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1. Introduction 
 Skepticism over inductive inference is so deeply woven into our philosophical tradition 

that we name its many forms after our philosophical heroes or villains: Hume’s problem of 

induction, Hempel’s problem of the raven, Goodman’s problem of grue and Quine’s problem of 

underdetermination. This proliferation of skepticism surrounds inductive inference with a 

miasma of philosophical decay. Yet, at the same time, inductive inference in science brings us 

the most extraordinary achievements. We live with a disturbing tension. Doubting inductive 

inference in the generality is philosophically respectable. There can be no inductive justification 

of inductive inference, Hume assured us. Yet doubting inductive inferences in the specific seems 

pointlessly quarrelsome. Are we to doubt the inductive inferences that tell us that the planets 

orbit the sun, that matter is made of atoms, that life evolved, that microbes carry contagion, and 

so on? To echo C. D. Broad’s lament: inductive reasoning is the glory of science but the scandal 

of philosophy.1 

 
1 Broad’s (1926, p. 67) exact wording has proven less quotable: “May we venture to hope that 

when Bacon’s next centenary is celebrated the great work which he set going will be completed; 

and that Inductive Reasoning, which has long been the glory of Science, will have ceased to be 

the scandal of Philosophy?” 
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 The standard response by philosophers is to quarantine our skeptical doubts in an 

isolation ward where the fever may rage. We do not allow the contagion to pass beyond these 

confines, lest we risk derision when our non-philosophical friends discover that we think nothing 

justifies the belief that the sun will rise tomorrow.  

 Sometimes skepticism is merely troublesome sophistry and quarantine is the best 

response. However sometimes skepticism is a clue that there is a real problem. If the skepticism 

is persistent, spanning not just centuries but millennia, it might well be a strong signal of a deep 

unsolved, foundational problem. This I believe to be the case with inductive inference. The 

skepticism persists because have not properly identified the foundational problem and so have 

had no chance to solve it. 

 The real problem is that we have simply misunderstood how inductive inference works. 

We think it is sufficiently like deductive inference that we can model our account of inductive 

inference on it. We try to distinguish the valid inductive inferences from the invalid in the same 

way as we do with deductive logic: by checking which of them conforms with one of a set of 

universal inference schemas. That is how formal logic works. Valid inferences are distinguished 

from invalid ones by their form. After two millennia, we need to accept that this model has failed 

for inductive inference and is responsible for the lingering miasma that surrounds inductive 

inference. 

 We dispel it with a better understanding of the nature of inductive inference. The correct 

model, I will argue below, is that inductive inferences are not warranted by conformity with a 

universal template. None succeed universally, so that there is no universally applicable logic of 

induction. Rather, inductive inferences are not warranted formally but materially. They are 

justified by facts, that is, by the factual matter that is itself the content of argumentation.  

 My principal goal in this paper is to illustrate how this material theory of induction 

emerges as the natural response to our failure to identify a universal, formal logic of inductive 

inference. In Section 2, I will review several of these failures, including the failure of 

universality of Bayesian inductive logic. In Section 3, I will argue that the mode of its failure 

will lead us directly to the material theory of induction, which replaces the ever-elusive universal 

logic of inductive inference with many localized logics of induction, each adapted to specific 

domains by the facts prevailing there. Section 4 provides a general argument for the view. It is 

illustrated in Section 5 and 6 with the case of Galileo’s law of fall. Conclusions are in Section 7. 
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2. Skepticism about Universal Logics of Inductive Inference 
 There is no formal logic of inductive inference that succeeds universally. I stress the 

“universally.” Most logics work quite well somewhere. I assert that none work everywhere. This 

is a strong claim and one that needs considerable work to sustain. For there are very many formal 

logics of inductive inference. My approach has been to coalesce these many logics into one of 

three large families of accounts, each of which is powered by one idea. This coalescence makes 

the refutation tractable, for the failure of universality of representatives of each family is easier to 

demonstrate.  This exercise has been explored a little more fully in Norton (2003, 2005). Here I 

will reproduce a few examples of it. 

2.1 Inductive Generalization 

 The first family is inductive generalization.2 It is powered by the notion that an instance 

confirms a generality. Expressed in syllogistic logic, it becomes the schema of enumerative 

induction. Expressed in first order predicate logic, it becomes Hempel’s instance account of 

confirmation. This is the argument form most commonly invoked in traditional skeptical 

analyses. The past history of sunrises inductively supports future sunrises. The past history of 

bread nourishing inductively supports bread always nourishing. They are all instances of the 

schema of enumerative induction: 

Some As are B. 
_____________ 
All A’s are B. 

