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WHAT IS A NEWTONIAN SYSTEM? THE FAILURE OF ENERGY
CONSERVATION AND DETERMINISM IN SUPERTASKS

ABSTRACT. Supertasks recently discussed in the literature purport to display a failure of
energy conservation and determinism in Newtonian mechanics. We debate whether these
supertasks are admissible as Newtonian systems, with Earman and Norton defending the
affirmative and Alper and Bridger the negative.

1. INTRODUCTION

Alper and Bridger (1988) have argued that certain “Newtonian” supertasks
recently discussed in the literature (such as Perez Laraudogoitia, 1996;
Earman and Norton, 1998) appear to violate energy conservation and to
display indeterminism only because the analyses fail to account prop-
erly for the mathematical requirement of continuity of various dynamical
quantities with time. Alper and Bridger’s conclusion depends upon a de-
cision as to what counts as a Newtonian system. Definitions of continuity
of differing stringency will determine whether the supertask systems in
question are admissible as Newtonian systems. In Section 3 of this note,
Earman and Norton will defend a more lenient definition that does admit
the supertasks. In Section 4, Alper and Bridger will defend a more restrict-
ive definition that does not admit the supertasks. The remaining sections
are the results of discussions among the authors.1

2. THE SUPERTASK ST

In Perez Laraudogoitia’s (1996) supertask, infinitely many, unit point
massesP1, P2, . . . are arrayed at rest along thex-axis of space at positions
x = 1/2, 3/4, 7/8 . . . At timet = 0 a unit point massP0, moving at unit
velocity, passesx = 0 and approaches the remaining masses. Infinitely
many perfectly elastic collisions ensue with the unit velocity passing in
succession fromP0 to P1 to P2 etc. However, byt = 1, all collisions are
completed and all masses are at rest. See Figure 1.
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Figure 1. Supertask ST.

In the simplest analysis, each collision is instantaneous, so the ve-
locity changes are instantaneous. This already threatens the Newtonian
credentials of the supertask since, at the instant of collision, the velocity
of the particles involved change discontinuously; that is, the velocity is
not defined at that instant. The most natural solution is to assume that
each collision is mediated by very strong short range forces that eliminate
the discontinuities in the time dependence of velocities and provide them
sufficient differentiability for the acceleration to be always defined.2

This supertask represents a violation of energy and momentum conser-
vation. Att = 0 the total energy is 1/2 in the form of kinetic energy and the
total momentum is 1. Att = 1, both quantities have dropped to zero. If we
allow that the mechanics governing the supertask is time reversible, then
the system displays indeterminism. The time reversed process is a system
of particles at rest, which is spontaneously excited and emits a particle
moving with velocityv = −1.

3. CHOOSING A MATHEMATICAL MODEL FOR THE SUPERTASK ST

A necessary condition for a system of particles to be Newtonian is that
Newton’s laws of motion are satisfied at all times. As applied to ST, if we
defineFi , i = 0, 1, 2,. . . , as the force on particle Pi which is at positionXi
and moves at velocityVi, Newton’s laws can be represented as the infinite
set of coupled, linear first order equations:

Fi = dVi
dt

Vi = dXi
dt

(2.1)

with Newton’s third law implemented as
∞∑
i=0

Fi = 0.(2.2)



WHAT IS A NEWTONIAN SYSTEM? 283

Alper and Bridger (1998) propose that these quantities be combined
into three vectors

F = (F0, F1, . . .), X = (X0, X1, . . .), V = (V0, V1, . . .)

each in its own infinite dimensional vector space. Equation (2.1) is now
expressible in vectorial form as

F = dV
dt
, V = dX

dt
.(2.1′)

By using the naturally defined scalar product, we can introduce a norm

||V|| =
√√√√ ∞∑

i=0

V 2
i

in the velocity vector space, so that space is converted to a (real) Hilbert
space. If Newton’s equations are to hold at all timest , then the velocity
vector V must be continuous at allt , including the supertask ending at
time t = 1. If it fails to be continuous, it will also fail to be differentiable,
and quantities in Equations (2.1) and (2.1′) will not be defined att = 1. A
graph of the componentsVi(t) of V(t) suggests that continuity may fail at
t = 1.

