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WHAT WAS EINSTEIN’S PRINCIPLE OF 
EQUIVALENCE? 

1. Introduction 

IN OCTOBER and November 1907, just over two years after the completion of 

his special theory of relativity, Einstein made the breakthrough that set him 

on the path to the general theory of relativity. Whilst preparing a review article 

on his new special theory of relativity, he became convinced that the key to 

the extension of the principle of relativity to accelerated motion lay in the 

remarkable and unexplained empirical coincidence of the equality of inertial 

and gravitational masses. To interpret and exploit this coincidence, he introduced 

a new and powerful physical principle, soon to be called the ‘principle of 

equivalence,’ upon which his search for a general theory of relativity would 

be based. Moreover, with the completion of the theory and throughout the 

remainder of his life, Einstein insisted on the fundamental importance of the 

principle to his general theory of relativity. 

Einstein’s insistence on this point has created a puzzle for philosophers and 

historians of science. It has been argued vigorously that the principle in its 

traditional formulation does not hold in the general theory of relativity. 

Consider, for example, a traditional formulation such as Pauli’s in his 1921 

Encyklopaedie Article.’ For Pauli the principle asserts that one can always 

transform away an arbitrary gravitational field in an infinitely small region of 

spacetime, by transforming to an appropriate coordinate system. 

In response, such eminent relativists as Synge, and even Eddington before 

him, have objected that a coordinate transformation or change of state of motion 

of the observer can have no effect on the presence or absence of a gravitational 

field.2 The presence of a ‘true’ gravitational field is determined by an invariant 

criterion, the curvature of the metric. The gravitation-free case of special 

relativity is just the case in which this curvature vanishes, whereas the true 
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gravitational fields of general relativity are distinguished by the non-vanishing 

of this curvature. 

This objection has immediate ramifications for the ‘Einstein elevator’ thought 

experiment, which is commonly used in the formulation of the principle of 

equivalence. In this thought experiment, a small chamber such as an elevator 

is accelerated in order to transform away a gravitational field present within 

it or, depending on the version at hand, to produce a gravitational field in an 

initially gravitation-free chamber. Now in general relativity, non-vanishing 

metrical curvature is responsible for tidal gravitational forces. Their effects can 

be used by an observer within the chamber to decide whether the gravitational 

field present is a true gravitational field or due to the acceleration of the chamber 

in gravitation-free space. Alternatively, they can be used to determine whether 

an apparently gravitation-free chamber is in free fall in a gravitational field or 

moving uniformly in gravitation-free space. It is significant that the effects of 

these tidal forces do not vanish as the box becomes arbitrarily small. For 

example, the tidal bulges arising in a freely falling liquid droplet do not vanish 

as the droplet is made arbitrarily small, ignoring such effects as surface tension.’ 

Of course it has proved possible to retain a principle of equivalence in general 

relativity. But to do this, the principle might be given quite new formulations, 

which seem to carry us far from Einstein’s original intentions. For example, 

in its ‘weak’ form the principle merely asserts the equality of inertial and 

gravitational mass.’ Or in another form, it asserts that all phenomena distinguish 

a unique affine structure for spacetime. Alternatively, we can retain a traditional 

formulation of the principle such as Pauli’s, by reading the restriction to 

infinitely small reg=s of spacetime as denying access to certain quantities such 

as curvature, which are constructed from the higher derivatives of the metric 

tensor. But then the principle is reduced to a simple and, as far as questions 

of foundations are concerned, not especially interesting theorem in general 

relativity. Certainly Einstein could not represent such a result as a fundamental 

principle of his theory. 

My purpose in this paper is to determine precisely what Einstein took his 

principle of equivalence to be, to show how it figured historically in his discovery 

of the general theory of relativity and to show the sense in which he took it 

be fundamental to that theory. In particular I will seek to demonstrate that 

Einstein’s version of the principle and the way he sought to use it are essentially 

different to the many later versions and applications of the principle. As a result 

we shall see that the objections rehearsed above from the later debate over the 
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principle of equivalence are peripheral to the concerns of Einstein’s version of 
the principle and that this version does find completely satisfactory and 
uncontroversial expression in the general theory of relativity. 

In the following section, as a focus for the remainder of the paper, I will 
present one of the clearest and most cautious of Einstein’s formulations of the 
principle of equivalence and in Section 3 develop sufficient formal apparatus 
to negotiate certain ambiguities in it. In particular, I will introduce the concept 
of a three-dimensional relative space of a frame of reference, which is essential 
to the understanding of Einstein’s principle and much of his early work on his 
general theory of relativity. 

In Sections 4 and 5, I will review the role which the principle played in the 
1907 to 1912 period of Einstein’s search for his general theory of relativity. In 
Section 4, I will outline how the principle enabled Einstein to construct a novel 
relativistic theory of static gravitational fields and, in Section 5, the sense in 
which he believed the principle would enable an extension of the principle of 
relativity to accelerated motion. 

In Sections 6, 7 and 8, I will examine the principle of equivalence within 
Einstein’s general theory of relativity, whose basic formal structure was laid 
down by Einstein and Marcel Grossmann in 1912 and 1913 and which achieved 
its final form in November 1915. In Section 6, I will review aspects of Einstein’s 
transition from a three into a four-dimensional formalism, and, in Sections 7 
and 8, the status of the principle in the theory. In particular we shall see its 
crucial heuristic role in the transition from special to general theory. 

In Sections 9 and 10, I will relate Einstein’s version of the principle and the 
results he drew fromx to the ‘infinitesimal’ principle of equivalence, such as 
formulated by Pauli, and which is now commonly but mistakenly regarded as 
Einstein’s version of the principle. In particular, I will analyze in some detail 
a devastating objection which Einstein had to this version of the principle. It 
follows from the objection that, in so far as it can be precisely formulated, the 
infinitesimal principle is trivial. In Section 11, I will review Einstein’s attitude 
to Synge’s now popular identification of ‘true’ gravitational fields with metrical 
curvature. 

Finally, in Section 12, I will draw together the threads of my story and answer 
the question posed in the title of this paper. 

2. Einstein’s Formulation of the Principle of Equivalence 

Einstein has given us many statements of the principle of equivalence in his 
treatments and discussions of the general theory of relativity. But none is clearer 
or more cautious than the formulation he gives in a 1916 reply to Kottler’s claim 
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that Einstein had given up the principle of equivalence in the general theory 

of relativity.6 Einstein began by introducing the boundary case of special 

relativity in which he defined a ‘Galilean system.’ I quote this here for later 

reference: 

1. The Boundary Case of the Special Theory of Relativity. Let a finite spacetime region 
be free from a gravitational field, i.e. it is possible to set up a reference system K 
(‘Galilean system’), relative to which the following holds for the region considered. 
Coordinates are measured directly in the well-known way with unit measuring rods, 
times with unit clocks, as is customarily assumed in the special theory of relativity. 
In relation to this system an isolated material point moves uniformly and in a straight 
line, as was assumed by Galileo. 

He then proceeded to his statement of the principle: 

2. Principle of Equivalence. Starting from this limiting case of the special theory of 
relativity, one can ask oneself whether an observer, uniformly accelerated relative 
to Kin the region considered, must understand his condition as accelerated, or whether 
there remains a point of view for him, in accord with the (approximately) known 
laws of nature, by which he can interpret his condition as ‘rest’. Expressed more 
precisely: do the laws of nature, known to a certain approximation, allow us to consider 
a reference system K’ as at rest, if it is accelerated uniformly with respect to K? Or 
somewhat more generally: can the principle of relativity be extended also to reference 
systems, which are (uniformly) accelerated relative to one another? The answer runs: 
as far as we really know the laws of nature, nothing stops us from considering the 
system K’ as at rest, if we assume the presence of a gravitational field (homogeneous 
in the first approximation) relative to K ‘; for all bodies fall with the same acceleration 
independent of their physical nature in a homogeneous gravitational field as well as 
with respect to our system K’. The assumption that one may treat K’ as at rest in 
all strictness without any laws of nature not being fulfilled with respect to K ‘, I call 
the ‘principle of equivalence’. 

For Einstein, the basic assertion of the principle of equivalence is that “one 

may treat K’ as at rest. . . ” I will defer discussion of exactly what he intended 

with this assertion until Section 5. The assumption upon which this assertion 

is based - that acceleration can produce a gravitational field - is at present 

more commonly associated with the principle of equivalence. The way in which 

it is used, however, is distinct from its use in ‘traditional’ formulations of the 

principle such as Pauli’s. In the latter, by reversing Einstein’s argument, one 

assumes that one can always transform away an arbitrary gravitational field 

in general relativity within an infinitesimal region of spacetime. Einstein however 

considers only the homogeneous gravitational field produced by uniform, non- 

rotating acceleration in the MinkQwski spacetime of special relativity. In 

‘A. Einstein, ‘Ueber Friedrich Kottlers Abhandlung ‘Ueber Einstein’s Aequivalenzhypothese und 
die Gravitation’,’ Annalen der Physik 51 (1916), 639-632. 
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addition, there is clearly no restriction to infinitesimal regions. 
These last features are typical characteristics of Einstein’s preferred 

formulation of the principle and appear in many of the statements of the 
principle which Einstein gave throughout the half century of his working life. 
These include his first published formulation of the principle in 1907, some five 
years prior to the completion of the general theory of relativity’, his well-known 
1911 communication on gravitation* and his 1916 review of the just completed 
theory.9 The principle is defined in these terms in The Meaning OfRelativity, 
the work which came closest to his ‘textbook’ on relativity.” Finally, it appears 
again in this form in one of his last discussions of the question, the 1952 appendix 
to his popular book, Relativity.” 

Einstein’s next step in his reply to Kottler was to insist pointedly that his 
principle did not allow one to transform away arbitrary gravitational fields. 
Rather it dealt only with those gravitational fields which could be transformed 
away and which we would now identify as associated with Minkowski spacetime. 

3. Gravitational Fields not only Kinematically Conditioned. One can also invert the 
previous consideration. Let the system K ‘, formed with the gravitational field 
considered above, be the original. Then one can introduce a new reference system 
K, accelerated against K’, with respect to which (isolated) masses (in the region 
considered) move uniformly in a straight line. But one may not go on and say: if 
K’ is a reference system provided with an arbitrary gravitational field, then it is always 
possible to find a reference system K, in relation to which isolated bodies move 

uniformly in a straight line, i.e., in relation to which no gravitational field exists. 
The absurdity of such an assumption is quite obvious. If the gravitational field, with 
respect to K ‘, for example, is that of a stationary mass point, then this field certainly 
cannot be transformed away for the entire neighborhood of the mass point no matter 
how refined the transformation artifice. Therefore, one may in no way assert that 
gravitational fields should be explained so to speak purely kinematically; a ‘kinematic, 
not dynamic understanding of gravitation’ is not possible. Merely by means of 
acceleration transformations from a Galilean system into another, we do not become 
acquainted with abitrary gravitational fields, but those of a quite special kind, which, 
however, must still satisfy the same laws as all other gravitational fields. This is only 
again another formulation of the principle of equivalence (in particular in its 
application to gravitation). 

‘A. Einstein, ‘Ueber des Relativitaetsprinzip und die ausdemselben gezogenen Folgerungen,’ 
Jahrbuch der Radioaktivitaet und Eiektronik 4 (1907), 454. 

6A. Einstein, ‘Ueber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes.’ Annnlen 
der Physik 35 (1911). 898 - 899: translated as ‘On the Influence of Gravitation on the Propagation 
of Light,’ in The Principle of Relativity (New York: Dover, 1952), pp. 99- 100. 

9A. Einstein, ‘Die Grundlage der allgemeinen Relativitaetstheorie,’ Annalen der Physik 49 (1916). 
772 - 773; translated as ‘The Foundation of the General Theory of Relativity,’ in The Principle 
ofRelativity (New York: Dover, 1952) pp. 113 - 114. This hypothesis is not labelled as the ‘principle 
of equivalence’ in this article - the term does not appear anywhere in the article. 

‘OA. Einstein, The Meaning ofRelafivity (1922; Princeton University Press, 1974), pp. 57 - 58. 
“A. Einstein, ‘Relativity and the Problem of Space’ (1952) in Relativity: The Special and the 

Genera/ Theory, 15th edn. (1954; London: Methuen, 1977). pp. 151- 152. 
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In short, he rules out an extension of the principle to arbitrary gravitational 

fields on the grounds that an acceleration of the reference system can only 

produce gravitational fields of a quite special kind. Such comments appear quite 

frequently in Einstein’s writings, throughout his life. They appear in his 

publications12 and in his correspondence, right up to the last years of his life.13 

What might seem striking to the modern reader here is Einstein’s failure to 

consider the possibility of transforming away arbitrary gravitational fields in 

infinitesimal regions of spacetime. This omission was not a peculiarity of this 

particular discussion of the principle, for I have been unable to find any sustained 

treatment by Einstein of such an extension of the principle.” Nevertheless we 

can readily infer Einstein’s attitude to this possibility. In Section 9, we shall 

see that he believed that one cannot distinguish the motion of a point mass 

uninfluenced by a gravitational field from other motions if one considers only 

infinitesimal regions of the manifold. It follows immediately from Einstein’s 

comments above that it is meaningless to talk in any thoroughgoing sense of 

transforming away a gravitational field in such infinitesimal regions. 

The task of explicating Einstein’s formulation of the principle of equivalence 

and even some of the above discussion is by no means straightforward. To begin, 

we must deal with Einstein’s failure to maintain such distinctions as those 

between frames of reference and coordinate systems and between three- 

dimensional and four-dimensional concepts.‘s For example, we shall see that 

when Einstein speaks of a four-dimensional coordinate system, he may be 

referring to a four-dimensional coordinate system simpliciter, a frame of 

reference or even a-three-dimensional space associated with the frame. In the 

following section, I will introduce sufficient formal apparatus to deal with this 

problem, and then with it, we shall find that there is little difficulty in 

understanding Einstein’s intentions. Then we can turn to ask precisely what 

Einstein means when he talks of a gravitational field produced by acceleration 

and in what sense the associated states of acceleration can be regarded as ‘at rest.’ 

