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ABSTRACT
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support within some domain of propositions as relations or theorems within the calculus.

It is demonstrated that there can be no complete, non-trivial calculus of inductive
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1 Introduction

In informal accounts of inductive inference, we may say that the evidence

strongly supports some scientific theory. Just how strong is ‘strong’? We

may say that simpler or more explanatory hypotheses deserve greater induct-

ive support. But how can we justify this when we are barely able to say just

what is it to explain or to be simple?

Formal approaches to inductive inference hold the promise of a mechanical

solution to such conundrums. It lies in the enticing ideal of a complete induct-

ive calculus. In it, strengths of inductive support would be represented numer-

ically, and their magnitudes would be fixed by the explicit rules of some

calculus that render their determination a matter of mechanical computation.

Then all relations of inductive support in some domain, as well as all general

facts about them, would be fully captured as relations and theorems within

that calculus.

Such a calculus could, for example, capture the totality of all inductive

relations of support that ground our present science in a single, enormous

computation. The actual computation would, of course, be prohibitively com-

plicated. No one should expect that it could be written down in any tractable

fashion. However, its possibility in principle would be of the highest founda-

tional importance. It would mean that all specific facts about the inductive

support of some particular proposition on some particular body of evidence

could be captured as relations fully derivable within the calculus, and all

general facts about inductive inference would be reducible to theorems in

the applicable calculus. The foundational puzzles of inductive inference

would yield eventually and inexorably to the display of suitable theorems.

The conundrums of philosophical analysis would have been replaced by the

mechanics of theorem proving.

Call this all-embracing capacity of a quantitative calculus its ‘inductive

completeness’. What will be demonstrated here is that there can be no induct-

ively complete calculus. The result pertains to no particular calculus of in-

ductive inference, but to the prospects of a broad class of them to be

characterized below. The class includes the probability calculus favoured by

the Bayesians.
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The demonstration requires assumptions. The two most important are

these: First, the requirement of completeness is implemented as a requirement

that the inductive logic draw only on resources within the compass of the

propositions at issue. No external judgements of strengths of inductive sup-

port can be used, for they would lie outside the inductive scrutiny of the logic.

Since those internal resources are just the deductive relations among the prop-

ositions, the inductive logic is required to be ‘deductively definable’. That is,

the strengths of inductive support are defined either explicitly or implicitly in

terms of the deductive relations (that is, ‘what deductively entails what’) over

the algebra of propositions at issue. An illustration of an implicit definition of

this type is the defining of probability measures through Kolmogorov-type

axioms, supplemented with further propositions that fix the probabilities. This

condition, and the symmetry theorem derived from it, are developed in

Sections 3 and 4.

Second, it is assumed that the logic is ‘asymptotically stable’. This condi-

tion responds to the possibility of refining—that is, expanding—the algebra

of propositions by disjunction. The proposition that there will be a solar

eclipse on 1 June can be replaced by the disjunction of propositions asserting

a solar eclipse on the morning of 1 June or on the afternoon of 1 June. The

strength of support afforded to some fixed proposition by some fixed evi-

dence may be altered by the refinement. The presumption of asymptotic

stability is that this strength of support converges towards a unique limit

that is the best representation of the strength of support, and that all

continuing refinements eventually become inductively inert hair-splitting

that does not disrupt the approach to this unique limit. This condition is

developed in Section 5.

The no-go result, developed in Sections 6, is that any inductive logic sat-

isfying these two conditions, along with an additional continuity condition,

reduces to a trivial logic in which the inductive strengths of support converge

to a single value.

In barest form, the proof depends on the fact that a deductively definable

logic of induction is adapted to a deductive structure that is highly symmetric,

so that the inductive structure inherits all its symmetries. These symmetries of

inductive logic mean that we are unable to discern that continued disjunctive

refinement eventually becomes inductive hair-splitting. Instead, its inductive

strengths keep responding in inconsistent ways to different refinements and

fail to stabilize, unless the logic is trivial. The strategy of the demonstration is

akin to the familiar use of the principle of indifference to show that there can

be no neutral prior probability distribution. Here, that strategy is amplified

greatly and applied not just to prior strengths of support, but to all strengths

of support and the rules of the logics themselves.
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Section 8 reviews various escapes intended to preserve the possibility of a

complete calculus of inductive inference. Among them is the possibility of

escape through subjective Bayesianism, where inductive inferences are

embedded in a larger context of the dynamics of belief states. While the pos-

sibility of arbitrarily chosen prior beliefs breaks the symmetry central to the

no-go result, the escape fails since the problems driving the no-go result re-

appear in a different guise. Similarly, escapes by designating preferred refine-

ments or preferred languages amount to a failure of completeness, for

inductive considerations outside the domain must determine which partitions

or languages should be preferred.

The main significance of this analysis is explored in Section 7. It is that

inductive logic cannot be reduced to a single mathematical calculus. Any non-

trivial calculus is incomplete and a non-trivial application is possible only if

one introduces additional inductive content that comes from outside the cal-

culus and is therefore beyond the scope of its inductive scrutiny. This add-

itional content may manifest as a need to stipulate sensible Bayesian prior

probabilities through external consideration or in a failure of a novel calculus

to accommodate all problems. These difficulties are misdiagnosed as tempor-

ary nuisances, such as the ‘problem of the priors’, while they are really mani-

festations of an ineliminable foundational problem.

In a much quoted passage, De Finetti ([1980], p. 194) proclaimed the re-

duction of inductive reasoning to probability theory:

[. . .] one must invert the roles of inductive reasoning and probability

theory: it is the latter that has autonomous validity, whereas induction is

the derived notion. One is thus led to conclude with Poincaré that

‘whenever we reason by induction we make more or less conscious use of

the calculus of probabilities’.

The import of the results of this article is that this reduction of induction

to probability, or to any other of a broadly defined class of calculi, cannot

be achieved completely. We cannot answer the question of what inductive

inference is with, ‘it is merely inference governed by such and such a

calculus’.

Most of the literature seeks to show what an inductive calculus can do, not

what it cannot do. Thus these sorts of incompleteness results are relatively rare.

For one that developed into the learning theoretic paradigm, see (Putnam

[1979], Chapter 17) and its extensively developed versions in (Kelly [1996], es-

pecially Chapter 13). Closer to this article, Titelbaum ([2010], [2011]) has ex-

tended Goodman’s grue-like considerations to a permutation symmetry among

predicates in an unquantified predicate logic. He argues that the symmetry
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precludes a purely syntactic relation in which hypothesis h1 is favoured over

hypothesis h2 by evidence e.

