[A|B] = [A&B|B]

To develop the intuition of ‘refute and rescale’ dynamics, consider three
propositions A, B and C, where

A ⇒ B ⇒ C

Proposition A begins with support [A|C], where this degree may vary from
a minimum of [Ø|C] to a maximum of [B|C], set by conformity to F4.
Monotonicity. After conditionalizing on B, it has support [A|B&C] = [A|B],
where this degree may now vary from a minimum of [Ø|B] to a maximum of
[B|B] = [!|!]. So the effect of conditionalizing on B is represented by a map
f[B|C] that rescales the support accorded to A from the old to the new range:

[A|B] = f[B|C]([A|C])

where neither B nor C may be Ø. (See Figure 1.) The subscript on f is needed
since the function must map the extremal values as [Ø|B] = f([Ø|C]) and
[B|B] = f([B|C]), so that a different map is needed for each distinct value of
[B|C]. That does not fix the action of f[B|C] on intermediate values. In a more
general context, one might posit different functions f[B|C],C that are specific
to the environment of each proposition C. That would amount to supposing
that the rescaling differs according to the content of the proposition C. The
requirement above that the redistribution of support ‘is carried out everywhere
in the same way’ is intended to preclude this. That is, there is a unique family
of rescaling maps f[B|C] for the whole set of propositions, sensitive only to
the degrees [B|C] and [A|C] and not to anything further in the content of the
propositions A, B and C.19

The maps f[B|C] must also ‘preserve the relative ranking of hypotheses that
entail the evidence.’ So if [A′|C] > [A|C], then [A′|B] > [A|B]. It follows that

18 That Bayesian inference depends on such a simple model is well recognized. See, for example,
Hawthorne ([1993]).

19 That is, if we have propositions A ⇒ B ⇒ C and A′ ⇒ B′ ⇒ C′, where, for admissible B,
B′, C and C′, [A|C] = [A′|C′] and [B|C] = [B′|C′], then [A|B] = f[B|C],C([A|C]) = [A′|B′] =
f[B′ |C′ ],C′ ([A′|C′]).
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Figure 1. Conditionalization as rescaling degrees of confirmation.

f[B|C]([A|C]) is strictly increasing in [A|C]. Therefore f[B|C]([A|C]) is invertible
in [A|C]. The inverse of this function,

[A|C] = f−1
[B|C]([A|B])

can be written in a more familiar way as a product operator

[A|C] = [A|B] ⊗ [B|C]

which must be strictly increasing in [A|B] since f[B|C]([A|C]) is strictly increasing
in [A|C].

That the operator should also be strictly increasing in [B|C] for all values
of [A|B] excepting [Ø|B] is the import of the requirement above that the
redistribution be ‘uniform.’ An increase in [B|C], when [A|B] has the maximal
value [B|B], is reflected by an exactly equal increase in [A|C], since [B|C] =
[B|B] ⊗ [B|C]. An increase in [B|C], when [A|B] has the minimal value [Ø|B],
is reflected by no change in [A|C], since then [Ø|C] = [Ø|B] ⊗ [B|C]. The
requirement of uniformity amounts to asking that the increase in [A|C] for
intermediate values of [A|B] should be uniformly interpolated between these
two extreme values. Or it would amount to this if there were a way to represent
‘uniformly interpolated’ with the structures defined so far. But there is not.
However, whatever it may amount to, minimally, it must require some increase
in [A|C] for all intermediate values of [A|B]. That is sufficient to support the
strict increase of ⊗ in [B|C] unless [A|B] is [Ø|B].

Collecting these properties, we have:

M. Multiplication. For any proposition A and admissible propositions B and
C such that A ⇒ B ⇒ C, there exists a multiplication operator ⊗ such
that

[A|C] = [A|B] ⊗ [B|C]

where ⊗ is strictly increasing and thus invertible in both arguments
(excepting [B|C], when [A|B] = [Ø|B]).
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This operator is the analog of the normal product operator of the probability
calculus, where, for these A, B and C, P(A|C) = P(A|B) · P(B|C).

