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THE N-STEIN FAMILY"

]. THE STORY OF NEWSTEIN

The work of Newstein is now so familiar to us, thanks to Professor Stachel’s efforts,
that it bears only the briefest recapitulation. Sometime after 1880 but before the
advent of general relativity, Newstein brooded on the equality of inertial and gravita-
tional mass. Through an ingenious thought experiment—the Newstein elevator—he
hit upon the idea of an essential unity of gravitation and inertia. This was expressed
in the indistinguishability of the effects of acceleration in a uniformly accelerated
frame of reference from a homogeneous gravitational field in an inertial frame of ref-
erence. Now having to consider the behavior of the gravitational force as it is trans-
formed from unaccelerated to accelerated frames of reference, Newstein found it no
longer behaved like the familiar vector. Puzzled, he turned to his mathematician
friend Weylmann, another neglected figure in history of mathematics. His extraordi-
nary achievement, as revealed by Professor Stachel, was to formulate the notion of
affine connection around 1880, decades before the much better known formulation
of Levi-Civita of 1917. Weylmann recognized that the puzzling transformation
behavior of gravitational force was simply that of the components of a four-dimen-

sional affine connection.

This provided the insight needed to write the now famous Newstein-Weylmann
paper. It developed a formulation of Newton’s theory of gravitation akin to Cartan
and Friedrich’s later proposals of the 1920s. In it, the chronogeometrical structure of
spacetime remained absolute, but inertia and gravitation are combined in an affine
structure. The Poisson equation for the gravitational potential is absorbed into an
equation relating the Ricci tensor of the connection with the gravitational field’s
sources. With the association of gravitation with a curved, four-dimensional affine
structure, the scene was now set for an Einstein to merge this viewpoint with the
chronogeometry of special relativity, as captured in the spacetime metric of
Minkowski, to yield the general theory of relativity.
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2. THE FATAL OBJECTION?

Sadly, however, the Newstein-Weylmann proposal was neglected. As Professor
Stachel tells it:

Their work was regarded by contemporaries, in so far as they took any notice of it at all,
as an ingenious mathematical tour-de-force; but since it had no new physical conse-
quences, it did not much impress Newstein’s positivistically-inclined physics colleagues.

There is no doubt that this diagnosis reveals part of reasons for the hesitation over the
Newstein-Weylmann proposal. But there is more to say. We are inclined now to draw
an analogy between special relativity and the Newstein-Weylmann proposal. Special
relativity proceeds from the recognition that classical theories proposed the existence
of an aether state of rest. What was objectionable in that proposal was that the aether
state of rest was itself unobservable. That in turn resulted from its indeterminate
nature. Any inertial state of motion proved to be an equally viable candidate for the
aether state of rest. Both observation and theory were powerless to decide between
them. Here we accord fully with the positivist sentiments of Newstein’s physics col-
leagues in so far as they regarded the unverifiable aether state of rest as something to
be purged from our physical theories.

The Newstein-Weylmann proposal seems very similar. The classical theory por-
trays free fall motions as the resultant of inertial motion and a gravitational deflec-
tion. But which of all possible motions are we to choose as the true inertial motion?
All we observe are the resultant free fall motions. It would seem that the background
inertial structure that fixes these inertial motions is as indeterminate as an aether state
of rest. We eschew this aether state of rest in special relativity and build our theory of
inertial motions alone. Should we do the same in gravitation theory: eschew the back-
ground inertial motions and build our theory on what is observed, the free fall
motions, to which Newstein-Weylmann directly adapt their affine structure?

Compelling as this consideration may seem to us now, Newstein’s colleagues
were unconvinced. There was a telling disanalogy between the two cases. While the
true inertial motions were not directly observable, they could be picked out uniquely
by very natural conditions in the standard examples used in gravitation theory. Take
the case of the gravitational field of the sun. We make the standard and natural pre-
sumptions of classical theory: the background inertial structure can be represented by
a flat affine structure and the gravitational field of the sun is spherically symmetric in
the space about the sun. This now provides a unique decomposition of the free fall
motions around the sun into a background inertial structure and a gravitational deflec-
tion. The background inertial structure is perfectly determinate. Not even a strong
dose of positivistic skepticism can undo that and repeal the sense that this determi-
nate split into inertial motion and gravitational deflection reflects reality.