The results to be discussed extend those developed in a simpler form in

(Norton [2010]) for a different purpose. The goal of the present article is to

give a full statement of the incompleteness and its proof, with emphasis on the

technical details. Further interpretive remarks, a simplified encapsulation, and

discussion of the significance of the incompleteness can be found in (Norton

[unpublished]).

2 The Deductive Structure

2.1 Finite Boolean algebras of propositions

An inductive calculus defines relations of inductive support over some set of

propositions, connected by deductive relations. I shall proceed with the simple

case of the propositional logic of arbitrarily, but finitely, many non-com-

pounded propositions. This simple logic will suffice for the no-go result (see

Section 8.1 for further discussion.) That is, I consider finitely many propos-

itions, A, B, C, and so on, and the compound sentences formed from them

using the operators � (‘not’), � (‘or’), and & (‘and’). This representation

admits many compound propositions, that are logically equivalent and

thus, for our purposes, the same. For example, A & A, A � A, A & (B � B)

are all logically equivalent to A.

The better representation is through Boolean algebras of different sizes.

Their sizes are measured by the number of atoms, which is the number of

logically incompatible, deductively strong, non-contradictory propositions in

the algebra. A three-atom algebra, with atoms a1, a2, and a3, has just eight

logically distinct propositions:

1 (the contradiction)

a1, a2, a3

a1 � a2, a1 � a3, a2 � a3

�3 ¼ a1 � a2 � a3 (the universal proposition)

The set of propositions over which inductive relations will be defined will

include all such algebras with finitely many atoms: �2, �3, �4, and so on.

2.2 Symmetries of the Boolean algebra

The deductive structure of a Boolean algebra is just the full set of all deductive

entailment relations among the propositions, such as:

1 entails a1 entails (a1 � a2) entails (�3 ¼ a1 � a2 � a3).

Incompleteness of Calculi 5
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This deductive structure is highly symmetric. For example, two atoms a1 and

a2 enter into deductive relations that are perfect copies of another: relations

a1 entails a1 � a2

a2 entails a2 � a3

are two copies of the more general entailment relation

(some atom) entails (some atom) � (some other atom).

The two differ only in the choice of labels of the atoms. The general result is

that the deductive structure is preserved under arbitrary relabelling of the

atom. Such relabelling includes arbitrary permutation of the atom labels.

For more discussion of these symmetries, including pictorial representations,

see (Norton [2010], Section 3).

3 Deductively Definable Logics of Induction: The Formal

Expression of Completeness

3.1 Strength of inductive support

An inductive logic assigns inductive strengths ‘[AjB]’ to pairs of propositions

in a Boolean algebra, where this symbol represents the degree to which prop-

osition A is inductively supported by proposition B. (On other possibilities, see

Section 8.2.) What makes these quantities strengths is that we can say that one

is stronger or weaker than another. More precisely, we assume that there is a

partial order relation ‘�’ defined over all well-defined strengths.1 That is, the

relation is reflexive, anti-symmetric, and transitive. So that non-trivial limits

are possible, the set of strengths is also assumed to be dense.2 There are two

extreme values: There is a unique maximum value when A entails B and B

entails A, [AjB]¼ [AjA]¼ [�j�].3 When B entails �A, [AjB] has the unique

minimum value [AjB]¼ [1jB]¼ [1j�]. If the rules that specify the values of

these strengths are sufficiently unambiguous that computation of the strengths

is mechanical, then we have a calculus of inductive inference.

Our concern is the completeness of the calculus, as described in Section 1.

That is, we seek a calculus that draws only on the resources of the propositions

within the algebra. These resources are restricted to the deductive relations

among the propositions, that is, the deductive structure. External inductive

content—that is, externally generated judgements of strengths of inductive

1 For some pairs of propositions, strengths may not be defined. For example, P(Ajø) is undefined

in probability theory.
2 That is, for any strengths x and y such that x< y, there exists a z such that x< z<y. The relation

x < y is defined as x � y but not x ¼ y.
3 For a probabilistic logic, the condition that A entails B is superfluous. However, it is required by

other inductive logics, such as the ‘specific conditioning’ logic of Norton ([2010], Section 11.2;

[unpublished], Part 2).
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support—are excluded. Hence the condition of completeness is implemented

by requiring that the rules specifying the strengths of support employ only the

deductive structure of the algebra of propositions. Such an inductive logic is

‘deductively definable’. There are two modes of definition: explicit and

implicit.4

These two types of definition pertain to some fixed set of m propositions,

{A1, A2, . . ., Am}. This set is intended to be very large. It might consist, for

example, of all the hypotheses of a science along with the propositions

describing the evidence for the science. The set is embedded in a Boolean

algebra of propositions. It is fixed in the sense that the set will remain

unaltered while we enlarge the Boolean algebra by disjunctive refinements

introduced in Section 5.1.

3.2 Explicit definition

More traditional accounts of inductive logic tend to support explicit definition.

The venerable enumerative induction has the universal affirmation ‘A: Every S

is P’ inductively supported by the particular affirmation ‘I: Some S is P’. The

relation of I supporting A is defined explicitly in terms of the deductive relations

between the universal A and the particular I. Hempel’s ([1965]) satisfaction

criterion of confirmation allows that P(a)&P(b) confirms the universally quan-

tified (x)P(x), since P(a)&P(b) is what Hempel calls the development of (x)P(x)

with respect to the domain {a, b}. Once again, the confirmation relation is

defined explicitly only in terms of deductive relations.

In comparison to the propositional logic, these last two examples employ,

respectively, a weaker syllogistic logic and a stronger predicate logic. Simple

hypothetico-deductive confirmation can be explicitly defined within a prop-

ositional logic:

E hypothetico-deductively confirms H just in case H deductively entails E.

Or more elaborately:

E hypothetico-deductively confirms H with respect to auxiliary B just in

case H&B deductively entails E.

Simple hypothetico-deductive confirmation is generally regarded as too per-

missive. It is usually augmented with further conditions that may require that

H be, in some sense, simple, or that H not just deductively entail E, but explain

it. It may happen that these extra conditions can be made explicit enough for

4 This paper gives a more precise definition than provided in (Norton [2010], Section 5) and

extends it to include implicit definitions.

