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Why Geometry is not
Conventional: the Verdict of
Covariance Principles

John D. Norton

1 Introduction

The question of which parts of a theory of space or spacetime are conventional and
which are factual has dominated foundation studies in space and time for almost a
century. The emphasis of Einstein’s work in relativity theory has always been on exactly
this question. His various principles of relativity, of equivalence of general covariance
are all intended to tell us that this or that state of motion cannot be designated as
“at rest” factually but only as a convention. A tradition of similar vintage in the
philosophy of science literature urges that we cannot choose factually the geometry of
a space or which spatially separated events in special relativity are simultaneous. My
purpose in this paper is to establish two theses relating the two sets of conventionality
claims:

(I). Covariance principles provide a natural way of automatically separating the
factual from the conventional components of a theory. This sense of convention is most
familiar to us as the sense in which coordinate systems are freely chosen.

(IT). Contrary to the claims of Hans Reichenbach and others, the metrical geometry
of a space or spacetime is not conventional, or at least not in the sense natural to
geometric theories provided by covariance principles. This conclusion follows directly
from Reichenbach’s “universal forces” construction.

To establish Thesis (II), I will argue that the non-conventional character of metrical
geometry is revealed by the need to introduce universal forces as correction factors when
we substitute an arbitrary metric for the one revealed by direct measurement. Were
metrical structure conventional in the sense of Thesis (I), such correction factors would

be unnecessary.



160 Norton

2 The Representation of Physical Spaces and Space-
times |

1 In constructing a theory of space or spacetime, the principal task of the theorist is
k. ‘ to select mathematical structures capable of representing the space or spacetime in
) question. Virtually all such efforts make use of the manifold of real numbers R or of

.'m’ 0 ntuples of real numbers R™. To see how the representation works, consider two simple
% 4 examples: a two-dimensional Euclidean surface and a Minkowski spacetime of special
n relativity. They can be represented by R? and R? respectively.

“f ’ For all that follows, it is crucial that the reader observe the following. For simplicity

of analysis, the R™ employed here is literally the set of of all ntuples of real numbers
(with standard topology assumed) so that points in the set would include < 0,0,0,0 >
and <1,-5,4,1 >. R" is not just an n-dimensional manifold with some arbitrary point
set and which is “topologically R™”, that is, isomorphic to the manifold of n-tuples of
reals with standard topology. The use of R™ in this way corresponds to methods of
the older traditions of geometry and spacetime theory, as | have argued elsewhere in
NORTON (1989) and (1991).

To represent the properties of the Euclidean surface or Minkowski spacetime, each
is coordinated with R? or R* in the familiar manner. A point of the Euclidean surface
is coordinated with a pair < z,y > of reals in R?. A given straight line in the Euclidean
surface is coordinated with the set of pairs {< z,y >: Az = By + C} for suitable real
constants A, B and C. Similarly, an event of the Minkowski spacetime is coordinated
with a quadruple of reals < z,y,z,t >. Other familiar structures of the Minkowski
spacetime-worldlines and hypersurfaces-are coordinated with suitable corresponding
substructures of R*.

This coordination of a physical space or spacetime with R™ is naturally called a
coordinate system. The theories of the Euclidean surface and Minkowski spacetime
alluded to so far employ just a single coordinate system. Therefore it is natural to call
them the “one coordinate system” formulations of these theories.!

3 The Problem of Superfluous Structure

Simple as they are, the one coordinate system formulation of these two theories runs
into a serious problem. One generally expects that the problem facing a theory is
that the physical system under investigation is too rich in structure to be represented
easily by readily available mathematical structures. In this case we find precisely the
opposite problem. R? or R* are actually too rich to represent a Euclidean surface and
Minkowski spacetime. Both contain superfluous structure to which we cannot allow
physical significance.

For example, R? contains a preferred origin point < 0,0 > with properties shared
by no other pair in R%.? Indeed each of its points is intrinsically distinct from every
other. Does this mean that each point of the Euclidean surface represented has unique
properties shared by no other point of the surface? It cannot, for the Euclidean surface

'For further details, see SaLMON (1992, Ch. 5).
2For example, it is the only point < z,y > which solves < z,y >=< 22,2y >.
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is by supposition homogeneous, which means that every point is like every other. The
surface can have no factually preferred origin. Similarly the ¢ and y axes of R? pick
out preferred directions in the Euclidean surface. The Euclidean can have no such
preferred directions since it is by supposition isotropic.