While this objection seems fatal, there was an answer. Natural conditions may
pick out a unique inertial structure in some cases, but there are others in which
demonstrably no such conditions can succeed. The realm of possibility is large and
we may well wonder whether someone hit upon these examples and their import in
the history of physics.
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3. THE N-STEIN FAMILY: EINUNDZWANZIGSTEIN

My primary purpose in this paper is to announce the discovery not just of a single
unnoticed ’stein in the history of science, but of a family of such figures:' Einstein,
Newstein, Zweistein, ... . The first two of these family members now enjoy the celeb-
rity that their work warrants, thanks to the efforts of Professor Stachel. The mathe-
matically inclined reader will immediately see that they form not just a family but an
n-parameter family, where n takes suitable values: Ein, New,... For our purposes what
is important is that one family member did hit upon the response that defeats the
objection sketched above to the Newstein-Weylmann proposal. The work of this hith-
erto unrecognized figure, Albert Einundzwanzigstein, was revealed using techniques
of historical research pioneered by Professor Stachel.? The content of the 1905 vol-
ume number 17 of Annalen der Physik is widely known; it contains the five papers of
“Einstein’s Miraculous Year””> What has remained unrecognized until now is the
existence of a supplementary volume (see fig. 1) in which Einundzwanzigstein’s “On
the Cosmology of Free Falling Bodies” was published (see fig. 2). There
Einundzwanzigstein showed that there is one case in Newtonian gravitation theory in
which no natural conditions on the inertial structure and gravitational field can
enforce a unique split of free fall motions into a background inertial motion and a
gravitational deflection.

Einundzwanzigstein’s result was expressed as the recognition that Newtonian
cosmology is covariant under transformations between inertial frames and acceler-
ated frames and that this covariance reflects the equivalence of observation for iner-
tial and accelerated observers. It follows immediately that there are no unique
background inertial motions identifiable, for these inertial motions cannot be invari-
ant under a transformation to an accelerated frame. Einundzwanzigstein’s argument
is closely analogous to that of Einstein’s 1905 “On the Electrodynamics of Moving
Bodies.” In Einstein’s theory, an absolute state of rest is purged from the laws of
physics by the principle of relativity since that state fails to remain invariant under a
transformation between inertial frames of reference. We shall see that this similarity
of strategy is reflected by closer analogies in the two papers.
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27. Zur Kosmologie frei fallender Korper ;
von A. Einundzwanzigstein.

Daf8 die Koamologie Newtons — wie dieselbe gegen
wirtiy aufgefalt zu werden pflegt — in fhrer Anwendung auf
bewegte Rorper zu Asymmetrien [flihrt, welche den
Phinomenen nicht anzuhaften scheinen, ist bekannt. Man denke
z.B. an die frele Fallbewegung von Koérpem Im homogenen
Weltrawm. Das beobachtbare Phinomen hingt hier nur ab von
der Relativbewegung der Ktrper, wihrend nach der {iblichen
Auffassung dle beiden Xille, dafll der eine oder der andere
dieser ROrper der bLeschleunigte sef, streng voneinander zu
trennen sind.

Femer {8t es wohlbekamnt, dafl die N ew tonsche
Grenzbedingung des konstanten Limes fiir das Potential
rdumlich Undendlichen zu der Auffassung hinfithrt, dafl die
Dichte der Materie fin Unendlichen zu null wird, Wir denken
s nidmlich, es lasse sich ein Ort im Weltraum finden, wm den
herum das Gravitationsfeld der Materie, i groflen betrachtet,
Kugelsymmetrie besitzt (@litteipunkt). Dann folgt aus der
P o is 80 nschen Glelchwng, dal die mittlere Dichte rascher als
1/cr2 mit wachsender Entfemnung r vom Mittelptnkt zu null
herabainken mul, damit das Potential im Unendlichen einem
Limes zustrebe. Die mittlere Dichte der Materie ist die Dichte,
gebildet fiir einen Raum, der grof ist gegeniiber der Distanz
benachbarter Fixsterne, aber klein gegeniiber den Abroesswngen
des ganzen Sternsystern, In diesemn Siine ist also die Welt nach
N e wtonendlich, wenn sie atich unendlich grofle
Gesammtmasse besltzen kann

