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Equilibrium states are used as limit states to define thermodynamically reversible processes. When

these processes are understood in terms of statistical physics, these limit states can change with

time due to thermal fluctuations. For macroscopic systems, the changes are insignificant on

ordinary time scales and what little change there is can be suppressed by macroscopically

negligible, entropy-creating dissipation. For systems of molecular sizes, the changes are large on

short time scales. They can only sometimes be suppressed with significant entropy-creating

dissipation, and this entropy creation is unavoidable if any process is to proceed to completion. As

a result, at molecular scales, thermodynamically reversible processes are impossible in principle.

Unlike the macroscopic case, they cannot be realized even approximately when we account for all

sources of dissipation, and argumentation invoking them on molecular scales can lead to spurious

conclusions. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4966907]

I. INTRODUCTION

In ordinary thermodynamics, a reversible process is,
loosely speaking, one whose driving forces are so delicately
balanced around equilibrium that only a very slight distur-
bance to them can lead the process to reverse direction.
Because such processes are arbitrarily close to a perfect bal-
ance of driving forces, they proceed arbitrarily slowly while
their states remain arbitrarily close to equilibrium states.
They can never become equilibrium states, for otherwise
there would be no imbalance of driving forces, no change,
and no process. Equilibrium states remain as they are.

This circumstance changes when we allow that thermal
systems consist of very many interacting components, such
as molecules, whose behavior is to be analyzed statistically.
Then what were the limiting equilibrium states of ordinary
thermodynamics are no longer unchanging. Molecular scale
thermal fluctuations—thermal noise—move them to neigh-
boring states and, since there are no directed imbalances of
driving forces, these migrations meander indifferently in a
random walk. The very slight imbalance of forces of a
reversible process must overcome this meandering if the pro-
cess is to complete.

On macroscopic scales, the fluctuation-derived meander-
ing is negligible and what little there is can easily be over-
come by very slight imbalances in the driving forces. On
molecular scales, however, fluctuations are large and signifi-
cant imbalances in the driving forces are needed to bring any
process to completion. Because such imbalances are dissipa-
tive, creating entropy, reversible processes are impossible on
molecular scales. Completion of a process is only assured
probabilistically, with higher probabilities requiring greater
entropy creation.

The principal goal of this paper is to demonstrate these
last claims at the general level and to provide an illustra-
tion of them in the isothermal expansion of an ideal gas.
Section II introduces the essential but neglected idea that
one cannot properly assess the dissipation associated with
a process unless one accounts for all sources of dissipation.
For reversible processes, that includes the normally sup-
pressed devices that guide the process in its slow advance.
Section III contains the main results for the cases of pro-
cesses in both isolated and in isothermal systems. These

results are then illustrated in Sec. IV with the case of an
isothermal expansion of an ideal gas.

II. SELF-CONTAINED THERMODYNAMICALLY

REVERSIBLE PROCESSES

If our treatment of thermodynamically reversible pro-
cesses is to be consistent, then we must consider the thermal
and statistical properties of all the components involved in
the process. This may seem like a minor point, however,
fully implementing it is essential to all that follows. A full
implementation is rare since many common goals can be met
without it. We may merely wish, for example, to determine
the thermodynamic properties of some system, such as the
volume dependence of the entropy of a gas. Then we can
take shortcuts.

In a common case of the shortcut, the gas is confined to a
cylinder under a weighted piston and the entirety of the sys-
tem is within a heat bath that maintains all components at a
fixed temperature T. Following a familiar textbook treat-
ment,1 the piston is weighted by a pile of sand whose mass is
just enough to balance the gas pressure. No process will
ensue, unless something changes. Tiny grains of sand are
removed, one by one, successively lightening the load on the
piston. With each removal the gas expands slightly and the
gas pressure drops slightly until the slightly less weighty pis-
ton once again balances the pressure. Repeated removals
realize a thermodynamically reversible expansion of the
confined gas. The entropy change in the gas DS can now be
determined by tracking the heat Qrev gained by the gas,
according to the Clausius formula DS¼

Ð
dQrev/T.

In common treatments of thermodynamically reversible
processes in statistical physics, all details of the machinery
that slowly carries the process forward are omitted. In its
place is the abstract notion of the manipulation of a variable,
such as the volume of the expanding gas. The variable may
be identified as an “external parameter” whose manipulation
comprises a “switching process,”2 or as a “control parame-
ter” that is “controlled by an external agent.”3

In assuming that the external agent can slowly advance
the control parameter, these reduced treatments neglect dissi-
pation in the physical processes implementing the external
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manipulation. It is assumed tacitly, for example, that the
mechanism that lightens the load on the piston can be imple-
mented in some reversible, non-dissipative manner that is
consistent with the fuller thermodynamic and statistical
theory.

In principle, an explicit determination of compatibility of
the process with our fuller theory would require examina-
tions of the details of the external agent’s physical processes.
Just what are the details of the non-dissipative machinery
that picks off the sand grains one at a time? Only then have
we shown that the process is theoretically self-contained;
that is, it relies only on the components manifestly conform-
ing to our thermodynamic and statistical theory.

For macroscopic systems, neglecting these details is
usually benign, especially if our concern is merely comput-
ing thermodynamic properties. The need to attend to these
details becomes acute when we investigate processes on
molecular scales, for fluctuations within molecular scale
machinery are large and can disrupt the intended operation.
As we shall see, entropy creating disequilibria are required
to overcome the fluctuations and bring any process in a
molecular-scale device to completion.

The discussion that follows is limited to self-contained
thermodynamically reversible processes, since these are the
only processes fully licensed by thermodynamic and statisti-
cal theory.