The top portion of Figure 2 shows the components plotted individually;
they are plotted together in the bottom portion. Setting aside the effects
of smoothing, each component has a value of either 0 or 1. In the interval
t = 0 to t = 1/2, V0 only is non-zero; int = 1/2 to t = 3/4, V1 only is
non-zero; int = 3/4 to t = 7/8,V2 only is non-zero; etc. Thus, no matter
how close we come tot = 1, there will always be a component whose
value is 1.

The vector functionV(t) will be discontinuous att = 1 if the limit of
V(t) ast approaches 1 from the left fails to equal its value ofV(1) = 0; that
is, for continuity att = 1 we require

lim
t→1−

V(t) = V(1) = 0.(2.3)

Whether the limit condition (2.3) obtains depends on the notion of limit
employed.

If we employ a weaker sense, admitted by Earman and Norton, then the
limit condition (2.3) does obtain. That weaker sense merely requires that
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Figure 2. ComponentsVi as functions oft .

each componentVi(t) individually approach its limiting value att = 1, so
that (2.3) requires only

“component convergence”: lim
t→1−
|Vi(t)− Vi(1)| = 0(2.4)

for all i.
This weaker condition will obtain for componentsVi(t) as shown in

Figure 2. For each componentVi, there exists a timet < 1 after particle
Pi ’s collisions are completed at whichVi(t) = 0.3

Under a stronger sense of limit, required by Alper and Bridger, the limit
condition (2.3) fails. The stronger sense requires that the normed difference
of V(t) andV(1) vanish in the limit, so that (2.3) requires

“convergence in the norm”: lim
t→1−
||V(t)− V(1)|| = 0.(2.5)

We can easily see that the limit condition fails in this stricter4 sense.
The vectorV(1) = 0. But for any timet < 1, infinitely many particles
are still to undergo collision so that we can always find a particlePi that
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will attain velocity Vi = 1 at some time betweent and 1. At that time
||V(t)− V(1)|| = 1.

Component convergence merely requires that each component of the
vectorV(t) approaches its limit according to its own schedule. That is, for
anyε > 0, we can always find a timeti < 1 for eachVi(t) such thatVi(t) is
within ε of Vi(1) for all ti < t < 1. The higher numbered components may
approach their limiting values later. Convergence in the norm, however,
requires in addition that the components approach their limiting values
with some degree of synchronization. That is, for anyε > 0, there must be
asingletimeT such that||V(t)− V(1)|| is within ε of 0 for all T < t < 1.
By the definition of the norm, this entails that, for eachi, Vi(t) must be
within ε of Vi(1) for all T < t < 1.

4. THE SUPERTASK ST IS NEWTONIAN

Earman and Norton urge that the supertask ST be counted as Newtonian.
The componentwise convergence of (2.4) is sufficient to ensure that each
particle individually satisfies Newton’s equations as expressed in (2.1) and
(2.2). That is, by tracking the behavior of each individual particle (and
even their pairwise interactions), we would have no reason to declare any
violation of Newton’s laws.

With each individual particle obeying Newton’s laws (2.1) and (2.2),
the behavior of the combined system becomes something to be discovered
from appropriate calculations. Its properties are not to be stipulated by
further legislation. In the case of ST, we discover that neither energy
nor momentum is conserved and that, for the time reversed process,
determinism fails.