The situation is similar for the one coordinate system formulation of special rela-
tivity. The preferred origin of R*, < 0,0,0,0 > cannot represent a factually preferred
event in the spacetime, for the spacetime is postulated to be homogeneous. Again, the
distinct set of straights parallel to the t-axis of R* picks out a preferred state of iner-
tial motion in the Minkowski spacetime. Yet the principle of relativity postulates that
no such state of inertial motion can be preferred other than through a conventional
stipulation.

This problem of superfluous structure is solved routinely by expanding the set of
coordinate systems used in formulating the theory. These coordinations can usually
be mapped onto one another by a set of transformations that form a group. The
group of these transformations is known as the covariance group of that formulation
of the theory. The crucial postulate is that each coordination represents the physical
properties of the space or spacetime equally well. It follows immediately that the
only aspects of the coordination that can have physical significance are those that are
the same in all the coordinate systems of the formulation. In other words, physical
significance can only be attributed to the invariants of the formulation’s covariance
group.

To employ this solution of the problem in the case of the Euclidean surface, we pro-
ceed from the one coordinate system formulation to the “standard formulation” of the
theory. We allow any coordinate system produced from the original by any translation,
rotation or reflection of the original coordinate system. These transformations form
the covariance group of the formulation. We call the coordinate systems of the stan-
dard formulation, standard coordinate systems. It now follows automatically that the
Euclidean surface is homogeneous. Consider for example some point p of the Euclidean
surface that is coordinated with the preferred origin < 0,0 > of R?. Is p thereby picked
out as a preferred origin of the surface factually distinct from any other point? It is
not. The covariance group of the theory includes arbitrary translations. Therefore
there will exist a transformation within the group to a new coordinate system in which
any other nominated point-say “¢”-is coordinated with < 0,0 >. By supposition,
each of these coordinations represent the Euclidean surface equally well. Therefore
whatever physical properties are conferred onto p by virtue of the fact that is can be
coordinated with < 0,0 > in some coordinate system must also be conferred onto any
other nominated point ¢ of the surface. That is, the inhomogeneity of R? does not
confer inhomogeneity onto the Euclidean surface. The use of a particular coordinate
system in which p in the surface is coordinated with < 0,0 > does not indicate that
p is factually distinct from all other points; it merely reflects a conventional choice of
that particular coordinate system.

A similar argument establishes that the anisotropy of R? does not confer anisotropy
onto the Euclidean surface. Under a coordinate transformation within the covariance
group, any nominated direction in the Euclidean surface can be transformed to be
parallel to the z-axis, for example, of the coordinate system.

The implementation of the solution in the case of special relativity is analogous. The

6 Majer/Schmidt
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standard formulation of the theory allows all coordinate systems generated from the
original by a transformation in the extended Lorentz group. In particular, the transition
to this standard formulation automatically deprives special physical significance from
states of inertial motion represented by curves parallel to the t-axis in some coordinate
system. The argument proceeds as above. Consider any inertial state of motion.
There will always be a Lorentz transformation to a coordinate system in which that
motion is represented by curves parallel to the t-axis. Since all coordinate systems are
postulated to represent the physical spacetime equally well, then every inertial state
of motion can be designated equally properly as “at rest”. The decision to use one
or other coordinate system and thereby privilege one set of inertial motions does not
reflect a factual property of the Minkowski spacetime, but is merely a conventional
choice of coordinate system. In this way, the principle of relativity of special relativity
is expressed by the Lorentz covariance of the theory.?

If preferred origins and states of rest do not have physical significance in Euclidean
geometry and special relativity, what does? We answer by selecting invariants. The
straightness of a line in a Euclidean space remains invariant under rotations, transfor-
mations and reflections.* Therefore this straightness (but not direction) is physically
significant. Similarly inertial states of motion remain inertial under Lorentz transfor-
mation and are physically significant. Most fundamentally, we assign physical signif-
icance to distance £ in Euclidean geometry and interval s in special relativity. The
two quantities are given by the fundamental forms

df? = dz? + dy® + d2* (1)

which gives the distance d¢ between two points in a Euclidean surface whose coordinates
differ by dz,dz and dz; and

ds® = c*dt? — dz® — dy® — d2°

which gives the interval between two events in a Minkowski spacetime whose co-

ordinates differ by dz,dy,dz,dt. (c is the speed of light.) Both of these quadratic
differential forms remain invariant under the transformations of the covariance group
of the standard formulation of the theory in question.