The two properties combined form:

B. Bayes Property.

N. Narrowness and M. Multiplication

We can readily deduce the expected rules from this combined property. The
analog of the product rule of probability theory is

[A&B|C] = [A&B|B] ⊗ [B|C] = [A|B] ⊗ [B|C] (1)

Combined with A. Addition we have the analog of the rule of total probability

[A|C] = [A&B|C] ⊕ [A&∼B|C] = ([A|B] ⊗ [B|C]) ⊕ ([A|∼B] ⊗ [∼B|C]) (2)

5.2 Bayes’ theorem

The analog of Bayes’ theorem is derived in the usual way from the product
rule. For an hypothesis H and evidence E:

[H&E|!] = [H|E] ⊗ [E|!] = [E|H] ⊗ [H|!] (3)

The terms can be labeled in the obvious way in analogy with the usual,
probabilistic form of Bayes’ theorem as: ‘posterior’ ([H|E]), ‘expectedness’
([E|!]), ‘likelihood’ ([E|H]) and ‘prior’ ([H|!]). Since the operator ⊗ is strictly
increasing and invertible in both arguments (excepting one case), the posterior
[H|E] can be recovered by inverting ⊗ and the theorem can be used in the usual
way to recover familiar intuitions. Other terms equal, the posterior [H|E] will
have a maximum value when H ⇒ E, for then the likelihood [E|H] = [!|!],
which is the maximum value.20 Similarly, other factors equal, an increase in
the prior [H|!] will lead to a corresponding increase in the posterior [H|E].
And an hypothesis that successfully entails evidence of lower expectedness
[E|!] will have a higher posterior. This much, and many more familiar results
like them, are recoverable without assuming A. Addition. If it is assumed, then
a further form of Bayes’ theorem can be recovered by substituting for the
expectedness using the rule (2):

[E|!] = ([E|H] ⊗ [H|!]) ⊕ ([E|∼H] ⊗ [∼H|!]).

20 The likelihood [E|H] = [E&H|H] by N. and, since H = E&H when H ⇒ E, we have [E|H] =
[H|H], which is the maximal [!|!] by F2b.
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5.3 Boundaries

While we may find the simplicity of the ‘refute and rescale’ dynamics appealing,
that simplicity proves to be its fundamental limitation. The dynamics are
sensitive only to entailment relations. As we shall see below, that forces
the inductive character of the inferences to be inserted by our selection of
priors. That burden overtaxes the priors since they will also be called upon
to represent initial states of ignorance at the same time as they must supply
essential inductive content. And worse, that inductive content is decided
in significant measure as a matter of stipulation. For these reasons, prior
probabilities have inevitably become the traditional locus of problems in
probabilistic analysis; they are called upon to make up for the deficiencies of
the ‘refute and rescale’ dynamics.

5.3.1 Dogmatism of the priors
It is well known in probabilistic analysis that once zero or unit probability has
been assigned to an hypothesis’ prior probability, conditionalization on new
evidence compatible with it cannot alter those probabilities. The same problem
arises in a system with B. Bayes property. Learning from experience will never
lead it inductively to alter judgments of maximum or minimum belief, unlike
humans.

For any hypothesis H and evidence E, we have from Bayes’ theorem (3) the
paired relations

[H|E] ⊗ [E|!] = [E|H] ⊗ [H|!]

[E|E] ⊗ [E|!] = [E|!] ⊗ [!|!]

where the second relation arises from setting H = ! and noting that [!|E]
= [E|E] = [!|!] from N . and F2c. Even if H is not !, once we set the prior
[H|!] to [!|!], compatibility of the paired relations forces the posterior [H|E]
= [E|E] = [!|!]. A prior set to certainty is immovable inductively.

For any hypothesis H and any admissible evidence E, from the product
rule (1), we have the paired relations

[H&E|!] = [H|E] ⊗ [E|!]

[Ø|!] = [Ø|E] ⊗ [E|!]

where the second relation arises from setting H = Ø. If H is not Ø, if we set the
prior [H|!] = [Ø|!], it follows from F4. that [H&E|!] = [Ø|!]. Compatibility
of the paired relations forces the posterior to [H|E] = [Ø|E] = [Ø|!]. A prior
set to maximum disbelief is immovable inductively.

We can see how this last example arises directly from the excessive simplicity
of the ‘refute and rescale’ dynamics. Those dynamics are sensitive only to the
fact that both H&E and Ø are each able to entail the evidence E. So, if they
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are given the same priors, they must then have the same posteriors. Since Ø
must remain at the minimal level of confirmation on any evidence, H&E is
condemned to the same fate. A more sophisticated dynamics would be able
to recognize and exploit the difference between Ø vacuously entailing E and
H&E entailing E.21

5.3.2 Impossibility of prior ignorance
We have seen that A. Addition precludes lower degrees of confirmation from
representing ignorance as opposed to disbelief. It also turns out that B.
Bayes property precludes priors that truly represent ignorance and does so
independently of A. Addition. To see this, note that the property entails that,
for any propositions H and E, where [E|!] is not [Ø|!]:

[H&E|!] = [H|E] ⊗ [E|!]

