we proceed along them (see Figure 5.19). Such results are typical in the geometry of
curved surfaces, such as the surface of a sphere, and the mathematical techniques
used in general relativity were originally developed in the context of problems of
curved surfaces. As a result, talk of ‘‘curvature’” is common and we routinely dis-
tinguish the ‘‘flat’’ spacetime of special relativity from the ‘‘curved’’ spacetimes of
general relativity.

In sum, the models of general relativity have the form

<M,g>

where M is a four-dimensional manifold and g is a generalization of the Minkowski
metric m. Since every distinct distribution of masses in the universe produces a
distinct gravitational field, there will be very many different models in the theory. In
particular, a nonuniform matter distribution will produce a nonuniform gravitational
field. As a result, the models of general relativity will, in general, have no nontrivial
symmetries, so that we cannot formulate relativity principles of the type seen in the
flat Newtonian spacetime theory and special relativity.

Part lll: Applications

5.10 CONFUSIONS OVER COVARIANCE

Misunderstandings of the significance of the covariance group of a theory have been
responsible for more than their fair share of confusions in philosophy of space and
time. Let us review two important examples.

5.10.1 The Generalization of the Principle of Relativity

One of Einstein’s best known claims for his general theory of relativity is that
it extends the principle of special relativity to accelerated motion. We noted in the
previous section that the spacetimes of general relativity admit no nontrivial symme-
tries in general, so that we cannot formulate a relativity principle of the type formu-
lated in Newtonian theory or special relativity. Thus Einstein’s claim has proved
increasingly difficult to defend and its defense has required stratagems of increasing
complexity. (Friedman 1983 makes the case against the claim especially clear.) The
simplest and most common argument for the claim is not a good one. It merely notes
that general relativity is a generally covariant theory. However, general covariance by
itself cannot sustain the claimed generalization of the principle of relativity since
every spacetime theory we have examined in this chapter has been given generally
covariant formulation. They cannot all satisfy a generalized principle of relativity'

The illusion that general covariance and an extension of the principle of rela-
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tivity are synonymous depends most commonly on the simple mistake of incautiously
comparing two theories formulated in different manners: general relativity in its
generally covariant formulation with special relativity in a standard (i.e., nongener-
ally covariant) formulation. In its standard formulation, the Lorentz group is both the
theory’s covariance group and its symmetry group, the group of its symmetry trans-
formations. As we have seen, the principle of relativity is associated with the sym-
metry group so that a theory that extends the principle would need to expand that
symmetry group. In the transition to general relativity, we do expand the covariance
of the theory from Lorentz covariance to general covariance, but since the geometric
structure of general relativity in general admits no nontrivial symmetries, we actually
reduce the symmetries admitted by the theory. Those who have failed to keep the
symmetry and covariance groups of special relativity conceptually distinct easily fail
to see the significance of this reduction and fall into the trap of thinking that they have
also somehow automatically extended the principle of relativity. Had the two theories
~ been compared from the start with both in their generally covariant formulations, this
problem might never have arisen.

5.10.2 Conventionality of Simuitaneity

Winnie (1970) showed that we can generalize a standard coordinate system of
special relativity to a new coordinate system with time coordinate ¢, in such a way that
events with equal 7, are judged simultaneous by some e-criterion. It is sometimes
thought that this fact by itself is sufficient to vindicate the conventionalist claim. This
is obviously false since all that has been shown is that we can extend the covariance
of the theory so that it can use t, coordinate systems. We have seen that it is possible
to extend the covariance of the theory even further to general covariance, which
allows arbitrary coordinate systems. Indeed we have seen that we can give generally
covariant formulations of every spacetime theory considered so far. If we can auto-
matically read the ¢ coordinate of any of these formulations as giving a criterion of
simultaneity, then we could vindicate the strangest of simultaneity relations, includ-
ing nonstandard simultaneity relations even in Newtonian spacetimes. What is needed
is some independent means of arguing that the ¢ coordinate of a given formulation
does represent a possible simultaneity relation, such as the causal theory of time seeks
to provide for ¢,.