“For example, Einstein, ‘Ueber den Einfluss . ,’ p. 899; Relativity, pp. 77-78. 
“For example, A. Einstein to T. Levi-Civita, 20 March 1915, EA 16 233; to E. Klug, 13 February 

1929, EA 25 126; to L. R. and H. G. Lieber, 20 November 1940, EA 15 135; to .I. Reyntjens, 26 
August 1950, EA 27 144; to A. Rehtz, 12 July 1953, EA 27 134. ‘EA 16 233’ refers to the document 
with control number 16 233 in the duplicate Einstein archive held in the Mudd Manuscript Library, 
Princeton. 

“In all the places cited in this section, the only weak exception to this is in the letter to the Liebers 
where he allows that the gravitational field at a point is “in a certain way fictitious,” because it 
can be transformed away. 

15J. Earman and C. Glymour have also remarked on this in ‘Lost in the Tensors: Einstein’s Struggles 
with Covariance Principles 1912 - 1916,’ Sfudies in fhe Hisfory and Philosophy of Science 9 (1978). 
254. 
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3. On Reference Systems and Relative Spaces 

In this section, I will deal with structures associated with the semi-Riemannian 

manifolds of special and general relativity. 

In such manifolds, it is now customary to represent the intuitive notion of 

a physical frame of reference as a congruence of time-like curves. Each curve 

represents the world line of a reference point of the frame. The velocity of these 

points is given by the tangent vectors to the curves, where defined. We shall 

usually deal with frames of reference in rigid-body motion and we can readily 

nominate the state of motion of such frames because of the limited number 

of degrees of freedom associated with them.16 In particular, an inertial frame 

of reference in a Minkowski spacetime is a congruence of time-like geodesics 

in rigid-body motion and therefore its reference points move with constant 

velocity. 

A coordinate system {Y} (i = 1, 2, 3, 4) is said to be ‘adapted’ to a given 

frame of reference just in case the curves of constant x’, x2 and 2 are the curves 

of the frame. These three coordinates are ‘spatial’ coordinates and the x’ 

coordinate a ‘time’ coordinate. 

With these definitions, Einstein’s talk of ‘accelerated coordinate systems’ can 

be made precise. A coordinate system is ‘accelerated’ just in case it is adapted 

to an accelerating frame of reference. In this manner of speaking, a 

transformation from one frame of reference to another can be represented at 

least locally by a transformation between coordinate systems adapted to each 

frame. - 

Similarly we can represent the ‘Galilean’ reference system mentioned in the 

last section as a coordinate system in Minkowski spacetime, adapted to an inertial 

frame of reference and chosen so that the metric has components 

diag( - 1, - 1, - 1 ,c’), where c is a positive constant - the coordinate speed of 

light. In such a coordinate system, differences of coordinates along curves, for 

which all but one coordinate is held fixed, are equal to the proper time or proper 

length of that segment of the curve, according to whether the curve is space- 

like or time-like. This implements Einstein’s requirement that the coordinates 

be given directly by clock readings and measuring operations with rigid rods. 

Presumably Einstein required the coordinates of his accelerated coordinate 

systems to have as much of a similar direct metrical significance as was possible. 

Methods and scope for constructing analogous coordinate systems in the context 

‘5pecifically. six degrees of freedom in Newtonian spacetimes. three in Minkowski spacetime 
and three or less (if any) in an arbitrary semi-Riemannian manifold. See Pauli, ibid., pp. 130- 132. 
So a ‘(rigid) uniformly accelerated frame of reference’ in .Minkowski spacetime is specified by 
requiring the reference points to be in rigid motion and one of them to be uniformly accelerated. 
I shall always read ‘uniform (rectilinear) acceleration’ in blinkowski spacetime as referring to 
hyperbolic motion. Pauli, ibid., pp. 74-76. 
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of Newtonian theory, special and general relativity are well known.” 

Hovvever this discussion of Galilean and other systems in four-dimensional 

spacetime does not entirely capture Einstein’s intentions. He was also concerned 

with certain three-dimensional spaces which are alluded to throughout his 

discussion of the principle of equivalence. It is appropriate to call these spaces 

‘relative spaces’, because of their similarity to the ‘relative space’ Newton defined 

to contrast with his absolute space. I8 Einstein himself introduces the concept 

of this space in the introductions to his accounts of relativity theory, where it 

is presented as our most primitive notion of space.19 It arises through our 

experience that a given physical body can be extended by bringing other bodies 

into contact with it. The space of all such possible extension is the relative space 

of the body. 

If we think of the time-like curves of a frame of reference as the world lines 

of physical bodies, then these bodies define a single relative space, in so far 

as each of the bodies can be extended to contact any other body of the frame. 

The geometric properties of this space can be investigated in the familiar manner 

by laying out infinitesimal rigid rods, which are at rest in the frame. An example 

of this, which Einstein discussed frequently, is the relative space of a uniformly 

and rigidly rotating frame of reference in Minkowski spacetime. In particular 

one finds there that the geometry of the relative space is non-Euclidean.20 

The properties of the relative space defined by a given frame of reference 

can be precisely specified, although not in general by isomorphism with a three- 

dimensional hypersurface in the spacetime manifold with the associated induced 

geometrical structure. The natural candidates for such hypersurfaces - the three- 

dimensional hypersurfaces orthogonal to the curves of the frame of reference 
- simply fail to exist if the frame of reference is rotating even in Minkowski 

spacetime, for example. 

Rather, we formally define the relative space R, of a frame of reference F 

in a four-dimensional manifold M as follows. F defines an equivalence relation 

f under which points p and p ’ of M are equivalent if and only if they lie on 

the same curve c of F. The relative space R, is the quotient manifold M/f and 

has the curves of F as elements. Coordinate charts of R, are inherited directly 

from the coordinate charts of M which are adapted to the frame, ensuring that 

R, has a well-defined local topology. That is, if {xi} (i= 1,2,3,4) is a chart in 

a neighborhood of M adapted to F, then there will be a chart @} (i= 1,2,3) 

“See for example M. Friedman, Foundations of Space-Time Theories (Princeton: Princeton 
University Press, 1983), pp. 79-84. 129- 135, 181- 183. 

“I. Newton, Mathemarical Principles of Natural Philosophy (New York: Greenwood, 1969), 
p. 6. R. Torretti, in his Relafivify and Geomefry (Oxford: Pergamon Press, 1983), pp. 14- 15, 
p. 28, defines a similar ‘relative space’. 

“The Meaning of Relativity (note IO), pp. 3 - 4; Relativity, pp. 5 - 8. 
“‘Stachel has discussed Einstein’s use of this example in detail in J. Stachel, ‘Einstein and the 

Rigidly Rotating Disk’ in General Relativity and Gravitation: A Hundred Years after the Birth 
of Einsrein, Vol. 1, A. Held (ed.) (New York: Plenum, 1980), pp. 1 - 15. 
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in the corresponding neighborhood of R, for which ~+(c)=x’(p) (i= 1,2,3) 

whenever p lies on c. 

A positive-definite metric g, is induced on R, as follows. At any point p on 

c we define the (unique) orthogonal metric g,,,, as the restriction of the 

spacetime metric g to any three-dimensional hypersurface H,@) orthogonal to 

c at p. A diffeomorphism h which maps points of H,(_D) in a neighborhood of 

p to points in a neighborhood of c in R, is such that if p ’ lies on the curve 

c’ of F then h(p ‘)=c’. g, at c is defined as the image of gofl, at p under h.” 

(Intuitively, we take g, to be the three-dimensional spatial metric revealed to 

an observer co-moving with the frame through the laying out of infinitesimal 

rods.) 

Since the point p of c above is chosen arbitrarily, it is clear that the resulting 

induced metric will only be uniquely defined in certain special cases. These special 

cases turn out to be just those in which the frame of reference is in rigid-body 

motion, for the requirement of rigid-body motion can be expressed as the 

requirement of constancy of the orthogonal metric along the world lines of the 

body. More specifically, what is required is the vanishing of the Lie derivative 

of gortllr that is L,g,,, = 0, where V is the tangent vector field of F.” General 

relativity deals with spacetimes which do not always admit rigid-body motions. 

Obviously, in these cases we will be unable to construct a relative space with 

a well-defined metric. 

To deal with the phenomena Einstein considers, we need to define a few more 

structures in these relative spaces. A gravitational field will be represented by 

a scalar field, in nearly all the cases we need consider. A moving point mass 

M will be represented by a scalar, its rest mass, and an appropriately 

parameterized curve C, its trajectory in the relative space R,. C can be inferred 

readily from the points of intersection of M’s world line with the time-like curves 

of the frame. That is, if M’s world line c at parameter value x intersects the 

curve c’ of the frame F, then C is the map which takes x to c ‘. The velocity 

and acceleration vectors of C can now be defined in the usual way. If c is 

parameterized by proper time, we would then arrive at the point mass’ proper 

velocity and proper acceleration. 

In certain important special cases, it is possible to introduce a ‘frame time’ 

into the relative space R, of a frame F. These cases are those in which the 

“If Fis rotating, H,@) will be orrhogonal to c only. So in general this mapping procedure must 
be repeated with a new orthogonal hypersurface for each c in R,. hlost of the discussion of this 
section can be transferred to Newtonian spacetimes with little modification. Similar induced metrics 
could be defined in the relative spaces of Newtonian spacetimes by deriving them from rhe three- 
dimensional metrics of hypersurfaces of simultaneity. 

“Pauli, ibid., p. 131 writes this as the requirement of the constancy along c of the components 

of garrh in an adapted coordinate system. This condition is equivalent to the vanishing of the 
frame’s expansion tensor, as defined in S. W. Hawking and G. F. R. Ellis, The Large-ScaleSlnrcfure 
of Space-Time (Cambridge University Press, 1974). p. 82. Informally, the condition ensures constancy 
of the orthogonal interval between c and an infinitesimally close curve c ’ of Fin the hypersurfaces H,. 
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relevant neighborhood of the manifold can be foliated by a family of 

hypersurfaces, orthogonal to the curves of the frame F. Pick any curve c of 

F, parameterized by proper time. Informally, we shall think of this curve as 

the frame clock of F and its relative space R,. Disseminate the time it marks 

by the following procedure. Define a scalar field Ton the spacetime manifold 

whose constant-value hypersurfaces coincide with the hypersurfaces of the 

foliation and whose value agrees with the proper-time parameterization of c. 

Of course T will only be defined up to an additive constant. 

This frame-time can now be transferred to the structures defined in R, by 

obvious means. For example the trajectory C of a moving point mass M in R, 

can be parameterized by T, if T is also used to parameterize ~M’s world line 

in the procedure for constructing C. From this parameterization, we would then 

arrive at M’s frame velocity and frame acceleration. Through a similar 

procedure, a time varying field in R,, induced by a field defined in the 

spacetime manifold, can be represented by a family of fields indexed by T. The 

parameterization and indexing of structures in R, by T gives a criterion of 

simultaneity.23 

Clearly, in general we shall not be able to define a frame time. rotating 

frame, for example, has no orthogonal hypersurfaces. Even if ther- are such 

hypersurfaces, the frame time may not be unique. A rigid uniformly accelerating 

frame in Minkowski spacetime admits orthogonal hypersurfaces; but the frame 

time defined by each of its curves differ by a multiplicative constant, although 

they yield the same simultaneity criterion. However, if the frame is an inertial 

frame in Minkowski spacetime then the same frame time is defined by all curves - 
of the frame, up to an additive constant. 

We can recover a ‘standard formulation’ of special relativity - corresponding 

to the original three-dimensional formulation of the theory introduced by 

Einstein in 1905 - by writing the laws which govern physical processes in 

Minkowski spacetime in terms of structures defined within the relative space 

of an inertial frame, using the relative space’s frame time. This formulation 

will hold just in any relative space of an inertial frame. Quantities describing 

the same process viewed from two different inertial relative spaces will be related 

by the Lorentz transformation in the familiar manner. 

Generalizing, we construct a standard formulation of a four-dimensional 

spacetime theory, in any given relative space which admits a frame time, by 

re-expressing its laws in terms of structures defined in the relative space, 

parameterized where necessary by the frame time. Thus we can construct a 

standard formulation of special relativity in the relative space of a rigid uniformly 

accelerating frame - and it will look quite different to the standard formulation 

“In Newtonian spacetimes, the scalar field Tis already given for all frames by the absolute time 
field. Therefore every relative space will have a frame time. 
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associated with an inertial frame. 
Einstein commenced his description of the principle of equivalence in his reply 

to Kottler by mention of spacetime. It is now clear however, that the phenomena 
he proceeded to describe are considered in relation to the relative spaces of the 
frames of reference. An isolated material point in a Galilean system can only 
be properly described as ‘mov[ing] uniformly and in a straight line’ in the relative 
space. There it is represented by a geodesic of the relative space (‘straight line’); 
its proper time and also its frame time parameterization are directly proportional 
to the metrical distance along the curve (‘move uniformly’). Use of either 
parameterization in this way also gives two general definitions of ‘uniform 
straight-line motion’ in relative spaces, which agree in this case. 

Similarly, it is more natural to understand Einstein’s requirement that the 
coordinates of the Galilean system be “measured directly in the well-known 
way” with rods and clocks as referring to operations described in the relative 
space and out of which the Galilean spacetime coordinate system is constructed. 

But most important of all, when Einstein speaks of “the presence of a 
gravitational field” in his reply to Kottler, clearly we should understand it to 
be present in the relative space of the frame of reference in question. In 
Minkowski spacetime, there is a gravitational field in the relative space of the 
accelerated reference system but not in the relative space of the Galilean system. 
This is certainly more satisfactory than trying to speak of the presence of a 
gravitational field in spacetime in this context. For then we would have to assume 
that a change of frame of reference can ‘produce’ a gravitational field in 
spacetime even though it does not change the world line of the point mass on - 
which the newly produced field is supposed to act. 