III. THERMODYNAMICALLY REVERSIBLE

PROCESSES: GENERAL RESULTS

A. Limit states in ordinary thermodynamics

In ordinary thermodynamics, a thermodynamically revers-
ible process is one whose states come arbitrarily close to lim-
iting equilibrium states. For isolated systems, the equilibrium
states approached have constant thermodynamic entropy. We
can track the progress of the process by a general parameter k,
such as the volume V of an expanding gas or the temperature
T of a cooling system. If the process progresses from an initial
value kinit to a final value kfin, we have for the total entropy
Stot of the system that

dStot=dk ¼ 0 and

StotðkinitÞ ¼ ::: ¼ StotðkÞ ¼ ::: ¼ StotðkfinÞ: (1)

An important special case is an isothermal reversible pro-
cess, where the subsystem “sys” is maintained at a constant
temperature T by heat exchange with a heat bath environ-
ment “env,” with which it exchanges no work. For this pro-
cess, the constancy of total entropy in Eq. (1) is equivalent to
the constancy of the free energy F¼U – TS of the system,
where U is the internal energy4

dFsys=dk ¼ 0 and

FsysðkinitÞ ¼ ::: ¼ FsysðkÞ ¼ ::: ¼ FsysðkfinÞ: (2)

A generalized force X and associated displacement variable
x are defined so that the amount of work done dW by the sys-
tem in a small constant-temperature change is dW¼X dx. If
X is the total generalized force and we use the displacement
variable x to track the degree of completion of the process,
so that x¼ k, then X is given by5

X ¼ �@Fsys

@x

����
T

¼ � dFsys

dk
: (3)

An equivalent formulation of Eq. (2) is

X ¼ 0: (4)

The most familiar example of such a generalized force is
pressure P, and its associated displacement variable is vol-
ume V. For a reversible expansion of a gas, the total general-
ized force will be the suitably formulated sum of the
pressure force of the gas and the restraining forces on the pis-
ton that hold the system in equilibrium. They will sum to
zero, as required in Eq. (4).

B. Limit states in statistical physics

If a system is in one of the limiting equilibrium states of
Eqs. (1) and (2) of ordinary thermodynamics, it is unchang-
ing. If we allow for its molecular constitution, then the equi-
librium is dynamic with its components interacting under the
Hamiltonian evolution of a phase space. Through this inter-
nal dynamics, these states—now just called “limit states”—
are no longer unchanging. They can migrate to neighboring
states through what manifests macroscopically as thermal
fluctuations. We will consider two cases.

First, consider an isolated system. It is microcanonical;
that is, its probability density is uniform over its classical
phase space. As it migrates over the phase space, the proba-
bility that the system is in some region of the phase space is
proportional to its phase volume

probability / phase volume: (5)

System states can be associated with regions of the phase
space. The entropy S assigned to them is

S / k ln ðphase volumeÞ; (6)

where k is Boltzmann’s constant. Combining these equa-
tions, we have

S / k ln ðprobabilityÞ or probability / exp ðS=kÞ: (7)

Einstein6 called Eq. (7) “Boltzmann’s principle” when he
introduced it in his analysis of fluctuations. It tells us that
isolated thermal systems can fluctuate from high to low
entropy states, but only with very small probability.

Second, consider a system in a heat bath, with which it
exchanges heat but no work, and is maintained by the bath at
constant temperature T. The system will be canonically dis-
tributed over its phase space. That means that the probability
density of finding the system at a phase point with energy E,
in the course of its migration over the phase space, is propor-
tional to exp(–E/kT). Hence, the probability that it is found
in some subvolume Vph of its entire phase space is propor-
tional to the partition integral Z(Vph), so that

probability / ZðVphÞ ¼
ð

Vph

exp ð–E=kTÞdX; (8)

where dX is the phase space volume element.7 A thermal
state is just the set of phase points that realize it. Thus the
partition integral of Eq. (8) over the volume of phase space
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Vph containing these points gives the state’s free energy F,
through the canonical formula

F ¼ –kT ln Z: (9)

Combining these equations, we have

F / –kT ln ðprobabilityÞ or probability / exp ð–F=kTÞ:
(10)

The limit states of a reversible process in an isolated sys-
tem represented in Eq. (1) have equal entropy S. It follows
from Eq. (7) that thermal fluctuations can bring the system
spontaneously to any of the limit states with equal
probability

PðkinitÞ ¼… ¼ PðkÞ ¼… ¼ PðkfinÞ: (11)

This result of equal probability also holds for the limit states
of a reversible process, represented in Eq. (2) in an isother-
mal system, for each state has equal free energy F and thus
in Eq. (10) equal probability.

A familiar illustration of Eq. (11) is provided by a micro-
scopically visible Brownian particle suspended in water in a
dish. If k is the position of the particle as it moves about,
then each k state has equal entropy S (if the dish is isolated)
or equal free energy F (if the dish is in a heat bath). Over
time, as it executes a random walk, the Brownian particle
will visit each position, and according to Eq. (11), with equal
probability. The time needed to realize these motions
depends on the scale. For smaller Brownian particles, as their
size approaches molecular scales, the motions become rapid,
comparable to those of individual water molecules. For
larger particles, approaching macroscopic sizes, the motions
become so slow as to be negligible. A pea suspended in qui-
escent broth will eventually explore the complete bowl
through its Brownian motion, but its migration will require
eons and be undetectable on all normal time scales.

Allowing for the statistical character of the limiting equi-
librium states of a thermodynamically reversible process
thus reveals that they are no longer equilibrium states.
Rather, they are pseudo-equilibrium states in the sense that
they are no longer unchanging and can migrate spontane-
ously through thermal fluctuations to other states. In macro-
scopic applications, this pseudo-equilibrium character can be
ignored because the time scales needed for it to manifest are
enormous. On molecular scales, this pseudo-equilibrium
character can no longer be ignored.

C. Fluctuations make reversible processes impossible on
molecular scales

To be a reversible process in ordinary thermodynamics,
the states of the process must come arbitrarily close to limit
states. As they do so, the states become ever more delicately
balanced. In ordinary thermodynamics, these limit states are
equilibrium states and there are no disturbing forces present
to upset the delicate balance.

