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Chapter for a book provisionally titled 

The Large Scale Structure of Inductive Inference 

1. Introduction 
 This volume describes how relations of inductive support are structured on the large scale. 

It does so in the context of a particular view of inductive inference, the material theory of 

induction. This account of inductive inference has been elaborated extensively in my earlier 

Material Theory of Induction (ms) to which the reader is referred. This chapter offers only a brief 

introduction to the material theory. It is a preliminary. The main claims of this volume are 

presented in the next chapter. 

 Section 2 below gives a motivation, summary and argument for the material theory of 

induction. The standard approach to inductive inference characterizes inductive inferences or 

relations of inductive support formally, by means of schemas or calculi that are purported to hold 

universally. They all fail to apply universally, or so I argue. For facts peculiar to the each domain 

determine which are the good inductive inferences or proper relations of inductive support. There 

is no way to combine these disparate warranting facts into a single, universally applicable system. 

This is the central claim of the material theory of induction. 

 The remainder of the chapter illustrates how standard, formal approaches to inductive 

inference fail; and that a material approach can capture what made the formal approach seem 

viable without succumbing to the formal approaches’ difficulties. Since there are so many 

approaches to inductive inference, this chapter can discuss only a few of them. They are sampled 

from a survey of accounts of inductive inference in Norton (2005). 
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 This survey divides accounts into three families. The first, “inductive generalization,” is 

based on the principle that we may infer from an instance to a generalization. It includes 

enumerative induction, discussed in Section 3, and analogical reasoning, discussed in Section 4. 

The second family, introduced in Section 5, is “hypothetical induction.” It is based on the 

principle that the capacity of an hypothesis to entail the evidence is a mark of its truth. Section 6 

reviews one example in which we are to accept the hypotheses that most simply entails the 

evidence. The third family has accounts in which a calculus governs strengths of inductive 

support. The probability calculus is overwhelmingly the most popular candidate. Section 7 uses 

the example of Laplace’s rule of succession to sketch some limits of the account and shows how 

the material approach can escape them. 

2. The Material Theory of Induction 

2.1 Inductive Inference 

 Induction and inductive inference are understood here in their broadest senses. They 

apply to any inference that leads to a conclusion deductively stronger than the premises from 

which it proceeds. This conception automatically includes traditional forms of ampliative 

inference, such as enumerative induction. (“This A is B. Therefore all As are B.”) Ampliation is 

understood in its broadest sense as referring to any expansion of the conclusion beyond the 

deductive consequences of the premises. The terms “induction” and “inductive inference” will 

also be taken to encompass what is often called confirmation theory. It applies to accounts in 

which one does not proceed in the traditional manner of an inference to infer the truth of some 

conclusion, detached from the premises from which it was derived. Rather one merely reports a 

relation of inductive support of such and such a strength between two propositions. The most 

familiar application is probabilistic analysis. The measure P(A|B) is the strength of support 

proposition A accrues from proposition B. 

 The account here is restricted to the logical notion of inference. According to it, the 

relation of inductive support obtains between A and B, independently of human desires, beliefs 

and thoughts. It is not the “psychologized” notion of inference. In the latter, reporting an 

inference from A to B is merely reporting a fact of our psychology. If we hold A true then we will 

assert B as well. Discussions of people inferring from A to B will appear in the text that follows, 



 3 

especially in the historical narratives. However they will be treated throughout as attempts by the 

figures in question to conform with the appropriate standards of inductive inference. 

2.2 An Unmet Challenge 

 Any account of inductive inference must do two things. First, it must provide a means of 

distinguishing good inductive inferences from bad ones. Second, it must provide a demonstration 

that the division is made properly. That is, the inferences it designates as good must be good. 

 My contention is that all principal accounts of inductive inference so far have failed to 

meet these challenges. Their failure derives from a pervasive presupposition: they assume that an 

account of inductive inference must be based on formal rules that can be applied everywhere. In 

this they copy a standard approach in deductive inference. Here is a deductive argument schema: 

All As are B. 

Therefore, some As are B. 

The schema is universally applicable since we can substitute any noun for A and any adjective 

for B and end up with a valid inference. The simplest account of inductive inference mimics this 

approach. Enumerative induction just inverts the order of the sentences in the schema: 

Some As are B. 

Therefore, all As are B. 

The account is universal in the sense that this schema can be applied everywhere. It is formal in 

the sense that the schema specifies the form only of valid inferences. It does not constrain the 

matter in the sense that any nouns and adjectives can be substituted for A and B. Probabilistic 

treatments of inductive support are similarly formal and universal. Sentences derived within the 

probability calculus play the role of universal schema. Consider for example the sentence 

P(not-A|E) = 1 – P(A|E) 

It will remain a theorem in the calculus no matter which propositions are substituted for A and E. 

These two examples reflect the standard practice in the literature. It is to seek schemas that are 

universal and formal. 

 The difficulty is that all these schemas eventually fail somewhere; and, as I shall argue 

below, the failure is inevitable. The failure of enumerative induction is widely known. Indeed the 

schema almost never works. One has to choose substitutions for A and B very carefully if one is 

to recover any acceptable inductive inference at all. There are similar problems with the sentence 
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in probability theory, although they require more analysis to be fully developed. The sentence is 

unproblematic if the “P” represents a physical chance. If the chance of outcome A happening 

given background E is small, say P(A|E) = 0.01, then the chance of outcome A not happening is 

large: 

P(not-A|E) = 1 – P(A|E) = 1 – 0.01 = 0.99 

But now let “P” measure the inductive strength of support for the proposition A from the 

evidence E, where E is the totality of all evidence available. This last relation precludes the total 

evidence E from being neutral in its inductive support of A. That would mean that it supplies no 

support for either A or its negation not-A. We would want that lack of support to be represented 

by a small or even zero magnitude for both A and not-A. However, if we set P(A|E) to some 

number close to zero or to zero itself, then the statement in the probability calculus forces us to 

set P(not-A|E) close to one or to one itself.1 

2.3 The Material Solution in Three Slogans 

 The material theory of induction addresses these problems at their root: they derive from 

the false presumption that good inductive inferences or relations of support can be identified by a 

single set of rules or formal schemas that are applicable universally. That is: 

There are no universal rules of inductive inference. 