The schema has survived only through our willful indulgence in ignoring of what everyone 

surely knows: Most commonly, when some A’s are B, it is not the case that all A’s are B. The 

schema simply does not work. Its uncritical use almost always produces bad results. We avoid 

disaster only by carefully contrived selection of our A’s and B’s. 

 The problem becomes quite apparent if we look at real cases in science. After 

extraordinary labors spanning years, Marie Curie finally managed to isolate a mere tenth of a 

gram of radium chloride. She inspected its crystalline form and, on the strength of this one 

sample’s properties, immediately declared a general conclusion (Curie, 1904, p. 26): 

 
2 For a pedagogic introduction, see Norton (2009). 
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The crystals, which form in very acid solution, are elongated needles, those of 

barium chloride having exactly the same appearance as those of radium chloride. 

These inferences and many she made like it involve highly selective choices of A and B. She 

could have generalized from her tenth of a gram sample to conclude that all radium chloride is in 

Paris; or prepared by chemists by fractional crystallization; or comes in tenth of gram weights; or 

is roughly at room temperature; and so on endlessly. She chose only very specific A’s and B’s. 

 How can a formal theory accommodate this narrowness of selection? The only resource 

is to add extra formal clauses to the schema that specify just which A’s and B’s are allowed. It 

takes only a little reflection to see how hopeless is the task. We must find clauses that will 

authorize just Curie’s careful selection as well as all those that might come up in every other 

application of the schema. Indeed a non-chemist will likely fail to see just how carefully 

contrived is Curie’s selection of the property to be generalized. We shall see below that the 

choice of B as “elongated needles [exactly like] those of barium chloride” was no mere idle 

convenience. It was carefully chosen. 

2.2 Hypothetical Induction 

 This family of accounts of inductive inference is powered by the notion that an 

hypothesis accrues inductive support when it deductively entails affirmed evidence. The most 

familiar form is the astronomical saving of the appearances. Hypotheses over the motions of 

heavenly bodies accrue support when they conform to and correctly predict the celestial motions 

we observe (the “appearances”). The great difficulty with this basic notion is its profligacy. If we 

have any hypothesis that saves the appearances, so will any logical strengthening of it. Each of 

Copernican astronomy simpliciter and Copernican astronomy conjoined with some of his 

neoPlatonic assertions about the sun both save the celestial phenomena equally well. Are they 

then equally well supported? 

 As a result, there have been many attempts to rein in simple hypothetical induction, often 

called “hypothetico-deductive confirmation.” It is done by adding conditions that must be met 

before an hypothesis can accrue support from its affirmed deductive consequences. I will discuss 

just one. According to “inference to the best explanation” we require that the hypothesis not just  

entail deductively the affirmed evidence; it must also explain it. In his celebrated work, J. J. 

Thomson (1897) found that cathode rays deflected in electric and magnetic fields just as if they 
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were constituted of massive, charged particles with a specific mass to charge ratio. The best 

explanation of this fact was that cathode rays just are beams of these particles. He thereby set 

aside the alternative view: “the almost unanimous opinion of German physicists [that] they are 

due to some process in the aether,” or, more briefly, some sort of wave phenomenon. 

 The success of the inference was short lived. By the 1920s, with the rise of quantum 

mechanics, the wave character of the electron was soon affirmed. Davisson and Germer (1927) 

found that cathode rays, scattered off a crystal of nickel, formed diffraction patterns just as if the 

rays were waves with wavelengths given by the quantum de Broglie formula.3 The best 

explanation was that these rays are de Broglie waves of this wavelength.4 

 We have two inferences to the best explanation that give strikingly different conclusions. 

That fact alone does not impugn inference to the best explanation as an inductive inference form. 

For inductive inference is fallible and the display of failed inductive inference may merely be 

illustrating the fallibility. Rather, the two inferences illustrate the major failing of inference to the 

best explanation. It is that explanation, understood formally, contributes rather little to the 

outcome of the inference. That outcome is mostly controlled by the factual background we 

assume when making the inference. 

 This manifests in the fact that both of these inferences provide strong support for their 

hypotheses. However the schema of inference to the best explanation provides no formal 

structure for these judgments of strength. If we know in the abstract that some hypothesis is the 

best explanation of the evidence, we have no way to assess how strongly the hypothesis is 

supported. It may be strong, weak or negligible. However, once we look at the specifics in the 

background facts, we can then make the judgment, at least qualitatively. Thomson’s cathode rays 

 
3 Curiously, J. J. Thomson’s son, G. P. (George Paget) conducted similar experiments at the 

same time and also affirmed the wave character of electrons. J. J. did not find this to be a 

refutation of classical physics, but an affirmation of the success of a classical account of the 

electron as a composite particle and field structure. For further discussion of J. J. and G. P.’s 

work and their interactions, see Navaro (2010).  
4 That just this hypothesis specifically is supported is clear from Davisson’s (1937) and G. P. 