Figure 2.
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4. NEWTONIAN COSMOLOGY

Einundzwanzigstein’s paper addressed a natural formulation of the cosmology of a
homogeneous universe as afforded by Newton’s theory of gravitation. Space is
assumed to be infinite and Euclidean and filled with a uniform matter distribution of
density p(¢), which will vary as a function of time. The gravitational potential @ is
governed by the Poisson equation

Ve = 4nGp (1)

where G is the constant of universal gravitation. These assumptions combined pro-
vide the framework of Newtonian cosmology. One might expect that, these assump-
tions are sufficient to fix the gravitational potential uniquely. But that is not so. Any
of the class of solutions

o(r) = (3 JxGp(o)(r 1) @

satisfies the condition, where the vector position r = (x, y, z), for Cartesian spatial
coordinates x, y and z and r, is any arbitrarily chosen position in space.* It follows
directly from (2) that the force on a unit test mass is

f = {3 mGptr-ry) )

This in turn enables a very simple expression for the gravitational tidal force. The dif-
ferential force Af on two unit masses separated by a distance® Ar is given by

Af = —G)nGpAr. (4)

Since no other forces are presumed to prevail on the bodies forming the matter distri-
bution p , these cosmic masses are in free fall with accelerations and relative acceler-

ations given by (3) and (4) respectively.

5. THE ASYMMETRY OF NEWTONIAN COSMOLOGY

In addressing this simple system, Einundzwanzigstein commenced his “On the Cos-
mology of Free Falling Bodies” by noticing the existence of an asymmetry between
theory and observation in the system that was strongly reminiscent of the asymmetry
Einstein used to launch his “On the Electrodynamics of Moving Bodies”
Einundzwanzigstein wrote:
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It is known that Newton’s cosmology—as usually understood at the present time—when
applied to moving bodies, leads to asymmetries which do not appear to be inherent in the
phenomena. Take, for example, the motion of bodies in free fall in a homogeneous space.
The observable phenomenon here depends only on the relative motion of the bodies,
whereas the customary view draws a sharp distinction between the two cases in which
one or the other of the bodies is accelerated.

Finundzwanzigstein’s point is recoverable immediately from equation (4).

The observables sustain a perfect equivalence of all bodies in the cosmology. What
is observable is the relative motion of the bodies. That observable is the same for any
of the cosmic bodies. Each is in free fall and, according to (4), each sees neighboring
masses accelerating towards it with an acceleration proportional to distance. As far as
the observables are concerned, every body is fully equivalent to every other. If we find
ourselves on one of them, no observation of motions can decide which that is. Inertial
forces can supply no guide; since every body is in free fall, none of them experience
inertial forces.

Newtonian gravitation theory, however, is unable to sustain this equivalence.
According to it, at most one of all the cosmic masses of the distribution p can be
unaccelerated, that is, in inertial motion. All the rest are truly accelerated. That body
has the role of a unique center of the universe. All the other bodies accelerate towards
it. It is designated by the position vector r,. While that position vector appears in the
expression for the many different fields ¢ of (2) and f of (3), it does not appear in the
equation (4) that governs the observable of motion, the tidal force.

Finundzwanzigstein’s response was analogous to Einstein’s response to the corre-
sponding problem in the electrodynamics of moving bodies.® The aether state of rest
Einstein observed in 1905, was superfluous for the treatment of electrodynamics. All
inertial motions are equivalent. The designation of any reference system as “at rest”
is purely a matter of convenience. Electrodynamics embodies a relativity of inertial
motion. Correspondingly Einundzwanzigstein declared the notion of a preferred class
of inertial motions as superfluous to the cosmology. All inertial and uniformly accel-
erated motions are equivalent. The designation of any reference system as “inertial”
is purely a matter of convenience. Newtonian cosmology embodies a relativity of uni-
form acceleration.