Incompleteness of Calculi 7

Downloaded from https://academic.oup.com/bjps/advance-article-abstract/doi/10.1093/bjps/axx004/4823516
by guest
on 27 January 2018

Deleted Text: d
Deleted Text: D
Deleted Text: .
Deleted Text: auxiliaries 
Deleted Text: ; 


logical formulation, and that the algebra of propositions can be suitably ex-

panded to express them.5 Then the augmented confirmation relation will still

be deductively definable.

This suggests the following formulation for the explicit definition:

For i, k¼ 1, . . ., m, [AijAk] ¼ formula that mentions only the deductive

relations among some set of propositions of the algebra {A1, A2, . . .,

Am} and their deductive relations to the atoms of the algebra �.6

Since each proposition is formed as a disjunction of atoms, inductive strengths

can be defined explicitly as a function of the number of atoms in the disjunc-

tion. (The symmetry theorem below will show that all explicit definitions

reduce to such a function.) The simplest example is the classical definition

of probability:

[AjB] ¼ #A&B/#B,

where #A&B is the number of atoms in the disjunction of atoms equivalent to

A&B, and similarly for #B.

3.3 Implicit definition

In more recent work, the degrees of support are introduced implicitly by the

requirement that they satisfy some system of axioms. This suggests the fol-

lowing formulation for implicit definition:

Implicit definition of [AijAk] for i, k ¼ 1, . . ., m: Sentences that mention

only the strengths [AijAk], for i, k¼ 1, . . ., m, for propositions of the

algebra in the set {A1, . . ., Am}, the deductive relations among A1, . . .,

Am, and their deductive relations to the atoms of the algebra �. The

sentences uniquely fix the strengths.

Merely requiring conformity to commonly used axiom systems, such as that

for the probability calculus, is insufficient to specify the strengths uniquely.

So, typically, additional sentences will be required in the implicit definition in

5 Otherwise, we may not have a relation of support precise enough to be captured by a calculus.

The defining of the relation may require further facts about explanation and simplicity that

cannot be expressed within the algebra of proposition. Then the inductive logic is revealed

at the start as incomplete, for these further facts lie beyond the inductive scrutiny of the

inductive logic.
6 Natural explicit definitions typically employ only the deductive relations among Ai and Ak and

the atoms. The m-membered set of propositions is included for continuity of exposition with the

implicit definition. Note that a set is not ordered, so that the numbering of the propositions in

the set is arbitrary.
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order to fix the strengths. These sentences will likely be specific to the particu-

lar inductive problem under investigation.

For example, an implicit definition of a probabilistic system of real-valued

strengths of support might include, along with others, the following sentences:

For all Ai, Aj, and Ak where Ai & Aj ¼ 1,

[Ai � AjjAk]¼ [AijAk] + [AjjAk].

For all Ai, Aj, and Ak, where neither Ak nor Aj are 1,

[Ai & AjjAk]¼ [AijAj & Ak] � [AjjAk].

For all Ai and Ak, if propositions Ai & Ak¼1 and there are no Ar and As,

where i 6¼ r and s 6¼ k, such that Ar entails Ai and As entails Ak then

[Aij�]¼ [Akj�].

The first two sentences are familiar axioms of conditional probability and the

third is a specific condition one might choose to assist in securing unique

values of the inductive strengths. This particular one is an attempt to intro-

duce a uniform prior probability.

The analysis that follows will depend upon a key common feature of both

explicit and implicit definitions:

For a deductively definable logic of induction, for some set {A1, . . .,

Am} of propositions in the algebra, the pairwise inductive strengths

[AijAk] (for i, k¼ 1, . . ., m) are determined uniquely by the deductive

relations among the propositions A1, . . ., Am and their deductive

relations with the atoms of the algebra.

4 The Symmetry Theorem

4.1 An illustration

Since the deductive structure is highly symmetric, the requirement of deductive

definability places a powerful restriction on the strengths of inductive support:

the inductive structure must inherit all the symmetries of the deductive structure.

Take the simple example of the two strengths:

[AjB]¼ [a1ja1 � a2 � a3] and [A0jB0]¼ [a2ja1 � a2 � a3].

The deductive relations among A¼ a1 and B¼ a1 � a2 � a3 are the same as the

deductive relations among A0 ¼ a2 and B¼B0 ¼ a1 � a2 � a3. In each case we

have the support a single atom accrues from a disjunction of three atoms that

includes the atom. The deductive relations between the atom and the disjunc-

tion are the same in each case. Hence, if we require that the strengths are

deductively definable in terms of these particular deductive relations alone,

then the strengths must be the same.

Incompleteness of Calculi 9
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We can arrive at the same result by a more formal procedure. If we merely

swap the labels ‘a1’ and ‘a2’, then [AjB]¼ [a1ja1 � a2 � a3] is mapped to

[a2ja2 � a1 � a3], which is [a2 j a1 � a2 � a3]¼ [A0jB0] since a2 � a1 � a3¼ a1 � a2 � a3.

Since a relabelling of the atoms preserves deductive relations, the deductive

relations between the two propositions in each of the strengths is the same.

We have:

[AjB]¼ [a1j a1 � a2 � a3]¼ [a2j a1 � a2 � a3]¼ [A0jB0].

4.2 The general case

We can now apply this same method to the general case. For propositions

{A1, . . ., Am} of the explicit or implicit definitions above, inductive strength

[A1jA2] is fixed merely by the atom counts of the 2m conjunctions of A1, . . ., Am

and their negations. This fact can be expressed compactly:

Symmetry Theorem

If inductive strength [A1jA2] is deductively definable, either explicitly or im-

plicitly, then there exists a function, f, of 2m integers such that

[A1jA2]¼ f(#A1&A2&. . .&Am-1&Am, . . ., #�A1&�A2&. . .&�Am-1&�Am),

where #(proposition) denotes the number of atoms in the disjunction that

forms the propositions (see appendix for proof).7

I am calling an inductive logic based on a strength [A1jA2] a calculus if there is

an explicit rule for mechanically computing the strengths. This function, f,

provides that rule. Each distinct inductive calculus is defined by a distinct

function, f. Some of many possibilities are explored in (Norton [2010]). The

most familiar is the classical definition of probability mentioned earlier, for

which:

[AjB] ¼ #A & B/(#A & B + #�A & B) ¼ #A & B/#B.

Another possibility among many is a scale-free, ‘specific conditioning’ logic

for which:

[AjB]¼ (#A & B/#B).(#A & B/#A).

In this logic, the support from B for proposition A is reduced if a disjunctive

part of A contradicts B. Conditional probability does not include such a

penalty.