Instead, the core claim is: 

All inductive inferences are warranted by facts. 

That is, what distinguishes a good inductive inference is not its conformity with some general 

schema, but with background facts of the pertinent domain. 

 The idea that an inference can be warranted by a fact is familiar from deductive inference. 

The factual proposition “If A then B.” is both a mundane fact but also a warrant for a deductive 

inference from A to B. The warrant derives fully from the meaning of the hypothetical, “if . . . 

then . . .” To assert “If A then B.” is also to assert that we can infer from the truth of the 

antecedent A to that of the consequent B. In the case of the material theory of induction, a 

corresponding background fact might be “Generally, A.” Such a proposition authorizes us to 
 

1 Experts will recognize that this consideration is the starting point of a decades-long debate over 

the representation of the neutrality of support. My view is that it cannot be done satisfactorily 

using probabilities. See Norton (2008, 2010). 
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conclude A. The import of the “Generally” is that the inference is inductive. It conveys that there 

is a small possibility that the conclusion A may fail to be true. 

 Finally, there are no background warranting facts with universal scope. The warranting 

facts of each domain will, in general, warrant inductive inferences that are peculiar to that 

domain. This is expressed in the third slogan 

All inductive inference is local. 

There may be similarities in the inductive inferences from different domains. However these 

similarities will prove to be superficial. We must always seek the warrant for an inductive 

inference within the background facts of its domain. 

 To continue with the oversimplified example of “Generally, A.” it may seem that this fact 

might somehow be applied across all domains. However the meaning of “generally” will vary 

from domain to domain, so that any similarity is superficial. In a probabilistic domain, we would 

assert “Generally, ten successive coin tosses will not all be heads.” The “generally” encodes an 

objective probability of the possibility of failure such that we expect failure on average at a rate 

of 1/210 = 1/1024 in many cases of ten successive coin tosses.  In particle physics we may assert 

“Generally, the laws of particle interactions are time reversible.” In chemistry, we may assert 

“Generally, metallic elements are solids at room temperatures.” In these last two cases, we have 

no possibility of repetition. The laws of particle interactions of the standard model of particle 

physics are fixed, as is the set of metallic elements. Setting aside dubious contrivances, the 

“generally” does not lead to a meaningful notion of an expected rate of failure. Once we have 

scoured the periodic table for metallic elements, there is no other periodic table with different 

elements where we can repeat the search anew. 

 What is left open is the extent of the domains in which each specific sort of inductive 

inference is warranted. A narrowly specific warranting fact may only warrant a few inductive 

inferences in some narrow domain. A broader warranting fact may warrant a mathematical 

calculus, which would be applicable across a large range of cases, but still in some limited 

domain. 

 In sum, the two challenges for inductive inferences are met as follows. In any domain, the 

licit inductive inferences are those warranted by the facts of the domain. That they are properly 

warranted follows from the truth of those facts and is recovered from the meaning of the terms 

expressing the warranting facts. 
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2.4 The Background Facts Decide, Not Our Beliefs About Them 

 Inductive warrants work in the same way as the formal schema of deductive inference. 

They pick out which are the licit inductive inferences or relations of inductive support, 

independently of our beliefs. If we reason deductively in accord with the schema modus ponens, 

we reason validly, even if we know nothing of deductive logic and its schemas. If we reason in 

accord with the fallacy of affirming the consequent, we commit a deductive fallacy, even we 

mistakenly believe that affirming the consequent is a licit deductive schema. 

  Correspondingly, we infer well inductively if our inference is warranted by a fact of the 

domain, independently of whether we know it. We infer poorly inductively if there is no fact of 

the domain that warrants the inference, even if we believe erroneously that there is such a fact. 

 In practice, conceived materially, our inductive inferences are guided by our best 

judgments of which are the prevailing facts in any domain. They are defeasible. Those judgments 

may prove incorrect and we be inferring poorly. If we differ in our judgments and arrive at 

incompatible inductive inferences, at most one of us is correct. Which of us inferred well is 

decided by which truly are the facts of the domain. 

2.5 The Case for the Material Theory 

 There are two components of the material theory to be established: first, that facts 

provide the warrant for inductive inferences; and second, that each domain has its own set of 

warranting facts (“locality”). 

 First, that facts warrant inductive inferences follows from the inevitable failure of 

accounts of inductive inference that aspire to apply universally. They must fail because of the 

defining feature of inductive inferences: they are ampliative. That is they authorize us to more 

than can be deduced from the premises. Thus there will always be domains, inhospitable to each 

schema, in which the schema will fail systematically. Characterized most generally, the factual 

warrant for each inductive inference amounts to the factual contingency that the inference is 

conducted within a domain hospitable to it. 

  Here standard connective-based deductive inferences differ. They are not prone to this 

mode of failure. Their warrant lies fully within the premises in the meaning of the connectives. It 

is present whatever the domain of the inference.  
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 Domains inhospitable to each formal account can arise in many ways. Philosophy’s 

fabled deceiving demon is a simple if contrived way to see that inhospitable domains are 

unavoidable in principle. The demon secretly intervenes to frustrate our inferences. The 

applicability of each account depends on a factual matter: that we are not in the grip of such a 

demon. While deceiving demons are fantasies, something close to them is not. Experimentalists 

must assume that their lab assistants are not disgruntled employees maliciously selecting and 

suppressing data such as to deceive them into false conclusions. Or they must assume that they 

are not in the grip of a mechanical equivalent: a loose connection in their cabling that introduces 

enough noise in the results to obscure a regularity or create a spurious one.2 

 These are contrived examples, but with the mitigating virtue that they can be expressed 

tersely. They display the key point. Any account of inductive inference can only succeed if the 

conditions in the domain are hospitable. That they are so is a factual matter.  

 Second, the locality of inductive inference follows from there being no universally 

applicable warranting fact. An old hope, now long abandoned, was that the regularities of the 

world might be simple enough that they could be expressed in some sort of universal fact that 

would then underwrite all inductive inference. This was Mill’s principle of the uniformity of 

nature (Mill, 1904, Bk III, Ch. III, p. 223): 

The universe, so far as known to us, is so constituted that whatever is true in any 

one case is true in all cases of a certain description; the only difficulty is, to find 

what description.  