Thomson’s (1937) cautious formulations in their Nobel Prize acceptance speeches, as well as the 

award speech (Pleijel 1937). 
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respond in perfect concert to electric and magnetic fields of varying intensity as expected of 

charged particles. Davisson and Germer’s cathode rays deliver a diffraction pattern that is the 

distinctive fingerprint of waves of the requisite wavelength. Hence both inferences are strong. 

 This lesser formal role for explanation reflects the deeper problem with inference to the 

best explanation. It is not a properly developed logic at all. It lacks is a unique, stable, formal 

account of explanation. Accounts of explanation are notoriously scattered. If to explain is to 

subsume under a covering law from which the explanandum is deduced, inference to the best 

explanation reverts to simple hypothetico-deductive confirmation, unless we can provide general 

characterization of just what a law is. If we take explanation to be the displaying of probability 

raisers, then we need to find a probability space in which we can assign probabilities to the 

various propositions concerning the nature of cathode rays. Or if to explain is to display the 

causes, then we need to find a clear pathway through the tangled thicket that is the present 

literature on causation. Or if to explain is to unify, we need some account of the difference 

between mere conjunction of propositions and their unification. Perhaps we can make progress 

on all these questions. But that is mere hope for the future and is not now giving us a precise 

formal theory of inductive inference. It is, to use Lipton’s (2004, pp. 2, 55, 57) wording, more a 

“slogan.” It is an advertisement for what might one day be a properly developed logic. 

2.3 Probabilistic Induction 

 Philosophical fashions change. Even though the idea has been with us for centuries, it is 

only in the last few decades that a probabilistic approach to inductive inference has risen to be 

the dominant approach, in the form of Bayesian confirmation theory. Its appeal is immense. 

There are many contexts in which it produces analyses of extraordinary power. It also has the 

virtue of a mechanical calculus. Once you have determined the probability space and have a 

modicum of probability assignments, solving an inductive problem, even of some complexity, 

may reduce to mere computation, often only a little more challenging than simple arithmetic. 

 This undeniable appeal has encouraged Bayesians to discount or overlook the 

shortcomings of the system. Two shortcomings are of foundational importance. First, the 

Bayesian view is that the entirety of inductive inference is subsumed by its probabilistic 

approach. This is mistaken. Bayesian analysis succeeds only in constrained domains in which 

grounding for its probabilities can be found. Elsewhere it returns meaningless numbers that can 
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mislead profoundly. Second, the Bayesian view mischaracterizes the nature of inductive 

inference. It regards it as a branch of mathematics, so that the explication of inductive inference 

is largely the deriving of theorems in the probability calculus. I will argue below that inductive 

inference is better characterized as an inseparable part of empirical science.  

 Elsewhere, I have joined a minority tradition of Bayesian critics and written at some 

length on the shortcomings of Bayesian confirmation theory. See Norton (2008, 2010, 2010a, 

2011). Here I will work through one problem to illustrate some of the lingering weaknesses of 

Bayesianism. Norton (2010) identifies the “inductive disjunctive fallacy” to which Bayesians are 

prone. It arises as follows. Assume that we have a very large number N+1 of mutually exclusive 

and exhaustive outcomes a0, a1, …, aN. Now assume that we simply have no evidence that 

supports any of the outcomes whatever. It is not that we have no grounds that favor any one 

outcome over another. Rather our evidence is completely bereft of anything helpful in deciding 

their truth or discriminating among them. 

 How can a Bayesian characterize this circumstance of what I shall call “completely 

neutral inductive support”? Each of a0, a1, …, aN must be assigned a very small probability, 

spreading the measure widely, for otherwise we are favoring one. Write this as 

P(ai) = smalli  where i = 0, 1, … , N. 

The actual value smalli assigned to each ai can vary. They definitely need not all be the same. 

They merely need to be very small and non-zero, for a zero amounts to a negative certainty. We 

now compute the probability assigned to the disjunction of all the outcomes excluding a0: 

P(a1 or  … or aN) = P(a1) +  … + P(aN) = small1 + … + smallN 

Since the sum of all the probabilities must be unity (“additivity”), we know that  

1 = small0 + small1 + … + smallN 

so that 

small1 + … + smallN = 1 - small0 = nearly-one 

This last sum must be nearly one since small0 is very small. Combining we have 

P(a1 or  … or aN) = nearly-one 

That is, we are now near certain of (a1 or  … or aN) or, equivalently, near certain that the 

outcome is not a0. 
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 Recall the initial assumption: we simply have no evidence at all concerning the truth of 

the outcomes. Yet a simple, rather mindless manipulation of the probabilities has given us near 

certainty, in contradiction with our initial assumption. Hence I characterize this inference from 

no evidence about the outcomes to near certainty an inductive fallacy, the “inductive disjunctive 

fallacy.” 