We can add extra conditions if we like to preclude such pathologies.
For example we could stipulate directly that, in addition to (2.1) and (2.2),
energy is to be conserved. Or we could be somewhat indirect. Preserving
energy conservation is the ultimate effect of the stronger convergence in
the norm condition (2.5). That is, the squared norm||V2|| is twice the
total kinetic energy of the particles. Energy conservation fails att = 1
when this norm drops discontinuously with time to 0. The requirement
of convergence in the norm (2.5) adds a requirement of continuity of the
norm ||V|| itself to the component continuity of (2.4), thereby precluding
the violation of energy conservation.5

Adding extra conditions such as energy conservation is not uninterest-
ing. But it is not constitutive of Newtonian systems. Rather it leads us to
investigate an important subset of all Newtonian systems, such as those that
are deterministic and energy conserving. This particular subclass excludes
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many interesting systems. For example, it excludes an infinite space popu-
lated with infinitely many colliding particles whose total energy is infinite.
For such a system, conservation of total energy cannot be defined. But we
may well be satisfied if energy is conserved in any finite region of space.
If we are satisfied by that reduced form of energy conservation, why are
we not also satisfied with a comparable reduction, energy conservation just
for the individual collisions of ST? The subclass of deterministic, energy
conserving systems would also fail to include recently investigated systems
in which a small number of particles, interacting via a 1/r2 attractive force
law, accelerate themselves off to spatial infinity in finite time, emptying
space of particles. (See Mather and McGee, 1975; Earman and Norton,
1996, pp. 243–244.) As it turns out, the familiar Newtonian systems hap-
pen to be in the subclass of deterministic, energy conserving systems. But
we should not turn this accident of the familiar into a necessity.

The decision as to which systems are Newtonian is not an empirical
question. It cannot be decided by experiment in the way that we can de-
cide whether electrons are spin half or spinless particles. It is a matter of
labeling. However an incautious use of labels can do harm if it prevents
us seeing important results. In this case, it is important to recognize that
Newton’s laws alone cannot assure us of determinism and energy conser-
vation. If we build determinism and energy conservation into our definition
of what it is to be Newtonian, we risk losing sight of this important result.

5. THE SUPERTASK ST IS NOT NEWTONIAN

Alper and Bridger believe that the supertask ST should not be called New-
tonian. They agree that the component-wise solution to ST,Vi(t) = 1 for
ti < t < ti+1 andVi(t) = 0 otherwise, satisfies Newton’s equations of
motion for eachi > 0 and for allt . (Here theti and ti+1 are the times
thatPi is hit byPi−1 and hitsPi+1, respectively.) Assuming appropriately
smoothed force functions, eachVi(t), as well as eachXi(t), becomes a
differentiable function oft . For Earman and Norton, the existence of this
well-behaved solution of Newton’s equations is sufficient to characterize
ST as Newtonian. However, althoughXi(t) andVi(t) are continuous func-
tions of time, the energy is not continuous att = 1:E(t) = 1/2 for t < 1
andE(1) = 0. This discontinuity means that energy is not conserved at
t = 1.

Most physicists regard conservation of energy as a much more fun-
damental law than Newton’s laws of motion (for example, Pais, 1986,
107–8). No physical system, when analyzed using the appropriate theory,
be it classical, relativistic, or quantum mechanics, has been found to violate
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the law of conservation of energy. The first law of thermodynamics, which
states that the energy of an isolated system cannot change, is assumed to
hold without exception. ST is an isolated system; it does not exchange
either matter or energy with its surroundings. Therefore, it seems important
to determine which feature of ST is responsible for its aberrant behavior.

ST exhibits none of the features that are the usual causes of energy non-
conservation in dynamical systems governed by Newton’s laws of motion.
In ST, the particles are either at rest or move with finite constant velocity
in a bounded region of space. The collisions are characterized as ordinary
billiard ball collisions. There are no velocity dependent forces which are
used to model energy losses due to friction. The system is autonomous, i.e.,
the equations of motion do not explicitly depend on time. Consequently,
there is no transfer of energy between ST and some surrounding system.
Finally, as the analysis of continuous systems and fields shows, even the
presence of an infinite number of particles does not necessarily lead to en-
ergy nonconservation. Consider a vibrating one-dimensional elastic solid
modeled by a chain ofN equally spaced point masses connected byN −1
massless springs. In the limit asN goes to infinity and the distance between
particles goes to zero, the equation of motion for this system becomes the
one-dimensional wave equation and energy is conserved.