4 General Covariance: Making Geometric Struc-
ture Explicit

While the standard formulations of Euclidean geometry and special relativity suffice
for most practical purposes, this is not the case for other theories of space and time.

Most notable is general relativity, which requires a generally covariant formulation. It
is now customary to employ generally covariant formulations of all theories of space and
spacetime. This custom ensures that comparative studies of these theories reflect actual

3Readers concerned that I am disagreeing with the now widespread view that covariance principles
are physically vacuous should consult my paper NorTON (1989) and (1991).
4More precisely, of course, the linearity of the relation between coordinates representing the line is

preserved.
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differences between the theories and not accidents of different types of formulation.
However if we continue to employ covariance principles as a means of separating factual
from conventional content, it seems, at first blush, that we deny physical significance
to too much when we move to generally covariant formulations of Euclidean geometry
and special relativity.

Pursuing only the example of Euclidean geometry, let us expand the covariance
group to the general group of transformations, that is, to the group of all C* trans-
formations on R?. Thus we allow an arbitrary C* transformation from a standard
coordinate system (z,y) to the coordinate system (z1,z2). Consider for example the
transformation

T = (3:1)3’ y= (1:2)
for which we have transformation coeflicients

Oz dy 2 Oz dy

Pu‘g—3(rl), P22 = 5—;;=3(12),P12=5$—2=0—6—Il=1321-

In general, under such a transformation, the fundamental form (1) of a Euclidean
surface fails to remain invariant. That is,

de? = d(z,)* + d(z,)? (2)

is not invariant.

It follows immediately that distances as determined by the form (2) have no phys-
ical significance. The distance df between two infinitesimally close points will vary
according to the coordinate system chosen. That distance will therefore not be invari-
ant. Notice that were the space in question a topological space in which distance along
curves has no physical significance, then this outcome would not trouble us. Indeed we
would choose to expand the covariance of the theory to general covariance precisely in
order to display the lack of physical significance of distance.

Of course the problem of giving a generally covariant formulation of Euclidean
geometry is routinely solved in the following way. Within the generally covariant
formulation, we retain a subset of coordinate systems corresponding to the standard
coordinates. These coordinates are specially adapted to the geometry of the surface
in the sense that the form (1) gives the physically significant distances of the surface.
To complete the formulation of the theory, we replace the form (2) by a form that
preserves the invariance of dl under arbitrary C'* transformation. The form automati-
cally corrects for the deviations of the new coordinate system (z;, z;) from a standard
coordinate system (z,y) = (X, X2) in such a way that dl remains invariant. We write
(with summation over repeated indices implied)

= (dXm)(dXm) = Pmi Pmk dzi dzy = gix dz; dzy (3)

where gix = Pmi pmx Will be recognized as the coefficients of a metric tensor. In practical
terms, these coefficients g;x encode the deviations of the relevant coordinate system
from a standard coordinate system and enable us to preserve the invariance of the
distance . We now also think of the metric tensor as giving the surface the physically
significant property of distance via the form (3). That is, with the transition to general

60
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covariance, that aspect of the surface’s geometric structure, its metrical structure, has
been made explicit as the metric tensor.

Because it will parallel what is to follow, I should like to review the overall procedure
that led to the appearance of the metric tensor. We began with the one coordinate
system formulation of Euclidean geometry and proceeded to expand the covariance
group of the formulation through successively larger groups. The effect was to deny
physical significance to successively more structure. With the transition to the gener-
ally covariant formulation, this process had proceeded too far. We had denied physical
significance to distance. We preserved the physical significance of distance by rescuing
the relevant aspect of geometric structure, the metrical structure, as the correction
coefficients gik = PmiPmk. These coeflicients were re-introduced as a new and dis-
tinct component of the theoretical structures of the theory, the metric tensor, which
encapsulates the physically significant distance properties of the surface.
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5 Reichenbach’s Relativity of Geometry and the
Universal Forces Argument

While the thesis has been advanced in various forms by Einstein, Poincaré and others,
the notion that there is an important convention in metrical geometry is best known
from the work of Hans Reichenbach.® Reichenbach observed that we cannot investigate
the metrical geometry of a surface until we have some system for determining metri-
cal distances on the surface. Such a system, he argued, required what he called an
arbitrarily chosen “coordinative definition,” which coordinates some particular thing
with some concept. For example, we may decide to define distance on the surface (a
concept) as coinciding with the results of measuring operations using a movable rod (a
thing) taken by definition to be of unit length. Reichenbach did not feel that metrical
geometry was physically vacuous, as may be suggested by the use of the label “conven-
tionalism.” Thus he elected to use the term “relativity of geometry” to indicate that
his view held to the dependence of the results of measurement on a definition.