 One might imagine that no one would seriously fall into the mechanical manipulation of 

probabilities that leads to the fallacy. It turns out that there are many instances of it, as recounted 

in Norton  (2010, Section 4). For example, Van Inwagen (1996) uses it to answer the (pseudo) 

profound question (p. 95) “Why is there anything at all?” The answer proceeds, in effect, by 

attaching the possible world with no beings to outcome a0, since there can be only way to have 

no beings. All the very many possible worlds with beings are attached to outcomes a1,  … , aN. It 

is now concluded that outcome a0 of a world with no beings is (p.99) “as improbable as anything 

can be.” 

 Once the fallacy is displayed, its source is clear. It stems directly from the key formal 

property of a probability measure: it is an additive measure. All the probabilities of mutually 

disjoint outcomes must add to unity. Hence we have no way to represent completely neutral 

support. If we assign a very small probability to some outcome, additivity forces us to assign 

high probability to the disjunction of the rest. That is we assign strong support or belief to the 

original outcome’s negation; and that is incompatible with having completely neutral evidential 

support. 

 There are, broadly speaking, two ways Bayesians can respond. I categorize them as an 

“inelastic” and an “elastic” response. With the inelastic response, the Bayesian insists that the 

probabilistic computations must be respected. There is no fallacy. There is merely an error in our 

interpretation. Perhaps we should simply discount the possibility of completely neutral evidence 

at the outset. Or, more credibly, a subjective Bayesian may insist that all the probabilities 

involved are arbitrarily selected, subjective beliefs, akin to the way subjective Bayesians treat 

prior probabilities. The difficulty with this last response is that, once we discount the 

probabilities as expressing mere opinion, they cease to represent degrees of inductive support, as 

they should in an inductive logic. The probabilities are supposed to transform from pure opinion 

to a measure inductive of inductive support as conditionalization proceeds. However there is no 

objective criterion in the system that tracks the conversion. Merely having a high probability is 
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not enough to show that the conversion is near completion, as the inductive disjunctive fallacy 

illustrates.5 Given these failures, in my view, the only viable, inelastic response is simply to 

accept that there are cases that elude the Bayesian system and that this is one of them. The 

computation is mathematically correct but merely inapplicable to the case at hand. 

 The elastic response accepts that the additivity of a probability measure prevents it 

representing directly situations of completely neutral inductive support. However probability 

measures can be used indirectly to represent them. The proposal is to replace a single probability 

measure with a set of them. Complete neutrality of evidential support would be captured by 

allowing all probability measures over the outcome space into the set. The proposal is appealing 

initially since the complete neutrality of inductive support appears to be captured by allowing in 

everything possible in the probabilists’ repertoire. If everyone speaks equally, no one is favored. 

 While the proposal fails for technical reasons, 6 it should be resisted by probabilists for a 

principled reason. It is, in effect, giving up the core of the probabilists’ theory: that relations of 

inductive support are represented by an additive measure. The elastic response allows that the 

proper account of inductive support includes non-additivity. Probability measures are demoted to 

artifices. That is, they become adjunct structures used to simulate another non-additive logic 

whose principles are not clearly articulated. We no longer have a probabilitistic logic of 

induction. Rather we have an elastic language that is deformed as needed to accommodate 

whatever inductive behavior is deemed appropriate in the case at hand. 

 In sum, both elastic and inelastic responses lead to the same outcome: there are inductive 

problems that lie outside the Bayesian reach.7 We arrive at this directly from the inelastic 

response and also from the elastic response since the latter reduces additive probability measures 

merely to tools used in the simulation of non-additive inductive relations of support. 

 
5 This version of the inductive disjunctive fallacy includes no conditionalization. However 

conditionalization could be added merely by extending the ai to include very many more 

outcomes aN+1, … , aM, and then conditionalizing on all the outcomes excluding these. 
6 Completely neutral support should be invariant under negation. Sets of probability measures, no 

matter how extensive, do not exhibit this invariance. See Norton (2007, §6). 
7 For another example see Norton (2010a). 
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3. Material Theory of Induction 
 Examples such as these indicate that there is no formal account of inductive inference 

that succeeds universally. However inductive inferences succeed. These examples also suggest 

how that is possible. In the case of inference to the best explanation, we saw that explanation 

itself played a negligible role. What supported the conclusions were background facts. That idea, 

taken to its extreme is the core thesis of a material theory of induction: 

Inductive inferences are warranted by facts, not by formal schemas. 