This somewhat cumbersome mixture of three- and four-dimensional concepts 
in Einstein’s formulation of the principle of equivalence derives directly from 
the fact that, for the first five years of its life, the principle and the gravitation 
theory associated with it were treated entirely within the same three-dimensional 
formalism which Einstein had used in his 1905 special relativity paper. In 
particular, the spaces Einstein dealt with in this period were invariably the relative 
spaces of frames of reference. Nevertheless, Einstein’s 1916 formulation and 
his original 1907 formulation of the principle read almost identically, even 
though the former was associated with a theory which could not readily be 
written in a three-dimensional formalism. In the following section I turn to 
examine this early period of Einstein’s work. I will be concerned to show 
precisely which structures Einstein chose to represent the gravitational field in 
the relative spaces he dealt with. 
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4. A New Theory of Gravitation 

4.1. A new concept of gravitational field 

Einstein made clear from the inception of the principle of equivalence in 1907 

that its main purpose was to enable the extension of the principle of relativity 

to accelerated motion.” But for the five years following 1907, his actual use 

of the principle involved the development of a novel relativistic theory of static 

gravitational fields out of which his general theory of relativity would emerge 

in 1912 and 1913. The principle assured him that a certain structure (‘inertial 

field’) arising in the relative space of a uniformly accelerated frame of reference 

in Minkowski spacetime was just one special type of gravitational field. The 

properties of this structure could be examined minutely using the known results 

of special relativity and the properties of other types of gravitational fields could 

then be inferred. 

That this structure (whose properties will be developed and outlined below 

in Section 4.2) could be regarded as a gravitational field requires a change in 

our understanding of what a gravitational field is. We must now accept that 

gravitational fields can have an existence dependent on the relative space 

considered and that the choice of relative space may decide whether or not a 

single given process is regarded as acted on by a gravitational field. The obvious 

objection, which was put by Laue to Einstein in 1911, is that this type of 

gravitational field cannot be ‘real’ since it has no source masses.2s Einstein’s 

later response to this objection was that it is essential to field theory to be able 

to conceive of fields, such as gravitational fields, as existing independently of 

their sources.26 - 

In effect, Einstein asks us to give up the familiar concept of gravitational 

field as that which mediates the gravitational interaction of bodies. In its place 

in the relative space of frames of reference, regardless of whether they are 

accelerated or not, we infer the existence of a structure which is responsible 

for the deviations from uniform straight-line motion of a free point mass, 

without concerning ourselves with what generates that structure. Following 

Einstein’s lead, we would take such a structure to be a gravitational field by 

definition, if the deviations associated with it are independent of the point’s 

mass. 

Using this definition, we could now describe as gravitational fields the inertial 

“Einstein, ‘Ueber das Relativitaetsprinzip ,’ p. 414, p. 454. Then he wrote (p. 454): ‘This 
assumption extends the princip!e of relativity to the case of uniformly accelerated translational motion 
of the reference system.’ Einstein did not begin to describe his hypothesis with the compact labels 
‘equivalence principle’ and ‘equivalence hypothesis’ until 1912 and 1913. 

“M. Laue to A. Einstein, 27 December 1911, EA 16 008. 
16See A. Einstein, ‘Dialog ueber Einwaende gegen die Relativitaetstheorie,’ Die Nuturwkserwhuften 

6 (1918), 700; ‘Relativistic Theory of the Non-Symmetric Field’ in The Meuning ofRelativity, p. 
140; ‘On the Generalized Theory of Gravitation’ (1950) in Ideus and Opinions (London: Souvenir 
Press, 1973), p. 347. 
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fields arising in relative spaces of rigid frames of reference in arbitrary states 
of acceleration in Minkowski spacetime. It is difficult to imagine that Einstein 
would contradict this result. Nevertheless, as I have pointed out, he formulated 
his principle of equivalence only for the case of uniform acceleration. 

There were most probably several reasons for this additional restriction. In 
the early years of the principle of equivalence, in order to convince sceptical 
contemporaries that inertial fields could be regarded as gravitational fields, he 
had to show that they behaved exactIy like known gravitational fields - that 
is like Newtonian gravitational fields - aside of course from the question of 
source masses. If the principle of equivalence is formulated in a Newtonian 
spacetime, as Einstein did sometimes in these earlier years,” the requirement 
that the inertial field behave exactly like a Newtonian field places severe 
restrictions on the allowed states of motion of the frame of reference. 

In Newtonian mechanics, the inertial field induced on the relative space of 
a rotating frame of reference contains a Coriolis field which exerts a force on 
a body dependent on its velocity. A structure representing such a field will 
contain vector potentials, such as those arising in electromagnetic theory, rather 
than the familiar scalar potential of the Newtonian gravitational field.‘* The 
inertial field induced on the relative space of a frame of reference in rectilinear 
acceleration can be represented by a scalar potential satisfying Laplace’s 
equation. But if the acceleration is not uniform the resulting field will be non- 
conservative due to the explicit time dependence of the potential. 

In this case of a Newtonian spacetime, we are led directly to Einstein’s choice 
of a uniformly accelerati frame of reference for the formulation of the principle 
of equivalence. For only in this case will the structure concerned in the relative 
space behave exactly like a Newtonian gravitational field. It will be a scalar 
field; it will satisfy Laplace’s equation; and its gradient will be equal to the 
acceleration of otherwise free point masses in the space. 

It would be natural for Einstein to continue to formulate the principle of 
equivalence in terms of the special case of uniform acceleration in Minkowski 
spacetime as well, if only in the interests of continuity. In addition, we can 
identify at least three complexities arising with the use of rotating frames of 
reference or those in non-uniform acceleration in Minkowski spacetime. 

First, the associated relative spaces would have non-Euclidean geometries, 
if they were well defined. This was a problem Einstein was well aware of from 
a very early stage. But he treated it as a separate issue to his principle of 
equivalence, usually by consideration of a rotating frame of reference. 

“In his early 1911 version in ‘Ueber den Einfluss . . .’ he notes that he will ‘disregard the theory 
of relativity’ and confine himself to ‘customary’ kinematics and ‘ordinary’ mechanics. 

“Einstein briefly rehearses the problem of characterizing such fields as Newtonian gravitational 
fields in ‘Inwiefern laesst sich die moderne Gravitationstheorie ohne die Relativitaet begruenden?’ 
Nufurwissenschuffen 8 (1920), lOlO- 101 I. 
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Second, he would be unable to introduce a frame time into the relative space, 

making very difficult the description of phenomena in the space by a standard 

formulation of a theory such as he used in 1907- 1912. 

Third, the trajectory of a light signal exchanged between two points in the 

relative space would differ on the forward and return journeys. In a letter of 

June 1912 to Ehrenfest, in which Einstein discussed the failure of his 1912 

gravitation theory to deal with the fields associated with rotating frames of 

reference, he mentioned this failure of the ‘reversibility of light paths’ in such 

fields and described how dealing with them would be the next step.29 

In any case, after the completion of the general theory of relativity, when 

the difficulties of the earlier gravitation theory had been resolved, there is a 

suggestion in one or two places in Einstein’s writings that he was prepared to 

extend the formulation of the principle to the case of frames of reference in 

rotation or non-uniform acceleration.30 

4.2. The 1907- 1912 theory 
Einstein’s 1907 - 1912 theory of static gravitational fields achieved its most 

developed form in two consecutive papers in the latter year.3’ The theory may 

be represented most precisely in four-dimensional terms, although Einstein had 

not yet begun to use them. It was based on exploiting certain especially simple 

properties of uniformly accelerating frames of reference in Minkowski spacetime. 

These special properties can be derived from the result that one can always 

find a coordinate system {x} (i= 1,2,3,4) adapted to a uniformly accelerating 

frame in Minkowski spacetime in which the metric has the form 

diag( - 1, - 1, - 1 ,c2) 

where c = 1 + bx’ and b is a constant. It follows immediately that the geometry 

of the relative space is Euclidean, inheriting the coordinates {xl} (i = 1,2,3) as 

Cartesian coordinates. Further, the spacetime can be foliated by a family of 

hypersurfaces orthogonal to the frame, the hypersurfaces of constant .Y”. 

Therefore we can introduce a frame time. 

For convenience, select the world line of the frame for which x’ =x2 =.e = 0 

as the frame clock and call t the frame time disseminated by it. The choice of 

frame clock as any of the other world lines of the frame would alter t by a 

constant multiplicative factor and thus not materially affect the results below. 

Thus Einstein could introduce a standard formulation of special relativity 

*PEA 9 333. 
joFor example, Einstein, TheMeming of Relariviry. p. 59; Einstein, ‘Relativity and the Problem 

of Space,’ pp. 151- 54. 
“A. Einstein, ‘Lichtgeschwindigkeit und Statik des Gravitationsfeldes,’ Annolen der Physik 38 

(1912), 355 -69; ‘Zur Theorie des statischen Gravitationsfeldes,’ Anna/en der Physik 38 (1912), 
443 - 58. 
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in the relative space. In particular, it followed in this standard formulation that 

the motion of a free point mass, whose world line was a geodesic in the 

spacetime, was governed by the equation 

d/dt(/W/c) = - padax, 

where /I = l/(1 - vZ/cL) , v’ = d/d&?) is the three-velocity of the point mass 

and v its magnitude. 

This relation closely parallels the relation 

acceleration = - gradient of scalar field 

governing the motion of a freely falling point mass in traditional Newtonian 

gravitation theory and in which the point’s mass also does not appear. Thus 

in accord with the discussion of Section 4.1 above, Einstein could view the 

motion of the point mass in the relative space as under the influence of a 

gravitational field whose scalar potential was c and which was responsible for 

the deviations from uniform straight-line motion. 

Note that whilst the scalar field c was introduced above via the gJ., component 

of the Minkowski metric in a particular coordinate system, it can be described 

in coordinate free terms. c is just the Minkowski norm of the tangent four- 

vector of the curves of the frame, when parameterized by the frame time. It 

can be seen that c will have a constant value along each of these curves and 

therefore a unique, v&l-defined value at each point of the relative space. 

Recalling that the coordinates {xi} (i= 1,2,3) are inherited as Cartesian 

coordinates by the Euclidean relative space, the above relation c = 1 + bx’ 

now can be seen to assert that the gravitational potential c varies linearly with 

(Euclidean) distance in one direction in the relative space. This is exactly the 

way a traditional Newtonian potential behaves in the case of a homogeneous 

gravitational field. 

There were some complications however, in addition to the usual relativistic 

corrections. c turned out to be the isotropic speed of light in the relative space, 

measured with frame time, which it now followed must also vary with position 

in the relative space. And it could be shown that the rates of clocks at rest in 

the relative space would vary with c and therefore with position. 

Now that Einstein had a firm grasp on relativistic gravitational fields in the 

one special case of homogeneous fields, it was a simple matter to infer the 

properties of arbitrary static gravitational fields by a natural and hopefully 

unproblematic generalization, To do this, Einstein left the standard formulation 

of the theory unchanged, except for relaxing the condition that c vary linearly 

with distance in the direction of acceleration. Following the model of Newtonian 

theory, he now required that c satisfy a weaker condition, the field equation 
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Ac = kco. 

where o is the mass density and k a constant. 

This step amounted to the transition to the relative spaces of more general 

semi-Riemannian manifolds with static spacetime metrics of Lorentz signature. 

The relative spaces are those of frames of reference whose velocity vectors are 

Killing vector fields. The metric must be static rather than just stationary, since 

the spacetime must admit a foliation by a family of hypersurfaces orthogonal 

to these frames, in order for a frame time to be defined for use in the standard 

formulation. The requirement that the relative spaces still be Euclidean further 

restricts the spacetime metric to those whose orthogonal metrics are Euclidean. 

It follows that there always exists a coordinate system {s,y,z,t} adapted to 

the frame in which the spacetime metric has the form diag( - 1, - 1, - 1 ,c’) and 

the relative space inherits the coordinates {,~,y,r} as Cartesian coordinates. As 

a result, Einstein’s 1912 theory is sometimes described as a theory of spacetimes 

with the line element 

d.y2 = - dy2- dy= - dz= + c=dP, 

where c=c(s,y,z), although his theory actually deals with the relative spaces 

of such spacetimes. 

It is interesting rhat the field equation chosen above for the relative space 

corresponds to the field equation for the spacetime metric 
- 

R=k’T 

where R is the Riemann curvature scalar, T the trace of the stress - energy tensor 

of a dust cloud and k ’ a constant, although when Einstein formulated his theory 

he could not have known this. 

In the second of the 1912 papers cited, Einstein described the difficulties which 

his bold new theory soon encountered. In order to retain the equality of action 

and reaction of forces, that is, to retain a law of momentum conservation, 

Einstein found himself forced to a modified field equation 

A$c = (k/2)\/co. 

This new field equation no longer admitted the homogeneous field associated 

with uniform acceleration in Minkowski spacetime as a solution, unless one 

considered only infinitely small regions of the relative space. Einstein confessed 

that he had resisted this development, since it now meant that his principle of 

equivalence could only be formulated in infinitely small regions of the relative 
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space, even though it still dealt only with the simplest case of uniform 
acceleration in Minkowski spacetime.” 

4.3. The temporary limitation to infinitesimal regions 

Because of the superficial similarity between this version of the principle and 
the infinitesimal principle of equivalence now common in the context of arbitrary 
gravitational fields in general relativity, some writers have regarded this 
development as, for example, “the dawn of the correct formulation of the 
principle of equivalence as a principle that holds only locally.“33 It certainly 
was not as far as Einstein was concerned. The limitation to infinitesimal regions 
of the relative space was not introduced to homogenize inhomogeneous fields, 
as it is in the modern infinitesimal principle. His principle still dealt only with 
homogeneous fields produced by uniform acceleration. (Note that the 
inhomogenous fields of his 1912 theory were not produced by acceleration but 
by generalizing the properties of homogeneous fields.) Therefore, the need for 
such a limitation, in the case of fields which were already homogeneous, was 
a source of some puzzlement to him and he dispensed with it as soon as he could. 
But before he could, there were yet more problematic developments concerning 
the principle of equivalence. I relate them here in the hope of nipping in the 
bud the myth of Einstein’s 1912 introduction of the modern infinitesimal 
principle of equivalence. 