This is no longer so once we allow for the statistical char-
acter of the limiting states. Thermal fluctuations in statistical
physics provide disturbing forces. They bump a thermal sys-
tem to neighboring states. Volume fluctuations lead a gas
volume to expand and contract slightly, and energy fluctua-
tions lead the gas to heat and cool slightly through energy

exchanges with its thermal surroundings. If the system is in
one of the limit states of Eq. (1) or Eq. (2) of some reversible
process, fluctuations will bump the system to neighboring
equilibrium states and then on still further to other neighbor-
ing equilibrium states, and so on, in a migration that can
proceed over all the equilibrium states of the process. The
equilibrium states have become pseudo-equilibrium states,
confounded by fluctuations. The fluctuation-induced migra-
tion will eventually lead the system to occupy all the limit
states with equal probability, as shown in Eq. (11).

With macroscopic systems, the migration can be neglected
because the time scales needed to realize it are enormous. The
pea in quiescent broth mentioned above illustrates the time
scale. It will eventually migrate over the entire bowl, but not
in our lifetimes. With molecular-scale systems, the migration
will be rapid and completely disrupt the intended reversible
process. We may initiate a molecular-scale process in or very
near to some state corresponding to kinit and then expect that
the system will very slowly migrate through the states of
intermediate k values, terminating in that of kfin. However,
thermal fluctuations will defeat these expectations and move
the system rapidly among all the states. Termination will be
impossible. If the system occupies a state at or near that of
kfin, fluctuations will immediately divert it to other, earlier
states in the process. Thermodynamically reversible processes
on molecular scales are impossible.

D. Dissipation suppresses fluctuations probabilistically

Once we allow that the limiting states are in pseudo-
equilibrium, we see that an attempt at a reversible process
can only be brought to completion if we introduce some dis-
sipative, entropy-creating disequilibrium or imbalance of
forces that overpowers the fluctuations. The process of com-
pressing a gas can be driven to completion by a piston whose
weight is sufficiently great to overpower the pressure of the
gas, even allowing for fluctuations in the pressure. The dissi-
pation replaces the uniform probability distribution, Eq. (11),
by one that favors completion, which can only be assured to
some nominated probability. That is, we set the ratio P(kfin)/
P(kinit), which determines how much more likely the system
is to settle into the final state kfin as opposed to reverting by
fluctuations to the initial state kinit. The corresponding dissi-
pation is computed through Eqs. (7) and (10). For an isolated
system, the entropy change DS between initial and final
states is

DS ¼ k ln ½PðkfinÞ=PðkinitÞ� or

PðkfinÞ=PðkinitÞ ¼ exp ðDS=kÞ: (12)

For a system in a heat bath at temperature T with which it
exchanges no work, the free energy change DF between ini-
tial and final states is

DF ¼ –kT ln ½PðkfinÞ=PðkinitÞ� or

PðkfinÞ=PðkinitÞ ¼ exp ð–DF=kTÞ: (13)

These equations apply to a system that is initially set up in
state kinit, then released and allowed to equilibrate. We write
P(kfin) for the probability that it will subsequently be found
in state kfin. The probability P(kinit) is not the probability
that the system was initially set up in state kinit. It is the
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probability that the system, after achieving its new equilibra-
tion, reverts by a fluctuation to the initial state.

These two formulas, Eqs. (12) and (13), do not give the
total entropy and free energy changes directly for most pro-
cesses. Commonly, processes can only arrive at the final
state if many other intermediate states are also accessible,
such as the intermediate states of the expansion of a gas.
Their accessibility leads to further dissipative creation of
entropy or further free energy decreases. Because these inter-
mediate states remain accessible, this further dissipation
must be included in the computation of the total dissipation.
To arrive at the minimum dissipation, all of these other inter-
mediate states, incompatible with the initial and final states,
must be rendered highly improbable by careful design of the
process. That is achievable but not done in most standard
processes. If we do contrive the process so that the initial
and final states only are accessible,8 then

PðkinitÞ þ PðkfinÞ ¼ 1: (14)

With this contrivance, the minimum entropy creation in an
isolated system is9

DSmin ¼ k ln
P kinitð Þ þ P kfinð Þ

P kinitð Þ

� �
¼ k ln 1þ P kfinð Þ

P kinitð Þ

� �
:

(15)

For a system in a heat bath at temperature T with which it
exchanges no work, the minimum free energy change in exe-
cuting the process is

DFmin ¼ �kT ln
P kinitð Þ þ P kfinð Þ

P kinitð Þ

� �

¼ �kT ln 1þ P kfinð Þ
P kinitð Þ

� �
: (16)

A modest probability ratio for success is

PðkfinÞ=PðkinitÞ ¼ 20; for which DS ¼ 3k and

DF ¼ –3kT: (17)

In molecular scale systems, a dissipation of entropy 3 k and
free energy 3kT is comparable to the entire amounts of
entropy and free energy changes. It is a significant departure
from equilibrium. Thus the conditions for completion of a
thermodynamically reversible process cannot be met at
molecular scales: completion requires that the system not
approach the limit states too closely, which entails that the
process cannot be thermodynamically reversible.

For macroscopic systems with component numbers of the
order of Avogadro’s number N¼ 6.022� 1023, quantities of
entropy are of the order of Nk and quantities of free energy
of NkT. The dissipation required is negligible. If completion
is required with very high probability, we might choose the
ratio

PðkfinÞ=PðkinitÞ ¼ 7:2� 1010; for which

DS ¼ 25 k and DF ¼ –25 kT: (18)

This level of dissipation is still insignificant for macroscopic
systems. Thus, molecular-scale dissipation provides no
obstacle to thermodynamically reversible processes at mac-
roscopic scales.

If our intended process is the migration of a Brownian par-
ticle from one side of a dish to the other, the entropy-
creating disequilibrium needed to suppress fluctuations is
introduced by inclining the dish so that the Brownian particle
is driven in the intended direction by gravity.

The quantities of entropy produced and the associated
probabilities of completion are computed in the supplemen-
tary material.10 The supplementary material also illustrates a
simple way in which the intermediate states can be made
probabilistically inaccessible, in order to arrive at the case of
minimum dissipation.