7 For example, if proposition A is a disjunction of three atoms, a1 � a2 � a3, then #A ¼ 3.
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5 Asymptotic Stability

5.1 Illustrations

A Boolean algebra, �N, of size N with atoms a1, a2, . . ., aN can be enlarged by

replacing individual atoms by disjunctions of new atoms in a process here

called ‘disjunctive refinement’. For example, we might introduce two new

atoms, b1 and b2, through a1¼ b1 � b2 to form a new algebra, �N+1, of size

N + 1 with atoms b1, b2, a2, . . ., aN.

Sometimes the added expressive power of disjunctive refinement is not

needed. Take the simple example of a die throw. The usual probabilistic ana-

lysis is captured by a six-atom algebra with the equiprobable atoms ‘one’,

‘two’, . . ., ‘six’ representing the outcomes. The algebra could be refined by

adding information on whether the thrown die landed on the left-hand side of the

table (‘left’) or the right (‘right’). We could form a seven-atom algebra with atoms

one & left, one & right, two, . . ., six. However, since the outcome of a well-thrown

die toss is independent of the side of the table on which the die lands, the dis-

junctive refinement will not affect the probabilities of the original six outcomes.

In other cases, the added expressive power will be important. Consider a

dart thrown onto a square dartboard. We are interested in the probability that

the dart lands in the largest circle that can be fitted into the square. Assuming a

uniform distribution of probability over area, the probability of the dart land-

ing inside the circle (‘inside’) is:

P(inside) ¼ p/4 ¼ 0.785398. . .

If we assume equiprobable atoms, we might approximate this by a ten-atom

algebra in which the two outcomes are represented by:

inside ¼ a1 � a2 � . . . � a8,

outside ¼ a9 � a10.

Hence P(inside)¼ 0.8. We can come closer to the correct value by a ten-fold

refinement of each atom so that we have an algebra of 100 atoms. Then we set

inside ¼ a1 � a2 � . . . � a79,

outside ¼ a80 � a81 � . . . � a100,

and we have P(inside)¼ 0.79. By continuing with these disjunctive refinements,

we can come arbitrarily close to the sought probability of P(inside)¼ p/4.

5.2 The general condition

In general, in a deductively definable logic, disjunctive refinements will lead to

adjustments of the inductive strengths of support, because both explicit and

implicit definitions include mention of deductive relations to the atoms, and

Incompleteness of Calculi 11
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disjunctive refinement alters the atoms. These adjustments can be important,

as the dartboard example shows. The supposition of asymptotic stability is

that eventually, under repeated disjunctive refinements, these adjustments of

inductive strengths either stop completely or the strengths converge toward

fixed values. These last values are the representation of the true strengths; the

earlier values appearing in the process of convergence are merely approxima-

tions to them. We have:

Asymptotic Stability under Disjunctive Refinement: For some fixed set of

propositions {A1, . . ., Am} of the explicit or implicit definition of a

deductively definable logic of induction, for each strength [AijAk], i, k¼ 1,

. . ., m, there exists a limiting value, possibly unique to that strength,

[AijAk]lim to which the strength converges under all possible disjunctive

refinements of the algebra. In taking the limit, it is assumed that

disjunctive refinement of each proposition can be continued indefinitely.8

The sense of convergence is the obvious one: For any strengths, V and V0,

where V< [AijAk]lim<V0, it is possible to carry out a disjunctive refinement on

the algebra such that in the refined algebra, [AijAk] satisfies V< [AijAk]<V0

and remains so for all subsequent disjunctive refinements.

Informally, disjunctive refinements can enrich the expressive power of the

algebra of propositions in ways essential to the inductive problem. Eventually,

however, all further disjunctive refinement becomes inductive hair-splitting

that no longer affects the inductive strengths originally considered.

Why require asymptotic stability? Without it, there is no assurance that the

strengths of inductive support defined among the propositions A1, . . ., Am

have unique values. For the set may be embedded in many algebras of prop-

ositions and, in general in a deductively definable logic of induction, each

embedding will yield a different set of strengths. It would be too strong to

require that all embeddings yield the same strengths. A weaker way to deal

with the problem is to require merely that the strengths stabilize when the

algebras become very large.

6 The No-Go Result

While deductive definability and asymptotic stability are individually desir-

able properties, the no-go result shows that their conjunction collapses all the

logics to a trivial inductive logic with just one limiting strength of support.

8 For propositions concerning continua, such as the case of the dartboard, the possibility of this

indefinite continuation is automatic. For propositions concerning discrete properties, the indef-

inite continuation can be affected by artifices such as conjunctions with propositions concerning

continua.
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Section 6.1 illustrates the proof method. The result is given in Section 6.2 and

the proof is provided in the appendix.

6.1 Illustration: the principle of indifference

The idea behind the result is that a deductively definable logic of induction

does not have the internal resources to know when disjunctive refinement

should no longer alter the strengths of support. Take the case of two atoms,

a1 and a2. From the symmetry theorem we have

[a1ja1 � a2]¼ [a2ja1 � a2],

for each strength is schematically [1 atomj2 atoms].

We now confuse the logic by malicious refinements. First, we refine the

atom a1 into 99 disjunctive parts:

a1 ¼ b1 � b2 � . . . � b99.

The two strengths become:

[a1ja1 � a2]¼ [b1 � b2 � . . . � b99jb1 � b2 � . . . b99 � a2]

versus

[a2jb1 � b2 � . . . � b99 � a2]¼ [a2ja1 � a2].

Schematically, we have:

[99 atomsj100 atoms] versus [1 atomj100 atoms].

In a generic logic, we would expect this change in atom counts to alter the

strengths, most likely to:

[a1ja1 � a2]> [a2ja1 � a2].

What makes the refinement malicious is that instead of refining a1, we could

refine a2 in exactly the same way:

a2 ¼ c1 � c2 � . . . � c99.

Then, by analogous reasoning, we would end up with:

[a1ja1 � a2]< [a2ja1 � a2].

This contradicts the outcome of the first refinement.

An inductive logic can protect itself from malicious refinements by flattening all

strengths. For example, strengths that are schematically [99 atomsj100 atoms] and

[1 atomj100 atoms] would be set equal. But that is to trivialize the inductive logic.

The general no-go result below shows that this trivialization is unavoidable

in deductively definable logics of induction. It shows that asymptotic stability

requires the strengths of inductive support to converge under repeated dis-

junctive refinement to a single value.
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This illustration is an amplified version of a familiar problem. The principle of

indifference is an unassailable truism of evidence that greatly troubles probabil-

istic logics. Keynes ([1921], p. 41) named the principle and gave an illustration

([1921], p. 44) of how its use causes trouble. After antipodean relabelling of

Keynes’s place names, we suppose that our most refined possibilities for an

Australasian are, indifferently, that the antipodean is a non-New Zealander or

a New Zealander.