In late 1912 and early 1913, in this climate of uncertainty about the principle, 
Einstein made his major breakthrough to the ‘Entwur- theory with the 
mathematical assistance of his friend Marcel Grossmann. The new theory 
contained virtually z the essential features of the final general theory of 
relativity. 34 However, they were unable to incorporate generally covariant 
gravitational field equations in it. Einstein was able to remove this defect only 
after nearly three years of intense work and thereby arrive at his final general 
theory of relativity.35 

During this period, Einstein omitted to mention the catastrophe which had 
befallen the principle of equivalence. Because of their restricted covariance, it 
can be shown that the field equations of the ‘Entwurf’ theory do not hold in 
coordinate systems adapted to uniformly accelerating frames of reference in 
Minkowski spacetime, even allowing restrictions to infinitely small regions of 
spacetime. In the language of Einstein’s 1916 formulation of the principle in 
his reply to Kottler, this meant that he could not regard such coordinate systems 

“Einstein relayed his puzzlement at this result to Ehrenfest in a letter of June 1912, EA 9 333. 
See also, A. Einstein, ‘Relativitaet und Gravitation. Erwiderung auf eine Bemerkung van M. 
Abraham,’ Annofen der Physik 38 (1912), 1063. 

“A. Pais, Subfle is fhe Lord. (Oxford: Clarendon Press, 1982). p. 205. 
“A Einstein and M. Grossmann, ‘Entwurf einer verallgemeinerten Relativitaetstheorie und einer 

Theorie der Gravitation,’ Zeitschrtytfuer Mothemotik und Physik 62 (1913). 225 - 261. 
‘“See my ‘How Einstein Found His Field Equations: 1912 - 1915,’ Historical Studies in the Physical 

Sciences 14 (1984), 253-316. 
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as ‘at rest.’ That is, according to his new theory, the principle of equivalence 

was false if formulated for this standard and simple case. 

Therefore, in the introduction to the ‘Enfwurf' paper, Einstein had to present 

the principle of equivalence as a result drawn from his earlier theory of static 

fields; for he still based the principle on the assumption that a uniform 

acceleration of the reference system in Minkowski spacetime produced a 

homogeneous gravitational field even if only in an infinitely small region of 

the relative space. Presumably, because of this problem, Einstein avoided the 

detailed discussion of the equivalence of the inertial field of uniform acceleration 

and homogeneous gravitational fields in the three years in which he held to the 

‘Entwurf’theory, for this theory entailed no such equivalence. But he retained 

the principle of equivalence, for it was essential to the conceptual development 

of his theory. In addition, the notion of the equivalence of inertial and 

gravitational fields was central to the theory. However, the extent to which his 

‘Entwurf’ theory admitted this equivalence was not entirely clear. 

This difficulty was resolved dramatically and completely with Einstein’s 

November 1915 adoption of the generally covariant field equations of his 

completed general theory of relativity. The restriction of the principle of 

equivalence to infinitely small regions of space disappeared from his writings. 

5. Extending the Principle of Relativity 

Einstein’s early success in constructing a new gravitation theory from his 

principle of equivalence is partly responsible for the still prevalent misconception 

that this was its essential purpose. To combat this, he frequently stressed that 

the principle did not provide a recipe for producing arbitrary gravitational fields 

by acceleration. The real point of the principle, as he had made clear in 1907, 

was that it enabled an extension of the principle of relativity to accelerated 

motion. Thus in the 1916 formulation of the principle quoted in Section 2, the 

principle itself is “the assumption that one may treat [the uniformly accelerated 

reference system] K’ as at rest in all strictness without any laws of nature not 

being fulfilled, with respect to K I.” 

Prior to 1913 and the development of the basic formal structure of the general 

theory of relativity, Einstein gave no sustained discussion of precisely what he 

required in an extension of the principle of relativity and how the principle of 

equivalence was to help bring it about. However, we can reconstruct Einstein’s 

position on these questions in this early period by considering the discussion 

which he gave in an introductory section of his 1916 review of the general theory 

of relativity, called “On the grounds which suggest an extension of the postulate 

of relativity.“36 This section concluded with a formulation of the principle of 

J6Einsrein, ‘Die Grundlage . ,’ pp. 771 -773. 
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equivalence. Further, it dealt only with concepts which would have arisen in 

the pre-1913 period, suggesting that he was rehearsing arguments essentially 

from this period of his work. In particular, the discussion focused exclusively 

on the relative spaces of frames of reference. 

Einstein began by pointing out an ‘epistemological defect’ of classical 

mechanics and special relativity, enabling us to locate his arguments in 

Newtonian and Minkowski spacetimes. In a celebrated thought experiment, he 

considered two fluid spheres in relative rotation and noted that only one of them 

can be free of centrifugal distortion. But there is no observable difference 

between the relative spaces of the rest frames of each sphere, other than the 

state of motion of the distant masses of the universe, in which, he concluded, 

the cause of the centrifugal distortion is to be sought. This led to the following 

requirement for relative spaces 

Of all imaginable spaces R,, R1, etc., in any kind of motion relatively to one another, 
there is none which we may look upon as privileged a priori without reviving the 
above-mentioned epistemological objection. The laws ofphysics must be ofsuch a 
nature that they apply to systems of reference in any kind of motion.3’ 

Einstein then proceeded to formulate the principle of equivalence which enables 

a uniformly accelerated observer to avoid inferring that he is ‘really’ accelerated 

and enables us to regard the uniformly accelerated reference system K’ as just 

as ‘privileged’ or ‘stationary’ as the unaccelerated system K. 

Since Einstein’s discussion was in terms of relative spaces, it is clear that the 

‘laws of physics’ were being considered in their ‘standard formulations,’ 

described in Section 3 above. The standard formulations of classical mechanics 

and special relativity in question would be those then generally available, that 

is those defined in the relative spaces of inertial frames (henceforth ‘inertial 

spaces’). These standard formulations would hold only in inertial spaces and 

therefore fail to satisfy Einstein’s requirement that they ‘apply to [the relative 

spaces of] systems of reference in any kind of motion.’ Thus they would single 

out inertial spaces and their associated inertial frames as privileged. 

In response, Einstein used the principle of equivalence to propose a more 

general theory, a theory of homogeneous gravitational fields, whose standard 

formulation will hold not only in inertial spaces but in uniformly accelerated 

spaces as well. The relativistic version of this theory is quite familiar to us now 

from Section 4 above and presumably also to Einstein’s readers of 1916. It is 

just his 1907 - 1912 gravitation theory, restricted to the case of a homogeneous 

gravitational field. In this way, Einstein broadened the set of privileged frames 

and relative spaces to include those in uniform acceleration. 

Precisely what Einstein achieved with this result has not always been properly 

“Ibid., p. 772. Einstein’s emphasis. Translation from ‘The Foundation of . . ,’ p. 113. 
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understood. His point can be made more clearly by avoiding reference to the 

standard formulation of theories, which has proven to be confusing to modern 

readers steeped in the four-dimensional formulation of these theories. 

The focus of Einstein’s concern is the necessity in special relativity and classical 

mechanics of presuming an immutable division of relative spaces and frames 

of reference into the privileged inertial and the non-inertial. The principle of 

equivalence enabled him to eliminate the immutability of this division, by 

reinterpreting the nature of the inertial effects which distinguish the privileged 

inertial spaces and frames from all others. He explained this to a correspondent 

in a letter of 12 July 1953, reminding him that the principle could not be used 

to generate arbitrary gravitational fields by acceleration: 

The equivalence principle does not assert that every gravitational field (e.g. the 
one associated with the Earth) can be produced by acceleration of the coordinate 
system. It only asserts that the qualities of physical space, as they present themselves 
from an accelerated coordinate system, represent a special case of the gravitational 
field. It is the same in the case of the rotation of the coordinate system; there is de 
facto no reason to trace centrifugal effects back to a ‘real’ rotation.3B 

Through the principle of equivalence, Einstein proposed that we do not regard 

these distinguishing inertial effects as depending on an immutable property of 

the accelerating relative space, but as arising from the presence of a field in 

the relative space, which was to be seen as a special case of gravitational field. 

This view could be extended beyond the case of uniform acceleration of the 

principle. Within thisview, relative spaces would have no intrinsic states of 

motion - none would be ‘really’ rotating for example - and in this sense they 

would all be indistinguishable. However, any relative space could become inertial 

according to the particular instances of the gravitational field defined on the 

relative spaces. Similarly, all frames of reference would be indistinguishable, 

until the introduction of any particular instance of the gravitational field made 

some inertial and others not. 

This crucial aspect of Einstein’s account has been commonly misunderstood. 

The fact that an accelerated frame remains distinguishable from an unaccelerated 

frame in both special and general relativity is irrelevant to the extension of the 

principle of relativity. Einstein’s account requires that each instance of the 

gravitational field distinguish certain frames as inertial and others as accelerating. 

The decision as to which frames will be inertial and which accelerated, however, 

“‘A. Einstein to A. Rehtz, I2 July 1953, EA 27 134. In A. Einstein, ‘Grundgedanken und Xlethoden 
der Relativitaetstheorie in ihrer Entwicklung dargestellt,’ unpublished manuscript EA 2 070. p. 27, 
Einstein summarizes the principle in similar terms: “. the physical properties of space prevailing 
relative to K’ are completely equivalent to a gravitational field.” K’ is a reference system in uniform 
rectilinear acceleration, with respect to a Galilean system. This document can be dated to 1920. 
in part by Einstein’s mention of the “English [eclipse] expedition of the previous year” on p. 32. 



Einstein s Principle of Equivalence 223 

must depend only on the particular instance of the gravitational field at hand 
and not on any intrinsic property of the frames.39 

At this stage of his development of general relativity, Einstein’s important 
innovation did not yet lie in the introduction of an empirically new theory. 
According to the principle of equivalence, his theory of static gravitational fields 
was predictively identical to special relativity in the case of homogeneous 
gravitational fields. Rather it lay in a new way of looking at the division of 
structures between space and the fields it contains in the context of special 
relativity. Specifically, he no longer regarded the structures accounting for 
inertial effects as a part of space. Rather he now looked upon them as associated 
with the fields defined in space and, in particular, intimately related to 
gravitation. This move stripped space of the privileged frames to which he 
objected. 

Einstein’s ‘gestalt switch’ can be described more precisely if we present it more 
explicitly in four-dimensional terms. Of course, Einstein himself did not begin 
to work explicitly in such terms until five years after his original 1907 formulation 
of the principle of equivalence. 

In the old view of special relativity, the background arena of space and time, 
against which physical processes unfold, is a Minkowski spacetime, that is a 
pair: W,g>, where M is a four-dimensional manifold and g a Minkowski 
metric. This background arena admits certain privileged structures: inertial 
frames of reference and their associated inertial spaces. 

In the new view of special relativity, we are informed by the principle of 
equivalence that the structure responsible for inertial effects, the Minkowski 
metric g, is not an intrinsic part of the background arena of space and time. 
Rather, it is a field defined against that background and actually a special case 
of the field structure which also accounts for gravitational effects. The 
background arena of space and time is now just the bare spacetime manifold 
M. In M in the absence of a metric, we can still introduce frames of reference 
as congruences of curves, although we cannot require them to be time-like, and 
we can still define their relative space, although they will have no induced metric. 
Clearly in terms of M alone, all such frames and correspondingly all relative 
spaces will be indistinguishable and therefore none will be privileged. 

Following the model of classical gravitation theory, special relativity in this 
new view circumscribes the metric fields allowed on the manifold by a differential 

“Friedman, pp. 191- 195, has given a lucid analysis of the limited prospects of using a principle 
of equivalence to yield a generalized principle of relativity, if the latter is understood to require 
this type of indistinguishability. 
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field equation. It requires a metric of Lorentz signature and with a vanishing 

Riemann curvature tensor 

This requirement does not specify a unique Minkowski metric, but a large set 

of Minkowski metrics. Because of this, the theory does not single out any frame 

of reference as privileged in a particular ‘background space’ (i.e. manifoldj, 

even though each metric allowed by the theory will single out certain frames 

as inertial and others as non-inertial. For, speaking informally, it can be shown 

that there is always a Minkowski metric allowed by the theory in which any 

well behaved non-inertial frame would become inertial. This result, given more 

precisely below, rests entirely on an active interpretation of the general covariance 

of the above field equation. 

In a spacetime manifold M, let g be a Minkowski metric and F an inertial 

frame of reference, that is one whose time-like curves are geodesics in rigid- 

body motion. Let F’ be any frame of reference in a neighborhood U ’ of M 

(or even any congruence of curves which need not be all time-like), for which 

there exists a coordinate system {x’j} with domain U’ adapted to F’. (Such a 

frame is ‘well behaved’.) Now in some neighborhood U of M there exists a 

coordinate system of {X;} adapted to Fwhose range coincides with that of {x’~}. 

h is a diffeomorphism which maps p to hp such that xi@) =x”(hp). Then it 

follows that F’ is an inertial frame of reference, with respect to the Minkowski 

metric g ‘, which is the image of g under h.“’ 

The essential features of the old and new way of viewing special relativity 

are summarized in Fig. 1. 

The equivalence of all frames embodied in this new view goes well beyond 

the result that Einstein himself claimed in 1916 from the principle of equivalence. 

He claimed only an equivalence of inertial and uniformly accelerated relative 

spaces, that is, of inertial and uniformly accelerated frames. The establishment 

of a wider equivalence would have been straightforward, even if inessential in 

view of the fact that he had the general theory of relativity in hand by then. 

