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In a material theory of induction, inductive inferences are warranted by facts that 

prevail locally. This approach, it is urged, is preferable to formal theories of 

induction in which the good inductive inferences are delineated as those 

conforming to universal schemas. An inductive inference problem concerning 

indeterministic, non-probabilistic systems in physics is posed and it is argued that 

Bayesians cannot responsibly analyze it, thereby demonstrating that the 

probability calculus is not the universal logic of induction. 

 

1. The Material Theory of Induction 

1.1 What It Is 

 In papers elsewhere (Norton, 2003, 2005) I have argued for a material theory of inductive 

inference. It urges that there are no universal rules of inductive inference; particular inductive 

inferences are not shown to be licit by demonstrating that they conform to universally applicable 

schemas, as is the case with deductive inference. Instead, individual inductive inferences are 

warranted by facts. Since these facts hold contingently, they warrant inferences only in limited 

domains. While some domains may be large and governed by their own well-defined logic, no 

single logic is warranted in all domains. The slogan is “all induction is local.” 

                                                
1 I thank my fellow symposiasts and the audience at PSA 2008, especially Carl Hoefer, for 

stimulating responses and discussion. 
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 The principal burden of any logic is to separate the good from the bad inferences. 

Deductive logic provides the model of how a formal theory does this. Consider the deductive 

argument: 

 

1. Either quantum particles in a singlet state are non-local or superluminal transmissions are 

possible. 

2. Superluminal transmissions are not possible. 

3. Therefore quantum particles in a singlet state are non-local. 

 

Everyone sees immediately that this is a deductively valid argument. It is an instance of the 

universally applicable schema of disjunctive syllogism 

 

1. A or B 

2. Not-B 

3. Therefore A 

 

We see this without grasping the content of the propositions. One may have no understanding of 

a singlet state or non-locality. Nonetheless one can be assured of the validity of the argument. 

 Standard theories of inductive inference have long aspired to replicate this success. 

Maddeningly, these standard theories fall just a little short; and sometimes worse. The principal 

difficulty is that it is impossible to judge whether an inductive inference is good without 

knowing what the propositions say. Here are two formally identical inductive inferences: 

 

1. This sample of bismuth melts at 271oC. 

2. Therefore all do. 

 

1. The first day of the new millennium was 8oC at noon in Pittsburgh. 

2. Therefore all first days of new millennia in Pittsburgh will be so. 

 

Whether the inferences are good depends on what the propositions say—their matter or material. 

The first is a good inference because of the fact that elements like Bismuth are generally, but not 



3 

assuredly, uniform in their properties. The second is a poor inference, since there is no 

corresponding fact of the uniformity of the weather. That is all we need to know to determine 

that the first inference is warranted and the second is not. 

 The natural response is that these examples are just too simple. State all the background 

facts properly and then the universal inductive logic that really governs the examples will come 

into view. This response expresses an optimistic hope that is not borne out by further efforts. 

When we do try to expose this universal background logic, things become worse. We may 

imagine that the world is governed by a principle of uniformity that holds for some aspects of the 

world but not others. But we will find no non-circular characterization of which are the favored 

aspects. We were better off with the simple idea that the first inference is warranted by a fact 

about elements and the second not warranted because the facts of weather are inhospitable. 

1.2 A Psychical Example 

 The material theory urges that facts warrant inductions. Thus we should expect that two 

people who differ sufficiently in their assessment of the prevailing facts will also differ 

significantly in their judgments of the inductive import of the same evidence. This effect is 

illustrated in a discussion by Bertrand Russell of experimental evidence for personal survival of 

physical death. Russell (1957, 51-52) writes 

 

Psychical research professes to have actual scientific evidence of survival and 

undoubtedly its procedure is, in principle, scientifically correct. Evidence of this 

sort might be so overwhelming that no one with a scientific temper could reject it. 

The weight to be attached to the evidence, however, must depend upon the 

antecedent probability of the hypothesis of survival. There are always different 

ways of accounting for any set of phenomena, and of these we should prefer the one 

which is antecedently least improbable. Those who already think it likely that we 

survive death will be ready to view this theory as the best explanation of psychical 

phenomena. Those who, on other grounds, regard this theory as implausible will see 

for other explanations. 
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Some experimental report purports to favor survival. Those who believe that survival is possible 

will infer that the experiment does inductively support a survivalist outcome. Imagine that a 

psychic purports to learn information from a departed relative that only that relative could know. 