5.11 MALAMENT'S RESULT

One of the most dramatic turns in the debate over the conventionality of simultaneity
was provided by Malament (1977a). Contrary to most expectations, he was able to
prove that the central claim about simultaneity of the causal theorists of time was
false. He showed that the standard simultaneity relation was the only nontrivial
simultaneity relation definable in terms of the causal structure of a Minkowski space-

time of special relativity.
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Let us give a more precise version of Malament’s result and outline the inge-
nious method he used to establish it. To begin, recall that we saw in Section 5.8 that
the causal structure of a Minkowski spacetime is equivalent to its light cone structure.
Recall also that the standard simultaneity relation is inertial frame dependent so that
unless we specify an inertial frame in some way we should expect no interesting
results at all. Malament picks out an inertial frame by specifying one of its worldlines
O as the worldline of the Observer for whom the simultaneity relation is to be defined.
Thus the basic question becomes:

What simultaneity relations are definable in terms of the light cone structure of a Minkowski
spacetime and the worldline O of an inertially moving observer?

Malament first shows that

The relation of standard simultaneity is definable in terms of O and the light cone
structure.

The proof involves the construction shown in Figure 5.20. We pick any event ¢ on O
and seek the hypersurface of events s simultaneous to e in the inertial frame of O
according to the standard criterion. We have found that hypersurface if the following
condition is satisfied. Let a be any event on O prior to e. The set of all possible light
signals emitted from a must intersect s and, when they are reflected back to O upon
intersection, they must all arrive at O at the same event b. The hypersurface s is, of
course, orthogonal to O.
Malament’s central result is that

The relation of standard simultaneity is the only binary relation definable in terms
of the light cone structure and the worldline O provided

(i) the relation cannot be trivial insofar as it relates every event to every other
event, or fails to relate events on O to events not on O,

(ii) the relation is an equivalence relation.

Condition (i1) is required if the relation is to partition the events of the manifold into
disjoint sets of mutually simultaneous events such as, for example, the hypersurfaces
of simultaneity of the standard case.

The proof of the result depends on the fact that the worldline O and the light
cone structure admit certain symmetries. For example, in the rest frame of O these
structures single out no preferred spatial direction and thus remain invariant under
spatial rotation about O. Thus any relation defined exclusively in terms of O and the
light cone structure will be unable to pick out a preferred direction and, therefore,
must admit the same rotational symmetry. So if p and q are related by the simultaneity
relation and f is any rotation about O, then the rotated events f{p) and f{q) must also
be simultaneous (see Figure 5.21). We can now repeat this argument for all the
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remaining symmetries of O and the light cone structure. The basic idea is that
every symmetry of O and the light cone structure must also be symmetries of any
simultaneity relation it defines. These symmetries are the translations, scale expan-
sions (uniform magnifications and reductions) and reflections about a hypersurface
orthogonal to O, all of which must map O back into itself. They are shown in
Figure 5.22. Malament then showed that the standard simultaneity relation is the
only binary relation satisfying (i) and (ii) and remaining invariant under these sym-
metries. Without going through the proof, we can easily satisfy ourselves of the
plausibility of the result. Assume that the simultaneity relation is such that it will
slice up the spacetime into hypersurfaces of mutually simultaneous events, as in
Figure 5.22. Then it is intuitively evident that only a slicing by orthogonal hyper-
surfaces will remain invariant under the symmetries listed.

The major weakness of Malament's analysis lies in the sensitivity of his basic
result even to small changes in the conditions assumed. The analysis depends on the
assumption that the simultaneity relation be definable by the following list of struc-
tures:

light cone structure, the inertial worldline O.

It is crucial that this list be preserved since the slightest change in it seems to be
sufficient to defeat Malament’s basic result. For example, we could ask what si-
multaneity relation is definable if we add to the list another inertial worldline O’
with a velocity differing from O. Through the construction of Figure 5.20, we can
define at least the standard simultaneity relation of the O frame and the standard
simultaneity relation of the O’ frame; but the latter is a nonstandard relation with
respect to the O frame. More generally, Peter Spirtes (1981, Chapter 6) has shown

0

If p and g are simultansous,
then f (p) and f(q) must also
be simultansous.

------------------ [ I EX IR A N
Tt ‘) . Spatial
_______ f&)' .. rotation f
- - Y about O.
gy =--._ .

Light cone ..
structure
= causal
structure

Figure 5.21 Simultaneity preserved under rotation.
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that merely adding a temporal orientation to the list—that is, the ability to distinguish
past from future—is sufficient to enable definition of infinitely many nonstandard
simultaneity relations. However, before modifying the construal of causal definability
by adding or subtracting from the list, we would need to find very good reasons for
doing so.