The clearest illustration is in Curie’s induction on radium chloride. The attempt to explicate it 

with the schema of enumerative induction failed. We could not justify why the schema should be 

limited precisely to the few properties of radium chloride that Curie so confidently generalized. 

 The justification for this restriction cannot be found in any formal analysis of predicates 

and properties. Rather, it lies in the researches of chemists in the nineteenth century. The core 

result is known as “Haüy’s Principle” and is named after one of its earliest proponents, Reny Just 

Haüy. It asserts that, generally, each crystalline substance has a single characteristic 

crystallographic form. The principle is grounded in extensive researches into the chemical 

composition of crystalline structures and into how their atoms may be packed into lattices. That 

means that once one has found the characteristic crystallographic form of some sample of a 

substance, generally one knows it for all samples. 

 Curie’s inductive inference is warranted by Haüy’s Principle and not by conformity to 

any inductive inference schema. There is an inductive risk taken in this conclusion, as indicated 

by the “generally” in the principle. Some substances admit polymorphism, which means that 

they form more than one type of crystal. 

 We can now see why Curie’s induction is limited specifically to the crystallographic form 

of radium chloride rather than the many other properties of Curie’s one tenth gram sample: 

Haüy’s Principle is restricted precisely in this way. Indeed, its formulation is extremely hard 

won. We now know that all crystals fall into one of seven crystallographic families. They are 

defined by the axes characteristic of the crystalline lattice.8 Discerning these families constituted 

 
8 The simplest system is the cubic system. When one learns that table salt form cubic crystals, 

one might imagine that its crystals are all little cubes. They are not. Rather they are many shapes 

with the distinctive property of being derivable from cubes by cleavage along cleavage planes. 
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a major mathematical challenge and it was only after the mathematical problem was solved that 

truly reliable inductive inferences on crystalline forms were possible. When Curie identified 

radium chloride crystals as just like those of barium chloride, she was adopting the expediency of 

not specifying the family formally, but merely allowing that it was the same as that of barium 

chloride. This in turn lent credence to her induction since another principle of chemistry, the law 

of isomorphism, allowed that analogous chemicals formed similar crystals. 

 This core idea of the material theory of induction can be applied in the other examples. 

Probabilistic induction is warranted, according to the material theory, just in so far as there are 

background material facts authorizing the use of probabilities to represent degrees of support. 

Such circumstances might include inferences over populations where physical probabilities are 

introduced through an assumption of random sampling. In the case of the inductive disjunctive 

fallacy above, the probabilistic analysis failed since, by careful design, the problem situation is 

bereft of just the facts needed to authorize the use of probabilities in inductive inference. 

4. A General Argument for the Material Theory of Induction 
 There are two major premises in the general argument. The first is: 

1. Deductive inference is not restrictive; inductive inference is restrictive. 

This premise expresses the distinction traditionally drawn between deductive and inductive logic. 

Deductive inference is not restrictive in the sense that the conclusion of a deductive argument 

expresses no further factual restriction than that already expressed by the premises. Inductive 

inference is restrictive in the sense that the conclusion of an inductive inference must prohibit 

some of the possibilities that are logically compatible with the premises, else it would be 

deductive. It follows that, for any inductive inference, we can always find scenarios, even if 

contrived, that are inhospitable to the inference so that its use in them is not appropriate. That the 

context of an inductive inference is hospitable is a contingent property of the context. Securing 

an hospitable factual background is all that is needed to warrant the inference. The fact—the 

truth—that the background is hospitable is the warrant of the inductive inference: 

Hence, inductive inferences are warranted by facts. 
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Often, of course, we proceed with an inductive inference on the presumption that our warrant is a 

truth. The proper use of the inference is dependent on a later affirmation of the truth of the 

warrant. 

 This requirement for a factual warrant applies to probabilistic inductive inference. To say 

that a circumstance is extremely probable or improbable is to assert a factual claim, albeit 

probabilistic, that goes beyond the facts in evidence.  

 The second premise is: 

2. There is no universally applicable warranting fact for inductive inferences. 

One might to try to warrant inductive inferences by means of a universal fact. Such was the 

proposal by Mill (Bk. III, Ch. III, p. 223) when he sought to ground induction in the “… 

universal fact, which is our warrant for all inferences from experience, … that the course of 

nature is uniform...” However no such, singular fact has been forthcoming. Candidates turn out 

to be either optimistic, contingent falsehoods or vacuous truths. Rather, as we see in the 

examples of this paper, the facts warranting inductive inferences are varied and show no 

indication of deriving from a single, common, universal fact. The warranting facts may impose 

some regularity on the inductive inferences that they support. Those regularities, when described 

systematically, will form an inductive logic. Since there is no universal warranting fact, the 

resulting inductive logics will be applicable only to the restricted domains in which the 

warranting facts obtain.  