The believer will infer from that datum to the survival of the relative. Skeptics will infer to some 

form of trickery, perhaps “cold reading” or even collusion. 

 The facts we believe control the conclusion to which we infer inductively. The material 

theory asserts that this is the full analysis. Might a fuller analysis find that these inferences derive 

from application of some universal inductive schema? Russell’s text mentions two terms, 

“explanation” and “probability.” They immediately suggest the two presently, most favored 

universal accounts of inductive inference. Let me explain why each does no better than the 

material theory. 

 According to “inference to the best explanation” we should infer inductively to the best 

explanation of the evidence. The believer infers to the relative’s survival as the best explanation 

of the origin of information conveyed by the psychic. 

 This is, in my view, a very imperfect explication of the inference. If we focus on the 

particular inference and all the pertinent facts, its compelling strength is quite evident. If we rise 

to the abstract description of it as an inference to the best explanation, its strength is obscured. 

We have lost essential detail. Our abstract description is merely a gloss that fails to capture what 

makes the specific inference successful at the strength it has. Moreover, inferring to the best 

explanation fails to provide a precise, universal inductive schema because our accounts of 

explanation still lack the precision expected in a general theory of inference. Contrast this with 

the case of disjunctive syllogism above. This effect is exactly reversed. In that example, 

identifying the schema of disjunctive syllogism in amongst the complications of the quantum 

theory was all that was needed to establish the deductive force of the inference. The quantum 

mechanical content can be ignored. 

 When Russell urges that “we should prefer the [hypothesis] which is antecedently least 

improbable,” Bayesians will call up a familiar result in Bayesian epistemology. When two 

hypotheses entail the same evidence, the ratio of posteriors equals the ratio of priors. So we 

should prefer the hypothesis with the greater prior probability. 

 This is, in my view, an imperfect explication of the inferences. The notion of “probable” 

and “improbable” is metaphorical, as suggested by Russell’s equating of “improbable” with 
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“implausible.” One does not need the mathematics of probability theory to judge that we should 

prefer the antecedently most probable/plausible hypothesis if the two are equally adequate to the 

evidence. 

 If the term probability is used in its precise mathematical sense, then what precisely is the 

outcome space envisaged? And precisely which are the numerical values of the probabilities? 

Bayesians will here resist specifying the outcome space precisely and assigning definite numbers 

to the probabilities. They realize that any particular set assigned would be arbitrary. Instead they 

retreat to the assurance that whatever numbers they assign will lead to pretty much the same 

outcome. I read that reluctance as conceding the spurious precision in the assigning of definite 

numbers and that the inductive logic prevailing is actually a weaker logic that permits rankings 

only. I have suggested elsewhere (2007) that Bayesians would do well to find it. 

 Bayesians may also see in Russell’s remarks a suggestion that the best explanation is just 

the antecedently most probable, so that the hypothesis that explains better is just the one with a 

greater prior. That proposal fails because explanation and explanatory strength is a relation 

between the hypothesis and the thing explained, whereas a prior probability is assigned to an 

hypothesis only. It is easy to find hypotheses that are very good explanations of some things and 

explanatory failures when it comes to others. Einstein’s celebrated light quantum hypothesis of 

1905 affords a Nobel Prize winning explanation of the photoelectric effect. Yet that same 

hypotheses is unable to explain the familiar interference effects of 19th century optics. A single 

prior probability cannot simultaneous reward and punish the hypothesis. 

2. A Challenge to Bayesians 
 Here I present a challenge to anyone who thinks that the probability calculus is adequate 

as the universal logic of induction. It is a problem in inductive inference that I do not believe 

Bayesians can solve responsibly. 

2.1 Indeterministic Systems in Physics 

 Indeterministic systems are those for which a full specification of their present state fails 

to fix their future states. In quantum theory a specification of the present state of the system 

generally only fixes the probabilities of different futures. In a more extreme form of 

indeterminism, the full specification of the present leaves the future undetermined and—the key 
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fact of importance here—our physical theories provide no physical chances for the different 

futures. They tell us only which futures are possible. Some recent examples arise in the supertask 

literature. See, for example, Alper at al. (2000); Norton, (1999). 