In the abstract, this principle has momentary appeal. However Mill himself had already 

identified the difficulty that proved fatal. For the principle to be something more than idle 

posturing, we have to find the universal description that picks out when we can advance from 

one case to all. Finding this description has proven to be an intractable problem. Any description 

that is precise enough to be applied is rife with counter-examples. A description that is immune 

to counterexamples can only do so by adopting vagueness to the point of vacuity.3 

 
2 In September 2011, the OPERA collaborative reported faster-than-light-neutrinos. As Reich 

(2012) reported, they were misled in part by a loose cable connection.  
3 For more of this critique, see Salmon (1953). 
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2.6 An Illustration 

An example illustrates this general argument. Consider the deductive inference: 

Winters past have been snowy AND winters future will be snowy. 

Therefore, winters past have been snowy. 

The warrant for this deductive inference resides entirely within the premises. It lies fully within 

the meaning of the connective “and.” It can only be used when the truth of the conjunction 

derives from the truth of each of the conjuncts individually. Hence we are warranted to infer to 

each of them individually. Since the entire burden is carried by the connective “and,” we can 

write a fully general schema for deductive inference that can be applied in any domain: 

A and B. 

Therefore, A. 

Now consider a related inductive inference: 

Winters past have been snowy. 

Therefore, winters past have been snowy AND winters future will be snowy. 

The conclusion amplifies the premise. Thus there will be domains hospitable to the inference; 

and there will be inhospitable domains in which it fails. An inhospitable domain is one in which 

there is considerable climate change, including significant warming. A hospitable domain is one 

in which climate is unchanging. That ours is one of these hospitable domains is the fact that 

warrants the inference. 

 More generally, this fact licenses a schema for inductive inference that is restricted to a 

specific domain: 

In domains with unchanging climates, 

If climatic fact A has always held in the past, 

Climatic fact A will continue to hold. 

We can substitute with facts applicable to domains with unchanging climates to recover a licit 

inductive inference: 

In domains with unchanging climates, 

If summers past have always been hot and dry, 

Then summers past and future will be hot and dry. 

This example also illustrates the inherently inductive character of the inference. We can make 

the warranting fact explicit and even add it to the premises displayed. However we have not 
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thereby converted the argument into a deductive argument. For the climate can be unchanging 

and authorize us to expect a continuation of snowy winters. However a rare, anomalously warm 

winter without snow is still compatible with an unchanging climate, since climatic conditions 

pertain to long-term regularities. 

 The following sections illustrate at greater length the failure of universal applicability of 

some formal accounts of inductive inference. We shall also see how identifying the warranting 

material facts in some domain helps us delimit the domains of applicability of each inductive 

inference. 

3. Enumerative Induction 
 Enumerative inductions—the familiar inferences from “some… to all…”—are pervasive 

in science. Just as pervasive in the philosophy literature is a denunciation of the argument form. 

Francis Bacon’s (1620, First Book, §105) riposte is just the best known of many from antiquity 

to later times: 

The induction which proceeds by simple enumeration is puerile, leads to uncertain 

conclusions, and is exposed to danger from one contradictory instance, deciding 

generally from too small a number of facts, and those only the most obvious. 

This poses a puzzle. How is it these “some-all” inferences are used pervasively in science yet 

denounced pervasively by philosophers? 

 The puzzle is readily solved if the some-all inferences are approached materially. The 

whole problem derives from the mistaken assumption that all these some-all inferences are 

warranted by a single formal schema. For there is no formal schema that can serve to warrant 

them all. Efforts to formulate one that works universally collapse. It is that difficulty to which the 

philosophical literature responds. Rather, in so far as the some-all inference is warranted at all, 

that warrant derives from facts peculiar to the domain in which each some-all inference is 

executed. The unity of form of the many some-all inferences in science is superficial. It is not 

reflected in a unity of the warrants for the inferences. 

3.1 Curie’s Enumerative Induction 

 This material solution to the puzzle is illustrated in an enumerative induction of striking 

scope in Marie Curie’s doctoral dissertation, presented to the Faculté des Sciences de Paris in 
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June 1903.4 There she reported on years of work with her husband, Pierre Curie. It included the 

laborious separation of tiny quantities of radium chloride from several tons of uranium ore 

residue. Mentioned only briefly were the crystalline properties of radium chloride (p. 26): “The 

crystals, which form in very acid solution, are elongated needles, those of barium chloride 

having exactly the same appearance as those of radium chloride.” This remark on the 

crystallographic properties of radium chloride became standard in the new literature that quickly 

sprang up around the excitement generated by Curie’s discovery of radium. 

 Since the remark is unlimited in scope, it results from an enumerative induction. Indeed it 

is one of rather extraordinary scope. Curie had initially prepared just a few tenths of a gram of 

radium chloride. Subsequent preparations would not have produced large quantities. Yet a 

general statement on the crystallographic properties of radium chloride was widely accepted 

without hesitation. Rutherford surveyed what was known of radioactive substances in 1913 and 

noted  (1913, p. 470) without qualification that: “Radium salts crystallise in exactly the same 

form as the corresponding salts of barium.” 

3.2 Failure of Formal Analysis 

 What can support an induction of such strength from these very few samples of radium 

chloride? We can see quite quickly that the universal schema proposed for enumerative induction 

above falls far short of what is needed: 

Some As are B. 

Therefore, all As are B. 

There are simply too many substitutions possible for A and B that lead to failed inductions: 

Some samples of radium chloride were prepared by Marie Curie. 

Some samples of radium chloride are in Paris. 

Some samples of radium chloride are at 25oC 

Some samples of radium chloride are less than 0.5g. 

Some radioactive substances crystallize like barium chloride. 

Some substances in Curie’s laboratory crystallize like barium chloride. 

None of these lead to credible inferences. One might be tempted to propose restrictions on what 

can be substituted for A and B. Might we insist that no nouns or adjectives with essentially 
 

4 For further details on this example, see Norton (ms, Ch.1). 
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spatiotemporal character can be substituted? That would block the substitution “substances in 

Curie’s lab” for A and “in Paris” for B. However it would also block what otherwise would be 

quite credible enumerative inductions. 

All known kangaroos are indigenous to Australia. 