Although infinite systems such as those described in the previous para-
graph conserve energy, the limits involved in their definition are often
subtle affairs. Consequently, we examine the limiting processes involved
in defining the energy in ST.6

LetEN(t) be the energy of the finite system consisting of the particles
P0, P1, . . . , PN at timet . (This system isnot a subsystem of ST. Instead,
it is a new system used to describe an ordinary task in whichPN moves
to the right unimpeded after it has been hit byPN−1.) It seems natural to
define the energy of the infinite system at timet as limN→∞ EN(t). For all
N and for all t , including t = 1, EN(t) = 1/2. Thus limN→∞EN(t) is
also equal to 1/2 for allt . In particular, the energy att = 1 is equal to 1/2.
By contrast, the energy, obtained from the component-wise analysis, is 0
for t = 1, since the velocity of each particle is 0 att = 1. Clearly, unlike a
continuous mechanical system or a field, ST cannot be expressed as a limit
of a finite system as the number of particles goes to infinity.

It is possible to expressE(1), the energy of the completed supertask,
as a limit ast → 1. If t < 1, then we can writeE(t) = 1

2Vi(t)
2. In this

expression,Vi is the velocity of the particlePi . The subscripti is chosen
so that the inequalityti < t 6 ti+1 is satisfied, and consequently,i is a
function of t . As long ast < 1,E(t) = 1/2, so the limit ast → 1 is also
1/2. Whent = 1, E(1) = 0, as we expect for the completed supertask.
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Note, however, that the expression forE is quite unusual. The subscripti
labeling the particle and the argumentt are interdependent. Moreover, the
closert is to 1 the more accuratelyt must be known in order to determinei.
As we show below, evaluatingE(t) on any time interval containingt = 1
requires that we knowt infinitely accurately. ThusE(t) is not well-defined
on such an interval.
E(t) is a step function. In order to evaluate it, we apply the simple

rule: Determine whethert is less than 1; if it is, thenE(t) = 1/2, else
E(t) = 0. The simplicity of this rule hides a difficulty: we must know
something about each of the infinitely many digits of the real numbert .
Consider the time given by the number whose decimal representation is
computed to bet∗ =0.9999999. . . ??? . . . . Ift∗ consists of all 9’s, then
E(t∗) = 0; however if any one of the digits oft∗ differs from 9, then
E(t∗) = 1/2. In other words, an arbitrarily small difference int∗ makes a
macroscopic difference inE(t∗).

Can we determinet∗ with the kind of accuracy needed to determine
E(t∗)? Clearly,t∗ cannot be obtained from a scientific measurement be-
cause any measurement has only finite precision. No matter how many
digits have been found by measurement to be 9, there can be no guarantee
that they will all be 9. Moreover, even if there exists a theoretical procedure
for calculating each digit oft∗, there may not exist a finite procedure for
determining whether they are all equal to 9. Hence, it may be impossible
to prove thatt∗ < 1. For such at∗, the only way to determine whether
E(t∗) = 0 or 1/2 would be to complete the infinite task of separately
examining each digit oft∗. Consequently, sinceE(t) is defined only for
thoset for which we can determine whethert < 1, the energy function
E(t) is undefined in any interval containing 1.7

It is important for this argument to contrast the indeterminacy ofE(t)

in a neighborhood oft = 1 with the situation in which a functionf (t) is
known to be continuous. The real numberf (t) is determined if its value is
known to within an arbitrary toleranceε > 0. By continuity, this condition
can be satisfied ift is known to within some associated toleranceδ(ε) >
0. Thus, in order for a continuous function to be well-defined, we need
only know the argument to arbitrary precision. We do not need infinite
precision.