6. COVARIANCE OF NEWTONIAN COSMOLOGY
UNDER ACCELERATION TRANSFORMATIONS

In 1905, Einstein gave formal expression to this relativity of inertial motion by demon-
strating that electrodynamics is covariant under the transformations that connect iner-
tial systems of reference, the Lorentz transformation. Correspondingly,
Einundzwanzigstein demonstrated that Newtonian cosmology is covariant under an
acceleration transformation. To display this covariance, he chose a reference system
(x, v,z,t) as “inertial.” In it, there is just one cosmic body whose motion is inertial
(i.e. its position coordinates are linear functions of the time coordinate). The origin of
the reference system is so selected that this body remains at position x = y = z = 0.
The gravitational potential and the acceleration of cosmic bodies are given as
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Q= @)nGrz %%2 = —(g)ﬂ:Gr &)

where r = (x,y,z) and P o= Irlz. Einundzwanzigstein now selected arbitrarily
another comic body at position R(¢). Its trajectory over time is governed by

2
d ;g” = -@nGpR(o. (6)

This arbitrarily chosen body in turn can be used to define an acceleration
transformation’ from the original reference system to the new system (x', /', z', ')

r=r-R() t =1t @)
If we write R(z) = (X(¢), Y(¢), Z(¢)), this transformation can also be written as
X =x-X(1t) y=y-Y@) Z=2z-2(@) t =1

Under this transformation, the gravitational potential and the acceleration of cosmic
bodies is now given as

(D)o PO (4 o ,
¢ = (g)nGr Py ——(g)nGr (5”)

expressions identical in form to (5). The Lorentz covariance of Maxwell’s theory
expresses the relativity of inertial motion; the elimination of the aether state of rest
lies just in the failure of that state to be invariant under Lorentz transformation. The
covariance of Newtonian cosmology under transformation (7) expresses a relativity
of acceleration. The selection of one class of motions as inertial corresponds to a
choice of one subclass of the reference systems of the theory. That choice is not
invariant under the transformation (7); motions that are inertial in (x, y,z, ) are
accelerated in (x', y', ', ') and vice versa. Further, the distinction between the differ-
ent potential and force fields of (2) and (3) loses physical significance. That is, the
designation of which body occupies the preferred position r, of the unique inertial
moving body is not invariant under the transformation (7). By suitable choice of
R(t), any body can be brought to the origin of coordinates and thus to this preferred
position.

The transformation of (5) to (5°) requires that the gravitational potential ¢ not
transform as a scalar. Rather it must transform as®
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2

¢ = <p+r~(‘2—t’fj+cp<m. ®)

That ¢ does not transform as a scalar has no effect on observables. There are two
additional terms in the transformation law (8). The second, @(R), is just the adding
of a constant to the potential; such a constant does not affect the observables, since it
has no effect on the motions. The first term added, r - (d>R/dt*), corresponds to the
addition of a homogeneous field to the force field associated with ¢. That force field
is given by the negative gradient of ¢ and is -V¢' = - Vo - (d*R/dt?). 1t is aug-
mented by a vector 'R/ dtz, which is a constant over space at any instant. Such a
homogeneous field does affect accelerations, but it does not affect the observable, rel-
ative accelerations, since it accelerates all bodies alike.

This new transformation law for the gravitational potential corresponds to the
Lorentz transformation law for electric and magnetic fields in special relativity.

7. THE GEOMETRIC FORMULATION

Einundzwanzigstein’s point is that there was a relativity of acceleration built into
Newtonian gravitation theory that is closely analogous to the relativity of inertial
motion of special relativity. That relativity of acceleration is hard to see in the context
of the usual examples. In the case of the gravitational field of the sun, for example,
the observable inhomogeneity of the field picked out a preferred trajectory in space
(that of the sun) and this in turn defined a preferred inertial motion. The case of New-
tonian cosmology allowed no such selection. In terms of observables, the motion of
all bodies were fully equivalent, even though they were in relative acceleration.