Adolf Griinbaum (private communication) has pointed out that the need to
postulate (ii), that the relation is an equivalence relation, rather than derive it, is
another weakness of Malament’s challenge to the causal theorists. It eliminates by
decree any simultaneity relation that does not partition the spacetime into disjoint sets
of mutually simultaneous events. An example of such a relation is the relation *‘is not
causally connectible’” which has been called the relation of ‘‘topological simul-
taneity’’ in the literature (Griinbaum 1973, 203). The latter relation fails to be tran-
sitive: Events A and B may each not be causally connectible to a third event, while
being causally connectible to each other on a time-like worldline. Therefore this
relation cannot partition the spacetime into disjoint sets of mutually simultaneous
events.

226 Philosophy of Space and Time



5.12 REALISM ABOUT SPACETIME STRUCTURES

5.12.1 Spacetime Substantivalism and the “Hole”
Argument

Isaac Newton is usually singled out as the canonical realist in the context of
theories of space and time and most especially so for his treatment of the absoluteness
of his absolute space and absolute time. Their absoluteness arises in a number of
senses which have been dissected admirably in Earman (1989). The sense we are
concerned with here is that of independence. Absolute space, as we saw in Section
5.1, and absolute time are asserted to have existences entirely independent of the
things they contain. This doctrine is the ‘‘substance’’ view or the ‘‘substantivalist’’
view. It owes its somewhat unfortunate name to the view that substance is that which
can exist independently. A better name, with fewer distracting connotations, might
have been simply the ‘‘independence’’ view. Clearly, the substantivalist position can
be formulated analogously for spacetime theorists.

The view is an extreme form of realism concerning spacetime. It arises fairly
naturally for realists who seek to construe theories of spacetime as literally as pos-
sible. Such a construal automatically sees the divisions between the different struc-
tures of a theory as reflecting natural divisions between the actual structures of the
physical world. The substantivalist position gives expression to the reality of one of
the most important divisions in physical theories, that between spacetime and the
matter it contains. The position has become increasingly attractive with the revival of
realism in philosophy of science and the problems facing the nonrealist programs of
conventionalism and relationalism in spacetime theories.

The “*hole’’ argument (Earman and Norton 1987) is based on ideas advanced by
Einstein in 1914, 1915 and 1916 and seeks to establish that acceptance of spacetime
substantivalism in a very broad class of spacetime theories forces acceptance of an
odious form of indeterminism. (See Chapter 6 for a discussion of determinism.) In
informal terms the argument establishes that the substantivalist is forced to insist that
there are differences between certain physically possible worlds, even though not just
observation but the laws of the theories themselves cannot pick between them.

5.12.2 Presuppositions of the Argument

To make the argument more precise, we must settle several questions left
vague. The term ‘‘spacetime’’ is ambiguous insofar as it is unclear as to what specific
entity it refers. Let us assume that ‘‘spacetime’’ means the manifold M of our models
so that the substantivalist attributes the substantival properties to M or to what M
represents in the physically possible worlds. (Other choices are possible here, and in
many such cases the hole argument can still be made to apply, as shown in Norton
1989.) The ‘‘very broad class of spacetime theories’’ mentioned is what we call
**local spacetime theories.’’ These are generally covariant, spacetime theories of the
type considered in this chapter, including versions of Newtoman spacetime theory,
special and general relativity. The most important instance of a theory to which the
argument applies is general relativity, our current best spacetime theory, which is
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available only in local formulation. We will develop the hole argument as it applies
to general relativity.

Finally we need some more precise theoretical statement of the substantivalist
doctrine. The phrase ‘‘independent existence’’ conjures pictures to our intuitions, but
without restatement it cannot be analyzed by the machinery of this chapter. Unfor-
tunately there seems to be no precise and satisfactory construal of the doctrine. The
claim that spacetime, represented by a bare manifold M, can exist independently of
its contents translates naturally to the claim that there 1s a possible world modeled by
the bare manifold M. However, this claim is routinely denied by every spacetime
theory we have seen so far. They invariably require that the manifold M be supple-
mented by further structures in order to produce models of physically possible worlds.
Fortunately we do not need a precise construal of spacetime substantivalism to com-
plete the argument. We need only a necessary commitment of spacetime substanti-
valists.

That commitment arose in Leibniz’s famous debate with Newton’s representa-
~ tive Samuel Clarke. In their correspondence, Leibniz asked if the world would be
changed if God had placed its bodies into space in such a way that East and West were
exchanged but all other relations between the bodies were preserved. Leibniz noted
that there would be no discernible difference and he urged that no change had actually
been effected. However, he realized that the Newtonian substantivalist must none-
theless insist that the world would be different for its bodies would now be located in
different spatial locations.