But he most likely chose to avoid this extension because it would have required 

him to find standard formulation of a gravitation theory, similar to his 

1907 - 1912 theory, which would hold in relative spaces of frames in rotation 

or non-uniform acceleration. I listed some of the difficulties Einstein would 

*‘g ’ must be a Minkowski metric, since if g has the form diag( - 1, - 1, - 1, I) in a coordinate 
system (y‘}, then g ’ will have the same form in b “), the image of J,y‘) under h. Similarly the 
components of g in {x} at p will equal the components of g ’ in {I”} at hp; therefore: (a) since 
the curves of constant _I! (i= 1,2,3) are geodesics of g. the curves of constant x” (i= 1,2,3) will 
be geodesics of g ‘; and (b) since the orthogonal metric of g in the frame F satisfies the rigid-body 
motion condition, the same will be true of the orthogonal metric of g ’ in F’. From (a) and (b) 
it follows that F’ will be an inertial frame of g’. 
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face in this task in the last section. 
In any case, Einstein could not simply take special relativity, viewed in the 

new way, as a theory extending the principle of relativity in the way required 
for two reasons. First, the principle of equivalence clearly indicated that the 
theory was not complete. The structure accounting for inertia must also account 
for a/l gravitational effects. The Minkowski metric of special relativity, however, 
could only account for effects due to gravitational fields which could be 
transformed away over some neighborhood of a relative space by transforming 
to a new relative space. So Einstein immediately continued from his statement 
of the principle of equivalence quoted above from his 1916 review article, by 
observing that “in pursuing the general theory of relativity, we shall be led to 
a theory of gravitation. . .” We shall see that it was the completion of this task 
which yielded the general theory of relativity. 

The second reason was more subtle but far more important and can only be 
touched on informally here. The theory was also causally incomplete. As we 
have seen, Einstein required a complete theory of inertia to account for the 
disposition of inertial frames in spacetime in terms of the only available 
observable cause, the distribution and motion of the masses of the universe. 
Special relativity in any of the forms described cannot be that theory. The 
disposition of inertial frames and the Minkowski metric which determines them 
is completely unaffected by any change in these masses. In some large 
neighborhood of spacetime, such changes might include the setting of all masses 
into rotation about a central axis or even the conversion of all their energy into 
radiation and its resulting dissipation. 

However it was natural for Einstein to expect that the extended theory, which 
dealt with general gravitational effects, would explain the observed disposition 
of inertial frames of reference in terms of the matter distribution of the universe. 
For the structure which determined this disposition would behave in many 
aspects like a traditional gravitational field and therefore be strongly influenced 
by any motion of its sources, the masses of the universe. 

Although Einstein’s hopes were not borne out by later developments, he made 
clear in his earliest relevant publications that he expected his new general theory 
of relativity to implement an “hypothesis of the relativity of inertia,” which 
required inertia to be nothing other than the resistance of a body to acceleration, 
with respect to other bodies.4’ This, of course, would forbid universes, all of 
whose masses were rotating about a local inertial compass. He had already 
sought and found small effects which he felt were consistent with this hypothesis. 
They included the dragging of the inertial frames of reference inside a rotating 
she11 of matter and were similar to those discussed in his Meaning of Refativity.“2 

“A. Einstein, , ‘Zum gegenwaertigen Stande des Gravitationsproblems,’ Physikokche Zeit.schr$ 
14 (1913), 1260- 1262. 

‘*Op. cit. pp. IOO- 103. 
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Clearly he also related this hypothesis to his 1907 - 1912 theory of static 

gravitational fields, for in 1912 he had published a paper which demonstrated 

the existence of similar such effects in that theory too.‘3 

6. The Breakdown of Relative Spaces 

It was inevitable that Einstein would give up the use of standard formulations 

of theories in his search for a general theory of relativity. For the relative spaces 

used by these formulations would only have well-defined geometries if the 

associated frame is in rigid motion, which is by no means generally the case. 

Even in Minkowski spacetime, no non-uniformly rotating frame can move 

rigidly. Worse, the relative space will only have the frame time required by 

standard formulations if the spacetime admits a foliation by hypersurfaces 

orthogonal to the frame. Even uniformly rotating frames in Minkowski 

spacetime do not admit such a foliation. 

In his general theory of relativity, Einstein turned to the four-dimensional 

spacetime formulation of theories. As indicated in the last section, he now also 

came to regard the four-dimensional spacetime manifold without further 

structure as the background of space and time against which physical processes 

unfold. 

One can define very few reference structures in such a manifold. Frames of 

reference as congruences of world lines can be defined. But without further 

structure, such as metric, they cannot be described as time-like or have an overall 

state of motion assigned to them. The richest references structure available is 

the arbitrary spacetime coordinate system, whose coordinate values can have 

no metrical significance, such as Einstein had required in his Galilean reference 

systems. 

So in the general theory of relativity, Einstein proceeded to use arbitrary 

spacetime coordinate systems as the reference structures from which to view 

physical processes and formulate physical principles. In his expositions of general 

relativity, Einstein typically made this transition from frame of reference and 

relative space to arbitrary spacetime coordinate system by considering the relative 

space of a frame of reference in uniform rigid rotation in Minkowski spacetime.JJ 

He would show that the spatial geometry is non-Euclidean and conclude that 

the coordinate system used there could not have the same direct metrical 

significance of spatial coordinates in his Galilean reference systems. Similar 

results followed from attempts to retain a time coordinate, presumably for 

spacetime, whose value would coincide with the readings of clocks at rest in 

“A. Einstein, ‘Gibt es eine Gravitationswirkung. die der elektrodynamischen Induktionswirkung 
analog ist?’ Vierte[johrsschrifi fuer gerichtliche Medizin 44 (1912). 37 -40. 

“For example, “Die Grundlage ,” pp. 773 - 776; The Meaning of Relaiiviiy, pp. 59 - 62. 
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the frame. Einstein then introduced the use of arbitrary spacetime coordinate 
systems as a natural extension of the methods developed in the nineteenth century 
for dealing with non-Euclidean spatial geometries. 

This argument gave psychologically natural grounds for introducing the 
methods for differential geometry into relativity theory. However, it failed to 
demonstrate the completeness of the demise of relative spaces in general 
relativity. The relative space of the argument’s uniformly rotating frame of 
reference still has a well-defined geometry, unlike the relative spaces of other 
frames of reference in spacetimes with more general semi-Riemannian metrics. 
Einstein turned to this problem in his popularization Relativity, most of whose 
discussion is set in terms of the relative spaces of ‘reference bodies’ (= frames 
of reference). In Chapter 28 he points out that rigid reference bodies will in 
general no longer be available in general relativity and that “the Gauss co- 
ordinate system has to take the place of the body of reference.” He then proceeds 
to describe the difficulties and artificiality of retaining the use of non-rigid 
reference bodies (and by implication their associated relative space with ill- 
defined geometries) through the discussion of what he calls “reference 
molluscs.” 

In this same chapter, Einstein gave his well-known reformulation of the 
extended principle of relativity - “All Gaussian co-ordinate systems are 
essentially equivalent for the formulation of the general laws of nature” - and 
proceeded to explain that this requirement was satisfied by a theory if its laws 
were written in a generally covariant form. Naturally, this meant that his 
generally covariant general theory of relativity realized the extended principle - 
of relativity. 

Einstein had taken the principle of equivalence to assert the equivalence of 
inertial and uniformly accelerated relative spaces, an assertion which is subsumed 
by the extended principle of relativity. So it was easy for Einstein to conclude, 
in continuing his reply to Kottler, that the principle of equivalence was 
automatically satisfied by his general theory of relativity: 

A gravitation theory violates the principle of equivalence, in the sense which I 
understand it, only then, if the equations of gravitation are satisfied in no reference 
system K ‘, which is moving non-uniformly relative to a Galilean reference system. 
That this reproach cannot be raised against my theory with generally covariant 
equations is evident; for here the equations are satisfied, with respect to each reference 
system. The requirement of general covariance of equations embraces the principle 
of equivalence as a quite special case.Js 

*1Einstein, ‘Ueber Friedrich Kottlers Abhandlung ,’ p. 641; Einstein’s emphasis. In his 
correspondence about his early work on the general theory, Einstein commented briefly that he 
saw the principle of equivalence incorporated into the new theory through its covariance properties; 
A. Einstein to P. Ehrenfest, Winter 1913- 1914?, EA 9 347; A. Einstein to M. Besso, March 1914, 
Correspondonce (Paris: Hermann, 1972), p. 53. 
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Einstein’s reformulation of the extended principle of relativity as the 

requirement of general covariance is unproblematic in so far as it is based on 

the fact that the spacetime manifold without any additional structure has no 

privileged coordinate systems. This fact immediately entails that there are no 

privileged frames of reference and, therefore, no privileged relative spaces. For 

were any frames privileged then the coordinate systems adapted to them would 

also be privileged. 

However, as has been frequently objected, it is hard to see how this 

requirement could capture all that Einstein required in an extension of the 

principle of relativity, when there are simple generally covariant formulations 

of many other theories apart from general relativity. These include special 

relativity, Nordstroem’s theory of gravitation and Newtonian gravitation theory. 

Of course Einstein was aware of this at least in the case of the first two theories. 

A thorough analysis of Einstein’s intentions here and their refinement in his 

later work is a complex task that goes well beyond this paper. Nevertheless, 

I will make a few tentative comments concerning Einstein’s early view of the 

question to make his remarks more plausible. 

For Einstein, violations of the extended principle of relativity need not be 

limited to the laws of a theory. They could also arise in its solutions, that is 

in models or classes of models of the theory. For example he pointed out in 

a 1917 paper on the cosmological problem that it was “contrary to the spirit 

of the relativity principle” to introduce solutions of the field equations of general 

relativity by imposing a boundary condition of a Minkowski metric at matter- 

free spatial infinits6 This introduces privileged coordinate systems in which 

the metric approaches the form diag( - 1, - 1, - 1,l) as the limit to spatial infinity 

is taken. In addition, these privileged coordinate systems were objectionable 

since there was no observable cause for their special status, contradicting the 

hypothesis of the relativity of inertia. 

Clearly solutions of generally covariant formulations of special relativity and 

Newtonian theory would necessarily involve the introduction of similarly 

objectionable privileged coordinate systems in one form or other. Minkowski 

spacetime, even regarded as a model of general relativity, would be objectionable 

for the same reason. However, Einstein believed that the introduction of these 

boundary conditions would not always be needed in the case of his general theory 

of relativity. In his 1917 paper, he continued to demonstrate how the field 

equations of general relativity, augmented with the cosmological term, admitted 

solutions without the use of boundary conditions at spatial infinity. To arrive 

at these solutions, one needed only to specify the mass and world lines of the 

universe’s smoothed-out dust cloud of matter on the manifold and invoke other 

‘6A. Einstein, ‘Kosmologische Betrachtung zur allgemeinen Relativitaetstheorie,’ Preuss. Akad. 
d. Wixs. Sirzungsberichte (1917). p. 147; trans. ‘Cosmological Considerations on the General Theory 
of Relativity,’ The Principle of Relufivify, pp. 182 - 183. 
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natural requirements, such as the symmetry of the metric, with respect to these 
world lines, and its isotropy about them. 

In 1918, Einstein described a solution generated in this way as satisfying 
‘Mach’s Principle.“’ This principle required that the metric tensor be determined 
completely by the matter of the universe and was taken to be the natural 
generalization of the hypothesis of the relativity of inertia. In a footnote, he 
pointed out that he had not previously distinguished this principle from the 
(extended) principle of relativity and that this had caused confusion. So, at least 
at this time, the general theory of relativity seemed to be the only viable theory 
satisfying all his requirements concerning the relativity of motion. It was clearly 
impossible for special relativity or Nordstroem’s theory to exhibit such Machian 
behavior, irrespective of the covariance of their formulations. 

7. Generating General Relativity 

Einstein had come to recognize that a general theory of relativity was to be 
found as a four-dimensional theory of gravitation. The principle of equivalence 
provided the crucial starting point: the identification of the Minkowski metric 
as an instance of the four-dimensional spacetime structure representing 
gravitational fields. For Einstein had found that the Minkowski metric can 
induce gravitational fields on the relative spaces of a Minkowski spacetime. 

Einstein’s discovery of the gravitational properties of the Minkowski metric 
was a remarkable feat_.IJnlike so many other discoveries in physics, it seems to 
have been almost totally unanticipated by his contemporaries. 

The role of the principle of equivalence in Einstein’s development of his new 
gravitation theory remained essentially the same as in his earlier 1912 theory 
of gravitation. The principle yields a special case of the gravitational field, whose 
properties are then generalized in a natural way to arrive at a general theory 
of gravitation. 

However, from the perspective of the general theory of relativity, Einstein 
had no prospect of arriving at the correct laws of a general theory of the 
gravitational fields of relative spaces, as long as he worked within the framework 
of his 1912 theory. This follows immediately if we recall that Einstein sought 
to characterize arbitrary static gravitational fields as structures induced onto 
relative spaces by the special type of static spacetimes I described above in Section 
4.2 

In these spacetimes, in the source free case, one can readily demonstrate that 
the field equations of general relativity, that is the requirement of the vanishing 

“A. Einstein, ‘Prinzipielles zur allgemeinen Relativitaetstheorie,’ Annalen der Physik 55 (1918), 
241. 
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of the Ricci tensor 

RI, = 0 

entails the vanishing of the Riemann - Christoffel curvature tensor 

R ii,,77 
=o. 

This in turn entails that the only source-free gravitational fields in relative spaces 

which the theory can deal with correctly, from the perspective of the general 

theory of relativity, are those induced by acceleration in Minkowski spacetime. 

In addition, it follows from an evaluation of the components of the curvature 

tensor in a coordinate system adapted to the accelerating frame that this 

acceleration must be a uniform rectilinear acceleration.J8 

Unfortunately, in the period 1912 to 1915, Einstein believed that the arbitrary 

static spacetimes associated with his 1912 theory ought also to be solutions of 

the field equations of his new general theory of relativity. I have argued elsewhere 

in detail that this played a major role in his failure to adopt the generally 

covariant field equations of his final theory in this period.Jg 

Nevertheless, Einstein commonly used the principle of equivalence to recover 

and motivate the basic formal structure of his general theory of relativity in 

an argument whose strategy was essentially the same as that used in 1912. 