This relation is invertible in [H|E]. That is:

[H|E] is fixed by the priors [H&E|!] and [E|!],

(unless [E|!] is [Ø|!]). What this means is that the degree [H|E]—whether it
is high or low, and in which precise measure—is already encoded in the prior
[·|!]. The prior [·|!] amounts to a massive catalog of all possible relations of
inductive support between all pairs of propositions. It must decide in advance
just how we will redistribute support once we learn E, no matter what E may
be (as long as [E|!] is not [Ø|!]).

There is a large literature devoted to ‘ignorance priors,’ ‘uninformative
priors’ or ‘informationless priors’ in probability theory (Jaynes [2003], Ch. 12).

It is generally recognized that these terms are misnomers; the priors are
really only as uninformative as the probability calculus allows and are typically
tailored to being that uninformative about one particular fact, such as a
parameter value. Were they really to achieve ignorance in the sense of a
complete null state, the result would be a catastrophe for any system whose
dynamics conforms to B. Bayes property. For all the system can do is to take
a prior already rich in inductive information and refine it by the dynamic of
‘refute and rescale.’

5.3.3 Accommodation of virtues
An important limitation of the ‘refute and rescale’ dynamics is that it cannot
differentially reward two hypotheses for their success in entailing the same true
evidence. If hypotheses H1 and H2 entail the evidence E and we conditionalize

21 Analogously, the fixity of maximum support arises since the dynamics does not distinguish the
trivial entailment E ⇒ E from the nontrivial H ⇒ E, where H is strictly stronger, logically,
than E (that is, for some X, E = H ∨ X, where H&X is Ø).
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on E, the resulting changes in degrees of confirmation will be the same for
each. For, in this case, M. Multiplication becomes

[Hi|E] ⊗ [E|!] = [Hi|!]

If the two priors [H1|! ] and [H2|! ] agree, then so must the posteriors [H1|E]
and [H2|E], because of the invertibility of the operator ⊗.

There is strong indication that this outcome renders systems with the B.
Bayes property too insensitive to differences in the way hypotheses may entail
evidence. The dogmatism of the priors above arose because the system is unable
to distinguish the nonvacuous entailment of evidence E by some hypothesis
from the vacuous entailment of E by the contradiction Ø. Some logics of
induction, such as that illustrated in Section 8.3 below, must differentially
reward hypotheses H1 and H2.

Moreover, standard lore does not automatically accord equal confirmatory
boosts to the two hypotheses H1 and H2. One is often favored over the other
because the first entails the evidence in some virtuous way: with great simplicity
or explanatory power; or because the second does it with some deficiency:
it is ad hoc or grue-ified. Might there be some system of inductive inference
that could distinguish some entailments as virtuous and others as deficient?
The principal obstacle is that the virtues—notably simplicity and explanatory
power—are so poorly understood that even the outlines of such a system are
obscure.

The problem of accommodating these virtues and vices into a probabilistic
analysis is not new. (For helpful entries into this literature, see Howson and
Urbach [1996], Ch. 7) While the problem has been addressed with many
ingenious stratagems, they must all come down to one idea only. The only way
a system that conforms to B. Bayes property can differentiate H1 and H2 is to
reward virtue with a high prior and punish vice with a low prior.

The effect of this need is that any system conforming to B. Bayes property
must urge that the standard lore is mistaken in distinguishing virtuous
entailments. For example, the standard lore is that the success of an ad
hoc hypothesis in entailing some remarkable evidence gives it no boost in
confirmatory support, for the success is achieved unvirtuously by cooking the
books.22 Under ‘refute and rescale’ dynamics, this same conclusion must be
arrived at in a two-step calculation that must itself be cooked to yield the null
outcome. It says, contrary to the lore, that the ad hoc hypothesis does accrue
exactly as large a boost in confirmatory support as enjoyed by the hypothesis
that virtuously entails the same evidence. However the gains of that boost are

22 Or at least this is clearly so for the ‘bad’ cases, such as the supposition of a creationist geology
that the world was created in 4004 BC complete with the fossil record of all geological eras
intact. See Howson and Urbach ([1996], pp. 154–7) for cases of ‘good’ ad hoc hypotheses that
do deserve support.
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exactly canceled by a prior that has been cooked to just the very low value
needed.