In view of the importance of conservation of energy for bounded isol-
ated systems and further, the adverse implications of a discontinuous
energy function, we believe that the global picture, involving the Hilbert
space embeddings, is the appropriate model to use for analyzing ST. The
Hilbert space norm provides enough structure to the spaces so that the
notion of the distance between two velocity vectors can be defined. In this
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global analysis, the equations of motion become singular att = 1, so
that Newton’s equations can have no solution at this time. Consequently,
the problems involving indeterminism and energy conservation dissolve.
The inability to define the state of the system att = 1, or equivalently,
the singularity in Newton’s equations at this time, provides the essential
justification for refusing to call ST a Newtonian system.

6. EXPOSING A MATHEMATICAL LOOPHOLE

ST hides an essential ambiguity. The indeterminism claimed is not re-
covered directly from a mathematical description sufficiently detailed to
demonstrate satisfaction of Newton’s laws at all times. Instead it is re-
covered indirectly from meta-arguments that presume such a description
is possible. For example, if ST is assumed to employ instantaneous col-
lisions, the meta-argument could look like this. Energy and momentum
conservation compel each individual collision to be resolved as in STif
any resolution compatible with Newton’s equations exists at all.8

But to show that such a resolution exists requires that we make a careful
mathematical model of the instantaneous and perfectly elastic collisions.
This requires either distribution theory or positing the existence of strongly
peaked force functions of unbounded strength, acting over arbitrarily short
distances, and having an awkward accumulation point att = 1. The
simplicity of ST is slipping away.

Furthermore, if we allow meta-arguments to carry the day, the danger is
that we cannot decide between competing meta-arguments. In our present-
ation of ST in Section 1, we allowed the end state of ST to be decided by
a meta-argument that focused on the particles: for each particleVi(1) = 0,
and consequently, the energy of the system drops to zero att = 1. How
are we to arbitrate between this meta-argument and the following one that
focuses on the energy interchanged in collisions, and gives a different con-
clusion: LetE(0) be the initial energy of the system att = 0, andCi be the
additional energy imparted to the system by theith collision. Since all the
collisions have been completed by timet = 1,E(1) = E(0)+∑∞i=1Ci. All
of theCi are zero, so thatE(1) = E(0) and energy is conserved. Perhaps
this question can be resolved once the full mathematical descriptions are
given, but that has yet to be done.

An example discussed elsewhere by one of us (Norton, 1999) shows
that there is a system akin to ST which satisfies Newton’s equations,
violates determinism and energy conservation and for which an explicit
mathematical demonstration of the violation is readily provided. The sys-
tem consists of infinitely many unit masses,Pi , i = 1,2,3, . . . in a row.
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Each is connected by identical springs to its neighbors:P1 toP2; andPi to
Pi−1 andPi+1 for i > 1. If the deviation of theith mass from it equilibrium
position isxi , then Newton’s laws applied to theith mass (i > 1) becomes
the equation of motion

d2xi

dt2
= k(xi+1 − xi)− k(xi − xi−1),

wherek is the Hooke’s law spring constant. Thus if we consider the sub-
system of the firstnmasses, for anyn, we haven equations of motion (one
for each mass) inn + 1 variables (the variablesx1, . . . xn+1). That is, for
all of these subsystems, there is one more variable than equation so that
the set of equations has no unique solution. We have indeterminism. Most
of the admissible solutions violate energy conservation as well. This in-
determinism depends essentially on there being infinitely many masses. If
there were only finitely many, there would be a last massPN . The equation
of motion governing it would have no term inxN+1. We would haveN
equations inN variables and determinism would be restored.9

Indeterminism arises in ST because of an analogous structure in the
governing equations. Consider the time reversed form of ST in which
the particles are spontaneously excited by a disturbance that propagates
from the accumulation point. If we consider the subsystem of the particles
P1, . . . , Pn, we will have n equations of motion inn + 1 variables, since
the equation of motion for particlePn must mention the position of particle
Pn+1, with which it interacts by collision. For all these subsystems, we have
one fewer equation than variable, and indeterminism results. Specifically,
the speed ofPn+1 at the time immediately before it collides withPn can be
chosen arbitrarily.

The point of this discussion has been to show that we are not arguing
at cross purposes with one side setting meta-arguments against the other’s
demand for more complete mathematical description. The point at issue
can be expressed in terms of mathematics.