Einstein presents the argument in a compact and well-developed form in a 195 1 

letter to Becquerel, in which the role of the principle of equivalence is made 

especially clear.50He begins by using the equality of inertial and gravitational 

mass to justify introduction of the principle, which is formulated in terms of 

relative spaces: 

An inertial space without gravitational field is physically equivalent to a uniformly 
accelerated space, in which there is a (homogeneous) gravitational field. (Equivalence 
hypothesis.) 

Then after introducing the requirement of general covariance, he proceeds with 

the steps he numbers as the third and fourth of his argument: 

“These results also make plausible the failure of Einstein’s first 1912 field equation to yield a 
conservation law, in spite of its similarity to the field equations of general relativity. From the 
perspective of general relativity, we would only expect his first field equation to yield consistent 
results in the trivial case of Minkowski spacetime. 

‘%ee my ‘How Einstein. .” 
“‘A. Einstein to J. Becquerel, 16 August 1951, EA 6 074 and 6 075. Einstein’s argument is especially 

interesting and important, since it is intended to take a sceptic who accepts special but not general 
relativity step by step from the former to the latter, carefully delineating the assumptions of each step. 
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(3) One kind of space is completely known to us, that is empty Minkowski-space, 
in which the interval d.s, as given by 

can be measc-ed immediately by resting clocks and measuring rods. Through a non- 
linear transformation, this becomes 

where d.s has the same value as a Minkowski system. The g,* depend on the coordinates 
and, according to the equivalence hypothesis, describe a gravitational field (of a more 
special kind). 

(4) In general coordinates, a gravitational field of the more special kind satisfies 
the differential equations 

R’,,, = 0 

from the loosening of which the field law of an arbitrary pure gravitational field must 
follow. For this, only 

R,, = R’,,, 

comes into consideration. It is natural to assume that d.s expresses the naturally 
measured interval also in the case of a general pure gravitational field. 

Because of its extrea brevity, Einstein’s argument requires some explication. 

In his Step 3, he appears to identify a coordinate effect, the non-constancy of 
the components g,, with the presence of a gravitational field. His real intention 
emerges, however, if we recall his practice of tacitly associating changes of frame 
of reference with coordinate transformations. In particular, a non-linear 
coordinate transformation can represent the change from an inertial frame of 
reference to a rigidly and uniformly accelerated frame of reference, which is 
precisely the case considered in the statement of the principle of equivalence 
just given. In this case, the non-constancy of the g is now associated with the 
presence of a homogeneous gravitational fields in the relative space of the 
accelerated frame, for as we have seen in Section 4, the potential of such a field 
is given by gd4 in a coordinate system adapted to the frame. 

Thus Einstein’s Step 3 is multi-faceted. The introduction of an arbitrary 
coordinate system makes the presence of a metric tensor in Minkowski spacetime 
formally explicit as a matrix of components gi,. At the same time Einstein uses 
the principle of equivalence to point out that this metric induces a gravitational 
field of a special type in the relative space of an accelerated frame of reference. 
This justifies interpreting the Minkowski metric as a particular instance of the 
four-dimensional generalization of such gravitational fields. 
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Interpreting the Minkowski metric in this way indicates that Einstein can arrive 

at a four-dimensional theory of arbitrary gravitational fields, which will also 

be his general theory of relativity, by generalizing the properties of the 

Minkowski metric in a manner analogous to the way that uniform gravitational 

fields can be generalized to non-uniform fields in Newtonian theory. He finds 

that the way to proceed is straightforward. The general theory will deal not 

only with Minkowski metrics, but others also of Lorentz signature. 

This argument appears throughout Einstein’s earlier work, but in a slightly 

less developed form.5* For it was only in his later years that he explicitly 

renounced the use of a separate stress - energy tensor as the source term in the 

field equations and used these equations only in their source free form. This 

source-free form of the field equations can be arrived at readily in the argument, 

as Einstein shows above, by merely contracting the flat spacetime condition 

of special relativity. The argument appears commonly in this more complete 

form in his later writings.‘* 

The earlier examples of the argument also contained an important addition 

to the example quoted above. Einstein would note that in the Galilean reference 

system of special relativity, a free point mass moves uniformly in a straight line. 

Such motion is represented in Minkowski spacetime by a time-like geodesic which 

satisfies the condition that the interval be extremal along the curve: 

dJds = 0. 

It was natural to assume, the argument continued, that this requirement would - 
also be satisfied by the world line of a free point mass in the more general case 

of the general theory of relativity. I will return to the importance of this point 

in Section 9. 

In short, we have seen in this section that the principle of equivalence enabled 

Einstein to see that one structure was responsible for inducing both inertial and 

gravitational fields and that the Minkowski metric was a special case of it. 

Einstein summarized this insight in a compact 1918 statement of the principle: 

“See A. Einstein, ‘Physikalische Grundlage einer Gravitationstheorie,’ Nuturforschende 
GeselOchuft, Zuerich, Vierreljahrsschrifr 58 (1913). 285 - 86; ‘Zum gegenwaertigen Stande . . ,’ 
pp. 1255 - 1256; ‘Prinzipielles zur verallgemeinerten Relativitaetstheorie und Gravitationstheorie,’ 
Physikolische Zeifschrij 15 (1914). 177; ‘Die formale Grundlage der allgemeinen Relativitaetstheorie,’ 
Preuss. Akod. d. Wiss.. Sitzungsberichfe(1914), pp. 1032- 1033. Seealso Relafiviry, pp. IOO- 101. 
for a very clear exposition although without formalism. 

“See A. Einstein, ‘Physics and Reality’ (1936) in Ideas and Opinions (London: Souvenir Press, 
1973). pp. 308- 309; ‘Autobiographical Notes’ (1946). in P. A. Schilpp (ed.), Albert Einstein; 
Philosopher- Scienfist (New York: Tudor, I95 I), pp. 70 - 73; ‘Relativity and the Problem of Space,’ 
pp. I53 - 154; ‘Autobiographische Skizze’ in C. Seelig (ed.), Helie Zeir - Dunkle Zeil (Zuerich: 
Europa, 19561, pp. 14- 15; ‘On the Generalized Theory of Gravitation’ (1950). in Ideusund Opinions, 
pp. 350-51. 
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Principle of Equivalence: inertia and gravity are wesensgleich [identical in essence]. 

From this and from the results of the special theory of relativity it necessarily follows 

that the symmetrical ‘fundamental tensor’ (g,.) determines the metrical properties 
of space, the inertial behavior of bodies in it, as well as gravitational action.5J 

8. A Manner of Speaking 

It was not uncommon for Einstein to associate the non-constancy of the 

components of the metric tensor, or, equivalently, the non-vanishing of the 

Christoffel symbols in a given coordinate system with the presence of a 

gravitational field. In particular, he would describe the Christoffel symbols as 

the “gravitational field strengths” or “components of the gravitational field,” 

for in a coordinate system in which these symbols vanished, free point masses 

move “uniformly in a straight line.” Therefore, these components “condition 

the deviation of the motion from uniformity.“54 

As in the last section, this association of the Christoffel symbols with 

gravitational field strengths can be explicated by recalling that Einstein often 

tacitly referred to frames of reference and their relative spaces when he talked 

explicitly only of a coordinate system adapted to them. If a coordinate system 

adapted to a uniformly accelerating frame of reference in Minkowski spacetime 

is chosen so that its spatial coordinates are Cartesian, then the Christoffel 

symbols will contain only the spatial derivations of the g.,+ However, these 

derivatives together form a field strength, the three vector gradient of the 

potential of the homcrgeneous gravitational field in the associated relative space. 

The connection made here between the Christoffel symbols and the field 

strengths of the gravitational fields in relative spaces depends on a careful choice 

of spacetime and coordinate system. Einstein, however, did not make this clear 

in his work and rarely qualified the identification of non-vanishng Christoffel 

symbol and gravitational field strength. 

This practice has undoubtedly caused confusion. In a letter of January 195 1, 

Laue challenged Einstein on this point.55 He gave the example in Minkowski 

spacetime of the transformation to curvilinear spatial coordinates from a 

Galilean coordinate system with no alteration in the time coordinate. Since this 

transformation is not associated with a change of state of motion, the resulting 

non-vanishing of ‘field strengths’ is physically counter-intuitive. 

Einstein began his response by stressing that the Newtonian concept of 

gravitational field (“all the expressions obtained from the potential”) is different 

“Einstein, ‘Prinzipielles zur . . . ,’ p. 241. Einstein used this same notion of identity of essence 
elsewhere in ‘Relativitaet und Gravitation . ,’ p. 1063; Einstein and Grossmann, ‘Entwurf. . . ,’ 
p. 226; Meaning of Relativity, p. 58. 

“Einstein, ‘Die Grundlage . . . 0 p. 802. 
a’M. Laue to A. Einstein, 8 January 1951, EA 16 152. 
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to the concept of the relativistic gravitational field (“everything formed out of 

the symmetrical g,k”).56 This corresponds to the distinction made here between 

the gravitational fields of relative spaces, which are usually represented by scalar 

fields, and their four-dimensional generalization, the metric field. Nevertheless, 

as he continued to explain, it was possible to forge an heuristic link between 

these two concepts and this link was the principle of equivalence: 

Heuristically, the interpretation of the field existing relative to a system, parallel 
accelerated (parallel beschleunigten) against an inertial system (Equivalence principle) 
was naturally of decisive importance, since this field is equivalent to a Newtonian 
gravitational field with parallel lines of force. In this case, the Newtonian field strengths 
are equal to the spatial derivatives of the g,,. Correspondingly, if one wants to, one 
can designate the first derivatives of the g,, or the displacement quantities r[affine 
connection] as gravitational field strengths, vvhich certainly have no tensor character. 
In this manner of speaking, the introduction of cylinder coordinates leads to the 
appearance of field strengths in a Galilean space. With this it is only a question of 
a manner of speaking. 

Here Einstein uses the special case described above to justify speaking of the 

first derivatives of the ga (which determine the Christoffel symbols and the affine 

connection in these spacetimes) as gravitational field strengths. One can continue 

to use this manner of speaking in other cases, but, as Einstein’s response 

indicates, it should be used with some caution. 

This attitude to the description of the Christoffel symbols as gravitational 

field strengths was not a later development in Einstein’s thought. It is also clearly 

evident in his 1916-1~ to Kottler. There he says of this nomenclature, referring 

also to the non-generally covariant stress- energy pseudo-tensor of the 

gravitational field, that “it is in principle meaningless and only intended to make 

concessions to our physical thought habits,” but that it “appears to me, at least 

provisionally, not without value to maintain the continuity of thought.“S7 

Today, some fifty years later, we insist that coordinate effects be carefully 

distinguished from physical effects. Examples such as Laue’s show the confusion 

that would otherwise arise. Therefore, the provisional value of Einstein’s manner 

of speaking is no longer evident. Einstein continued his response to Laue by 

stressing the important point beneath his manner of speaking, which involved 

no equivocation about coordinate effects: 

It is essential however, that a gravitational field exists in the sense of general relativity 
also in the case of a Galilei or a Minkowski space, even if the field strengths in the 
sense defined above vanish. In the theory of relativity, just the dimensionality of the 
field is the only thing which remains of the earlier physically independent (absolute) 
space. 

56A. Einstein to M. Laue, 16th January 1951. E.4 16 154. 
“Einstein, ‘Ueber Friedrich Kottlers Abhandlung ,’ p. 641. 
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In a given spacetime, the nature and even existence of a gravitational field 

in a relative space will depend on the choice of frame of reference defining the 

relative space. But this relative space dependence of these gravitational fields 

does not extend to their four-dimensional generalization, the spacetime metric. 

All spacetimes of general relativity contain such a metric field - a gravitational 

field “in the sense of general relativity” - regardless of the frame of reference 

or relative space under consideration. This holds equally of Minkowski 

spacetimes, even though we can always find relative spaces in them which are 

gravitation free in the older sense. In short, in general relativity a IMinkowski 

spacetime is not the gravitation-free special case. 

9. The Infinitesimal Principle of Equivalence 

Einstein’s contemporaries of the early 1920’s regarded the relative space 

dependence of the gravitational field as the basic assertion of the principle of 

equivalence, rather than the occasion for inference to a more fundamental 

structure. Naturally, they were dissatisfied that Einstein dealt only with this 

relative space dependence in the very simple case of the homogeneous 

gravitational fields of uniformly accelerated reference systems in Minkowski 

spacetime. They sought an extended statement of this dependence which would 

apply directly to arbitrary gravitational fields.“8 They believed that this could 

be achieved in general relativity on the basis of the notion that special relativity 

holds in infinitesima~small regions of the spacetime manifold, tacitly assuming 

that special relativity is a gravitation-free special case. As a result, their construal 

of the principle was very different to Einstein’s and lays stress on the notion 

that a gravitational field can always be transformed away.59 Pauli’s classic 

formulation of the resulting principle reads: 

For every infinitely small world region (i.e. a world region which is so small that 
the space- and time-variation of gravity can be neglected in it) there always exists 
a coordinate system KO(X,, X,, X,, X4) in which gravitation has no influence either on 
the motion of particles or any other physical processes.6o 

Pauli continued to explain a little later that 

‘“Pauli, pp. 145 - 147; L. Silberstein, The Theory ojGenerul Relativity and Gruvitufion (University 
of Toronto Press, 1922), pp. lo- 13. 

s’Compare with Einstein’s: “There is no space without gravitational or inertial field. What one 
calls empty space in the sense of classical or Maxwell’s theory, is a gravitational field of a special 
kind, that-is bne in which the gravitational potentials are constant with an appropriate choice of 
coordinates.” A. Einstein to H. Titze. 16 January 1954, EA 23 0261027. 

60Pauli, p. 145. See also Silberstein, p. 12. 
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The special theory of relativity should be valid in K,. All its theorems have thus to 
be retained, except that we have put the system KO, defined for an infinitely small 
region, in place of the Galilean coordinate system. 