The methods and formalism of Einundzwanzigstein’s paper was that of Einstein’s
1905 paper on special relativity. Just as the ideas of Einstein’s paper were soon trans-
lated by Minkowski into a geometrical language, the same translation was possible
for Einundzwanzigstein’s paper. It could be expressed in the language of the New-
stein-Weylmann proposal, in which the free falls of Newtonian cosmology are just
the geodesics of the affine spacetime structure. Now the Lorentz covariance of special
relativity embodies a relativity of inertial motion because the Lorentz transformation
is a symmetry of the Minkowski metric. Correspondingly covariance of Newtonian
cosmology under (7) is expressed geometrically as the symmetry of the geometric
structures of the spacetime, including the affine structure, under the transformation
(7), now read as an active point transformation.” In each case, the relativity of a
motion is expressed as a symmetry of the geometric structure.

In this context, Einundzwanzigstein’s point can be given it sharpest expression.
The attempt to preserve some absoluteness of inertial motion corresponds to the
attempt to find some way to split the affine connection into a connection defining true
inertial motions and a gravitational deflection. No invariant condition can effect this
split in a way that privileges the motion of any one cosmic body over any other. For it
follows immediately from the symmetry of the geometry that any property of one
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such motion must be shared equally by any other.! It is not even sufficient to require
that the inertial affine structure be flat—this condition is met by each of the different,
natural splits that render one or other body’s motion inertial.

The transition to the geometric formulation can be made very quickly on the basis
of the equations ( 1), (3), and (4). If we introduce an index notation so that
r = (x,»,z) = (x',x%,x°) and the time coordinate + = x°, then, according to (3),
the trajectories of masses in free fall are governed by

‘—;—— @)npr = (37)

where i = 1, 2, 3. These motions are just the geodesics of the affine connection with
symbols I}, , so that this condition (3’) can be rewritten as

a’ ”s
;,—:zi*roozo 3”)

where ¢ is an affine parameter and the only non-zero symbols are
i 4 i

which fixes the affine structure. Further, since [y, represents the gravitational force
on a unit mass in the reference systems used by Einundzwanzigstein, we see that this
force must transform like the coefficients of the connection.

From (4) we read off an expression for the relative acceleration of neighboring bodies
in free fall

2. i ,
4 ax +(“—1)nGpr’ - 0. @)
dt 3

This corresponds to the equation of geodesic deviation

2, 0 b}
d Ax pldx"\(dx\ _ ”
PR (d, ) - o *9

where o, B,7,0 = 0, 1,2, 3, 4.

The comparison of (4’) and (4”) is very fruitful. To begin we can see that the
coefficients of the affine curvature tensor represented in (4’’) must be constant. This
suggests, but does not prove, the uniformity of the affine structure expressed in its
symmetry under transformation (7). We can read sufficient of the coefficients of the
curvature tensor to allow recovery of the Ricci tensor
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4 ;
where i, k = 1,2, 3. Contraction over the indices / and k allows us to recover!! the
R, component of the Ricci tensor as

Ry = 4nGp. (1)
This is the analog of the Poisson equation (1) in the geometric formulation.

8. CONCLUSIONS, REFLECTIONS AND ADMISSIONS

Lest any readers be in doubt, Newstein, Weylmann, and Einundzwanzigstein are all
fictitious and the history reported a fable—inspired by Professor Stachel’s own cre-
ative endeavors. I have tried to ensure however that all footnoted material in the
above fable is historically correct. The fable is intended to convey a serious moral and
one that I have laid out in (Norton 1995), in response to David Malament’s demon-
stration (Malament 1995) that the paradoxes of Newtonian cosmology are eradicated
by the geometric approach. The usual decision to represent gravitational free falls by
a curved affine structure in Newtonian theory is akin to extending the relativity of
motion to acceleration, but there are significant disanalogies between it and Ein-
stein’s original introduction of the relativity of inertial motion in special relativity.
Einstein introduced the relativity of inertial motion to express the indistinguishability
of inertial motions that was itself revealed in the failure of experiments that would
have picked out the aether state of rest. In general, the representation of gravitational
free falls by a curved affine structure does not express a corresponding indistinguish-
ability and the case for it is correspondingly weaker. Newtonian cosmology supplies
a clear instance in which it does express such an indistinguishability and is hard to
resist. But once it has been admitted in this case, the attempt to avoid it elsewhere
becomes all the more contrived.