For finite Newtonian systems, it is clear that there is one equation of
motion for each one of the particles. Alper and Bridger require that in
order for an infinite system to be called Newtonian, any finite subsystem
used in the analysis of that system must also admit a description in which
there is exactly one equation of motion for each particle. In their analysis
of ST, the introduction of a norm in the Hilbert spaces serves as a proxy for
the missing equation of motion they require. Earman and Norton believe
there is no such requirement.
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7. CONCLUSION

For an isolated dynamical system to earn the designation “Newtonian” is it
necessary that it conserve energy? Alper and Bridger answer yes, arguing
that the First Law of Thermodynamics trumps Newton’s laws of motion.
Earman and Norton answer no, for otherwise we risk overlooking that
Newton’s laws of motion are insufficient to ensure energy conservation
and determinism.

We conclude with two points. First, irrespective of whether or not
systems like ST or the example proposed by Norton should be called
Newtonian, these systems are fascinating and are well worth (at least to
us) careful study. Second, not all conceivable supertasks constructed with
standard Newtonian components are Newtonian even in the weak sense
favored by Earman and Norton. Both Alper and Bridger (1998, 366–7)
and Earman and Norton (1998, 129–30) have described a system in which
Newton’s laws are violated. In their example, if particleP0 of Figure 1
were initially at some positionX, with X > 1, and were to approach the
remaining particles fromthe rightwith velocity V = −1, Newton’s laws
will fail when P0 arrives atX = 1.10

NOTES

1 The precedent for this type of publication was set by Einstein and Ritz (1909).
2 This sort of continuity need not be imposed after the fact on all supertasks. Norton
(1999) describes an infinite system of masses connected by springs that spontaneously
excites with all time dependencies remaining smooth. See also Grünbaum (1968) for a
smoothing due to Richard Friedberg in an analogous case.
3 Here and below we assume that the regularization of the collisions has been effected by
forces of sufficiently short range that, for alli, forces mediating the collision ofPi−1 and
Pi ceased to act before those mediating the collision ofPi andPi+1 begin to act.
4 Condition (2.5) is stronger than (2.4) in the sense that (2.5) entails (2.4) but not con-
versely. Should (2.4) fail for any value ofi, then the non-zero limt→1− |Vi(t)−Vi(1)| will
contribute a positive term to the sum of squares on the left hand side of (2.5) ensuring the
failure of condition (2.5). So (2.5) entails (2.4). However, as we show below, (2.5) forces
continuity of the norm||V(t)|| at t = 1 but (2.4) does not, so (2.4) cannot entail (2.5).
5 To see this, recall that (2.5) requires0 = limt→1− ||V(t) − V(1)||2 =
limt→1−

∑∞
i=0[Vi(t)−Vi(1)]2 = limt→1−

∑∞
i=0([Vi(t)]2− 2Vi(t)Vi(1)+ [Vi(1)]2) =

limt→1−
∑∞
i=0([Vi(t)]2 − [Vi(1)]2) since limt→1− Vi(t) = Vi(1) for all i. Therefore

limt→1− ||V(t)|| = ||V(1)||.
6 In this discussion, we ignore the potential energy so that energy equals the sum of
the kinetic energies of the particles. The potential energy can be ignored because during
any collision, any change in potential energy is accompanied by an equal and opposite
change of kinetic energy. Thus the occurrence of a collision, resulting in the interchange
of potential and kinetic energy, has no effect on the value of the total energy.
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7 An explicit example of such at∗ was suggested by John von Neumann. Lett∗ = 1−G,
where thenth decimal place ofG is 0 if 2n is a sum of two primes, and 1 otherwise. The
value ofG depends on the truth of the Goldbach conjecture which asserts that every even
number is the sum of two primes. If Goldbach is true, thenG = 0, if not,G > 0. Since the
Goldbach conjecture is as yet unresolved, we do not know whethert∗ = 1 or t∗ < 1, even
thought∗ is computable to arbitrary accuracy.
8 If u andv are the velocities of the two particles, energy and momentum conservation
require respectivelyu2 + v2 = 1 andu + v = 1. The two solutions are firstu = 1 and
v = 0 (the pre-collision velocities) andu = 0 andv = 1 (the post-collision velocities).
Alternatively, one recovers the same result by requiring symmetry and energy conservation
in the center of mass frame of reference and assuming that the system may be Galilean
transformed.
9 We address a minor technicality. The indeterminism derives principally from the fact
that there are fewer equations than variables in each subsystem. But this fact alone is not
sufficient for indeterminism. To see this, consider infinitely many, real-valued variables