 An examples in Newtonian physics is “the dome.” (See Norton, 2003a, §3; 2008a.) A 

point mass can slide frictionlessly over a dome with circular symmetry in a vertical gravitational 

field. Initially, the mass is motionless at the apex. See Figure 1. If the shape of the surface is 

chosen appropriately, Newton’s equations admit many solutions. The mass may remain at rest 

indefinitely at the apex; or it may remain at rest for some arbitrary time T and then 

spontaneously accelerate in any radial direction. The spontaneous motion does not arise from 

some very slight perturbation, a miniscule wobble, say, that shakes the mass free at the moment 

of spontaneous excitation, time t=T. Nothing changes in the state of the dome. Newton’s 

equations of motion just admit multiple solutions, one in which the mass remains at rest at times 

t>T and one in which it moves for t>T. 

 

 

 
Figure 1. The dome: an indeterministic system2 

 

 A second example illustrates another sort of spontaneous excitation. An infinite sequence 

of identical masses and springs are laid out as mass-spring-mass-spring-… as shown in Figure 2, 

where the springs are governed by Hooke’s law. 

 

 
Figure 2. Masses and Springs 

                                                
2 Figure from Norton (2003a, §3). 
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If the masses are initially at rest and located so that the springs are unextended, then one possible 

future for the system is that it remains indefinitely quiescent. There is a second possibility. The 

system can become spontaneously excited at some time T>0. The first mass in the chain is 

accelerated after T=0 because of a faster acceleration of the second mass; and the second mass is 

accelerated after T=0 because of a faster acceleration of the third mass; and so on indefinitely. 

The spontaneous excitation depends essentially on the infinity of the masses; for, were there only 

n masses, there would be no additional (n+1)th mass to excite the nth mass and initiate the 

process. The computation is given in Norton (1999, 1269-71). The full specification of the 

physical system merely admits this spontaneous excitation as a possibility, but supplies no 

probabilities for the various possible futures. 

2.2 The Inductive Inference Problem 

 We are presented with an indeterministic system such as the dome or the masses and 

springs in a quiescent state at time t=0. We know the full governing physics, so we know that 

spontaneous excitation is possible, and we know that no other perturbing influences will come 

into play. How much inductive support does this background information E accord to the 

hypothesis H(T1,T2) that the system will spontaneously excite at a time t in the interval T1 ≤ t < 

T2? 

2.3 A Model for the Solution 

 Consider the standard way of handling inductive inference problems concerning 

stochastic systems where we do have probabilities—physical chances—for the possible futures. 

We conform our degrees of belief to those physical chances; this informal idea is given more 

precise expression in Lewis’ (1980) “principal principle.” The law of radioactive decay asserts 

that a radioactive atom has a physical chance P(t) of decaying in time t where 

P(t) = 1-exp(-t/τ).                                                           (1) 

The time constant τ is related to the element’s half life by t1/2 = τ ln 2. So P(t) should also be our 

degree of belief that the atom decays within time t. 

 This procedure seems so straightforward as to require little justification. Once we accept 

that the quantum theory provides the full physical description of the system, it would be perverse 
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to distribute beliefs in a way that does not respect these physical chances and insist, say, that the 

evidence accords near certainty to the hypothesis that atom will decay in its half life. For to do 

that is to pretend to know more about the system than the physics tells us; it is to offer a 

corrective to the physics. 

 This idea that the physical facts prevailing should determine how we should infer 

inductively is the basic idea of the material theory of induction. Write 

[H(0, T)|E] 

as the degree of support provided by the evidence E that the atom is undecayed at time t=0 to the 

hypothesis H(T) that the atom decays over the following time 0 ≤ t < T. Since the process is fully 

governed by the law (1), the material theory of induction enjoins us to set the degree of support 

equal to physical probability of decay 

[H(0, T)|E] = P(T) = (1-exp(-T/τ))                                           (2) 

2.4 How NOT to Infer Inductively about Indeterministic Systems 

 Now consider the inductive inference problem posed in Section 2.2. We have 

E: At t=0, the system is quiescent. 