Hence, all induction is local. 

5. Illustration: Galileo’s Law of Fall 
 An illustration will show once again the necessity of background facts for inductive 

inference to be supported. Here is an insoluble inductive problem. Given the first members of a 

sequence of numbers: 1, 3, 5, 7, …, what comes next? There are many choices. We could 

continue as the odd numbers: 1, 3, 5, 7, 9, 11, … ; the odd prime numbers including 1: 1, 3, 5, 7, 
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11, 13, …; countably many more continuations for which rules can be given;9 and uncountably 

many more for which no finite rule can be given. With the problem as posed, we have no means 

to discern among the possibilities. No inductive logic can help us. 

 What makes the problem inductively insoluble is that the factual context in which the 

sequence arises is not specified. Once we know the factual context, we can rule out some, many 

or most of the possible continuations. We can infer inductively. 

 What we infer will depend sensitively on the background facts. There are many possible 

factual contexts in which these numbers may appear. They may merely be the numbers read from 

the right hand pages of a book; or from the decimal expansion of 359/2,645.10 Or they may be the 

numbered balls drawn by a randomizing lottery machine. Or they may be numbers offered to us 

in a question in an IQ test. Or they may be numbers devised by a clever psychologist who plans 

to deceive us. Once we know these background facts, the possibilities are reduced and an 

inductive inference is possible. 

 The inferences will be fully controlled by these facts and different in each case. If the 

numbers are page numbers, we will expect the continuation as the familiar odd numbers. If the 

numbers are lottery drawings, we will spread our expectations probabilistically over the 

remaining numbered balls. The cases of the IQ test and the deceiving psychologist are more 

complicated. Each of these background facts will engender a different inductive logic that 

applies just to the domains in which those background facts prevail. 

 Let us pursue one case. The numbers 1, 3, 5, 7, … turn out to be classics in the history 

science. Galileo’s (1638) Two New Sciences presents Galileo’s law of fall in several forms: the 

speed of fall increases in proportion to the time of fall; or the distances fallen increases with the 

square of the times of fall. It could also be expressed so: (Third Day, Naturally Accelerated 

Motion, Thm. II, Prop. II, Cor. I) 

Hence it is clear that if we take any equal intervals of time whatever, counting from 

the beginning of the motion, such as AD, DE, EF, FG, in which the spaces HL, LM, 

 
9 The function f(n) = (2n-1) +(n-1)(n-2)(n-3)(n-4) g(n) returns the original sequence 1, 3, 5, 7 for 

n = 1, 2, 3, 4. But for n = 5, 6, 7, … it returns different numbers according to the arbitrary 

selection of the function g(n). 
10 359/2,645 = 0.13572778828… 
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MN, NI are traversed, these spaces will bear to one another the same ratio as the 

series of odd numbers, 1, 3, 5, 7;… 

That is, a freely falling body falls incremental distances 1, 3, 5, 7 in successive units of time. 

Thus the total distances fallen in the successive units of time are 1, 1+3 =4, 4+5=9, 9+7=16, and 

we recover the more familiar squares of the times. 

 These incremental distances may have a more direct place in Galileo’s discovery. 

Stillman Drake (1978, p. 89) conjectures that Galileo may have measured experimentally the 

distances that a body falls in equal times by using the surrogate for free fall of a ball rolling 

down a groove in an inclined plane. Gut frets were arranged across the groove so that the noises 

made by the passing ball beat a uniform rhythm in time. Then the spacing of the frets would 

measure the incremental distances. Drake’s text reproduces a Galileo manuscript (p.87) in which, 

Drake believes, Galileo recorded the positions of the gut frets.11 

 We will never know exactly how Galileo posed the inductive problem to himself. So let 

us pose a Galileo-like problem in which we are allowed only to use the resources available to 

Galileo. We imagine that Galileo has measured near enough that incremental distances fallen in 

unit time are in the ratios 1 to 3 to 5 to 7. What is the continuation? 

 Without some further background assumption, nothing can be inferred. Galileo 

apparently assumed that the continuation is governed by a simple rule, expressible in the limited 

geometric and arithmetic language available to him. This immediately directs him to the odd 

numbers for incremental distances and the squares for total distances fallen. 

 Did Galileo make this assumption explicitly? It is indicated informally in Two New 

Sciences when Galileo introduces the gains of speed in free fall with the rhetorical question (p. 

161) 

…why should I not believe that such increases take place in a manner which is 

exceedingly simple and rather obvious to everyone? 