IV. SELF-CONTAINED, ISOTHERMAL EXPANSION

OF A IDEAL GAS

The general results of Sec. III can be illustrated in the case
of a self-contained, reversible, isothermal expansion of an
ideal gas. For the results of Sec. III to apply, the analysis
must include the mechanism through which the expanding
gas is kept in near perfect equilibrium with the restraining
piston. If that mechanism is the device of Sec. II that removes
sand grains one at a time, its operation would have to be ana-
lyzed for dissipative processes. This analysis would be com-
plicated; it would also be unnecessary, since there are simpler
ways of achieving the same effect of a self-contained process.
One way is to replace the homogeneous gravitational field
acting on the piston by another, inhomogeneous field. It
weakens as the piston rises by just the amount needed to
maintain a mechanical balance of forces, without any manip-
ulation of the weighting of the piston itself.11 Another
approach is presented in detail below. Through a simple
mechanical contrivance described in Sec. IV K, the piston
area increases as the gas expands in such a way that the total
upward force exerted by the gas on the piston remains con-
stant, balancing the constant weight of the piston.

A. The confined gas and the stages of its expansion

An ideal gas of n monatomic molecules is contained in a
chamber under a horizontal, weighted piston in a heat bath
that maintains the system of gas and piston at a constant tem-
perature T. The gas expands reversibly by raising the piston,
passing work energy to the rising weight. The expansion is
made self-contained by ensuring that the piston area A(h) of
the piston at height h increases by just the right amount that
the weight of the piston always balances the mean pressure
force of the gas for the limiting states. The expansion begins
with the piston at h¼ h0 when the gas has spatial volume
V(h0) and ends at h¼ h1with gas spatial volume V(h1).

The stages of the process of expansion are, loosely speak-
ing, parameterized by the height to which the gas has lifted
the piston. This is not precisely correct, however, because
the fluctuating thermal energy of the piston will allow it to
rise above the maximum extension of the gas. We shall see
that this effect is negligible for a macroscopic gas, but is cer-
tainly noticeable for a gas of one or few molecules. To
accommodate this effect, the limiting equilibrium states
associated with the expansion are parameterized by the
height h above the chamber floor that demarcates the region
accessible to the gas and the region accessible to the piston.
That is, if the height of the ith molecule is given by xi and
the height of the piston by xpist, then the limiting equilibrium
states are characterized by
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0 < xi < h; for all i and xpist � h: (19)

The resulting “h-states” are not completely disjoint in the
sense that two may share some of the same microstates. For
example, states h and 2 h may share the same microstate as
follows. In state h, a thermal fluctuation may abruptly push
the piston to height 2 h while leaving all the gas molecules
below height h. The same microstate may be associated with
state 2 h if all the gas molecules unexpectedly collect below
height h through a thermal fluctuation.

This example makes clear that an extensive overlap of the
microstates attached to h-states is improbable for a macro-
scopic gas of large n. For, as we shall see in calculations
below, large volume fluctuations are extremely improbable
in the short term. Correspondingly, for large n, the mass of
the piston will be great, so that the spatial extent of its short-
term fluctuations will be small. However for a gas of one or
few molecules, the fluctuations will be large in relation to
the system size. As a result, a single microstate, specified by
the position of the gas molecules and piston, can correspond
to a wide range of h-states. This ambiguity in the h-states is
part of the breakdown of reversible processes at molecular
scales; there is a failure of distinctness of the individual
stages through which we would like to the process to pass.

Figure 1 illustrates how h-states for heights h and 2 h are
almost certainly realized by distinct microstates, if the gas is
macroscopic. However, just one microstate can realize both
h-states for a gas of very few molecules.

B. Gas-piston Hamiltonian

The ideal gas is composed of n monatomic molecules,
each of mass m. The canonical position coordinates of the
molecules are collected in the vector x, whose 3 n compo-
nents ({xi}, {yi}, {zi}), where i¼ 1,…,n, are the Cartesian
position coordinates of each of the n molecules, and the
canonical momenta are similarly collected in the vector p,
whose 3 n components are the corresponding momentum
components of each of the molecules. The piston of mass M
has two relevant degrees of freedom, its vertical canonical
position xpist and its vertical canonical momentum ppist. The
combined Hamiltonian of the gas-piston system is

Egas-pistonðx; p; xpist; ppistÞ ¼ Egasðx; pÞ
þ Epistonðxpist; ppistÞ; (20)

where we require in Eq. (20) that

xpist > xi; for all i; (21)

and

Egasðx; pÞ ¼
X
i¼1;n

p2=2m;

Epistonðxpist; ppistÞ ¼ ppist
2=2M þMgxpist: (22)

The constant g is the gravitational field strength; it is
assumed that the individual molecules do not feel the gravi-
tational force acting on the piston.

The condition xpist> xi asserts that the piston never falls to
or below the height of the highest molecule. It expresses the
coupling between gas and piston. The fact of this coupling
would normally mean that the gas-piston partition function
does not factor. However, the h-state of Eq. (19) has the
fortunate property of breaking the coupling for each fixed
value of h, so that the gas-piston partition integral for state h,
Zgas-piston(h), is the product of the partition integrals for the
individual gas and piston systems

Zgas-pistonðhÞ ¼ Zgas ðhÞ � ZpistonðhÞ; (23)

and their free energies F, as given by the canonical formula
F¼ –kT ln Z, will sum

Fgas-pistonðhÞ ¼ Fgas ðhÞ þ FpistonðhÞ: (24)

Thus, we can compute the thermodynamic properties of the
gas and piston independently for these states.