The principle of indifference requires that we assign equal probability of 1=2

to each. If we disjunctively refine the possibilities so that a New Zealander is

replaced by the logically equivalent (North Island New Zealander or South

Island New Zealander), then we have three more refined possibilities over

which we are indifferent: a non-New Zealander or a North Island New

Zealander or a South Island New Zealander. The principle of indifference

now requires that we assign equal probabilities of 1=3 to each of these, and

this new assignment contradicts the old probability assignment.9

6.2 The result10

No-Go Theorem

For a set of propositions {A1, . . ., Am} defined on finite Boolean algebras and

for an inductive logic that is:

(i) deductively definable in the sense of Section 3,

(ii) asymptotically stable in the sense of Section 5, and

(iii) continuous in the sense of Section B.3 in the appendix,

all the well-defined inductive strengths [AijAk], for i, k¼ 1, . . ., m, converge

under disjunctive refinement to a single strength.11 This includes the maximum

strength [�j�] and the minimum strength [1j�]. (See proof in Appendix B.)

That is, there is no inductive logic satisfying (i)–(iii) other than the trivial logic

with one limiting inductive strength. Since deductive definability is a formal

expression of completeness, the no-go result asserts that there is no non-trivial,

asymptotically stable, continuous logic of induction that is complete.

The requirement of continuity can be dropped. The no-go result reverts to

the less elegant result that all strengths in each of the classes of deductive

9 Norton ([2008]) argues that the principle of indifference is an evidential truism and that a proper

accommodation of it requires a non-probabilistic logic in which all these outcomes are assigned

a single ignorance value, I.
10 This result was first presented in simpler form in (Norton [2010], Section 6). The present version

extends the notion of explicit definability, introduces implicit definability, introduces the notion

of classes of deductive structures, introduces a notion of continuity, and employs it. The older

development erred in failing to recognize the need for a continuity condition.
11 The restriction to well-defined inductive strengths allows for the possibility of a logic leaving

certain strengths undefined, such as P(AjØ) in the probability calculus.
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structures defined in Appendix B.1 converge to a single value unique to that

class. This result still trivializes the inductive logic.

To get a sense of the import of this no-go result, note that the set of prop-

ositions {A1, . . ., Am} must be finite, but can be arbitrarily large. Let it be the

totality of propositions in science, including all the propositions expressing

evidence in science. The no-go result tells us that no inductive logic satisfying

conditions (i)–(iii) can affirm whether the propositions of science are individu-

ally well supported by the totality of evidence.

7 Incompleteness

The pessimistic conclusion of the last paragraph is far from the full story.

There are successful calculi of inductive inference that have supplied numer-

ous important insights into inductive inference. These applications of the

calculi, however, have never been complete. Their application has always

been supplemented by external inductive content, sometimes explicitly and

more often tacitly. The no-go result shows that this supplement is necessary.

By external inductive content, I mean the introduction of inductive

strengths of support that are not fixed by the deductive structure through

the definitions of the inductive logic. In real examples, these strengths are

grounded in judgements made outside the particular application at issue.

The strengths appear within the application itself as stipulations.

Here are two examples to illustrate it: The most natural supplement is to

specify on external grounds that the atoms of some chosen algebra, a1, a2, . . .,

aN, are preferred in the sense that the strengths are to be distributed uniformly

over them, so that [a1j�]¼ . . .¼ [aNj�], but that no such requirement is placed

on the atoms that may result from a refinement of this algebra. For example,

(Norton [2010], Section 7) introduces inductively preferred refinements (‘par-

titions’) to enable the definition of non-trivial logics of inductions. Their stipu-

lation contradicts deductive definability, since the strengths can no longer be

defined solely in terms of the deductive structure but must recognize the ex-

ternally stipulated, preferred refinement. Hence the no-go result is blocked.

A second example is the introduction of Solomonoff priors into a probabil-

istic analysis (Solomonoff [1964]). These prior probabilities assign higher

probability to algorithmically less complex hypotheses. The external inductive

content derives from the assumption that the world is such that inductive

preference ought to be given to such hypotheses. These higher probabilities

appear within the ensuing probabilistic calculations as a stipulation.

In these and other cases, the needed, external inductive content should itself

have proper inductive support. If that support is provided by computations

that formally use the same inductive calculus, one might try to merge those

computations into the original computation. One might hope that the
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resulting combined computation is inductively complete. However, it cannot

be, since the no-go result would then apply to the combined computation. At

best, we can have separate analyses: the original computation and a distinct

one that grounds the external inductive content that supplements the original

computation.

The need for the results of one computation to be carried over to a second

underscores that the one calculus cannot be all there is to inductive inference.

We also need a separate vehicle to transport the results between the compu-

tations. That is, on the model of incompleteness in arithmetic, we need a meta-

theory to govern the transporting. An example of such a meta-principle is

Lewis’s principal principle adapted to the present context. According to it,

the strength of support for some outcome is matched to the physical chance of

its occurrence, where the physical chance is learned inductively in a different

domain.

8 Unsuccessful Escapes

The following are some ways one might try to escape the no-go result.

8.1 Enriching the deductive logic

Might the no-go result be escaped if we use a richer logic? This is unlikely to

help. Two properties must be present in the deductive logic if a no-go result of

this type is to be derived. The logic must admit a deductive structure rich

enough in symmetries for a version of the symmetry theorem to be derived,

and the logic must admit disjunctive refinements. These features will remain in

familiar enrichments. However, the complications introduced by the enrich-

ments may make the no-go result harder to see and more complicated to prove.

For example, if we move to infinite Boolean algebras, the deductive struc-

ture remains highly symmetric and the disjunctive refinements are still possible

in the same way. However, we now have added complications. If our logic

seeks to impose a uniform additive measure over the atoms, there is no nor-

malizable measure that is uniform over a countable infinity of atoms. We may

seek to avoid these problems by introducing further complications, such as a

denial of countable additivity. The analysis becomes harder, but the no-go

result will persist.