There is a stronger statement in the Assayer. Galileo (1623, pp. 237-38) writes: 

 
11 They were 33; 130; 298; 526; 824; 1,192; 1,620; 2,123 (corrected to 2,140). A short 

computation (by me) shows that the intervals between these distances, taking 33 to be the unit, 

are: 1; 2.94; 5.09; 6.91; 9.03; 11.15; 12.97; 14.67; which are quite close to the odd numbers 1, 3, 

5, 7, 9, 11, 13, 15. 
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Philosophy is written in this grand book, the universe, which stands continually 

open to our gaze. But the book cannot be understood unless one first learns to 

comprehend the language and read the letters in which it is composed. It is written 

in the language of mathematics, and its characters are triangles, circles, and other 

geometric figures without which it is humanly impossible to understand a single 

word of it; without these, one wanders about in a dark labyrinth. 

Galileo does not present the Platonic assumption as abstract metaphysics. It is a methodological 

guide. It is also a factual assumption. There are many ways that things might be in the world. 

Galileo’s Platonism rules out all possibilities save those that can be simply described in the 

language of mathematics. 

 The restriction to simple rules is powerful. But it is not powerful enough rule out all other 

continuations of 1, 3, 5, 7. One further, often overlooked assumption rules out these others. 

Galileo’s ratios of 1 to 3 to 5 to 7 to … for the incremental distances fallen in unit time succeeds 

whatever unit is taken for time. It might be a second, a half second, a pulse beat, and so on. The 

same is true for the total distance fallen. Their ratios are always the squares: 1 to 4 to 9 to 16 to 

… To see how this works arithmetically, take the incremental distances: 

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, … 

Now choose a new unit of time, equal to two of the old units. Hence the incremental distances 

fallen in the new doubled units of time are: 

1+3, 5+7, 9+11, 13+15, 17+19, … 

= 4, 12, 20, 28, 36, … 

= 4x1, 4x3, 4x5, 4x7, 4x9, … 

The ratios 1 to 3 to 5 to 7 to … are preserved. 

 Galileo knew this. He wrote in Corollary 1 above that the result holds if we select “any 

equal intervals of time whatever.” It is a remarkable fact strongly suggested by his experiments. 

Galileo had no accurately measureable standard unit of time. He had no atomic clock that could 

deliver one second with extraordinary precision. His units of time were selected arbitrarily in the 

context of the experiment. When an arbitrary selection of a unit of time delivers just the ratios 1 

to 3 to 5 to 7 to …, either Galileo happened by sheer good fortune onto just the right unit of time; 

or any selection of unit will return the same result. Galileo clearly chose the second option. 
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 This insensitivity to choice of unit is a powerful factual restriction. Virtually all laws of 

fall will not respect it. Consider, for example, fall in a resisting medium. It initially follows 

Galileo’s law but then asymptotically approaches a limiting constant velocity. The motion will 

require a time, characteristic of the specific arrangement, to achieve this terminal velocity, near 

enough. That time parameter gives the motion a definite temporal scale and precludes 

preservation of the law under a change of the unit of time. 

 Galileo could quickly affirm, as we did above, that his law of fall respects this invariance 

under the selection of the time unit (to use a slightly more modern phrasing). He would also have 

found it impossible to write any other simple law of fall that conformed to it, while preserving 

the initial segment of incremental distances 1, 3, 5, 7. We do not know if Galileo recognized just 

how complete this restriction is. Mathematical techniques not available to Galileo show that the 

only laws of fall that respect this invariance have the total distance fallen growing as a simple 

power of time. (See Norton, 2014a.) These yield a correspondingly restricted set of laws for the 

incremental distances. The incremental distance d(t) fallen in the unit of time between times (t-1) 

and t satisfies: 

d(t) is proportional to tp – (t-1)p 

where p is any real number greater than 0. The only case of linear dependence of d(t) on t arises 

when p=2 for then 

d(t) is proportional to t2 – (t-1)2 = t2 – (t2-2t+1) = 2t-1 

These are the odd numbers of Galileo’s law, for when t = 1, 2, 3, ..., 2t-1 = 1, 3, 5, … 

 We need no appeal to simplicity to reduce the possibilities to this one law. Since it has 

just one free parameter, p, very little data eliminates all the rest. For example, take just the first 

two numbers 1, 3 of the initial sequence. We have d(2)/d(1)=3 and p must satisfy 

 

The unique solution is p=2. 