H(T1,T2): The system excites at time t in the interval [T1,T2), that is, in T1 ≤ t < 

T2? 

What is the degree of inductive support [H(T1,T2)|E] accorded by the evidence E to the 

hypothesis H(T1,T2)?  

 Many cannot resist treating this problem just like radioactive decay. They propose we use 

the same rule 

[H(0,T)|E] = P(T) = (1-exp(-T/τ)) 

The motivation is that the law of radioactive decay has an important property. It is the unique 

decay law that has “no memory.” If the atom has not decayed after 1 time unit, or 5 time units, or 

100 time units, then the probability of decay in the next unit of time is still the same. Speaking 
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metaphorically, the atom does not remember how long it has survived without decay, when it 

decides whether to decay in each new unit of time.3 

 The dome and masses and springs also have this "no memory" property. Whether the 

spontaneous excitation happens at some moment is independent of how long the system has been 

quiescent. So, if any probabilistic law is applicable to these systems, it is this one. However we 

cannot set our degrees of support [H|E] equal to probabilities governed by the same formula (2) 

of the law of radioactive decay. Any instance of this law has a time constant τ. That time 

constant exercises a powerful influence on the chances of the spontaneous excitation. Figure 3 

displays graphs of P(T) for values of τ=0.1, τ=1 and τ=10: 

 

 
Figure 3. Decay with different time constants 

 

A very small time constant makes the excitation very probable, virtually immediately; a very 

large time constant delays the excitation very probably, for a long time.4 Nothing in the physics 

of the dome or masses and springs fixes a time constant or any time scale for the spontaneous 

excitation. The physics is completely silent on when the motion may happen. It just says "it's 

possible." 

                                                
3 To see this, consider Q(t) = 1–P(t) = exp(–t/τ), the probability of no decay in an initial time t. 

The probability of no decay in a subsequent time u given no prior decay is just 

Q(t+u)/Q(t) = exp(–(t+u)/τ)/ exp(–t/τ) = exp(–u/τ) = Q(u), 

which is just the probability of no decay in an initial time u. 
4 Setting τ=∞ gives us the case of P(T)=0 for all T, so that the mass never moves. That is we 

assign unit probability to the outcome of no motion ever. 
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 So if we are to use the probabilistic formula, we must add a time scale. That is, we must 

pretend to know more than the full physical specification of the problem allows. Speaking 

metaphorically, Nature, in the guise of Newtonian physics, is unable to assign a time scale to the 

decay. If we assign one, we must know more than Nature. Our original goal was merely to 

reason inductively about a system. Yet we have ended up as physicists, proposing new physical 

properties that the system--by construction--does not have.5  

 There is a loophole. Statisticians sometimes use improper probability distributions—that 

is, ones that do not normalize to unity. An improper density with the “no memory” property is 

the uniform density p(T) = dP(T)/dT, shown in Figure 4. It assigns that the same small 

probability ε to each unit time interval. 

 
Figure 4. An Improper Probability Distribution 

It is "improper" since the probability assigned to all the unit time intervals taken together does 

not sum to unity, as the probability calculus demands, but it is infinite. 

 Tempting as this improper distribution may be, it suffers the same problem as the proper 

distribution. It still adds physical properties. It entails that spontaneous motion in time t=1 to t=2 
                                                
5 Might a probabilistic analysis be possible if only we were given a little more data, such as the 

results of observation of several domes over some time? This strategy only makes sense if one 

does not accept the initial supposition that the Newtonian analysis gives the full physics of the 

dome. If one accepts that it does, then no catalog of outcomes will give any new, useful 

information for the inference problem. The situation is analogous to someone keeping detailed 

records of the outcomes of a roulette wheel’s spins in the hope that some dependence between 

successive spins will be manifested. That strategy in a casino is futile if the wheel has been 

properly constructed so that there is no dependence. 
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has probability ε and spontaneous motion in the time interval t=2 to t=4 is 2ε. Motion in the one 

interval is twice as probable--no more no less--than motion in the other. But nothing in the 

physics licenses this precise judgment. All the physics says is that motion in each interval is 

"possible."6 Once again, we have passed from being inductive logicians to being physicists, 

adding more physical properties to the system than Newtonian theory provides. 