If we move to a predicate logic, the circumstances are much the same. The

symmetries remain and disjunctive refinements are still possible. We might, for

example, disjunctively refine the logic’s predicates. Predicate A1(x) might be

refined to B1(x) � . . . � BN(x).
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8.2 Enrich the inductive logic

The inductive logic of this article takes a two-place function, [HjE], as its basic

quantity. What of a logic that employs a three-place function, [HjE, B], which

we might interpret as the strength of inductive support of hypothesis H from

evidence E with respect to background B? Or what of a four-place compara-

tive function, [H1, H2jE, B], which we might interpret as the relative inductive

support of hypothesis H1 compared to hypothesis H2 from evidence E with

respect to background B?

A review of the argumentation leading up to the no-go result shows that it

makes little use of the restriction to a two-place function and that extended

versions employing higher-order functions could be developed with little

change.

The simplest case would be when the higher-order functions are defined as

functions of the two-place function, such as [HjE, B]¼F([HjE&B], [HjB]) for

some function F. Then, the no-go result extends automatically to the higher-

order functions.

8.3 Preferred refinements and preferred languages

We might try to escape the no-go result by disallowing arbitrary disjunctive

refinements. We would then stipulate which refinement gives the algebra of

propositions that must be used and how propositions A1, . . ., Am are to be

embedded in it. This algebra becomes our preferred language. This stipula-

tion amounts to a violation of completeness. For it amounts to the designa-

tion of a preferred refinement, as described in Section 7, and this in turn

amounts to the introduction of strengths of inductive support on the basis of

external, inductive considerations. For example, we might stipulate an

unrefinable six-atom algebra for a die problem. If the logic is deductively defin-

able, this amounts to assuming equal support for each of the die’s six faces.

8.4 The subjective turn

An initially promising approach is to follow the subjective Bayesians and con-

ceive of conditional probabilities as degrees of belief, with the prior probabilities

freely chosen, subjective opinions. This free choice of the prior probabilities

breaks the symmetry essential to the derivation of the symmetry theorem of

Section 4, thereby blocking the no-go result that derives from it.

This stratagem delays the problem but does not avoid it. Since the prob-

abilities of the system include subjective opinion, there is no longer a direct

connection to evidential warrant. The hope is that, as conditionalization on

evidence proceeds, the stain of subjective opinion will ‘wash out’, leaving
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behind pristine inductive support. This hope has been formalized in limit

theorems that show convergence to the truth of initially divergent prior prob-

abilities under continuing conditionalization on evidence, such as in (Savage

[1972], pp. 46–50).

The difficulty with these theorems is that there is a competing indelibility

theorem. Take the ratio form of Bayes’s theorem:

PðH1jEÞ

PðH2jEÞ
¼

PðEjH1Þ

PðEjH2Þ
�
PðH1Þ

PðH2Þ
�

Assume that the growing evidence favours H1 in the limit. Then, as the evidence

accumulates and the limit is approached, the likelihood ratio, P(EjH1)/P(EjH2),

will continue to grow larger. We would expect a correspondingly large posterior

ratio, P(H1jE)/P(H2jE), to reflect that stronger support of H1. However, since

the ratio of priors P(H1)/P(H2) is freely chosen, at any definite stage of the

conditionalization, there will be choices unfavourable enough to H1 to force the

ratio of posteriors to be arbitrarily small and thus to indicate lack of support of

H1. For any fixed evidence, there will be a prior probability ratio that can return

any nominated ratio of posteriors.

The difficulty is similar to that introduced by arbitrary disjunctive refine-

ments for a logic of induction. Different choices of disjunctive refinement can

drive the strengths of support in wildly different directions. The no-go result

escapes the difficulty by reducing the inductive logic to a trivial logic. We

could continue to use non-trivial logics of induction, however, if we introduce

external inductive content and only permit disjunctive refinements that con-

form with it.

A quite similar escape is available to the subjective Bayesians. Instead of

allowing arbitrary prior probabilities, they can require that the prior prob-

abilities be chosen in some way that is reasonable or responsible, such as

articulated by Shimony’s ([1970], Section 3) ‘tempered’ personalism.

Presumably, what makes these constraints reasonable is that they are respon-

sive to further, external evidence. In both cases, the collapse into arbitrariness

is avoided by external inductive content. In both cases, the price paid in

avoiding the collapse is that the logics are not complete.

In a related approach, confirmation measures are introduced as functions of

the subjective probabilities, such as in (Fitelson [1999]). For example, the

distance measure, d(H, EjB)¼P(HjE&B) – P(HjB), gives one measure of

the degree of confirmation of hypothesis H from evidence E. These measures

also fail to escape the no-go result. There are two modes of failure.

If the measure retains a dependency on the prior probabilities, as does

distance measure d(H, EjB) above, then it does not supply the sought strength

of inductive support. It is an amalgam of strength of support and prior

opinion.
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If the measure is not dependent on the prior probability or some other ex-

ternal inductive content, then we have a strength of support that conforms with

the framework of this article. Therefore, some form of the no-go result will

apply to it, and its application cannot be both non-trivial and complete. The

best candidate for a measure independent of the prior probabilities is the like-

lihood ratio, L(H1, H2jE)¼P(EjH1)/P(EjH2), since likelihoods are often intro-

duced objectively, such as through physical chances. Recent work by

Gandenberger ([unpublished]) shows that this measure is beset by difficulties

structurally quite similar to those raised by the principle of indifference for prior

probabilities, and thus close to the general difficulties raised in this article.

9 Conclusions

What has been established here is that inductive inference cannot be captured

in a complete inductive calculus.

The local import of this result is small. It does not preclude the local appli-

cation of non-trivial calculi of induction. However, their successful applica-

tions will always require a supplement of further inductive content, external to

the calculus and beyond the reach of its inductive scrutiny. The need for this

supplement has been routinely misdiagnosed as a minor failing of a particular

implementation. It is really an unavoidable outcome of incompleteness.

The global import is greater. It concerns the nature of inductive inference

itself. We cannot conceive of it formally, as merely inference conforming to

such-and-such a quantitative calculus, probabilistic or otherwise. For no such

calculus can be complete. We need a different conception of the nature of in-

ductive inference. Such a conception is supplied by the material theory of induc-

tion (Norton [2003]). Inductive inferences are not warranted by conformity with

universally applicable formal schema. They are warranted by facts.

Appendices

A. Proof of the Symmetry Theorem

Consider any two of the propositions {A1, . . ., Am} of the explicit or implicit

definition. Permute their labels so that the chosen two become A1 and A2. Now

pick any other two and relabel all the propositions in the set so that they

become B1 and B2 of B1, . . ., Bm. In a deductively definable logic, the two

inductive strengths, [A1jA2] and [B1jB2], will be equal if the deductive relations

among A1 and A2, the remaining propositions, A3, . . ., Am, and the algebra’s

atoms are the same as those among B1 and B2, the remaining propositions,

B3, . . ., Bm, and the algebra’s atoms. This sameness of deductive relations will
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obtain just in case there is a permutation of the labels of the atoms so that each

of A1, . . ., Am becomes the same disjunction of relabelled atoms as B1, . . ., Bm

are of the originally labelled atoms.