 In sum, the premise of the inductive inference is a measurement of incremental distances 

of fall in the ratio 1 to 3 to 5 to 7. The conclusion is that distances of fall in general conform with 

Galileo’s law. The material facts that warrant it are (a) (Platonic assumption) that fall conforms 

to a rule that may be written simply using techniques available to Galileo and (b) (invariance 

assumption) that the law is invariant under a change of the unit of time. It turns out that (b) alone 

€ 

3=
2 p − (2 −1)p

1p − (1−1)p
=
2 p −1p

1p
= 2 p −1
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is sufficient to warrant the inference, which is something Galileo may have suspected, but likely 

could not have shown. 

6. The Superfluity of a Formal Theory 
 We might say that Galileo’s law of fall is the best explanation for the numerical 

regularities found in the experiments. However declaring it so adds nothing of any use to the 

material analysis already given. Once we make the Platonic and invariance assumptions just 

listed, we have specified the result. At best, the declaration of a best explanation gives us a sense 

of comfort with the inference. At worst, it creates a spurious unity with other inductive 

inferences that are intrinsically different from it, but are now collected under the umbrella of 

“best explanations.” We are misled into seeing a principle of inductive logic, where there is 

nothing beyond superficial similarity. 

 We can embed Galileo’s inference into a Bayesian analysis. The Platonic assumption can 

be expressed as a prior probability distribution over various possible laws that accords higher 

probability to the simpler law, such as in Jeffreys’ (1961, §1.61). We might then also incorporate 

the invariance assumption into the likelihoods. We would then carry out the computations 

required by Bayes’ theorem and discover the happy outcome that Galileo’s law of fall is 

accorded high probability. 

 Once again, nothing of value has been added to the analysis given in the preceding 

section. We have just obscured a simple inductive inference behind a fog of probabilities. 

Without the Platonic and invariance assumptions, a Bayesian analysis is unable to deliver any 

result. But once we make those assumptions, we have no need of the Bayesian analysis. It is 

superfluous. At best we have merely given a probabilistically-minded philosopher a sense of 

comfort with the result. At worst, we have misled ourselves into thinking that inductive inference 

is merely a sub-branch of the mathematics of the probability calculus. 

7. Conclusion 
 Inductive inference has been a favorite target of skeptical assault for millennia. It has 

been so not because of any special malice amongst skeptics against inductive inference. It has 
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been so because it is troubled and because those troubles lend themselves to skeptical 

formulations. 

 My claim in this paper is that the root cause of the fragility of inductive inference is that, 

for millennia, we have sought to model our accounts of it on deductive inference. That is, we 

have sought formal theories of inductive inference in which good inductive inferences are 

warranted by conformity to universally applicable schemas. The correct account, however, is a 

material account in which inductive inferences are warranted by facts. Underlying this is a 

change in our understanding of the nature of inductive inference. It is not a branch of 

mathematics to be studied in the abstract. It is an inseparable part of the empirical content 

science. 

 I doubt that this reorientation will resolve all skeptical challenges to inductive inference. 

It would be foolish to circumscribe the ingenuity of a skeptic. However notorious skeptical 

problems concerning inductive inference evaporate. For example, Goodman’s (1983, Ch. III) 

“grue” challenge fails. Nineteenth century crystallographers faced extraordinary difficulties in 

determining the very few predicates that could be projected for materials like emeralds. Grue-

ified predicates are not among them and also probably not “green.”12 (One might be tempted to 

reanimate the problem by the strategy of “grue-ifying everything,” including the background 

facts that pick out projectible predicates. The reanimation fails since changing everything turns 

out to be indistinguishable from changing nothing. See Norton (2006).)  

 More significantly, the skeptical problem, the Humean problem of induction, is 

dissolved. It is argued in Norton (2014) that setting up the problem in the first place requires the 

separation of the matter of inductive inference from the warranting structures; that is, from the 

formal schema to which a formal theory requires inductive inferences to conform. This 

separation of matter from schema leaves a formal theory impoverished in its justificatory 

resources; and sufficiently so that the Humean skeptical challenge is easy to mount. If one 

approaches inductive inference materially, however, the distinction of matter from warranting 

 
12 It turns out that all emeralds are green not because of any determining property of the mineral 

beryl that forms emeralds, but because gemologists decree that only beryl colored green by 

impurities can be called emerald. That is, “all emeralds are green” is simply true by definition. 

“All emeralds are grue,” turns out to be a contradiction. 
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structure dissolves. It turns out that one can then no longer set up the traditional Humean 

challenge. 

Postscipt 
 After the writing of this chapter in 2014, I completed two book manuscripts on the 

material theory of induction: 

John D. Norton, The Material Theory of Induction. BSPSopen/University of Calgary Press, 

2021 

John D. Norton, The Large-Scale Structure of Inductive Inference. Manuscript. 

Both are available for download at https://sites.pitt.edu/~jdnorton/jdnorton.html 
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