Therefore, all kangaroos are indigenous to Australia. 

And 

All known moons and planets in our solar system orbit in the same direction as Earth. 

Therefore all moons and planets in our solar system orbit in the same direction as Earth. 

The pattern here is evident. For each restriction we might contemplate on substitutions for A and 

B, it takes only a little imagination to find otherwise credible inferences that are blocked and 

arbitrarily so. We must abandon hope for an embellished version of the schema that can serve 

universally. 

3.3 Material Analysis 

 This failure should not make us pessimistic over the prospects of inductive inferences 

like Curie’s. It is a vanity of inductive logicians to imagine that Curie and Rutherford relied on 

the pronouncements of logicians in forming their inferences. Rather Curie and Rutherford knew 

precisely which crystallographic properties of radium chloride could enter into some-all 

inferences through a century of research in mineralogy on crystals. 

 Crystals grow in such a bewildering array of shapes that it was initially hard to see that 

any regularities could be found. If some crystalline sample of a mineral adopted a particular 

shape, it would be extraordinary to find another sample with exactly that shape. The problem is 

reminiscent of the old saw that no two snowflakes are alike. The problems are similar. What 

regularities can be found among snowflakes when they all differ? 
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Figure 1. Snowflakes5 

 

The answer is widely know and easily seen in Figure 1. Snowflakes all reflect the same regular 

hexagonal shape. More abstractly, they exhibit a discrete rotational symmetry. The shapes map 

back into themselves if we rotate them by 60o.  

 Essentially this is the regularity that was discovered during the 19th century investigation 

of crystalline forms, but promoted from the two dimensional forms of snowflakes to the three 

dimensional forms of most other crystals. Snowflakes are built around one shape, the regular 

hexagon. The more general three-dimensional theory, however, calls for six6 crystallographic 

systems, each with its own fundamental form and symmetries. The most familiar system is the 

 
5 Image source: https://commons.wikimedia.org/wiki/File:SnowflakesWilsonBentley.jpg which 

gives a provenance: Wilson Bentley, "Studies among the Snow Crystals ... " Plate XIX, "The 

Snowflake Man." From Annual Summary of the "Monthly Weather Review" for 1902.  
6 So was the count in Curie’s time as provided by Miers (1902, p. 38). 
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“cubic” system to which sodium chloride, common table salt, belongs. This membership does 

not mean that all the crystals of common table salt are just little cubes. Rather it means that they 

are all derived by geometric operations from the basic cubical form, just as all snowflakes derive 

from the regular hexagon. 

 By Curie’s time, it was a standard result that each crystalline substance generally belongs 

to a unique crystallographic system. The complication that underwrites the “generally” is that 

some crystalline substances manifest dimorphism or polymorphism. Through it they may 

crystallize under different conditions into two (“di-“) or more (“poly-“) systems. This regular 

association of crystalline substances with one of the six systems is the material fact that 

warranted Curie’s inference. If she can identify the crystallographic system to which one sample 

of radium chloride belongs, then she can infer to the general crystallographic system of all 

samples of radium chloride. Because of its importance in this example, in Norton (ms, Ch.1), I 

distinguished this warranting fact as a principle named after René Juste Haüy, who is 

acknowledged as an early 19th century founder of crystallography: 

(Weakened Haüy’s Principle) Generally, each crystalline substance has a single 

characteristic crystallographic form. 

The “generally” that weakens the principle ensures that Curie’s inference is inductive. She takes 

the inductive risk of assuming that there is no polymorphism for radium chloride. 

 Curie does not mention by name the monoclinic system to which radium chloride belongs. 

Rather she avails herself of an indirect locution: radium chloride crystallizes as does barium 

chloride. That is, the system to which radium chloride belongs is just the same as that to which 

barium chloride belongs. That they should belong to the same system is quite plausible since the 

two salts are very similar in their chemical properties; and such similarities often manifest in 

crystallographic similarities. 

 What initially appeared as a simple enumerative induction by Curie can now be seen to 

be something a great deal richer. The specific generalization Curie makes on the crystalline form 

of radium chloride is informed by and warranted by facts uncovered in a century of research in 

mineralogy. That research solved the difficult and delicate problem of just which properties of 

crystals can be generalized in a some-all inference. The warranting fact of the Weakened Haüy’s 

Principle rested in turn on a considerable amount of science. It exploited the atomic theory of 

matter in picturing crystals as atoms arranged in regular lattices; and the mathematics of group 
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theory in discerning how spatial symmetries led specifically to the different crystallographic 

families. Curie’s inference was not grounded in any abstract logical schema, but in a 

considerable range of scientific facts.  

4. Analogy 
 Reasoning by analogy, like enumerative induction, is a long recognized form of inductive 

generalization. It too is recounted by Aristotle. It asserts in its simplest form that, when some 

system with property P also has property Q, this particular fact can be taken as an instance of the 

generalization that other systems with a similar property P will also have a similar property Q. 

We shall see that the difficulties analogical reasoning faces are quite similar to those faced by 

enumerative induction. Simple schemas for analogical reasoning are not serviceable. A bare 

schema is too permissive in part through its simplicity and in part through the vagueness of 

essential terms like “similar.” The obvious repair is to strengthen the schema by careful 

elaborations, tuned to canonical examples of analogical inference. The results, however, are 

schemas of increasing complexity that turn out still to be prone to the same troubles. That this 

should happen is predicted by the material approach. According to it, the best we can have are 

different schemas that succeed only in different, factually delimited domains. There is no way to 

synthesize them into a single coherent schema that applies universally.7 

 A curiosity of analogy is a systematic difference in the way philosophers approach 

analogy and the way scientists do. Philosophers treat analogy as a form of inductive inference. 

Their task is to find the general rules governing it. Scientists treat analogies as facts that can 

guide inferences. For them the fact of analogy is itself an empirical matter subject to normal 

scientific investigation. If one thinks formally about inductive inference, this difference is hard to 

accommodate. It makes perfect sense, however, if one approaches inductive inference materially. 

For the scientists’ facts of analogy are the material facts that warrant analogical inference. These 

facts are just ordinary facts of science, themselves subject to inductive analysis. 