C. Gas properties

The gas partition integral is

Zgas hð Þ

¼
ð

all x;p

exp �
E x; pð Þ

kT

� �
dx dp

¼
Y

i¼1;n

ð
all pi

exp � px;i
2 þ py;i

2 þ pz;i
2

2mkT

� �

� dpx;i dpy;i dpz;i

Y
i¼1;n

ðh

xi¼0

ð ð
accessible yi;zi

dxidyidzi

¼ 2pmkTð Þ3n=2
Y

i¼1;n

ðh

xi¼0

A xið Þdxi

¼ 2pmkTð Þ3n=2
V hð Þn; (25)

Fig. 1. For gases of very many molecules, two different h-states have distinct molecular microstates (first and second cylinders). For gases of very few mole-

cules, two different h-states can have the same molecular microstates (third and fourth cylinders).
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where A(xi) is the gas chamber cross-sectional area at height
xi and V(h) is the spatial volume accessible to the gas mole-
cules between the chamber floor and height h. The canonical
free energy is

FgasðhÞ ¼ –kT ln ZgasðhÞ ¼ –nkT ln VðhÞ þ constgasðTÞ;
(26)

where constgas(T) is a constant independent of h. Because V
is a monotonic function of h, we can use it as the path param-
eter k to define the generalized force

Xgas Vð Þ ¼ � @

@V

����
T

Fgas Vð Þ ¼ nkT

V
: (27)

That is, the generalized force is just the ordinary pressure of
the gas according to the ideal gas law.

D. Piston properties

The piston partition integral is

Zpiston hð Þ ¼
ð

allp;x

exp �
Episton x;pð Þ

kT

� �
dxdp

¼
ð

allp

exp � p2

2MkT

� �
dp �

ð1
x¼h

exp �Mgx

kT

� �
dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkT
p kT

Mg

� �
exp �Mgh

kT

� �
: (28)

The canonical free energy is

FpistonðhÞ ¼ �kT ln ZpistonðhÞ ¼ Mghþ constpistonðTÞ;
(29)

where constpiston(T) is a constant independent of h. Using V
as the path parameter, the generalized force is

Xpiston Vð Þ ¼ � @

@V

����
T

Fpiston Vð Þ

¼ � @
@h

����
T

Fpiston hð Þ � dh

dV hð Þ
¼ � Mg

A hð Þ
: (30)

This is the ordinary gravitational force exerted per unit area
by the weight of the piston.

E. Balance of forces

During the expansion, the piston rises from height h¼ h0

to h¼ h1. Associated with each height is a limit state in
which the mean gas pressure force and piston weight are
equal, in the correlate of the equilibrium of ordinary thermo-
dynamics. We recover this equality from the condition for
equilibrium: the free energy of the gas-and-piston system
remains constant as in Eq. (2), or, equivalently, that the total
generalized force vanishes as in Eq. (4). Setting the sum of
the generalized forces of Eqs. (27) and (30) to zero, we have

nkT

V hð Þ
� Mg

A hð Þ
¼ 0: (31)

Since A(h)¼ dV(h)/dh, this last condition leads to the differ-
ential equation

A hð Þ ¼ dV hð Þ
dh

¼ Mg

nkT
V hð Þ; (32)

for h0< h< h1. The solution is

V hð Þ ¼ V h0ð Þexp
Mg h� h0ð Þ

nkT

� �
(33)

and

A hð Þ ¼ dV hð Þ
dh

¼ Mg

nkT
V h0ð Þexp

Mg h� h0ð Þ
nkT

� �

¼ A h0ð Þexp
Mg h� h0ð Þ

nkT

� �
: (34)

Equations (32) and (34) tell us that the gas volume and pis-
ton area must each grow exponentially with height h during
the expansion h0< h< h1 for equilibrium to be maintained.

The probability P(h) of each h-state is proportional to
the partition integral Zgas-piston(h)¼ Zgas (h).Zpiston(h), and is
given as

P hð Þ / Zgas-piston hð Þ

¼ 2pmkTð Þ3n=2
V hð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkT
p kT

Mg

� �
exp �Mgh

kT

� �

¼ 2pmkTð Þ3n=2
V h0ð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkT
p kT

Mg

� �

� exp �Mgh0

kT

� �
¼ const Tð Þ; (35)

where Eq. (33) was used to show

V hð Þn exp �Mgh

kT

� �

¼ V h0ð Þn exp
Mg h� h0ð Þ

nkT

� �� �n

� exp �Mg h� h0ð Þ
kT

� �
exp �Mgh0

kT

� �

¼ V h0ð Þn exp �Mgh0

kT

� �
: (36)

That is, Eq. (35) shows that each of the h-states is equally
probable. It also follows from Eq. (35) that the free energy
of each of these states is the same.

F. Fluctuations negligible for a macroscopic gas

with large n

In the h-state of Eq. (19), the mean gas pressure is bal-
anced precisely by the weight of the piston. Fluctuations will
lead the gas pressure force sometimes to exceed and some-
times to be less than the piston weight. As a result, the sys-
tem will migrate up or down to neighboring, equally
probable h-states. For a macroscopic gas, however, the
migration will be so slow that it will not manifest on ordi-
nary time scales.

To see this, recall that the motions that lead to the migra-
tion of the piston are due to the thermal fluctuations in the
piston. The piston will have equipartition energy of kT/2 in
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its kinetic energy 1
2

Mv2
rms, where vrms is the piston root-

mean-square velocity. A liter of an ideal gas forms a cube of
side 10 cm with a piston area of 100 cm2. At one atmosphere
pressure, or 1.033 kg/cm2 in engineering units, the piston

mass M is therefore 103.3 kg. Solving 1
2

Mv2
rms¼ (1/2)kT at

25 �C, we find vrms¼ 0.0631 Å/s. Since 1 Å¼ 10�10 m is ten
orders of magnitude smaller than macroscopic scales and
this tiny speed will not be sustained unidirectionally more
than momentarily, the h-state is, on ordinary time scales and
at macroscopic length scales, a quiescent state.

Another way to see that fluctuations are negligible for
macroscopic systems is to look at the fluctuations in each of
the gas and piston systems taken individually. If we assume
that the piston is confined to heights h�H but otherwise
free, its positions will be Boltzmann-distributed probabilisti-
cally according to a probability density over heights h

ppiston hð Þ ¼ Mg

kT
exp �Mg h� Hð Þ

kT

� �
; (37)

for h�H. This is an exponential distribution for which

mean ¼ standard deviation ¼ kT=Mg: (38)

Thus, kT/Mg is a measure of the linear size of the
fluctuation-induced displacements of the piston from its floor
height H.