Nonetheless the term conventionalism continues to be used of the view championed
by Reichenbach - and properly so. For, according to Reichenbach’s view, differing
choices of coordinative definitions will yield differing geometries for the surface in ques-
tion. In particular, whether the geometry is Euclidean or non-Euclidean will depend
upon a definition. Thus whether the surface is or is not Euclidean must be described
as a matter of convention, for its Euclidean character can be eradicated, for example,
by a conventionally chosen definition.

This role of coordinative definitions emerged clearly in Reichenbach’s discussion of
universal forces. Universal force fields, by definition, affect all material in the same
way and admit no insulating walls. Let us imagine that we use a unit measuring rod
to map out the geometry of a surface. If a universal force field which distorts distances
is present, our results will be affected by these distortions. However because universal
forces affect all materials alike and cannot be shielded, we have no independent way
to correct for these distortions. Measurements conducted with another measuring rod

5See especially REICHENBACH (1958, Ch. 1) upon which the discussion of this section is based.
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of different composition will be distorted equally. Thus, Reichenbach concludes, we
can only accommodate universal forces if we set by definition that they vanish or have
some other value.® B TS

As an aside from my main argument, I must note that the notion of a universal
force, as a genuine, physical force, is an extremely odd one. They are constructed
in such a way as to make verification of their existence impossible in principle. The
appropriate response to them seems to me not to say that we must fix their value by
definition. Rather we should just ignore them and for exactly the sorts of reasons that
motivated the logical positivists in introducing verificationism. Universal forces seem
to me exactly like the fairies at the bottom of my garden. We can never see these
fairies when we look for them because they always hide on the other side of the tree. I
do not take them seriously exactly because their properties so conveniently conspire to
make the fairies undetectable in principle. Similarily [ cannot take the genuine physical
existence of universal forces seriously. Thus to say that the values of the universal force
field must be set by definition has about as much relevance to geometry as saying the
the colors of the wings of these fairies must be set by definition has to the ecology of
my garden.

Undeterred by such quibbles Reichenbach” used the notion of universal force to
state a theorem from which it followed that a surface could at least locally be held
to have any nominated metrical geometry provided we were prepared to stipulate the
presence of an appropriate universal force. In particular, imagine that the uncorrected
results of measurement yield a metric g, for some surface, then we can infer that the
geometry of that surface is actually given by the metric gy if we stipulate that our
measuring rods were under the influence of a universal force field Fi; where all three
quantities are related by the equation

gix = gix + Fix. : (4)

Clearly if g/, is Euclidean, gix need not be, according to the value of Fj, which is
set by stipulation. That is, whether a surface is Euclidean depends on a conventional
stipulation.

6 Universal Forces Construction Displays Non-
Conventionality of Geometry

The central move of the theorem discussed immediately above is to add another trans-
formation to the groups of transformations used in formulating the theory. These
transformations are best described as gauge transformations on the metric gi; that
is, the gauge transformations map g/, onto any arbitrary gix differing from it by an
arbitrary additive tensorial factor Fi, according to equation (4).

§Differential forces, however, affect different materials differently. Thus their presence can be
revealed by comparing the behavior of different materials. Heat is an example of a differential force.
One can reveal the presence of thermal expansions in regions of varying temperature by comparing
the differential expansion of copper and wooden measuring rods.

TREICHENBACH (1958), p. 33.
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This addition of a new group of transformations is strongly analogous to the ex-
pansions of the covariance groups seen above. If we assume that each transformation
relates structures equally able to represent the factual nature of the geometric surface,
then the addition of this gauge transformation deprives more of the theory’s structure
of physical significance. In particular, the distance ¢, as given by the quadratic differ-
ential form (3) now cease$ to be an invariant. Adding an arbitrary. gauge term F; to
the coeflicients gix in (3) will in general alter the value of df2. If the surface in question
were merely a topological space with no factual metric properties, this circumstance
would be exactly what we want. The lack of invariant character of d¢? would merely
be reflecting that the space has no factual metrical properties.