While this stratagem of explicating virtues and vices in terms of high and
low priors has had some notable successes in the probability literature, it
faces a fundamental limitation. The assigning of a prior is global; it is done
once. Yet, in the lore, the import of virtues and vices is local and may differ
as hypotheses are subject to evidential scrutiny in different contexts, which
in turn may call for differing priors. For example, the wave theory of light
gives an especially simple and elegant explanation of interference. Its account
of the rule of stellar aberration, however, proves to be quite tortured, once
one looks at it closely—so much so, that it was a major achievement of late
19th century electrodynamics to be able to show that the wave theory could
accommodate the totality of the rule satisfactorily (Norton [forthcoming]).
The situation reverses for a corpuscular theory of light. It gives a simple and
elegant explanation of stellar aberration; but, insofar as Newton’s corpuscular
theory was able to give any account of the interference effect of ‘Newton’s
rings’ using his fits of easy reflection and refraction, it was certainly not
virtuous.23 The one prior must somehow reward virtue in one context and
punish vice in another.

Or we may be in a situation in which we cannot adjust priors to reward
a virtue. In 1905, Einstein used his light quantum hypothesis to produce
remarkably simple explanations of some of the observed properties of
radiation. We should like to reward the light quantum hypothesis for not
just entailing the evidence, but for explaining it virtuously. Yet, in 1905, after
the nineteenth century overthrow of the corpuscular theory and the resounding
success of the wave theory of light, any investigation of the properties of light
must begin with a low prior on any corpuscular hypothesis.

Finally, there is a related problem arising directly from N. Narrowness.
That property allows evidence E to support an hypothesis H only through
support of a disjunctive part H1 that entails E. The other disjunctive parts
are H2, H3, . . ., where H = H1 ∨ H2 ∨ H3 ∨ . . . and (H2 ∨ H3 ∨ . . .) & E =
Ø. They have no effect on the support accrued to H. The property N . denies
that there can be a synergy between the disjunctive parts, such that we should
assign a different boost to the entire hypothesis than to the part, or to different
disjunctive hypotheses that share the same disjunctive part that entails the
evidence. Yet, such synergies seem to have a place in the lore of confirmation.
Kepler’s hypothesis HKep that Mars orbits the Sun in a particular ellipse

23 To anticipate the rejoinder, I fully expect that this example and most others can be
accommodated in a Bayesian system by adding in enough distinctions, variables, likelihoods
and priors, just as Ptolemy’s geocentric system was able to accommodate any celestial motion
by adding in enough epicycles and equants. That did not mean, however, that he had the right
theory.
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gains some support from the evidence E of Tycho’s observations of Mars
and the Sun. N. Narrowness requires us to accord just the same support on
evidence E to the disjunctive hypothesis, Hdisj = HKep ∨ H2 ∨ H3 ∨ . . . ∨
Hn, where H2, H3, . . ., Hn are hypotheses asserting other trajectories. As
long as the hypotheses disjoined in Hdisj form an inchoate set, this seems
reasonable enough. However, at the level of accuracy of Tycho’s data,24 HKep

is also a disjunctive part of another hypothesis. If we restrict Newton’s theory
of gravitation to two masses, one the size of the Sun and the other Mars,
the resulting hypothesis HNew predicts a large number of possible orbits.25

The hypothesis, HNew, is a disjunction of hypotheses asserting them. The set
disjoined is far from inchoate; its members are uniquely picked out as the set
of orbits that satisfy Newton’s inverse square law of gravity for these masses.
In effect the hypothesis HNew just asserts that the orbit of Mars conforms to
Newton’s law.

The natural intuition is that HNew somehow expresses a deeper truth than
Hdisj, which merely disjoined HKep with a haphazard collection of alternatives.
So we might expect that the synergistic disjunction in HNew deserves more
support on the evidence than the inchoate disjunction of Hdisj. N. Narrowness
prohibits us from rewarding HNew for this synergy among its parts; it requires
that the evidence E must support Hdisj and HNew equally. The disparity
becomes more striking the larger we conceive to be the set of haphazardly
chosen orbits disjoined in Hdisj. The usual strategy, of course, is to attempt to
reward HNew in advance by assigning much greater priors to the disjunctive
sets of hypotheses delimited by simple differential equations, such as appear
in Newton’s theory. However no assignment of priors can serve this end. As
long as N. Narrowness is preserved, Hdisj and HNew must be accorded the same
support on evidence E, whatever their priors.

Once we discard the idea that any calculus of inductive inference must
conform to B. Bayes property, we can begin to reflect upon what a replacement
rule may bring. It may reward synergies; it may differentially reward virtuous
and unvirtuous entailment of evidence; it may not be so dogmatic that
assignments of complete certainty and disbelief are immovable; and it may be
rich enough to admit true null states as priors.

24 To simplify the example, I adopt the fiction that Tycho’s data picks out just one orbit from
each disjunctive set and neglect the motion of the Sun around the Sun-Mars center of mass
that is entailed by Newton’s theory.