This measure is very small in comparison with the overall
linear size of the gas-piston system. A convenient measure
of the linear size of the gas is the ratio V(H)/A(H). If the gas
is confined to a cubical box, this ratio is the length of the
side. We find directly from Eqs. (32) and (38) that

ðsize of piston position fluctuationsÞ¼ðlinear size gasÞ=n:

(39)

For macroscopic samples of gases, n will be of the order of
Avogadro’s number N¼ 6.022� 1023. Hence, the fluctuation-
induced disturbance to the equilibrium limit state will be neg-
ligible. For example, a liter of an ideal gas at 25 �C and one
atmosphere pressure forms a cube of side 10 cm and contains
2.46� 1022 molecules. According to Eq. (39), the linear size
of the fluctuations is 10/(2.46� 1022) cm¼ 4.065� 10�14 Å.
That is, the size of the fluctuations is roughly three orders of
magnitude smaller than atomic sizes.

Consideration of volume fluctuations in the gas yields
similar negligible deviations. The probability that an ideal
gas of n molecules of volume V fluctuates to a smaller vol-
ume V – DV is [(V – DV)/V]n. Because n is so large, this
probability can only appreciably differ from zero if DV/V is
very small, so that [(V – DV)/V]n � [1 – n(DV/V)]¼ [1 – DV/
(V/n)]. This probability will still only appreciably differ from
zero if the magnitude of the fluctuations DV is of the order of
V/n or smaller; that is,

ðsize of gas volume fluctuationsÞ < ðgas volumeÞ=n:

(40)

The h-state of Eq. (19) does not represent perfectly the inter-
mediate states of the gas expansion, since fluctuations in gas
volume and piston position will breach the boundary at
height h between the gas and the piston. However, these cal-
culations show that for macroscopic gases the breaches are
entirely negligible.

Therefore, a reversible gas expansion is quite achievable in
the sense that its states can be brought arbitrarily close by
macroscopic standards to the equilibrium states. Nonetheless,
just as in the case of the Brownian motion of a macroscopic
body, tiny fluctuations will accumulate over long times and
eventually enable the gas-piston system to migrate over the
full extent of configurations available to it. This migration is
represented by the equal probabilities of all states of Eq. (11).

G. Fluctuations for n 5 1

Matters change when we take small values of n. The
extreme case of a one-molecule gas is dominated by fluctua-
tions. The formulae developed above still apply. However,
we must now set n¼ 1 in them. In place of Eq. (39), we have
a piston whose thermal fluctuations fling the piston through
distances of the order of the size of the entire gas

ðsize of piston position fluctuationsÞ ¼ ðlinear size gasÞ:
(41)

It is also evident without calculation that a gas of a single
molecule is undergoing massive density fluctuations as the
molecule moves from region to region. If we associate the
volume of a gas with the places where its density is high,
these in turn can be understood as volume fluctuations of the
size of the gas-confining chamber

ðsize of gas volume fluctuationsÞ ’ ðgas volumeÞ: (42)

That fluctuations will dominate is apparent from brief
reflections without calculations. It is assumed that the pres-
sure of the one-molecule gas is sufficient to support the
weight of the piston. That is, in molecular terms, repeated
collisions with a single rapidly moving molecule are enough
to support the mass of the piston. This can only be the case if
the piston mass itself is extremely small. If that is so, then its
own thermal motion will be considerable.

These fluctuations defeat attempts to realize a thermody-
namically reversible expansion of a gas of one or few mole-
cules. In such an expansion, the gas state is always
arbitrarily close to the limit states and it is supposed to
migrate indefinitely slowly through them, under the delicate
and very slight imbalance of pressure and weight forces.
This circumstance is unrealizable. The fluctuations just
described will completely destabilize the delicate imbalance.
If the gas-piston system has arrived at any height, fluctua-
tions will immediately move it to a different height. A nearly
completed expansion may be flung back to the start of the
expansion, just as an unexpanded gas can be rapidly
expanded by a fluctuation. Instead of rising serenely, the pis-
ton will jump about wildly with no discernible start or finish
to the process.

H. Suppressing fluctuations: A rough estimate

An assured expansion, not confounded by fluctuations,
will only be possible if we introduce enough entropy-
creating disequilibrium to suppress the fluctuations. A very
rough first estimate confirms that the amount of entropy that
must be created will be considerably greater than the entropy
change between the states of the unexpanded and the
expanded one-molecule gas. It will be negligibly small,
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however, in relation to the entropy change in the expansion
of macroscopic gas.

If the motion of expansion is to dominate the random ther-
mal motions, then the vertical velocity of the piston in the
overall process must greatly exceed its random thermal
velocity. Assume that the mass M of the piston is slightly
smaller than the equilibrium value required in Eq. (32), so
that there is a small, net upward force on the piston. This
upward force gradually accelerates the piston until, at the
end of its expansion, it has acquired the vertical speed vproc

and then slams to a halt. This process speed “proc” is a rough
measure of the overall vertical motion of the piston.

The associated kinetic energy 1
2

Mv2
proc is derived from

work done on the piston. It is potentially usable work energy
that is lost as heat to the environment at the conclusion of
the process. Had the process been carried out non-
dissipatively, that is, reversibly, the only difference in the
end state is that this lost work would have been stored as
extra potential energy in the ascent of a weightier piston and
the corresponding quantity of heat would not have been
passed irreversibly to the environment.