 
7 Here I discount the trivializing device of simply taking a huge, likely infinite disjunction of all 

the distinct locally applicable schemas and offering it as a single schema. 
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4.1 The Bare Formal Schema 

 In his logical treatise, Joyce (1936, p. 260) gives a standard schema for analogical 

inference in its bare form: 

S1 is P. 

S2 resembles S1 in being M. 

[therefore] S2 is P. 

This schema fits many inferences in science. In the eighteenth century, it was noted that 

electricity resembled gravity in manifesting as a force between bodies that diminishes with 

distance. The analogy supported the conclusion that electrical forces like gravitational forces 

diminish with the inverse square of distance. This conclusion was experimentally affirmed by 

Coulomb. 

 As with the simple schema for enumerative induction, this bare analogical schema only 

returns good results when one makes careful substitutions. With little effort one finds many 

examples of failed analogical inference. Heat flows like a conserved fluid from hot to cold, but 

contrary to the eighteenth century supposition of the caloric fluid, it is not conserved and is not a 

fluid substance. Perhaps the most famous analogical failure concerns whales. They resemble fish 

in swimming in the oceans. However, since they are mammals they neither breathe with gills nor 

lay eggs as do fish. 

 As with enumerative induction, there is a long-standing tradition of deprecation of 

analogical inference, complete with sage warnings of the dangers of false analogies. Here is one 

example (Thouless, 1953, Ch. 12): 

Even the most successful analogies in the history of science break down at some 

point. Analogies are a valuable guide as to what facts we may expect, but are never 

final evidence as to what we shall discover. A guide whose reliability is certain to 

give out at some point must obviously be accepted with caution. We can never feel 

certain of a conclusion which rests only on analogy, and we must always look for 

more direct proof. Also we must examine all our methods of thought carefully, 

because thinking by analogy is much more extensive than many of us are inclined 

to suppose. 
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4.2 The Two-Dimensional Model 

 If one thinks formally about analogical inference, the remedy is to embellish the bare 

schema in a way that will exclude the plethora of troublesome counterexamples. The dominant 

approach in the literature develops a two-dimensional account, so named by me because it lends 

itself to display in a two-dimensional array. It draws on Keynes’ (1921, Ch. XIX) notion of 

“positive analogy” and “negative analogy” and has been developed by Hesse (1966). The 

account uses these notions to support inferences about a target system through its analogical 

relations with a suitable source system. It can be represented in a general tabular schema, 

provided by Bartha (2010, p.15): 

 

 Source Target  

 P P* (positive 

analogy) 

 A ~A* (negative 

 ~B B*   analogy) 

 Q   

  Q* (plausibly)  

 

The goal is to infer to some as yet unaffirmed property Q* of the target that corresponds with 

some property Q of the source. Whether we can do this is decided by the relative strengths of the 

positive and negative analogies. The positive analogy lies in properties P and P* of source and 

target agreeing. The negative analogy lies in the source exhibiting property A but the target 

lacking the analogous property A*; and conversely with properties B and B*. 

 Properties P and Q of the source stand in some relation, which may be causal, explanatory 

or something else. If the strength of the positive analogy outweighs the strength of the negative 

analogy, then that relation can be carried over to the analogous properties P* and Q* of the target. 

We can then affirm that the target system does indeed carry the property Q*. 

 While the bare schema has been considerably enriched, this tabular schema still falls well 

short of what is needed in a formal account that can mechanically separate the good from the bad 

analogical reasoning, the true from the false analogy. Rather it still relies throughout on users of 

schema just knowing intuitively when certain relations obtain. They are not given formal 
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specifications that can be applied unambiguously. In the case of the relations laid out vertically 

in the table, just what is it to be a causal or explanatory relation between P and Q? And which 

other relations are admissible? The horizontal relations between P and P*, between A and A*, 

and so on, are relations of similarity. In formal terms, when are two properties similar? Finally 

and most troublesome, how are we to assess the relative strengths of the positive and negative 

analogies? For that balance decides whether we have a true or false analogy overall. These 

incompletenesses leave sufficient room for us to continue concocting dubious inferences that 

nonetheless conform with the explicit conditions of the schema. 

 Joyce’s bare schema for analogical reasoning contained just one term—“resembles”—in 

need of external, formal specification. In an effort to resolve the bare schema’s problems, the 

two-dimensional account has introduced many more terms and notions. They are each in turn in 

need of further formal specification. One might, as did Bartha, take this as a challenge to be 

resolved by still further elaboration. In this vein, Bartha’s (2010, Ch.4) “articulation model” adds 

considerably more structure to the two-dimensional model. The pattern already established 

continues. Each elaboration brings new conceptions with it; and each such conception requires in 

turn a further formal specification. 

 There is considerably more detail in both Hesse’s two-dimensional and Bartha’s 

articulation model than can be presented here. Norton (ms, Ch. 4) is my best effort to provide a 

richer account of both. However the overall trend is quite evident. Each effort to conform the 

schema better to good and bad cases requires elaborations that employ new conceptions and 

artifices that are in turn in need of formal specification. Each effort to repair an inadequate 

schema does not solve the problems but multiplies them. 

4.3 The Material Approach to Analogy 

 It is inevitable, according to the material approach, that attempts to find a serviceable 

schema for analogical reasoning will degenerate into a multiplicity that is ever growing but 

always incomplete. For no single schema can embrace all the cases. A material approach has no 

trouble, however, accommodating inferences that are generally identified as analogical reasoning. 

These inductive inferences, as are all inductive inferences, are warranted by facts peculiar to the 

domain of the target system. What gives the facts an analogical character is that they are 

expressed by pointing out similarities to other systems. So we might call them the “fact of 
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analogy.” Nonetheless, whatever role similarity to a source plays in expressing the fact, it is 

crucially a fact that pertains to the target system. It is only in virtue of this that the fact can 

warrant the inductive inference. 

 Failed analogical inferences arise when there is no suitable fact of analogy. Relativity 

theory showed us that we should abandon the absoluteness of motion in favor of the relativity of 

inertial motion. By analogy, should we abandon the absoluteness of truth and of moral rectitude 

in favor of their relativity? The analogical argument fails since there is no fact of analogy 

connecting motion with truth and moral rectitude. The analogical inference attempted depends 

on a verbal coincidence in the repeated presence of the word “absolute.” 