25 It predicts many more than the countably many disjuncts presumed by the F. Framework.
To circumvent this difficulty, define HNew– Kep as hypothesizing all the orbits admitted by
Newton’s theory in this case, excluding HKep. Then HNew retains the disjunctive form
HNew = HKep ∨ HNew– Kep.
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6 Real values

The properties developed so far are necessary properties if degrees of
confirmation are to be probabilities. They are not sufficient. They do not
preclude value sets that cannot be mapped one-one onto a closed interval of
reals in a way that preserves ranking. The traditional counter-example (Jeffrey
[1961], pp. 19–20) is a family of hypotheses Hx,y, with real valued parameters
x and y, where [HX,Y|!] > [Hx,y|!] just in case X>x, or, if X = x, Y>y. While
ingenious ‘Archimedean Axioms’ have been devised to bridge the gap, none
seem as illuminating in terms of fundamental ideas about inductive inference
as the direct statement of the gap itself:

R. Real Values. For any admissible propositions A, A′, B and B′, the set
of values possible for degrees of confirmation [A|B] can be mapped
one-one onto a closed set of reals such that the mapped real values
f([A|B])>f([A′|B′]) just in case [A|B] > [A′|B′].

The obvious limitation of a system with this property is that it cannot
accommodate inference problems that require larger value sets, such as
infinitely great or infinitesimally small degrees (or at least not without
nonstandard reals). We can readily contrive problems that require such
extensions. For example, consider the problem of picking a real number in
[0, 1] ‘at random.’ That the number is in the interval [0, 0.5] is finitely more
probable than in the interval [0, 0.4], which is infinitely more probable than
in the discrete set {0, 0.1, 0.2}, which is finitely more probable than in the set
{0, 0.1}.

7 Sufficiency and independence

The properties F. Framework, A. Addition, B. Bayes property and R. Real
values are necessary if degrees of belief are to be probabilities. That they
are sufficient follows from theorems in Aczel ([1966], pp. 319–24). That is,
they are sufficient in the sense that, for each connected region26 of the set of
propositions, there exists a rescaling of the real values assigned to the degrees
by R. Real values such that the rescaled values obey the probability calculus.

The independence of A. Addition, B. Bayes property and R. Real values
from one another is obvious. That independence is important here since it is
urged that we should implement these properties selectively, according to the
problem at hand. There is some further independence of A. Addition and B.

26 A connected region is a set of propositions such that for any two propositions V and W in the
set, there exist other propositions C1, C2, . . ., Cn in the set such that all of V&C1, C1&C2, . . .,
W&Cn are in the set.
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Bayes property from F. Framework. The most interesting is their independence
from F1c. Transitivity. For that shows that A. and B. may obtain not just
when the degrees of belief are not reals, but also when they are not even
partially ordered. The demonstration of the consistency of A. and B. with
a nontransitive value set is achieved by displaying an example that has all
three.27

8 Illustrations

It is urged here that we should not seek the one, true combination of properties
that yields the universally true logic of induction. Rather, in accord with the
material theory of induction (Norton [2003a], [2005]), we should invoke just
those properties in each domain warranted by the material facts prevailing in
each domain. So each domain will prove to have its own characteristic logic
of induction. Some illustrations follow.

8.1 All properties retained

If the circumstances are governed completely enough by stochastic, physical
laws, we will have sufficient material facts to warrant all the properties that
comprise the probability calculus. Imagine, for example, that we randomly
sample an atom of naturally occurring Uranium and seek evidence for its half-
life. The evidence is that it does not undergo radioactive decay over the period
of a week. To what degree does that evidence confirm each of the three half-
lives possible for this atom? The known distribution of isotopes in naturally
occurring Uranium fixes the physical chances for our sampling each of them.
They are, by atoms in natural uranium: U-234 is 0.0054%, U-235 is 0.72%
and U-238 is 99.275%. These chances fix our prior probabilities that the atom
is the corresponding isotope with the characteristic half-life. Those half-lives
are: U-234, 244,500 years; U-235, 703,800,000 years and U-238, 4,468,000,000
years. These half-lives, in conjunction with the rule of radioactive decay, give
the physical chances for each isotope persisting for a week without decay.