Finally, this permutation of the atom labels is possible just in case the

following 2m atom count equalities obtain:

#A1&A2&. . .&Am-1&Am ¼ #B1&B2&. . .&Bm-1&Bm

#�A1&A2&. . .&Am-1&Am ¼ #�B1&B2&. . .&Bm-1&Bm

. . .

#�A1&�A2&. . .&�Am-1&Am ¼ #�B1&�B2&. . .&�Bm-1&Bm

#�A1&�A2&. . .&�Am-1&�Am ¼ #�B1&�B2&. . .&�Bm-1&�Bm,

where there is one equality for each of the 2m combinations of unnegated and

negated propositions in the list of m propositions.

To see this, note that if A1&A2 & . . . & Am-1 & Am and B1&B2&. . .& Bm-1&Bm are

disjunctions of the same number of atoms, the atoms in A1, . . ., Am can be relabelled

so that they match the labels of B1&B2&. . .&Bm-1&Bm; and so on for the remaining

(2m
� 1) conjunctions. Since the 2m conjunctions are exclusive, none of these map-

pings will conflict; and since the 2m conjunctions exhaust the algebra, the relabelling

is a complete mapping of all the atoms back on to themselves.12

B. Proof of the No-Go Result

B.1 Classes of deductive structures

Take the fixed set of propositions {A1, . . ., Am} of the explicit or implicit

definition of a deductively definable logic of induction. We investigate how

strengths [AijAk] vary under arbitrary disjunctive refinement of the algebra. To

track these variations, we categorize the strengths according to the deductive

structure of propositions {A1, . . ., Am}; that is, according to the full list of

which propositions entail which propositions, which contradict which and

which are logically compatible with which. That is:

Classes of Deductive Structures: Strengths [AijAk] and [BrjBs] are

drawn from the same class of deductive structures13 among propos-

itions {A1, . . ., Am} and {B1, . . ., Bm}, respectively, just in case the

logical relations among Ai and Ak and the remaining propositions in

the set are the same as the logical relations among Br and Bs and the

remaining propositions in the set.

12 A quick way to see these last claims is to draw a Venn diagram of an example and note that the

2m conjunctions correspond to the 2m smallest areas in the diagram.
13 This amount of deductive structure is less than the full deductive structure invoked in the

definitions of deductively definable logics of induction, for the latter definitions include deduct-

ive relations with the atoms of the algebra.
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A convenient way of distinguishing the classes is to identify which of the

conjunctions in the list of 2m conjunctions in the symmetry theorem above

are 1 and thus have zero atoms.

In the simplest case of a two-proposition list, A and B, the classes include: A

entails B (for which A&�B¼1); B entails A (for which�A&B¼1); A and B

are logically incompatible (for which A&B¼1); A and B are logically com-

patible and disjunctively exhaust the algebra (for which �A&�B¼1); A and

B are logically compatible but do not disjunctively exhaust the algebra (for

which no conjunctions are 1).

Thus membership of two sets of propositions in the same class is re-

vealed when, under suitable relabelling of one of the sets, the two functions,

f, defining the inductive strengths have zero values for corresponding

arguments.

B.2 Dynamics under disjunctive refinement

We now show that the strengths [AjB] and [CjD] must converge to the same

limiting strengths if they are drawn from the same class of deductive struc-

tures. Consider the m(m – 1) non-trivial14 strengths that can be defined using

the propositions in set {A1, . . ., Am}: [A1jA2], [A1jA3], . . ., [Am-1jAm]. If there

are two strengths drawn from the same class of deductive structures here, then

there are two relabellings of the propositions A1, . . ., Am such that the

first strength is labelled [A1jA2] and the remaining propositions A3, . . ., Am,

and the second strength is labelled [B1jB2] and the remaining propositions

B3, . . ., Bm.

Moreover, the relabellings have the following property: Consider the

conjunctions of propositions mentioned in the symmetry theorem. The

distribution of null 1 among them encodes the class of deductive structure. For

example, if A2, . . . Am entails A1, then �A1&A2&. . .&Am¼1. Therefore, corres-

pondingly, we must have B2, . . ., Bm entails B1, so that �B1&B2&. . .&Bm¼1.

Hence the corresponding conjunctions of propositions will agree on which are the

null 1 members. That is:

A1&A2&. . .&Am-1&Am¼1 if and only if B1&B2&. . .&Bm-1&Bm¼1
�A1&A2&. . .&Am-1&Am ¼ 1 if and only if �B1&B2&. . .&Bm-1&Bm ¼ 1
and so on.

It now follows that corresponding arguments in the function, f, for [A1jA2] and

[B1jB2] agree in those conjunctions that have zero atoms counts and those

which have non-zero atom counts.

14 That is, we exclude [A1jA1], [A2jA2], . . ., which are equal by supposition.
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Using this key fact, the evolution of these two strengths under disjunctive

refinement is tracked in two stages:

Stage 1: The algebra is disjunctively refined until the atom counts of the

conjunctions of propositions Ai in the refined algebra equal or exceed

the corresponding atom counts in conjunctions of propositions Bi in the

unrefined algebra:

(#A1&A2&. . .&Am-1&Am)refined� (#B1&B2&. . .& Bm-1&Bm)unrefined

. . .

(#�A1&�A2&. . .&�Am-1&�Am)refined �

(#�B1&�B2&. . .&�Bm-1&�Bm)unrefined

It is now possible to carry out a different refinement of the original algebra

(labelled below as ‘refined*’), under which the above inequalities become

equalities:

(#A1&A2&. . .&Am-1&Am)refined¼ (#B1&B2&. . .&Bm-1&Bm)refined*

. . .

(#�A1&�A2&. . .&�Am-1&�Am)refined¼

(#�B1&�B2&. . .&�Bm-1&�Bm)refined*

It follows from the symmetry theorem of Section 4 that these two

strengths are equal:

[A1jA2]refined¼ [B1jB2]refined*

Stage 2: We now refine the algebra as extensively as is needed to drive

the strength [A1jA2] towards its unique limiting value, [A1jA2]lim. The

assumption of asymptotic stability assures us that there is such a unique

limit and that any strength [A1jA2] can be driven to converge to it by

suitable selection of disjunctive refinements.