 These facts of analogy may appear in the formal analysis. There, the identification of the 

fact of analogy can only be an intermediary. The task that remains is to show how the fact 

somehow conforms with a schema in which the warrant for the inductive inference ultimately 

resides. The material approach simply says that we have found all the warrant that can be had in 

the fact of analogy. The search for a warrant should stop there. An example below illustrates the 

role of a fact of analogy. 

4.4 The Mountains on the Moon 

 Galileo’s (1610) Siderius Nuncius—the Starry Messenger—reports an extraordinary 

finding among Galileo’s telescopic investigations of the heavens: there are mountains and seas 

on the moon. The mountains manifest when one tracks how the division between light and dark 

on the moon grows in a waxing moon. As the bright edge advances, bright points of light appear 

ahead of it, grow and merge with the advancing edge. This is just how mountains on the earth are 

illuminated by a rising run. Similar observations and analogies support the presence of 

depressions or “seas” on the moon. 

 Galileo’s analysis draws on an analogy between the moon and the earth. His inference fits 

the bare schema of analogical inference: 

The earth (S1) has mountains and seas (P). 

The moon (S1) resembles the earth (S2) in both showing the same 

patterns of surface illumination (M). 

Therefore, the moon (S2) has mountains and seas (P). 



 19 

The inadequacy of the schema as a warrant is easy to see. Nothing in the schema prevents us 

replacing 

P = “has mountains and seas.” 

with 

P = “has mountains with alpine ski resorts and water-filled seas with submarines.” 

It is hard to imagine anyone endorsing the resulting inference to ski resorts and submarines on 

the moon. The obvious objection is that the presence of ski resorts on earthly mountains plays no 

role in the formation of patterns of light and dark on the earth. The analogical inference succeeds 

only in so far there is the right sort of connection between the “M” and the “P” of the schema. 

With that remark, we have introduced the fact of analogy that warrants the inference: 

The process that produces the patterns of light and dark on the moon is 

the same as the process that produces them on the earth. 

The similarity to the process on earth is inessential to the fact’s power to warrant the inference. 

What matters is that: 

The patterns of light and dark on the moon are produced as shadows in 

rectilinearly propagating light by opaque bodies. 

For that is how the patterns on the earth are produced. In principle, Galileo could proceed 

entirely using this reduced form of the fact of analogy. He could demonstrate by some simple 

geometric constructions that lunar mountains would illuminate in just the patterns he observed. 

The earth need never be mentioned. However there is a shortcut. Galileo does not need to 

develop these constructions afresh for his readers. They are already familiar to earthbound 

observers who have experienced a sunrise. It is a rapid expository convenience to recall that 

experience. 

 This development oversimplifies Galileo’s analysis in that this last warranting fact in 

conjunction with his observations enables a deductive inference to the presence of mountains on 

the moon. The inductive character of Galileo’s investigation resides in an uncertainty over 

whether this warranting fact is true. We restore the inductive character of the analysis by 

inserting the word “likely” into the fact so it merely asserts “… are likely produced…” This 

reflects Galileo’s efforts to show that other possible accounts of the origin of the patterns of light 

and dark are unlikely. For further discussion, see Norton (ms, Ch.4, Section 8). 
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5. Hypothetical Induction 

5.1 Saving the Appearances 

 Enumerative induction and analogical reasoning are forms of inductive generalization: 

we infer from an instance to the generalization. The weakness of this form of inductive inference 

is that the generalizations are most naturally expressed in the same vocabulary as are the 

instances. That makes it difficult to infer from evidence to hypotheses formulated with a quite 

different vocabulary.8 

 Another form of inductive inference that I have called “hypothetical induction” is quite 

free from this limitation. According to it, the fact that some hypothesis with suitable adjuncts 

entails true evidence is a mark of the truth of the hypothesis itself. This form of inductive 

inference has long been used science. In ancient Greek Astronomy, “saving of the appearances” 

meant having hypotheses about the motion of celestial bodies whose observable consequences 

match and correctly predict what is seen in celestial motions. The Copernican planetary system 

used the astonishing hypothesis of the motion of the earth to save the appearances of the motion 

of the planets. This, according to the Copernicans, indicates its truth. Critics of this conclusion, 

such as Osiander writing in a preface to Copernicus’ work, urge that it merely shows the 

pragmatic utility of the hypothesis, but not its truth. 

 As scientific theories grew more remote from the evidence that supports them, the need 

for something stronger than mere inductive generalization grew. It was inescapable by the time 

of Einstein’s general theory of relativity. The planetary motions that provide evidence for the 

theory are expressed in the vocabulary of observational astronomers. It is quite remote from the 

vocabulary used to express the core statements of Einstein’s theory: metrical and stress-energy 

tensors, Christoffel symbols and Riemann’s four index symbols (now the curvature tensor). In 

November 1915, a jubilant Einstein reported the success of his theory with the long-standing 

astronomical anomaly in the perihelion motion of mercury. That anomalous motion could be 

deduced within his theory. It was, to use Einstein’s word of 1915, “explained.”9 There was no 

 
8 It is difficult, but not impossible, as a survey (Norton, 2005) shows. 
9 The title of Einstein’s (1915) paper translates to “Explanation of the Perihelion Motion of 

Mercury by the General Theory of Relativity.” 
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generalization from an instance. Einstein’s new theory saved the appearances and that was 

enough to make it one of the revered evidential coups of the twentieth century. 

5.2 Its Limitations 

 The strength of hypothetical induction is that it can lead to confirmation of hypotheses 

remote from the evidence. That is also its weakness. It can lead to the confirmation of too much. 

We can keep adding as many epicycles and other devices as we wish to Ptolemy’s geocentric 

system. Do it cleverly enough and we create a suitably adjusted version that can also save the 

appearances of planetary motion just as well as Copernicus’ heliocentric system. Indeed so also 

can a Ptolemaic geocentric cosmology, larded with fanciful crystalline spheres, each powered in 

its rotation by angels. Does that fanciful hypothesis also earn a mark of truth? If saving the 

appearances is all that matters, then we must answer yes. 