27 Values are pairs (r,θ) of reals, where 0 ! r ! 1 and 0 ! θ < 360. The quantity θ will behave
like an angle variable whose value always remains in [0,360), so two θ ’s are added or subtracted
modulo 360 (written ‘−m’ and ‘+m’). The ranking is defined by (r′,θ ′) > (r,θ) when r′ > r or,
if r′ = r and neither are 0 or 1, 0 < θ ′-mθ < 180. Also for any 0 < r < 1, (r′,θ ′) = (r,θ) if
θ ′-mθ = 180. This ranking is intransitive: (0.5, 0) > (0.5, 240) > (0.5, 120) > (0.5, 0). The
maximum and minimum values are (1,θ) and (0,θ), where, for these two cases, all (1,θ) are
taken to be same and all (0,θ) are taken to be same, for all θ values. The addition operator ⊕
is implemented as (r′,θ ′) ⊕ (r,θ) = (r′+r, θ ′ +m θ). The multiplication operator ⊗ is (r′,θ ′) ⊗
(r,θ) = (r′.r, θ ′ +m θ), when neither r′ nor r is 1; as (r′,θ ′) ⊗ (1,θ) = (r′, θ ′); or as (1,θ ′) ⊗ (r,θ)

= (r,θ). The operator ⊕ is strictly increasing in both arguments, as is ⊗, excepting in the latter
case when either argument is (0,θ).
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These physical chances provide the likelihoods that figure in the obvious, fully
probabilistic analysis.

The scenarios imagined in Dutch book arguments give us another case
in which we would use the full probability calculus. If we are in a casino,
gambling, such that all the conditions in those scenarios obtain, then we ought
to reason on the outcomes of the various games by means of the probability
calculus.

These two examples illustrate how the notorious problem of selecting the
right interpretation of the probability calculus28 is greatly ameliorated in a
material theory of induction. The appropriate interpretation will vary from
domain to domain; we are absolved from the impossible burden of finding
the one, universally correct interpretation that fits every case. In the case of
sampling Uranium, all the propositions over which we reason are related by
physical chances governed by the probability calculus, so we are able to set
our degrees of confirmation by those chances. An objective interpretation
will fit these probabilistic degrees best. They represent something like the
relative frequency of truth among many physical systems relevantly similar to
the present one. In the case of the casino, however, the degrees have a very
different meaning. They are now internal accounting factors that, if employed
in the appropriate way, have the pragmatic value of protecting us from harm.

8.2 Bayes property only retained

A slight adjustment of the Uranium sampling problem above produces a
problem in which we will dispense with A. Addition and R. Real Values.
Instead of sampling atoms, imagine that we are given N atoms of some
radioactive element of unknown half-life that we wish to determine. Our
evidence is that over time t, n of the N atoms decay. By presumption, we have
no idea of the half-life of the element. That is, we have no idea of the size of
the time constant τ in the rule of radioactive decay, which tells us that the
physical chance of decay of one atom over time t is

c(t) = (1 − exp(−t/τ)). (4)

and τ relates to the half-life t1/2 as t1/2 = τ ln 2. If we were to attempt a
probabilistic analysis, our prior probability would be the uniform prior over
all values of τ , from 0 to infinity. That is, the probability density

p(τ ) = constant > 0 (5)

28 For recent discussion, see (Gillies [2000]; Galavotti [2005]; Mellor [2005]). Gillies ([2000], Ch
8,9) describes and advocates a pluralism over interpretations of the probability calculus.
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This is an ‘improper prior,’ since it cannot be normalized to unit total
probability. Many statisticians have been tempted to use such priors, since
they can yield useful results. Yet they have been tormented by them, since
they violate the probability calculus and only sometimes yield normalizable
posterior probabilities (Rosenkrantz [1981], §4*.2).

We are inclined to employ an improper prior precisely because the material
facts of the inference problem do not call for its additivity. So the material
theory of induction allows us to dispense with additivity. Compare this with the
case of sampling Uranium above. Our uncertainty over the half-lives resulted
from a sampling process, governed by physical chances. So, in conforming our
degrees of confirmation to the chances, these degrees had to be additive. In
the new problem, our uncertainty does not result from any physical process
governed by chances. It is just plain ignorance. Therefore, as we saw in the
discussion of A. Addition above, we should not require our prior beliefs to be
additive probabilities and, therefore, need not be troubled by the impropriety
of the prior (5). Since the principal properties of A. Addition and B. Bayes
property are independent, all other aspects can remain essentially the same.
We will still learn about the half-lives from observed decay times, governed
by the physical chances of (4). So as before, we will still expect the dynamics
of confirmation to be governed by B. Bayes property, with the likelihoods
provided by physical chances.