In spacetime theories, the analogue of Leibniz’s spatial rearrangement of bodies
retaining all other relations between them is a transformation on the manifold M and
associated transformation of geometric structures defined on M. If <M, g> is a model
of general relativity and h a transformation on M then h transforms g into the new
metric g' = h(g). From the general covariance of general relativity, we know that
<M, g'> will also be a model of the theory. The two metrics g and g’ will in general
assign different metrical properties to the same event in M. Spacetime substantivalists
must take seriously this rearrangement of properties on the spacetime manifold M and
they must hold that the two models <M,g> and <M, g'> represent different possible
worlds. That is, spacetime substantivalists must deny:

Leibniz equivalence: Two intertransformable models of a spacetime theory, such as
<M,g> and <M,g'>, represent the same possible world.

This denial is immediately awkward for the substantivalists. Since the metrics g and
g’ are intertransformable, they are clones of one another. For every property of g we
can find a corresponding property of g’ by consulting the transformation 4. These
corresponding properties include all observable properties, so that both g and g’ agree
on all observables. (The metrics g and g’ disagree only on how their properties are to
be spread over the manifold M and these differences of spreading cannot be translated
into observable differences.) Thus substantivalists must insist that <M,g> and
<M,g'> represent two distinct worlds, even though they are worlds whose differ-
ences could not be discerned by any observation. In the heyday of logical positivism
and the verifiability criterion, this conclusion alone would have been sufficient
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grounds for rejection of the substantivalist position. The hole argument, however,
leads the substantivalist to an even worse result.

5.12.3 The Argument

To arrive at the odious form of indeterminism promised, we select any neigh-
borhood of the manifold M. We call it the ‘‘hole’’ for historical reasons associated
with Einstein’s first use of an early form of the argument. We select any transfor-
mation & on M which is the identity outside the hole but comes smoothly to differ
from it inside the hole (see Figure 5.23). Then g and g’ = h(g) will be the same
everywhere outside the hole but will come smoothly to differ within the hole. It now
follows that even with a full specification of the spacetime everywhere outside the
hole, the theory will be unable to tell us how the spacetime will develop into the hole.
For if the model of the spacetime assigns the metric g to the manifold outside the hole,
then the theory will allow the metric to develop as either g or g’ into the hole and
cannot determine which is the correct development.

If we recall that the metric determines the inertial trajectories of the spacetime,
then we can see just how disastrous is this result. Given the fullest specification of the
spacetime outside the hole, the theory will be unable to determine the trajectory along
which a particle in free fall will traverse the hole, even though its trajectory before and
after the hole is known exactly. As is explained in Chapter 6, this is an extremely
awkward form of indeterminism, for the hole might be both of very small spatial size
and temporal duration. Even given a full specification of the fields in its future, past
and everywhere else in space, the theory.is still unable to specify what happens inside
the hole.

The substantivalist is driven to this indeterminism by the need to deny Leibniz
equivalence. If the substantivalism were to be given up, Leibniz equivalence could be
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accepted. Then both the original model and its diffeomorphic copy could be said to
represent the same physically possible world, and the indeterminate nature of the
development of the fields into the hole would be a mathematical curiosity of no
physical significance. Otherwise the substantivalist must adhere to the physical dis-
tinctness of two states of affairs whose distinctness is opaque to both observation and
the laws of the theory in question.

DISCUSSION QUESTIONS

1. Compare the application of the verifiability criterion as described in Section 5.1 in the context
of the principle of relativity with some of its other applications.

2. How are we to approach two theories of space and/or time which have identical observational
consequences? Consider whether we are free to choose conventionally between them. (You may
find it helpful to consider the examples of Newton's theory of space and time with and without
absolute rest and Euclidean geometry with vanishing and nonvanishing universal forces.)

3. Outline some of the virtues and vices of the reduction of temporal or spatiotemporal structure to
causal structure offered by the causal theory of time.

4. Adjudicate in the debate between a conventionalist and a realist over the geometry of space or
the simultaneity relation in special relativity.

5. Compare the axiomatic way of formulating theories of space and time (such as used by Euclid
and many others) with the model theoretic or ‘‘semantic’’ method used in this chapter.

6. Einstein often acknowledged that his discovery of the theories of relativity owed a debt to the
reading of various philosophers, notably Hume and Mach. Read the introductory sections of
Einstein ([1905] 1952b) and Einstein ([1916] 1952a) (they are not at all hard to follow!) and try
to identify those parts of his development dependent on overt philosophical considerations and,
if you can, pin down their source.
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