The dissipation is represented most compactly in terms
of free energy. The free energy change of the gas-piston
system is

DF ¼ DFgas þ DFpist

¼ DUgas � T DSgas þ DUpist � TDSpist: (43)

For a reversible, non-dissipative expansion, we have
DF¼ 0. Most of the terms in this expression remain the
same if we now consider the dissipative expansion. The
internal energy Ugas and entropy Sgas of the gas are functions
of state, so they remain the same. The entropy of the piston
is unaltered because it is just a raised mass, so DSpist¼ 0.
Overall, in the transition to a dissipative expansion, the free
energy change DF is depressed from its zero value merely
by the decrease in DUpist below its reversible value in the

amount of the lost work 1
2

Mv2
proc. That is, we have

DF ¼ � 1

2
Mv2

proc: (44)

The dissipation can also be measured by an entropy
change, but now we must consider the entropy of the gas,
piston, and environment together. If DUenv,rev is the change
of internal energy of the environment in the case of the
reversible process, then we have

DUenv ¼ DUenv;rev þ
1

2
Mv2

proc: (45)

Hence, the total entropy change in the environment is

DSenv ¼ DUenv;rev=T þ 1

2
Mv2

proc=T: (46)

Since the start and end states of the gas are the same for the
reversible and the irreversible processes and entropy is a
function of state, the entropy change in the gas is the same
for both processes. It follows that:

DSgas ¼ –DUenv;rev=T; (47)

so that the total entropy change for gas, piston, and environ-
ment together is

DS ¼ DSgas þ DSenv ¼
1

2
Mv2

proc=T: (48)

Thus, the net increase in entropy results entirely from
the irreversible transfer of the potentially usable work as

heat Q¼ 1
2

Mv2
proc to the environment, which creates

entropy Q/T.
The random thermal motion of the piston is measured by

its root-mean-square vertical speed vtherm, which satisfies

1

2
Mv2

therm ¼
1

2
kT: (49)

The condition that random thermal motions not confound the
process is

vproc 	 vtherm: (50)

It follows immediately from the two preceding equations
that

DF
 � 1

2
kT and DS	 1

2
k: (51)

On molecular scales, this decrease in free energy or increase
of entropy represents a considerable dissipation and depar-
ture from equilibrium. For comparison, the free energy and
entropy changes usually attributed to a two-fold, reversible
isothermal expansion of a one-molecule gas are just DF
¼�kT ln 2¼�0.69 kT and DS¼ k ln 2¼ 0.69 k.

I. Suppressing fluctuations: Free energy changes

Lightening the piston so that vproc	 vtherm enables the
expansion to complete with dissipation corresponding to
the free energy decrease and entropy increase of Eq. (51)
with a reasonably high, but unquantified, probability. A
closer analysis using Eq. (13) provides quantitative rela-
tions among the amount piston mass lightening, the dissipa-
tion, and the probability of completion. We will find that
negligible lightening and dissipation can assure completion
with high probability for a macroscopic gas, but that no
amount of lightening can achieve this for a one-molecule
gas.

If Meq is the equilibrium mass defined through Eq. (32),
then we introduce a slight disequilibrium by setting the pis-
ton mass M to be slightly smaller

M ¼ Meq � DM; (52)

where DM> 0. Instead of Eq. (35), we have for the probabil-
ities P(h) of the h-states

P hð Þ / Zgas-piston hð Þ

¼ 2pmkTð Þ3n=2
V hð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkT
p kT

Mg

� �
exp �Mgh

kT

� �

¼ 2pmkTð Þ3n=2
V h0ð Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMkT
p kT

Mg

� �

� exp �Mgh0

kT

� �
exp

DMg h� h0ð Þ
kT

� �
; (53)

since now
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V hð Þn exp �Mgh

kT

� �
¼ V h0ð Þn exp

Meqg h� h0ð Þ
nkT

� �� �n

exp �
Meq � DM
� 	

g h� h0ð Þ
kT

� �
exp �Mgh0

kT

� �

¼ V h0ð Þn exp �Mgh0

kT

� �
exp

DMg h� h0ð Þ
kT

� �
: (54)

Most of the terms in Eq. (53) are independent of h, so it can
be re-expressed more usefully as12

P h1ð Þ
P h0ð Þ

¼ exp
DMg h1 � h0ð Þ

kT

� �
¼ Z h1ð Þ

Z h0ð Þ
¼ exp �DF

kT

� �
:

(55)

The free energy change DF between the two states is intro-
duced using the canonical formula F¼�kT ln Z. It follows
that the free energy change is

DF ¼ –DMgðh1 � h0Þ: (56)

This relation admits the obvious reading: in reducing
the piston mass by DM below the equilibrium mass Meq,
we lose the possibility of recovering work DMg(h1� h0)
when the piston is raised from height h0 to h1. That
work would otherwise appear as a corresponding
increase in the potential energy of the unreduced piston
of mass M.

We have already seen from Sec. III D that a macro-
scopically negligible free energy change DF¼�25kT is
sufficient to ensure a very favorable probability of
completion. From Eq. (56), we see that this free energy
change will correspond to a macroscopically negligible
mass reduction. For a height difference of (h1� h0)
¼ 10 cm and a gas at 300 K, the mass reduction is DM
¼ 25kT/g(h1� h0)¼ 1.05� 10�19 kg, which is consider-
ably less than the 103.3-kg piston mass of Sec. IV F.

In sum, a thermodynamically reversible expansion of a
macroscopic gas is possible in the following sense. The gas-
piston system can expand slowly through a sequence of
states that are, by macroscopic standards, very close to limit
states that are stable in the shorter term. Fluctuations intro-
duce negligible complications.

J. Failure to suppress fluctuations for the one-molecule

gas

The suppression of fluctuations breaks down completely,
however, for a gas of one or few molecules. For the maxi-
mum suppression is achieved by reducing the mass of the
piston arbitrarily close to zero mass. That is, we achieve the
maximum probability ratio favoring completion in Eq. (55)
when DM approaches its maximum value Meq. This maxi-
mum is the case of a massless piston, which is no piston at
all; we are simply releasing the gas freely into an infinite
space. Therefore, a canonical probability distribution is not
established, and the probabilistic analysis used here does not
apply. To preserve its applicability, consider instead the
limiting behavior as DM approaches Meq arbitrarily closely
but never actually equals Meq. Using Eq. (33) with Eq. (55),
we have

P h1ð Þ
P h0ð Þ

� �
DM!Meq

¼ exp
Meqg h1 � h0ð Þ

kT

� �

¼ exp
Meqg h1 � h0ð Þ

nkT

� �� �n

¼ V h1ð Þ
V h0ð Þ

� �n

: (57)

This probability ratio is just the probability ratio associated
with a spontaneous recompression of the gas of n indepen-
dently moving molecules from volume V(h1) to V(h0).