To conform with the countable set of propositions supposed in F.
Framework, we will replace the continuous range of τ values with a countable
set of intervals. The propositions τ i assert that the time constant τ for the
element lies in the small interval i$τ to (i + 1)$τ for small $τ and i = 0, 1,
2, . . . Let E be the evidence that n of the N atoms decay in some fixed time t.
Bayes’ theorem (3) asserts

[τ i|E] ⊗ [E|!] = [E|τ i] ⊗ [τ i|!] (6)

For the remaining analysis, we will also dispense with R. Real values, since
it is not needed for the outcome. To express our ignorance over the value of
τ , we will assume the prior [τ i|!] has some fixed value greater than [Ø|!],
independent of τ i. Similarly we will assume only that the expectedness has
some value [E|!]>[Ø|!].29 The physical chances of n decays among N atoms
over time t when the time constant τ is within the interval τ i are approximated
arbitrarily well for small enough $τ by:

c(E|τ i) = [N!/(n!(N − n)!)](exp(−t/τ i))
N−n(1 − exp(−t/τ i))

n$τ (7)

The likelihood [E|τ i] will be set by these physical chances in the sense that
[E|τ i] will be a strictly increasing function of c(E|τ i). It is a familiar result for

29 We choose values other than [Ø|!] for these two quantities to preserve the invertibility of ⊗.
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the binomial expression of (7) that, for t, n and N fixed, c(E|τ i) has a maximum
value when exp (−t/τmax) = (N − n)/N. That is,

τmax = t/ln(N/(N − n)) (8)

So the likelihood [E|τ i] has a maximum at τmax. Finally, since the expression
[τ i|E] ⊗ [E|!] in Bayes’ theorem (6) is invertible in the posterior [τ i|E], it
follows that the posterior [τ i|E] has a maximum at τmax.

That is, on the evidence E, the time constant with the highest degree of
confirmation is τmax. This is the result we would expect. For example, if N/2
atoms decay in time t, then we would expect t to be a good estimator of the
half-life t1/2 = τ ln 2. In this case, (8) becomes t = τmax ln 2. It is also evident
from its derivation that (8) is a maximum likelihood estimator of τ . Finally,
the analysis can be repeated, replacing τ with a function of τ . For example,
we can re-express the law of radioactive decay (4) using λ = 1/τ and adopt a
prior indifferent to values of λ. We arrive at the same estimator τmax of (8).

8.3 Induction without additivity and Bayes property

The last example gave a principled reason for dispensing with the additivity
of the prior. Otherwise the analysis was not so different from the familiar
probabilistic one. That is so, since we were inferring inductively about
propositions governed by physical chances. We recover an analysis that is very
different from the familiar ones if we consider systems whose uncertainties are
not governed by physical chances.

Many of our physical theories, including Newtonian physics, allow
indeterministic systems. These are systems whose present states do not fix their
future states and—the key fact of importance here—our physical theories
provide no physical chances for the different futures. They tell us only that they
are possible (Alper et al. [2000]; Norton [1999]). One of the simplest Newtonian
examples is ‘the dome,’ described more fully in Norton ([2003b], §3). A point
mass sits motionless at the apex of a dome with circular symmetry and is able
to slide frictionlessly over it. See Figure 2. If the shape of the surface is chosen
appropriately, Newton’s equations admit solutions in which the mass remains
at rest indefinitely at the apex, or for which the mass remains at rest for some
arbitrary time T and then spontaneously accelerates in any radial direction.30

30 An appropriate shape is h = (2/3g)r3/2, where r is the radial distance in the surface of the
dome and h the vertical distance below the apex; g is the acceleration due to gravity. For a
unit mass on the surface, Newton’s laws entail an outwardly directed acceleration field, F =
d2r/dt2 = r1/2. This equation is solved by r(t) = 0, for all t; and by a spontaneous excitation at
T: r(t) = 0, for t ! T and r(t) = (1/144)(t−T)4, for t " T.
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r=0

h =
(2/3g)r3/2

F = r1/2

r

Figure 2. The dome: an indeterministic system31.

How are we to represent our uncertainty over the time T of spontaneous
acceleration? The natural answer is to treat the problem as analogous to
radioactive decay and assume that the timing of spontaneous acceleration is
governed by the law of radioactive decay (4). The difficulty is that this law
requires a time constant τ . A τ of a millisecond has a very different meaning
physically for whether the excitation is likely to happen soon than does a τ

of a millennium. Nothing in the physics supplies such a time constant. Indeed
any proper probability distribution must employ some sort of parameter to
govern the rate at which the integrated distribution approaches unity for
large times. Yet no parameters are provided by the physics. Or one may
try an improper distribution that merely sets the probability of spontaneous
acceleration proportional to the size of the time interval in question. That still
goes beyond the physics, since it asserts that spontaneous motion is twice as
probable in a time interval that is twice as large. The physics knows nothing
of this. It merely asserts that spontaneous motion in both time intervals is
possible. There is no notion of ‘twice as possible.’