yi (t), governed byyi+1 = 2yi/
√

1− y2
i
, wherei = 1, 2, 3, . . .. The subsystem of the

first n equations is indeterministic. We can choose any function fory1(t) and read off
remaining, compatibley2(t), . . . , yn(t), as long as we ensure thaty1(t) is sufficiently close
to zero for allt , so that the remainingy2(t), . . . , yn(t) are well defined. A choice ofy1(t)

that works for one subsystem might not for another. But, because of the factor of 2 in each
equation, the only wayall variablesyi can be defined in the infinite case is if we choose
y1(t) = 0 for all t ; thus determinism survives. By contrast, in the masses and springs the
structure of the system is such that the arbitrariness of choice ofx1(t) remains even when
we consider the full, infinite set of equations.
10 It cannot halt or be deflected as a result of a collision with some particlePi (for any i)
since this collision is shielded by particlePi+1. But neither can it continue unimpeded for
it would have to pass through the higher numbered particles without deflection.

REFERENCES

Alper, J. S. and M. Bridger: 1998, ‘Newtonian Supertasks: A Critical Analysis’,Synthese
114, 355–369.

Earman, J. and J. D. Norton: 1996, ‘Infinite Pains: The Trouble with Supertasks’, in A.
Morton and S. Stich (eds.),Benacerraf and his Critics, Blackwell, pp. 231–261.

Earman, J. and J. D. Norton: 1998, ‘Comments on Laraudogoitia’s “Classical Particle Dy-
namics, Indeterminism and a Supertask” ’,British Journal for the Philosophy of Science
49, 123–133.

Einstein, A. and W. Ritz: 1909, ‘Zum gegenwaertigen Stand des Strahlungsproblems’,
Physikalische Zeitschrift9, 323. (Reprinted in J. Stachel et al. (eds.),Collected Papers
of Albert EinsteinVol. 2, p. 555).

Grünbaum, A.: 1968, ‘Modern Science and Zeno’s Paradoxes of Motion’, reprinted in W.
Salmon (ed.),Zeno’s Paradoxes, Bobbs-Merrill, Indianapolis and New York, pp. 200–
250.

Laraudogoitia, J. Perez: 1996, ‘A Beautiful Supertask’,’Mind 105, 81–83.
Mather, J. N. and R. McGee: 1975, ‘Solutions of the Collinear Four-Body Problem Which

Become Unbounded in Finite Time’, in J. Moser (ed.)Dynamical Systems, Theory and
Application, Springer-Verlag, New York, pp. 573–597.



WHAT IS A NEWTONIAN SYSTEM? 293

Norton, J. D.: 1999, ‘A Quantum Mechanical Supertask’,Foundations of Physics29, 1265–
1302

Pais, Abraham: 1986,Inward Bound: Of Matter and Forces in the Physical World, Oxford
University Press, New York.

Joseph S. Alper
Department of Chemistry
University of Massachusetts, Boston
Boston, Massachusetts 02125
U.S.A.

Mark Bridger
Department of Mathematics
Northeastern University
Boston, Massachusetts 02115
U.S.A.

John Earman
Department of History and Philosophy of Science
University of Pittsburgh
Pittsburgh, PA 15260
U.S.A.

John D. Norton
Department of History and Philosophy of Science
University of Pittsburgh
Pittsburgh , PA 15260
U.S.A.
E-mail: jnorton+@pitt.edu