For gases of one or few molecules, the maximum of Eq.
(57) presents serious problems. For the one-molecule gas
undergoing a two-fold volume expansion, the largest proba-
bility ratio possible is just 2:1. Even in the most dissipative
case, with the piston reduced to its lightest mass, the expand-
ing one-molecule gas is just twice as likely to be in the
intended final state than in the initial state.

In sum, a thermodynamically reversible expansion of a
gas of one or few molecules is impossible. Fluctuations
prevent the states of the expansion migrating very close to
and very slowly past the requisite sequence of pseudo-
equilibrium states. In the system described, even dissipation
in significant measure at molecular scales is unable to sup-
press the fluctuations. This in turn results from the limiting
pseudo-equilibrium states themselves being so confounded
by fluctuations that they cannot persist even briefly as stable
states.

K. How piston area increases

It is not so straightforward to devise ordinary mechanical
devices that can achieve the increase of piston area required
by Eq. (34). The simplest arrangement, illustrated in Fig. 2,
is to have a gas chamber of rectangular section that flares out
horizontally in one direction with heights h> h0. The cham-
ber is fitted with a horizontal, rectangular piston that
increases in area as it ascends, so it can keep the gas con-
fined. The piston consists of two rectangular parts that slide

Fig. 2. A weighted piston remains in equilibrium with a gas during the gas

expansion, since the area of the piston increases as the expansion proceeds,

allowing the diminished gas pressure to exert the same upward force on the

piston.
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without friction over each other and are guided apart by rails
as the piston ascends.

The sliding of the parts of the piston introduces new ther-
mal degrees of freedom. They can be neglected because they
are independent of the expansion. At all piston heights, each
sliding part has the same slight horizontal motion corre-
sponding to whatever slack is in the fitting of the rails to the
parts. Since this slack will be the same at all stages of the
expansion, they will contribute an additive term to the piston
Hamiltonian that is independent of h and thus will not figure
in the h dependence of the piston free energy of Eq. (29) or
in the generalized force of Eq. (30).

Finally, the expansion under this scheme cannot continue
indefinitely. Otherwise the gas-piston system can access an
infinity of equally accessible stages of expansion, which
means that it will never achieve equilibrium. The probability
distributions used above, however, depend on the assumption
that equilibrium has been achieved. The expansion could be
halted by placing a maximum stop on the piston at some
maximum height; however, this would introduce complicat-
ing thermal effects. As the piston approaches the stop, it
would behave like a one-molecule gas and resist compres-
sion. The simplest remedy is to assume that, at some height
Hmax� h1, the chamber-piston system reverts to one with
constant piston area. Then achieving greater stages of expan-
sion ceases to be equally easy and an equilibration is
possible.

V. CONCLUSION

The accommodation of the molecular constitution of mat-
ter by ordinary thermodynamics introduces negligible com-
plications for the thermodynamic analysis of macroscopic
systems. However, as a matter of principle, once we take
into account all the processes involved, thermal fluctuations
preclude thermodynamically reversible processes in systems
at molecular scales. This has been shown in Sec. III for the
general case of any isolated system and for any system main-
tained at constant temperature by a heat bath with which it
exchanges no work.

In standard treatments of molecular-scale systems, ther-
modynamically reversible processes are described as advanc-
ing very slowly under the guidance of a parameter that is
manipulated externally by unspecified processes. The requi-
site precise, external control of the parameter is only possible
through considerable dissipation in those unspecified pro-
cesses. It renders the overall process irreversible. The neglect
of this additional dissipation masks the impossibility
described here.

The most general result is the impossibility of a reversible
process for any isolated, molecular-scale system, since it
covers all other cases. Imagine that somehow we could real-
ize a reversible process in some part of an isolated system.
Since reversibility is unachievable for the total isolated sys-
tem, there must be an unaccounted dissipation in some other
part of the system.

The impossibility of molecular-scale, thermodynami-
cally reversible processes derives from Eqs. (11)–(13) of
Secs. III B and III D, which apply quite generally. If we
have a process that is intended to be thermodynamically
reversible, Eq. (11) tells us that thermal fluctuations lead
the system to meander back and forth indefinitely if its
states are in or arbitrarily near the limiting states. They
will eventually realize a uniform probability distribution

over the process stages. Such a process does not complete.
Equations (12) and (13) determine the order of magnitude
of the dissipation needed to overcome the fluctuations and
assure probabilistic completion of the intended process.
Equations (15) and (16) give the minimum dissipation in a
special circumstance contrived to be least dissipative. The
dissipation is negligible on macroscopic scales and signifi-
cant on molecular scales.

The idea that one could undertake a thermodynamically
reversible expansion of a gas of a single molecule was intro-
duced by Szilard13 as part of his celebrated analysis of
Maxwell’s demon. The idea has become standard in the now
voluminous literature that develops Szilard’s work.14

Szilard15 briefly recognized the problem that the gas pressure
is wildly fluctuating, as it acts to lift a weight coupled to the
piston. The problem is dismissed with the parenthetically
inserted remark:

The transmission of force to the weight is best
arranged so that the force exerted by the weight on
the piston at any position of the latter equals the
average pressure of the gas.

We have now seen here in detail that this is an inadequate
response. There is no arrangement that can convey the work
done by the expanding one-molecule gas to a raised weight
in a way that maintains thermodynamic reversibility of the
entire process. Any arrangement, no matter how simple or
complicated in design, is subject to the above general rela-
tions. They affirm that fluctuations will disrupt the intended
operation, unless the fluctuations can be suppressed by the
dissipative creation of entropy in quantities significant at
molecular scales.
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