2.5 How to Infer Inductively about Indeterministic Systems 

 Something has gone very wrong. It is that we are trying to force the wrong inductive 

logic onto the indeterministic systems. How can we select the right one? The material theory of 

induction tells us that the prevailing material facts will fix the inductive logic, just as the 

probabilistic law of radioactive decay led us to a probabilistic logic for the radioactive decay of 

an atom. The physics of the indeterministic systems is more impoverished. So we should expect 

a more impoverished logic. 

 It is a mechanical exercise to read the relevant inductive logic from the physics. For 

radioactive decay, the chance of decay in time t=5τ is 0.99; so our degree of belief in that decay 

is 0.99. However the indeterministic physics of the dome and the masses and springs does not 

give us real-valued degrees. It just says that a spontaneous excitation at any time is possible; and 

that is all. It provides no degrees of possibility: not 50% possible, not 95% possible; and no 

comparative measures: not more possible, less possible, twice as possible. It just asserts what is 

possible; and by logical implication we can also know what is necessary and impossible. These 

three assignments, necessary, possible and impossible, become the three values of our inductive 

logic. The translation of the material facts in the physics to the inductive logic is illustrated in the 

table: 

 

                                                
6 A referee asked whether symmetry might warrant equal probabilities for equal intervals. The 

problem is that the resulting uniform distribution is not uniform under reparametrization, such as 

to inverse times. For more, see Norton (2008). 
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What the physics says: 
 

What it induces in the inductive logic: 
 

The present state does not fix the future 
(indeterminism). A future state is necessary, 
possible or impossible. 
 

The inductive logic for the support [A|B] of A 
from B has three values: nec, poss, imp. 

If the excitation happens in time [10,20), then 
it necessarily happens in [0,100). 
 

[ H(0,100) | H(10,20) ] = nec 

Excitation in any later time interval is possible, 
given 
E: the system is quiescent at t=0. 
 

[ H(0,10) | E ] 
= [ H(0,100) | E ] 
= [ H(10,20) | E ] 
= … = poss 

If the excitation happened in [0,10), it is 
impossible in [20,30). 
 

[H(20,30) | H(0,10) ] = imp 

Table 1. Material Facts Dictate an Inductive Logic 

 

The full logic is generated by the rules: 

The complete inductive logic of the indeterministic systems is7 

[ A|B ]  = nec,  if B entails A                                                                  (3) 

= imp,  if B entails not A 

= poss,  otherwise 

2.6 Bayesian Response I: The Simulation Trick 

 There is a common Bayesian rejoinder. While the strengths [A|B] of the inductive logic 

(3) are not conditional probability measures, we are just a few lines of mathematics away from 

them. Consider any probability measure at all that is adapted to the behaviors of the 

indeterministic systems through 

P(A|B)  = 1,  if B entails A                                                               (4) 

= 0,  if B entails not A 

and  0 < P(A|B) < 1 otherwise. 

Every so adapted probability measure induces the logic (3) by 

                                                
7 This logic turns out to coincide with the distribution of complete ignorance as developed in 

Norton (2008). 
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[ A|B ]  = nec,  if P(A|B) = 1                                                           (5) 

= imp,  if P(A|B) = 0 

= poss,  if 0 < P(A|B) < 1 

Obviously there are other ways to define the logic of Section 2.5 in terms of probability 

measures; finding them is simply a challenge to our ingenuity. 

 Has this sort of possibility shown us that the probability calculus is the One True and 

Universal Inductive Logic after all? It has not. The inductive logic of indeterministic systems is 

inherently non-additive. The degree of belief assigned to each of two mutually exclusive, 

contingent propositions is the same as the degree of belief assigned to their disjunction, if it is 

also contingent. If probability measures are to have meaning as a logic of induction, their 

additivity is their essence. We add the numerical probabilities of two mutually exclusive 

outcomes to find the probabilities of their disjunction. 

 What the exercise above shows is that we can take one sort of inductive logic, one of 

additive measures, and use it to simulate another, with the non-additive degrees (3). Since the 

additive measures of probability theory are now offered as devices for generating all other logics, 

they have ceased to be used a logic in their own right. They have been reduced to a useful 

adjunct tool in computation and are no more the Universal Inductive Logic than is the 

differential calculus. 