We also carry out the corresponding refinements* in association with

the strength [B1jB2] so that the equalities of the atom counts of the

conjunctions continue to hold. Hence the strength [B1jB2] is driven

towards its unique limiting value, [B1jB2]lim. By the symmetry theorem of

Section 4, these two limits must agree:

[A1jA2]lim¼ [B1jB2]lim.

Thus we have found that sufficient disjunctive refinement drives all in-

ductive strengths associated with the same class of deductive structures

towards the same limiting value, which may or may not be unique to

that class.
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B.3 Continuity

The continuity condition for a deductively definable logic of induction is ex-

pressed in terms of the function f. Since f is not a function on the real numbers,

but a function of natural numbers, the familiar notion of continuity for func-

tions on the real numbers does not apply. A weaker notion is definable.

Loosely speaking, it asserts that for very large atom counts, differences in

the absolute numbers of the atom counts become unimportant to the

strengths, and their effects can be made arbitrarily small. More precisely:

Continuity in One Argument: The function, f, of the symmetry theorem

is continuous in the argument, X: if V(X) ¼ f(. . ., u, v, X, y, z, . . .) and

V(X0) ¼ f(. . ., u, v, X0, y, z,. . .), then V(X) approaches V(X0) in the limit

in which X and X0 are held fixed and . . ., u, v, y, z, . . . each grows

arbitrarily large, unless any of the . . ., u, v, y, z, . . . are zero, in which

case they remain zero.15

Continuity: The function, f, is continuous if it is continuous in each of

its arguments.

The notion of limit in this definition is an obvious one: for any strengths

V0<V00, there exists variable values . . ., u*, v*, y*, z*, . . . such that for all

. . ., u0>u*, v0>v*, y0>y*, z0>z*, . . .

V0 < V(X) ¼ f(. . ., u0, v0, X, y0, z0, . . .) < V0 0,

just in case we also have

V0 < V(X0) ¼ f(. . ., u0, v0, X0, y0, z0, . . .) < V00.

This notion of continuity is satisfied by typical functions f. In particular,

it is satisfied by any function f whose value depends only on the ratios of

the atoms counts, such as the f associated with classical probability:

[AjB]¼#A&B/#B.

B.4 Reduction to a single strength

The analysis of the Section B.2 shows that the limiting values of the inductive

strengths converge to a finite set, with one limit for each class of deductive

structures of the set of propositions {A1, . . ., Am}. It will follow from the

continuity condition that all these limits are the same.

The classes of deductive structures as a whole form a larger structure in which

we can move step-wise from one class to another that is adjacent to it, merely by

setting one of the conjunctions in the symmetry theorem to 1 or, conversely,

15 If all of . . ., u, v, y, z, . . . are zero, we have a degenerate case of no interest in inductive logic. The

condition of continuity places no restriction on the strengths.
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unsetting it. The easiest entry point is the deductive structure in which none of

the 2m conjunctions, A1&A2&. . .&Am-1&Am, . . .,�A1&�A2&. . .&�Am-1&�Am,

is 1. This corresponds to each of A1, . . ., Am being logically compatible with one

another, but not disjunctively exhaustive of the algebra. We then move to the

other classes by repeatedly setting one or other of the conjunctions to 1.

For the case of {A, B, C}, we start with none of the 23
¼ 8 conjunctions

A&B&C, . . ., �A&�B&�C being 1:

(a) If we set �A&�B&�C ¼ 1, then the propositions A, B, and C are

disjunctively exhaustive: A � B � C¼�.

(b) If we set A&�B&C ¼1 and A&�B&�C ¼1, then A&�B ¼1 and

A deductively entails B.

(c) If in addition to (b) we set �A&B&C ¼1 and �A&B&�C ¼1, then

�A&B ¼1, and B also deductively entails A. In this combined case,

[AjB]¼ [AjA]¼ [�j�], the maximum strength.

(d) If we set A&B&C ¼ 1 and A&B&�C ¼ 1, then A&B ¼ 1, and B

contradicts A. In this case, [AjB]¼ [BjA]¼ [1j�], the minimum

strength.

In this way, by sequentially setting one or other conjunction to 1, we can visit

all the deductive classes to which the strengths can belong, including the cases

of maximum and minimum strength.

Consider two strengths, [AijAk] in {A1, . . ., Am} and [BrjBs] in {B1, . . ., Bm}.

We shall say that they are drawn from adjacent classes if we can move one

strength from its own class to another merely by setting one of its non-null

conjunctions to 1. For concreteness, let us say in this case that when we set

one conjunction from the A-class to 1, we move the strength [AijAk] to the

adjacent B-class as [BrjBs]. That is, we can write the two strengths as:

[AijAk] ¼ f(. . ., u, v, x, y, z . . .),

[BrjBs] ¼ f(. . ., u, v, 0, y, z . . .),

where x> 0 and the . . ., u, v, y, z, . . . are now limited to just those atom counts

not already set to zero in the first class of deductive structures.

To see that these two strengths converge to the same limiting values

under sufficient disjunctive refinement, pick any small interval of values

bounded by V<V0. Because the logic is assumed continuous in the sense

of the last section, there exists variable values . . ., u*, v*, y*, z*, . . . such that

for all . . ., u0> u*, v0> v*, y0> y*, z0> z*, . . .

V< [AijAk] ¼ f(. . ., u0, v0, X, y0, z0 . . .) < V0

just in case we also have

V< [BrjBs] ¼ f(. . ., u0, v0, X0, y0, z0 . . .) < V0.
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Since the interval bounded by V<V0 is arbitrary, it can be made arbitrarily

small. It follows that [AijAk] and [BrjBs] approach the same limiting value

under continuing disjunctive refinement:

[AijAk]lim¼ [BrjBs] lim

We have from Section B.2 that all strengths in one class of deductive structures

converge to the same limit under disjunctive refinement. Thus this last

common limiting strength is the limit strength for the two classes from

which [AijAk] and [BrjBs] are drawn.

Each of [AijAk] and [BrjBs] is chosen with the sole restriction that they are

drawn from adjacent classes of deductive structures. Therefore we have the

general result that the limiting strengths for any pair of adjacent classes are the

same. Finally, all the classes are connected with one another by a chain of

classes, each of which is adjacent to the next. Thus the limiting strengths for all

classes are the same. This includes the cases in which the limiting strengths are

the maximum, [�j�], and the minimum, [1j�].
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