In particular, this meant that the metric adopted the form diag( 1, 1, 1, - 1) 

in KO. 

This “infinitesimal principle of equivalence” can be connected to Einstein’s 

version at least superficially by noting that classical gravitational fields become 

homogeneous in infinitesimal regions of the relative space. Inverting Einstein’s 

usual argument, they can then be transformed away at least infinitesimally by 

an appropriate acceleration of the reference system. One then regards the Pauli 

version of the principle as a four-dimensional restatement of these two results. 

Of course this infinitesimal principle and the discussion of its connection to 

Einstein’s version is beset with a number of serious technical difficulties. The 

notion of both three- and four-dimensional “infinitesimal regions” and the sense 

in which special relativity holds in such regions is unclear. Further, the actual 

statement of the principle makes it look as though it deals solely with a 

coordinate effect. These problems will be addressed shortly. 

The popularity of the infinitesimal principle derives at least in part from its 

leading to a particularly attractive result: that it is possible to reconstruct much 

of the spacetime manifold of general relativity as a patch-work of infinitesimal 

pieces in which special relativity holds. 

Mortiz Schlick, in his influential two-part article on space and time in the 

March 1917 issues of Die Naturwissenschaffen, attempted just such a 

reconstruction.6’ ‘We stipulate,” he wrote, “that in an infinitely small region 

and in a reference system in which the bodies considered have no acceleration, 

the special theory of relativity holds.” It followed that in a ‘local’ coordinate 

system, such as Pauli’s KO above, the interval between two infinitesimally 

separated events is given by 

+y = (u,)* + (dXz)* + (dX# - (d&Y. 

Transforming to an arbitrary spacetime coordinate system {x,} (i = 1,2,3,4), the 

expression for the interval became 

ds’ = g,,(dx,)’ + 2g,&,dx, + . + g,,(du,)‘, 

where the symmetric coefficients gi, (i,k = 1,2,3,4) represent the components 

of the metric tensor in the new coordinate system. Schlick was thus able to infer 

that the new theory would involve a metric tensor and to arrive at many of 

61M. Schlick, ‘Raum und Zeit in der gegenuaertigen Physik,’ DielVaturwissenschafren, 16 .March 
1917, pp. 161 - 167, 23 IMarch 1917, pp. 178-86. 
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its properties by considering the properties of the interval as given in special 

relativity. 

In addition, Schlick considered the motion of a free material point. By 

reviewing its motion in the relative spaces of both local and accelerated 

coordinate systems and invoking the principle of equivalence, he concluded that 

the components of the metric tensor in the new coordinate system determine 

the gravitational field in the latter space. It also followed from special relativity, 

that the world line of such a particle in the local coordinate system (Xi) would 

be a geodesic. Since this was an invariant property, it would also be true of 

the world line in all coordinate systems, such as (xJ. He then invoked the 

‘principle of continuity’ to justify the important conclusion that the world line 

of a free material point would be a geodesic in finite regions of the manifold 

as well. 

Einstein has used arguments very similar to those described above. In 

particular, he has used the assumption that special relativity holds in infinitesimal 

regions of the spacetime manifold of general relativity in a manner close to that 

of Schlick, to introduce the metric tensor and some of its properties, especially 

those relating to the behavior of infinitesimal rods and clocks.62 However this 

assumption was never related to the principle of equivalence, which was always 

formulated in Minkowski spacetimes. In addition, he was cautious in his use 

of this assumption, since he held that it was only true to a limited extent. This 

emerged in the correspondence between Einstein and Schlick, following Schlick’s 

article. 

We know from this correspondence that Einstein had seen Schlick’s article 

prior to its publicationand that he approved of it wholeheartedly.63 Six weeks 

after their initial exchange, however, Einstein wrote to Schlick to point out an 

error in one of the arguments sketched out above: 

The derivation of the law of motion of a point mass given on page 184 proceeds 
from the motion of a point being a straight line, when considered in the local 
coordinate system. But from this nothing can be derived. In general, the local 
coordinate system has a meaning only in the infinitely small and in the infinitely small 
every continuous line is a straight line. The correct derivation runs as follows: in 
principle there can exist finite (matter-free) parts of the world for which 

d.9 = dx: + . . . - dX: 

with an appropriate choice of the reference system. (If this were not the case, then 

“A. Einstein, “Die Grundlage . ,” pp. 777 - 778; Meaning of Relativily, pp. 62 - 64. In a 
letter to P. Painlevi, 7 December 1921. EA 19 003, Einstein stresses that the general theory rests 
completely on the assumption that spacetime behaves as it does in special relativity in infinitely 
small elements of the spacetime manifold. 

6’M. Schlick 10 A. Einstein. 4 February 1917, EA 21 568; A. Einstein to M. Schlick, 6 February 
1917, EA 21 612. 
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the Galilean law of inertia and the special theory of relativity could not have held 
good.) In such a part of the world, the Galilean law of inertia holds with this choice 
of reference system; and the world line is a straight line and therefore a geodetic line, 
with an arbitrary choice of coordinates. 

That the world line of a point is a geodetic line in other cases too (if none other 
that gravitational forces act) is an hypothesis. even if a very obvious one.“’ 

Einstein’s objection bears directly on the assumption that special relativity 

does hold in an infinitesimal region of the spacetime manifold of general 

relativity. He claims that it can only hold in a limited sense, for in such regions 

we cannot formulate the requirement that the world line of a free point mass 

be a geodesic. (Note that Einstein called such lines ‘straight’ in a Galilean 

reference system, since their spatial coordinates are linear functions of the time 

coordinate.) 

Rather, as Einstein indicates here and as was his own practice elsewhere, when 

one discusses the motion of free point-masses, one must consider finite regions 

of the manifold in both special and general relativity. From the assumption that 

special relativity holds infinitesimally in general relativity, it does not follow 

that the world line of a free point mass will be a geodesic in general relativity. 

Einstein’s approach here and throughout his early work, was to take this result 

in general relativity as strongly suggested by the corresponding result in special 

relativity, but in the last analysis still an independent assumption. (Of course 

later, he sought to derive this result in general relativity from the gravitational 

field equations.) 

Finally, Einsteiticomments here provide one more reason for his failure 

to retain an infinitesimal principle of equivalence after he briefly entertained 

one in 1912. As he came to realize, such a principle could not deal with the 

motion of bodies, the consideration of which formed the core of his principle. 

In the next section, I turn to examine whether Einstein’s objection to Schlick 

holds. If it does, then he has pointed out a rarely acknowledged, but nevertheless 

devastating, difficulty for the traditional infinitesimal principle of equivalence.65 

If he is correct, then the restriction to infinitesimal regions makes it impossible 

to distinguish the geodesic world lines of free point masses from other world 

lines and thus it is impossible to judge whether - in the words of Pauli’s 

formulation - “gravitation has no influence on . . . the motion of particles.” 

“A. Einstein to M. Schlick, 21 March 1917, EA 21 614. Schlick corrected the argument in accord 
with Einstein’s remarks in the republication of the article in monograph form. See M. Schlick, 
Roum und Zeir in der gegenwaerrigen Physik (Berlin: Springer, 1920). pp. 60- 62 and its English 
translation, Space und Time in Conremporary Physics (New York: Oxford University Press, 1920), 
pp. 60-61. 

“‘Torretti, pp. 150- 151, p. 316 has made the same objection in this context using virtually the 
same words as Einstein, but independently of him. Torretti writes, “In a Riemannian manifold, 
every curve is ‘straight in the infinitesimal’.” He illustrates his point vividly by pointing out that 
the streets which run along both parallels of latitude and meridians on the earth’s surface are straight 
in the infinitesimal of such cities as Chicago, but only the meridians are geodesics. 
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10. The Problem of Infinitesimal Regions 

When Pauli and Schlick wrote of special relativity holding in infinitely small 

regions of the spacetime manifold of general relativity, they could not have 

meant that special relativity holds in its usual sense. For whatever an infinitesimal 

or infinitely small region is, it must contain at least one point. Special relativity 

requires the vanishing of the Riemann- Christoffel curvature tensor. This 

requirement is well defined at every point of the manifold and is typically not 

satisfied in general relativity. 

Rather they referred to a coordinate dependent result, as is suggested by their 

qualification that special relativity hold in the region in an appropriately defined 

coordinate system. In a neighborhood of any given point p in the spacetime 

manifold in general relativity, it is possible to introduce a ‘local’ coordinate 

system K,, so that at p: the components of the metric g,, have the values 

diag(l,l, 1, - 1); the first (coordinate) derivatives of the components of the metric 

tensor g+,,, and thus also the Christoffel symbols vanish; but, in general, the 

second derivatives g+,,,” will not vanish. 

When special relativity is said to hold in K. in an infinitesimal region around 

p, what is meant is the following. In K,, at p, structures defined on the manifold, 

which do not deal with second and higher (coordinate) derivatives of the metric 

tensor, behave identically to their special relativistic counterparts at any point 

of a Minkowski spacetime in a Galilean coordinate system. The criterion of 

identical behavior is equality of components of the quantities concerned. For 

example, in both cases the metric has components diag( l,l, 1, - 1) which means 

that the coordinate v&ity of light will be unity. Both cases are commonly 

regarded as gravitation free in so far as the Christoffel symbols, the ‘gravitational 

field strengths,’ vanish. And the world line of a free point mass is a ‘straight’ 

line, in the sense that it satisfies the condition d*Xi/d.+ = 0 at p, where s is the 

interval. The two cases differ however when quantities containing gil,mn are 

considered. Most notably the curvature tensor vanishes only in the case of 

Minkowski spacetime. 

The ignoring of second and higher derivatives of the metric tensor is usually 

justified by the introduction of a hierarchy of nestled orders of quantities. 

Examples of first-order quantities contain the g, alone; of second-order 

quantities, the gir and g,+; of third-order quantities, the gik, g;+ and g;,,,,,; 

and so on. One must now imagine that the gj, are given at p alone; the gir,, 

are given by comparing the g, at p and at an infinitesimally close point; and 

the g+,” by comparing the g, at two points infinitesimally close to p, the 

second more removed than the first. Then finally we imagine that access to 

quantities higher than any designated order can be denied by restricting 

consideration to sufficiently small infinitesimal regions around p. 

It is now clear that the notion of these infinitesimal regions is problematic 
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in differential geometry, since such regions cannot be equated with 

neighborhoods in their usual sense or any other structure commonly employed. 

If we are to make a consistent evaluation of Einstein’s objection to Schlick, 

the foregoing discussion must be made more precise. First, ambiguous 

restrictions concerning infinitesimal regions will be replaced by restrictions 

concerning orders of quantities. The assertion that special relativity holds 

infinitesimally in general relativity, will be taken to mean only that special 

relativity holds at a point in the spacetime manifold when quantities up to 

second-order only are considered. 

Second, we can eliminate the dependence on the coordinate system K,, and 

on Galilean coordinate systems in Minkowski spacetime by replacing the 

quantities gik, gi+ and gik,,,,” in the examples of first, second and third-order 

quantities mentioned above, by the covariant quantities g;,, D; and DiDk, 

respectively. Di is the unique covariant derivative operator compatible with the 

metric g,,. The above coordinate dependent notion of identity of quantities in 

the spacetime manifold of general relativity with corresponding quantities in 

a Minkowski spacetime is also naturally replaced by a requirement of 

diffeomorphic equivalence at the two corresponding points of each manifold. 

Finally, we can extend the hierarchical ordering of quantities to those which 

are not constructed solely out of the metric and its derivatives by a technique 

based on one outlined by Geroch. 66 We generate subsets of the set of all 

diffeomorphisms {h} whose domain is some neighborhood of p and which map 

p back onto itself. Let g ’ be the image of g under such a diffeomorphism and 

D( the derivative-operator constructed from g ‘. {hi} are all those 

diffeomorphisms for which g ’ =g at p. {h2} are all those diffeomorphisms for 

which D( = Di at p. {h3} are all those for which D,.‘Dl = DiDk and so on. We find6’ 

{h} 1 {h,) 3 {h,} 1 ... . 

We can think of the members of {hn} as disturbing the manifold about p 

in a way that will not affect the particular nth order quantity used at p to define 

them. More figuratively, they leave undisturbed the infinitesimal region about 

p needed to determine that quantity. Hence it is natural to use these sets of 

diffeomorphisms to define the hierarchy of orders of other quantities defined 

on the manifold. If Q is a quantity defined at p, then the order of any quantity 

F(Q) derived from it in the hierarchy of orders engendered by Q is the smallest 

value of n for which we always have F(Q ‘) = F(Q), where Q ’ is the image of 

661 am grateful to David Malament for making available to me mimeographed lecture notes of 
Robert Geroch, in which the technique is outlined. 

“‘If members of {h} map a point with coordinates 2 to one with y’. then at p members of {h,} 
satisfy ~8,~ = d;; members of {hJ satisfy the additional condition f,km = 0; members of {h3} satisfy 
the additional condition Y’.~,_” = 0 and so on. Commas denote differentiation, with respect to 9. 



Einstein’s Principle of Equivalence 241 

Q under any member of {hn}. 

Let c be a curve through p differentiable to all orders with a tangent vector 

X. We can also classify the hierarchy of quantities generated by c at p by 

considering the images of c under members of {h}. If an image curve c’ has 

the tangent vector X’, then we find that X’ is first order since X’=X only 

under any member of {h,}. Writing Dx =x’D,, we find 0,.X’ = DxX only 

under the members of {h,}. Hence DxX is a second-order quantity. Similarly 

DxX is of order n + 1 for all positive integers n.” 

Now let the curve c passing through p be a geodesic parametrized by the 

interval s and have tangent vector X=d/d.s. By definition, at every point of 

c in some neighborhood of p, X will satisfy the condition 

DxX = 0. 