University of Pittsburgh

NOTES

*  With great pleasure, I join the contributors to this volume in honoring Professor Stachel and celebrat-
ing his many achievements. My debt to him is great. | learned the real craft of history of science at his
elbow when he generously allowed me to visit the Einstein Papers Project in 1982 and 1983 in Prince-
ton and my career owes a great deal to his generosity and kindness. We have all learned so much from
Professor Stachel’s researches. However, when he revealed the hitherto unknown figure in history of
physics, Newstein, in his (Stachel forthcoming) we may have learned somewhat more from him than
even he intended, as this paper will demonstrate.

1. Iam grateful to Don Howard for pointing out another ’stein that truly belongs to the family: Howard
Stein for his (1967). We might also adopt Wolfgang Pauli as an honorary family member on the
strength of his nickname, recalled for me by Professor Stachel: “Zweistein.”
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2. The long standing debate over whether Einstein knew of the Michelson-Morley experiment prior to
his work on special relativity of 1905 was settled by the discovery of a letter from Einstein to Mileva
Maric of September 1899) in which he recalls reading a paper by Wien (1898) that includes a report on
the experiment. That paper was located in an 1898 supplement to the volume of Annalen der Physik
und Chemie. See (Stachel 1987, 233-34, 407).

3. Sonamed in (Stachel 1998).

4. That the presumptions of this cosmology did not force a unique solution for ¢ produced great confu-
sion at this time that is not reflected in the above exposition. It was widely expected that any potential
¢ in the cosmology ought to respect the homogeneity and isotropy of the spatial geometry and matter
distribution so that a constant ¢ was sought. The indeterminacy of @, as expressed by the admissibil-
ity of any member of (2), surfaced in the result that the integral expressions for the gravitational poten-
tial, gravitational force and tidal force were not uniformly convergent; they could be integrated to give
many conflicting results. A common response was the conclusion that the result was fatal to Newton’s
law of gravitation, which must be supplemented by other terms to eradicate this indeterminacy. Ein-
stews (1917) used a related argument to motivate the cosmological constant in general relativity, for
example. He noticed that the solutions (2) require the density of lines of force to grow without limit at
r increases. For a detailed survey of the problem up to 1930, see (Norton 1999).

5. Ar need not be infinitesimally small because of the linearity of f inr according to (3).

6. Correspondingly, Einstein in 1905 argued that the observable phenomena of electrodynamics depend
only the relative motions of bodies, whereas Maxwell’s electrodynamics distinguished the cases
according to which body was at rest in the aether. His example was the electric current induced by the
relative motion of a magnet and conductor. The observable, the current, depended only on the relative
motion of the magnet and conductor, but Maxwell‘s electrodynamics gave a very different account of
the process according to which of the conductor or magnet was deemed at rest in the aether. If the con-
ductor was at rest, the motion of the magnet led to the induction of a new entity, an electric field,
which was not present in the case in which the magnet was at rest in the aether. This example, Einstein
suggested, was typical.

7. This transformation (7) corresponds to a uniform acceleration in this sense. Let the trajectory of some
body be S(r). Atsome instant ¢, its acceleration will be d’s (t)y/ dr*. Under transformation (7), that
acceleration becomes dZS'(t)/a't2 = d*S(1)/dt*- dZR(t)/dtZ. The acceleration has been reduced
by the term d? R(t)/d t*, which is a constant over all space at time ¢, but will vary with ¢. That is, at
a fixed instant, all accelerations in space are altered by the same amount, but that amount will vary
from time to time.

2
8. Then we have ¢+ r- (‘z—f] + Q(R) = @nap(ﬁ 2k R+R) = @nGp(r- R? = ¢
t

9. This symmetry 1s set up and proved in (Malament 1995).

10. This result is the analog of the result in special relativity that no invariant condition can pick out a pre-
ferred state of rest from the inertial motions.

11. Recall that Ry, vanishes identically.
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