 Further, we can simulate the additive measures of probability theory by other adjunct 

tools. A trivial example is provided by complex valued, multiplicative measures M, for which we 

replace the additivity axiom of probability by a multiplication axiom: for mutually exclusive 

outcomes A and B, M(AvB) = M(A).M(B). These multiplicative measures can simulate additive 

measures through the formula P(A) = log Re(M(A)), so these multiplicative measures can 

replicate any result achievable with additive measures. However that fact in no way makes these 

new measures the Universal Logic of Induction. 

2.7 Bayesian Response II: Subjectivism 

 The discussion so far has sought to present an intractable problem for Bayesians of all 

varieties. Perhaps subjective Bayesians specifically have an escape. They hold that probabilities 

may be assigned subjectively, initially, but that as we conditionalize on new evidence, the whim 

of our individual opinions will be overwhelmed by the weight of evidence. Why cannot a 
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subjective Bayesian assign a specific probability measure to the time of excitation? It merely 

represents that Bayesian’s opinion and makes no pretense of being grounded in the facts. Why 

does that fail? 

 First there is a general problem with subjective Bayesianism, independent of this 

example. It changes the problem. Our original problem was to discern the bearing of evidence. 

That has been replaced by the problem of expressing one’s opinion, in such a way that eventually 

the bearing of evidence will overwhelm opinion. 

 Second, in the context of the present example, the subjective project fails by its own 

standards. The subjective approach can only be relevant to an analysis of the bearing of evidence 

if there is no way to separate out mere opinion from the objective bearing of evidence in the 

probability measures; and if we have some reason to think that mere opinion will eventually be 

overwhelmed by the weight of evidence. Neither obtains. 

 Here, the separation of whim and warrant can be effected. The three-valued inductive 

logic (3) expresses precisely what the evidence warrants. In so far as the probability assigned 

goes beyond, it expresses mere opinion. The translation from probability measures to the three 

valued inductive logic (5) enables us to read precisely how it goes beyond. Any probability that 

lies strictly between 0 and 1 merely encodes the value poss.  Anything more, including the 

specific numerical value, is opinion. 

 There will also be the familiar probabilistic dynamics as we conditionalize on new 

evidence. However these changing probabilities do not represent shifts in inductive warrant. The 

new evidence will be the observation of whether the excitation happens in successive time 

intervals. In so far as the resulting shifts in probability assignments leave the probabilities strictly 

between 0 and 1, they amount to pure shifts of opinion. If they force a probability assignment of 

0 or 1, the shift is deductively generated, arising when the evidence deductively refutes or 

verifies the hypothesis. 

3. Conclusion 
 The inductive logic of indeterministic systems such as the dome and the masses and 

springs is non-probabilistic. For that is the sort of logic that the material facts of the system 

require. Efforts to impose a probabilistic inductive logic on these systems either require us to 

presume facts about the systems that outstrip their full physical description; or to reduce the 
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probability measures to adjunct quantities in a simulation of an essentially different inductive 

logic. 

 One may doubt that the odd logic investigated has anything to do with our world, which, 

at least on the level of everyday experience, seems free of the indeterminism exemplified by the 

dome and the masses and springs. That is not the issue. Rather it is that these are perfectly well 

defined scenarios in which our ordinary modes of inference ought to be applicable. We have no 

hesitation in applying deductive inference to these indeterministic systems. Our deductive logics 

have universal scope and we fully expect the law of excluded middle to apply. If the probability 

calculus is the universal logic of induction, then we should expect it to apply to these 

indeterministic systems as well. It does not. Therefore the probability calculus is not the 

universal logic of induction. 

 There are systems for which the probability calculus provides a serviceable logic of 

induction; and there are systems for which it does not. As we proceed away from systems for 

which the probability calculus provides the appropriate inductive logic, we pass to systems that 

require different logics. The boundary may be sharp or it may be less well defined. The pressing 

problem for an inductive logician is to determine where this boundary lies and to be able to 

decide which side to place each new problem in inductive inference as it arises. The material 

theory of induction provides a direct solution to the problem: the facts prevailing in the domain 

of the problem fix the applicable inductive logic. 
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