 The near universal response is that merely saving the appearances is too permissive. They 

must be saved in the right way. Selecting this “right way” becomes pretty much the full 

substance of the rescued account. For otherwise, the appearances A are saved by every 

proposition of the form A&X, where X can be anything at all. The “right way” is what selects, 

among this overwhelming infinity of possibilities, just which is best favored by the evidence of 

the appearance. 

 A leading candidate is the requirement that the hypothesis must not merely entail the 

appearances but must explain them. This notion is the basis of abduction or “inference to the best 

explanation.”10  It was, according to this account, what distinguished Einstein’s treatment of the 

anomalous motion of Mercury from mere saving the appearances. His theory explained them. As 

my survey (Norton, 2005) recounts, there are other candidates for this “right way” promoted in 

different sectors of the literature. We shall pursue just one here. It is that the favored hypothesis 

is the one that saves the appearances in a simple and harmonious way. 

 
10 Providing a material explication of inference to best explanation is difficult. There are many 

notions of explanation, so the approach is not univocal. My best efforts are given in Norton (ms, 

Ch. 8-9). Successful inferences to the best explanation do not draw on any special inductive 

powers of explanation. Rather their success comes from deprecating alternatives to the favored 

hypothesis, either as inconsistent with the evidence or as taking on undischarged evidential debts. 
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 This is explicitly Copernicus’ argument. In the Preface to his On the Revolutions of the 

Heavenly Spheres, he censures the Ptolemaic geocentric cosmology as monstrous (1543: 1992, 

p.4): 

[the geocentric astronomers’] experience was just like some one taking from 

various places hands, feet, a head, and other pieces, very well depicted, it may be, 

but not for the representation of a single person; since these fragments would not 

belong to one another at all, a monster rather than a man would be put together from 

them. 

A little later he exults in the harmony of his heliocentric system (p. 9): 

In this arrangement, therefore, we discover a marvelous symmetry of the universe, 

and an established harmonious linkage between the motion of the spheres and their 

size, such as can be found in no other way. 

Copernicus’ foremost proponent and expositor, Galileo, points directly to simplicity as the guide 

to probability in his dialog, Two Chief World Systems (1632). Having reviewed the virtues of the 

Copernican system, Salviati concludes in triumph (p. 327): 

See also what great simplicity is to be found in this rough sketch, yielding the 

reasons for so many weighty phenomena in the heavenly bodies. 

Sagredo immediately summarizes Salviati’s logic (p. 327, my emphasis) 

I see this very well indeed. But just as you deduce from this simplicity a large 

probability of truth in this system, others may on the contrary make the opposite 

deduction from it. 

Needless to say, Salviati proceeds to a devastating criticism bordering on cruelty of those who 

resist his deductions. 

6 Simplicity11 

6.1 Principles of Parsimony 

 Invocations of simplicity are so common that we may barely be aware of how frequently 

they smooth the passage of our inductive inferences. We are interested in how a variable T is 

 
11 The analysis of this section is developed in greater detail in Norton (ms, Ch. 6). 
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related to a variable t. We collect measurements and find that the measured T values increase 

linearly with the t values, near enough. We infer without apology to a linear relationship between 

T and t. The move is rarely challenged. If it is, who could resist the impatient retort: “It’s the 

simplest. What else could it be?” This instinctive retreat to simplicity falls short of what is 

needed if we seek explicit principles that separate the licit from the illicit inferences. Merely 

being told to choose the simplest is empty without some specification of which is the simpler. 

And it has no inductive force unless some basis is provided for why that choice does lead to licit 

inferences. 

 When explicit statements of a governing principle of parsimony are required, perhaps the 

most commonly invoked is “Ockham’s razor.” It is usually reported as12 

Entia non sunt multiplicanda praeter necessitatem. 

Entities must not be multiplied beyond necessity. 

Edifying as is William of Ockham’s sentiment, we may worry that it is merely the abstract 

speculation of a scholar who did not himself use it in any major scientific discover. We can have 

no similar hesitations over a formulation by Isaac Newton, surely one of the most accomplished 

scientists of all eras. In composing his magisterial Principia, he declared a principle of 

parsimony that would then be used in the development of his “System of the World.” Book III of 

this work introduces “Rules for Reasoning in Philosophy.” The first is a principle of parsimony 

(Newton, 1726, p. 398): 

Rule I 

We are to admit no more causes of natural things than such as are both true and 

sufficient to explain their appearances. 

To this purpose the philosophers say that Nature does nothing in vain, and more is 

in vain when less will serve; for Nature is pleased with simplicity, and affects not 

the pomp of superfluous causes. 

What are we to make of principles such as these? We cannot find much fault in them as pieces of 

homely advice. We may lighten the work of our inferential quests if we check the easy options 

first. However, that practicality falls short of what is needed if the principle is to be a guide to the 

truth. For the facts of the world feel no obligation to conform themselves to what is 

 
12 William of Ockham’s original wording differed but conveyed essentially the same sentiment. 
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pragmatically convenient for us. To serve as this guide, the principle must express some 

fundamental fact about the world: the simpler is more likely true since nature is simple. And it 

must do it in an unambiguous manner so that it can be applied unambiguously. 

 These principles fail to meet both requirements. First, as a factual matter, Nature is often 

not pleased with simplicity and may employ a multiplicity of entities or causes. For millennia, 

traditional matter theories favored less to their detriment. The ancient Greeks presumed four 

elements: earth, air, fire, and water. The later alchemists presumed fewer still: Mercury, sulphur 

and salt. As long the element count was this small, there was little possibility of a serviceable 

chemistry. Matters were only rectified when Antoine Lavoisier proposed 33 elements in his 

Elements of Chemistry (1790, pp. 175-76 “Table of Simple Substances”). That set us towards the 

modern count that exceeds 90 elements. Even with this count secured, there are further 

multiplicities. All instances of each element are alike chemically. Thus parsimony would tell us 

that carbon is made of entities all of the same type. However all carbon is not the same. It 

manifests in physically distinct but chemically identical isotopes: 12C, 13C and 14C. 