It necessarily follows that at p 

0,0,X = 0 D,o,D,X=O . . . (Dx)“X=O . . . 

for all positive integers n.69 

Einstein’s objection that “in the infinitely small every continuous line is a 

straight line” can now be made more precise. If we restrict ourselves to quantities 

of first order, then at p we can only characterize curves throughp by their tangent 

vectors, if defined. But if c* is any curve through p with tangent vector X*, 

then there will always-be a geodesic c through p with tangent vector X equal 

to X*. That is, as far as first-order quantities are concerned one cannot 

6*1t is important to note that one can only consistently compare orders of quantities if their orders 
are assigned within a hierarchy generated by the same structure. Any tensor will generate a hierarchy 
of quantities in which that tensor is of first order, since all tensors are invariant under the members 
of (h,). For example, the curvature tensor will be of first order in a hierarchy it generates, whereas 
it is of third order in the hierarchy generated by the metric tensor. In the text I tacitly assume that 
one can compare the orders of quantities in the metric tensor hierarchy with the orders of quantities 
in the hierarchy engendered by a geodesic through p. This is justified by the fact that these two 
hierarchies can be combined as follows. Each member of the set of geodesics {c) through p has 
a parametrization by the interval s induced upon it by the metric tensor g. Conversely, given this 
same parametrization we can recover the original g, through the condition g(X,X) = 1 for all tangent 
vectors X= d1d.s. Therefore for the present purpose, we can consider g and associated quantities 
as well as the set of tangent vectors (X) and associated quantities as dependent on {c) and its 
parametrization. In particular, the image of {c} and its parametrization under a member of {h} will 
generate a new metric tensor g’ and a new set of tangent vectors [X’). We can now determine 
the orders of these and related quantities in the manner outlined earlier. The expected results do 
obtain. For example, both g and X are first order in this hierarchy. 

@This argument establishes the necessity of these additional conditions. Their necessity can be 
illustrated in the example of a two-dimensional Euclidean space. In the usual Cartesian coordinate 
system, geodesics passing through the origin are y = mx, for m a constant. However, the curves 
y =x” for all n>2 satisfy the condition D,X= 0 at the origin. The conditions (D,)“X= 0 for all positive 
integers n are nor sufficient. In the above Euclidean space they are satisfied at the origin by the 
smooth curve y= 0 when x= 0; y= exp( - I/x’) for all other x, but this curve is not a geodesic. (I 
am grateful to Al Janis for this last point.) 
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distinguish smooth curves from geodesics. If we read Einstein’s ‘continuous 

line’ as ‘smooth curve’, then this first-order indistinguishability seems to espress 

his point more precisely. 

In the context of the infinitesimal principle of equivalence however, access 

to first and second-order quantities is allowed. It follows that a geodesic c with 

tangent vector X will be indistinguishable from any sufficiently smooth curve 

c* with tangent vector X*, provided X*=X and D,+X* = DxX= 0. Of course, 

the higher derivatives of X* along c* will not vanish in general. So c* need not 

be a geodesic. Since Einstein’s objection was concerned in effect with this second- 

order case, it would have been better stated as “the world lines of any particles 

unaccelerated at p (i.e. 0,X= 0) are indistinguishable from geodesics.” 

It is now also clear that any restriction on the order of quantities accessible 

at p will make it impossible to distinguish geodesics from other curves. If 

quantities to order n are allowed, then we cannot distinguish a geodesic c from 

any other sufficiently smooth curve c* if they agree on quantities up to order 

n. Nevertheless, c* need not be a geodesic since any of the (D,Y.)mX* may fail 

to vanish for ~z>n - 1. 

Another way to arrive at similar results is to consider c ‘, the image of c under 

any member of {L}. By definition, c ’ will be indistinguishable from c to order 

n at p. That is, they will agree on any quantity up to order n which characterizes 

them. For example, X’=X, Dx,X’ = D,VX=O, . . . (D,Y,)ln-ilX’= (D.Y)~n-L)X’=O. 

But as before, c’ will not be a geodesic in general since its derivatives of order 

greater than n - 1 need not vanish. 
The results of this section vindicate Einstein’s objection to Schlick. If we 

understand the in%?itesimal principle of equivalence to assert that special 

relativity holds at a point in the spacetime manifold of general relativity up to 

second-order quantities only, then it follows that we cannot formulate special 

relativity’s requirement that the world line of a free point mass be a geodesic. 

In the terminology used by Pauli, Schlick and Einstein, we would say that, 

in the infinitesimal region concerned in the ‘local’ coordinate system KO, the 

fact that a world line satisfies the condition dzX/ds* = 0 does not mean that 

it is a geodesic. This much is obvious once we realize that the restriction to 

infinitesimal regions effectively involves a restriction to the consideration of 

quantities at a single point in the manifold. However, we now also see that, 

under a consistent treatment of this restriction, the higher derivative terms which 

might enable us to distinguish other curves satisfying this condition from 

geodesics are not accessible from within these infinitesimal regions. 

11. Real and Fictitious Gravitational Fields 

The infinitesimal principle of equivalence tells us that the spacetime manifolds 
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of special and general relativity share the same first and second-order structure 

at a point. For example, it tells us that the metric g and compatible derivative 

operator D, at a single point in each manifold are diffeomorphically equivalent. 

This result is not deep - it really only depends on the fact that both metrics 

have the same signature. 

Presumably, this result is what Synge had in mind when he lamented in the 

introduction to his well-known text on general relativity that he never understood 

what I assume to be the infinitesimal principle of equivalence. 

Does it mean that the signature of the spacetime metric is + :! (or - 2 if you prefer 
the other convention)? If so. it is important, but hardly a Principle. Does it mean 
that the effects of a gravitational field are indistinguishable from the effects of an 
observer’s acceleration? If so, it is false. In Einstein’s theory, either there is a 
gravitational field or there is none according as the Riemann tensor does not or does 
vanish.“’ 

Synge’s response to this difficulty is to insist that the effects of a true 

gravitational field are distinguishable from those of a fictitious field produced 

by the acceleration of the observer, through an invariant criterion based on the 

Riemann - Christoffel curvature tensor. 

It should now be clear that Einstein would not endorse this response to the 

difficulties of the infinitesimal principle of equivalence. For here Synge is 

proposing to resurrect precisely the distinction whose breakdown was crucial 

to Einstein’s discovery of the general theory of relativity. Einstein explained 

his attitude to this que&on in correspondence with Laue, after Laue had pointed 

out that the Riemann - Christoffel curvature tensor vanishes in the context of 

the rotating disk problem: 

It is true that in that case the R,,,, vanish, so that one could say: “There is no 
gravitational field present.” However, what characterizes the existence of a 
gravitational field from the empirical standpoint is the non-vanishing of the r!, 
[coefficients of the affine connection], not the non-vanishing of the R,,,,. If one does 
not think intuitively in such a way, one cannot grasp why something like a curvature 
should have anything at all to do with gravitation. In any case, no reasonable person 
would have hit upon such a thing. The key for the understanding of the equality of 
inertia1 and gravitational mass is missing.” 

Here Einstein reminds Laue that he had been able to recognize that the 

relativistic theory of gravitational fields should be a theory dealing with metrics 

of non-vanishing curvature, precisely because he was able to recognize that 

special relativity, the theory which dealt with a metric of vanishing curvature, 

‘5ynge, p. ix. 
“A. Einstein to M. Laue. 12 September 1950, EA 16 148. 
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was really also the theory of a special type of gravitational field. He could see 

this because, in turn, the Minkowski metric induced a structure identical to a 

classical gravitational field on the relative spaces of accelerating frames of 

reference and, unlike Synge, he had resisted the temptation of regarding this 

structure as somehow fictitious or different to ‘real’ gravitational fields. (We 

have seen earlier how the l-l, can appear as the field strengths of this structure 

in the relative spaces concerned.) 

In the last analysis, over a half century after Einstein found and used this 

key, it matters little to one’s application of the theory if one follows Synge and 

says that “the Riemann tensor . . . is the gravitational field”” or if one follows 

Einstein and calls the metric tensor, the gravitational field. For the connection 

between these structures and the gravitational fields of relative spaces which 

they generalize, is essentially only an heuristic one. Perhaps Synge’s approach 

is more comfortable for those who wish to continue thinking of special relativity 

as a gravitation-free case. For them, the presence of a gravitational field is the 

intrusion of some kind of perturbation into the Minkowski metric, in the same 

way as classicial gravitational fields arise as anisotropies in otherwise constant 

scalar fields. If the curvature of a metric field is non-vanishing, then even a 

freely falling observer can detect this perturbation through the presence of tidal 

gravitational forces and he may well also be able to identify some nearby massive 

body which is largely responsible for it.73 

Personally however, I find Einstein’s attitude more comfortable and the 

association of gravitational fields with metrics of non-vanishing curvature only 

an arbitrary and unnecessary distinction. For such a distinction masks one of 

the most beautifulof Einstein’s insights, that there is no essential difference 

between inertia and gravity. According to general relativity, the same structure 
- the metric - governs the motion of a body in free fall in the “gravitation 

free” case of special relativity or in free fall in a classically recognizable 

gravitational field. If we are to call any structure ‘gravitational field’ in relativity 

theory, then it should be the metric. 

‘5ynge. p. viii. 
“Einstein and Rosen have added a curious twist to the standard objection that the gravitational 

fields produced by acceleration cannot be ‘true’ gravitational fields since they have no sources. 
Recalling the principle of equivalence by name, they consider a coordinate system {x.} adapted to 
a uniformly accelerated frame of reference in Minkowski spacetime and, in the now familiar manner, 
associate a homogeneous gravitational field with it. This accelerated frame cannot fill all of 
Minkowski spacetime. In the case !hey consider, their frame fills the submanifold given by fy,)‘Xy,)‘, 
where k) is the Galilean coordinate system used to define the frame (See their footnote, p. 74). 
They note that the Minkowski metric is a solution of the usual gravitational field equations of general 
relativity in the coordinate system {x,}, but that certain components (T,, and r,,) of the otherwise 
everywhere vanishing source stress-energy tensor become singular along the hypersurface x, = 0, 
which is a boundary of the submanifold containing the accelerated frame. This represents a kind 
of source mass or energy distribution. They introduce the example so they can proceed to illustrate 
how such singularities can be removed. For further details see A. Einstein and N. Rosen, ‘The 
Particle Problem in General Relativity,’ Physical Review 48 (1935). 74. 
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12. What was Einstein’s Principle of Equivalence 

Einstein’s principle of equivalence asserted that the properties of space, which 
manifest themselves in inertial effects, are really the properties of a field structure 
in space; moreover this same structure also governs gravitational effects. As 
a result, the privileged inertial states of motion defined by inertial effects are 
not properties of space but of this structure and the various possible dispositions 
of inertial motions in space are determined completely by it. Space of itself is 
to be expected to designate no states of motion as privileged. 

This principle guided Einstein to seek his general theory of relativity as a 
gravitation theory in which special relativity was a special case. There the 
principle found precise theoretical expression. The structure responsible for 
inertial and gravitational effects is the metric tensor. The spacetime manifold 
itself has no properties which would enable us to designate the motion associated 
with any given world line as privileged, that is as ‘inertial’ or “unaccelerated.” 
This designation depends entirely on the metric and the affine structure for 
spacetime which it determines. 

The purpose of the ‘Einstein elevator’ thought experiment was to show that 
the structures associated with supposedly gravitation-free special relativity were 
already intimately connected with gravitation. To demonstrate this, he 
transformed from an inertial frame of reference to a uniformly accelerated frame 
and showed that a structure indistinguishable from a classical homogeneous 
gravitational field was induced by the Minkowski metric on the associated 
relative space. 

This property of theMinkowski metric enabled Einstein to identify it as an 
instance of the four-dimensional generalization of classical gravitational fields. 
This identification set Einstein on a royal road to his general theory of relativity. 
For it effectively reduced his task to that of finding a theory which generalized 
the properties of the Minkowski metric in a way enabling treatment of arbitrary 
gravitational fields. 

Unfortunately, Einstein’s contemporaries seized upon one of Einstein’s 
intermediate results, that in certain cases the gravitational fields of relative spaces 
have a relative existence, dependent on the choice of frame of reference. They 
sought to generalize this result from the simple cases in Minkowski spacetime 
which Einstein considered, to arbitrary gravitational fields. It has rarely been 
acknowledged that Einstein never endorsed the principle which results, here 
called the “infinitesimal principle of equivalence.” Moreover, his early 
correspondence contains a devastating objection to this principle: in infinitesimal 
regions of the spacetime manifold it is impossible to distinguish geodesics from 
many other curves and therefore impossible to decide whether a point mass is 
in free fall. 

Some readers may feel dissatisfied that Einstein’s principle of equivalence 
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finds the uncontroversial expression indicated above in the general theory of 

relativity. On the contrary, I find it a source of great satisfaction and a testament 

to the coherence and clarity of Einstein’s vision. For it shows that Einstein has 

been completely successful in taking an idea, which was quite extraordinary 

when conceived in 1907, and incorporating it completely into the body of a now 

universally accepted physical theory. In recent decades there has been much 

criticism of ‘the’ principle of equivalence. But the principle under cogent attack 

has rarely been Einstein’s version. For, to paraphrase Einstein’s 1916 reflection 

on the critics of Mach, “even those who regard themselves as Einstein’s 

opponents barely know how much of Einstein’s views they have imbibed, so 

to speak, with their mother’s milk.“” 

- 

“A. Einstein, ‘Ernst Mach,’ Physikolische Zeifschrift 17 (1916). 102. Of course, the original 
quotation is recovered by replacing ‘Einstein’ by ‘Mach.’ This image may complement Synge’s (pp. 
ix-x) memorable image of the principle of equivalence as a midwife at the birth of general relativity 
who is now to suffer burial, but at least with appropriate honors. 
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ERRATUM 

J. Norton, ‘What Was Einstein’s Principle of Equivalence?‘, Studies in History 
and Philosophy of Science 16 (1985), 203. 

On p. 224 in this article Fig. 1 is referred to. This figure did not appear in 
the original article and it is now shown below. 
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Fig. 1. Comparison of old view of special relativity with new view informed by principle of 
equivalence. 
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