However, if the surface does have factual metrical properties, then our addition of
the gauge transformation has clearly gone too far. Moreover its does so in exactly the
same way as did the expansion of the covariance group of the theory to the arbitrary C*
transformations of the generally covariant formulation. In the latter case we rescued the
structure with physical content by preserving certain coordinate systems as specially
adapted to the geometry and introducing correction factors into the form (2) to correct
for distortions introduced when employing coordinate systems other than the standard
coordinate systems.

We can do precisely the same thing here. Let us single out as preferred a metric
gix, the one revealed by uncorrected distance measurements. Whenever we transform
to a new metric g;x we will preserve our path by noting the additive term F used in
the transformation. We now define the distance £ to be given by the form

df* = gl dz; dzy = (gix + Fix) dz; dzy. (5)

The coeflicients F}, are “correction factors,” to use Reichenbach’s® own term. The
quantity df* as defined in (5) is once again an invariant under all the transformations
of the theory, both coordinate transformations and gauge transformations of the metric.
Since the values of d¢? must coincide with the factual results of uncorrected measur-
ing operations, this transition to the form (5) must be taken by the Reichenbachian
conventionalist.

How are we to interpret the need for the factors Fix in the form (5)? Their presence
serves the same function as the presence of the factors git = pmi pmx in the form (3),
where the factors g;x protect the metrical structure against loss of physical significance
in the transition from the standard to the generally covariant formulation. Indeed
the correction factors gix themselves become symbolic of the metrical structure of the
surface. Correspondingly the presence of the factors Fi in (5) serves the function of
preserving the metrical structure against loss of physical significance under the intro-
duction of the gauge transformation (4). Indeed we might well say that the structure
F.x now represents that physically significant metrical structure (in conjunction with
the coefficients gix) in the same way as the coefficients g (in conjunction with the
coordinate system (z,, z;)) represents the metrical structure in the generally covariant
formulation.

We can choose freely between different sets of coefficients gix in the form (5) by
means of the gauge transformation. However the crucial point is that this does not

8REICHENBACH (1958), p 33.
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reveal a convention in metrical structure, for all such choices are subject to correction
by the factors Fit. In precise analogy, we can choose an arbitrary coordinate system
in the generally covariant formulation of the theory. This does not mean that met-
rical properties of the surface are conventional. For all such coordinate systems the
coordinate differentials are corrected by the factors gix in the form (3) when recovering
judgements of distance.

7 Conclusion

Reichenbach’s universal forces construction demonstrates that the metrical geometry
of a surface is not conventional in the sense natural to geometry, the one provided by
covariance principles and exemplified in our conventional freedom to choose coordinate
systems.’ The obvious question that goes beyond this paper is whether there is some
other interesting sense in which metrical geometry is conventional. There is, of course, a
trivial sense in which the truth of any factual statement is dependent on the definitions
of its terms. We can conventionally choose to alter the truth value of any factual
statement by arbitrarily changing the meanings of its terms. Salmon!® correctly rules
out this type of convention as “trivial semantic conventionalism” because the existence
of the convention does not depend upon any physical facts of the world. Under this
criterion, our freedom to stipulate that any state of inertial motion in special relativity
1s the “rest” state is a non-trivial convention, for it depends the physical fact of the

principle of relativity. Can we find physical facts upon which to base the conventionality
of metrical geometry?!! I do not think that we can look to universal forces as a source
of some appropriate physical fact. As I indicated briefly above, I cannot take seriously
the postulation of a physical force so contrived by definition as to be beyond detection.

9The use of the term “coordinate” and its adjectival form “coordinative” in “coordinate system”
and “coordinative definition” suggests a close connection between the conventional freedom in choosing
coordinate systems and in setting coordinative definitions. While I do think that there is a reasonably
strong suggestion of a connection between the two conventions, it should be noted that this suggestion
is not as strong in Reichenbach's original German. For example, in REICHENBACH (1928), the German
text of REICHENBACH (1958), for “coordinate system” Reichenbach used the standard “Koordinaten-
system” (e.g. p. 279). For “coordinative definition,” however, he used “Zuordnungsdefinition” (e.g.
p. 23), which could be translated as “associative definition” or “correspondence definition,” if one
wished to avoid the term “coordinative.”

105 Lmon (1969), p. 61).

11This is not the place to consider GRUNBAUM's (1973, Part I) claim that space is metrically amor-
phous and has no intrinsic metrical properties, so that these properties must be provided conventionally

by us.
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