The attempt to represent our uncertainty with a probability measure imposes
structure on the problem that is not present in the physics. Therefore, according
to a material theory of induction, we cannot use probabilities to represent our
uncertainty. What should we use? The physics gives us the structure. It assigns
three values to propositions concerning the system: impossible, possible and
necessary. Just as we conform our degrees of confirmation to physical chances
when they are present, we should take these three as the values possible for our
degrees of confirmations. We shall abbreviate them as ‘imp,’ ‘poss’ and ‘nec.’
They are assigned to the propositions E(T1,T2), with T1<T2, which assert that
the time T of spontaneous acceleration lies in T1 ! T < T2; and to Eno, which
just asserts that there is no spontaneous acceleration at any time. We can then
read the general logic from the physics in the obvious way for pairs of the

31 Figure from Norton ([2003b], §3)
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propositions just defined:32

[A|B] = nec if B ⇒ A

= imp if B ⇒∼ A

= poss otherwise

For example:

[E(T1, T2)|!] = poss

[Eno|!] = poss

[E(T1, T2)|E(T3, T4)] = imp, if [T1, T2) and [T3, T4) do not intersect;

= poss, if [T3,T4) partially intersects [T1,T2);

= nec, if [T3,T4) is contained in [T1,T2).

Reflecting on results such as these, it becomes apparent that the system
conforms to F. Framework33 and N. Narrowness. However both A. Addition
and M. Multiplication fail, so that the B. Bayes property fails as well.

To see the failure of A. Addition, consider the operator ⊕′ that comes closest
to the operator ⊕ of A. Addition. It satisfies [Eno∨ ∼ Eno|!] = [∼ Eno|!] ⊕′

[Eno|!], which means that

nec = poss ⊕′ poss (9)

It also satisfies [E(0,1) ∨E(1,2)|!] = [E(0,1)|!] ⊕′ [E(1,2) |!], which means
that

poss = poss ⊕′ poss (10)

Comparing (9) and (10) shows that ⊕′ cannot represent a function on the
degrees and therefore cannot realize the operator ⊕ of A. Addition.

To see the failure of M. Multiplication, consider the operator ⊗′ that comes
closest to the operator ⊗ of M. Multiplication. For E(0,1) ⇒ E(0,1) ⇒ !, we
have [E(0,1)|!] = [E(0,1)|E(0,1)] ⊗′ [E(0,1)|!], so that

poss = nec ⊗′ poss (11)

However, for E(0,1) ⇒ E(0,2) ⇒ !, we have [E(0,1)|!] = [E(0,1)|E(0,2)] ⊗′

[E(0,2)|!], so that

poss = poss ⊗′ poss (12)

32 It is sometimes said that a uniform prior over all natural numbers is a contrived fiction, since
no physical mechanism could produce it. The dome provides that mechanism.

33 To ensure that the set of propositions remains countable, consider only integer values of T1
and T2 in E(T1,T2).
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Comparing (11) and (12) shows that ⊗′ cannot be the operator ⊗ of M.
Multiplication, since it is not strictly increasing in its first argument, even
though the second is not [Ø|!]. This failure eliminates an essential part of
Bayes’ theorem. For we can no longer invert the operator ⊗′ in the analog of
of Bayes’ theorem

[H|E] ⊗′ [E|!] = [E|H] ⊗′ [H|!]

to infer to [H|E]. Indeed conditionalizing H on E may yield an [H|E] that is
poss or nec, but the theorem will not be able to tell us which.

More directly, this example shows that, when H ⇒ E, [H|E] is not a function
of [H|!] and [E|!]. Even though H1 = E(0,1) and H2 = E(0,2) have the same
priors [H1|!] = [H2|!] = poss and entail the same evidence E = E(0,2),
they have different posteriors. For [H1|E] = poss, but [H2|E] = nec. That is,
the evidence E rewards H1 and H2 differentially, contrary to the dynamics
governed by B. Bayes property, discussed in Section 5.3.3 above.

9 Conclusion

Conceived as a logic of inductive inference, the probability calculus represents
the sum of several distinct ideas about inductive inference. Most notable are
A. Addition, which asserts that low probabilities represent disbelief, and B.
Bayes property, which requires that new evidence is incorporated by a process
of ‘refute and rescale.’ The principal contention of this article is that these
properties and others like it are not warranted universally and must be invoked
independently according to the needs of the problem at hand.
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