 Second, these proclamations are too ambiguous to be serviceable since they provide no 

definite means of counting causes and entities. Is the gravitational force of the sun one cause 

because it is the force exerted by one large object? Or is it very many causes, one for each 

gravitational force exerted by each atom of the sun? Is the designer god against whom Darwin 

railed, one cause of the many adaptations of living things? Or do we count each individual 

design decision as a separate cause? Do we understand the electric force of attraction between 

bodies as an action at a distance effect? Or is it as an interaction mediated by an electric field? In 

one way of counting, the action at a distance theory posits fewer entities. It posits electric 

charges only. The field view posits these charges and adds the mediating field. In another way of 

counting, the numbers reverse. If we consider the electric force on some a particular body the 

field view attributes it to one thing, the surrounding electric field. The action at a distance 

account, however, presents the force as the sum of all forces exerted by all of the very many 

charges in the universe.  

 There is a further ambiguity. We should not multiply entities “beyond necessity.” We 

should admit no more causes than “are both true and sufficient to explain the[…] appearances [of 

natural things].” While we may have some intuitive notions of the key words “necessity” and 
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“explain,” the principles are not objective rules until these terms are given unambiguous 

meanings. Until then, one person’s necessity may be another’s superfluity. 

6.2 Simplicity as a Surrogate 

 We face a familiar problem. Common inductive practice routinely employs appeals to 

simplicity. Yet we are unable to articulate an explicit principle upon which this practice can rely. 

From the perspective of the material theory of induction, this failure is inevitable. For it asserts 

that there can be no such universally applicable principle of inductive inference. 

 Understood materially, inductively efficacious appeals to simplicity are always indirect 

appeals to further inductive inferences. Sometimes these further inductive inferences are 

sufficiently convoluted that a proclamation of simplicity is a convenient way of avoiding a long 

convoluted narrative, or of summarizing one just given. We shall see below that this is how the 

Copernican appeal to simplicity should be understood. In the most straightforward cases, appeals 

to simplicity are simply veiled appeals to specific background facts that provide the warrants for 

the inductive inferences at issue. We shall see below that this case arises in appeals to simplicity 

in curve fitting. 

 Simplicity is a surrogate for further inductive inferences; and examination of inductively 

efficacious appeals to simplicity will reveal them. Appeals to simplicity are otherwise so varied 

in their details that I do not believe that a more specific statement can be given of the material 

analysis. 

 This material understanding resolves some of the ambiguity in Ockham’s razor. His 

“necessity” makes sense as a veiled reference to something inductive: we should not infer to 

more entities than those to which we are authorized inductively by the evidence. Similarly 

Newton’s Rule limits causes to those sufficient to explain the appearances. If we understand 

explanation in the abductive tradition, the minimal causes sufficient to explain the appearances 

are just those to which we should infer as the best explanation. In both cases, the principles of 

parsimony amount to a simple assertion: infer only to what the evidence permits. Do not go 

beyond. This assertion is merely a truism of inductive inference. It is good practice to follow it. 

However the connection to a principled parsimony is lost. The evidence may well require us to 

adopt something far from simple. Our best model of particle physics, the standard model, has 

nineteen independent constants. 
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6.3 Curves, Tides and Comets 

 Perhaps the most straightforward and most familiar appeal to simplicity arises in curve 

fitting. We plot measured data points for two variables x and y and then seek the curve that fits 

them best. Routinely, the curves explored are given by polynomial functions y of x: 

linear, quadratic, cubic, quartic, …, 

where the functions become more complicated as we proceed up the list, in the sense that their 

definitions require more independent parameters. 

 The familiar difficulty is that we can always secure a better fit to the data by employing 

functions further up this list. At some point, inevitably, our curve fit is merely accommodating 

noise in the data. We are overfitting. The familiar solution is that we forgo some accuracy of fit 

by choosing a function earlier in the list, usually guided by some explicit statistical criterion. 

This decision is conceived as balancing accuracy against simplicity. 

 This description of a familiar inductive practice makes no explicit reference to any 

particular case. It appears to implement some sort of universal inductive rule that is grounded in 

simplicity. This appearance is an illusion however. For without a context, the above prescription 

gives incoherent results. We can represent these same data by transformed variables such that the 

results of the analysis of the transformed problem contradict those of the original problem. For 

example,13 we can replace x in the data set by another variable z = sin-1(x) and then proceed as 

before. If we found in the first problem that the simple linear function, y = x is the curve of best 

fit, that same function in the second problem is y = sin(z). It is not to be found anywhere among 

the finite order polynomial functions y of z since it corresponds to an infinite order polynomial 

y = sin(z) = z – (1/3!)z3 + (1/5!)z5– (1/7!)z7 + … 

The standard procedures will never find this infinite order polynomial for inevitably a procedure 

will halt at some finite polynomial. 

 The material theory of induction offers a straightforward escape. The decision over which 

is the right variable—x or z—is determined by the particular facts of the case at hand. Indeed the 

entirety of the analysis is governed by these facts; and they do it without resorting to an 

independent principle of parsimony. These facts control even the most basic supposition of 

whether it makes sense to seek a curve of best fit at all. Take the example of the variables T and t 

 
13 A quantitative illustration of this example is given in Norton (ms. Ch.6). 
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mentioned above. Suppose that T is the air temperature taken at times t that happen to coincide 

with midday over the period of a week or two in the spring. This T may increase linearly with t. 

A curve of best fit would interpolate linearly between the successive temperature measurements 

and give us quite incorrect results for times t corresponding to the intervening midnights.  

 Along with the choice of variables, these facts must also specify the list of functions to be 

used in the curve fitting procedure. The family chosen must be such that we should expect the 

true curve to lie earlier in the list. These curve-fitting procedures also depend upon a statistical 

model of the errors confounding the data. A common model assumes independent, normally 

distributed errors. Any such model is applicable only in so far as it reflects the conditions 

factually prevailing in the case at hand. 

 Comet hunting, at least as practiced in the nineteenth century, gives a simple example of 

how the background facts provide the list of functions to be used in curve fitting.14 Newtonian 

mechanics tells us that the trajectory of a comet is a conic section: an ellipse, an hyperbola or the 

intermediate parabola. Since the background facts tell us that comets tend to have highly 

eccentric trajectories, it is hard to distinguish whether they are ellipses or hyperbolas. So the first 

curve fitted is the intermediate parabola. Then, if the fit is poor, the next curve fitted is an ellipse. 

This reflects the fact that this is the trajectory of comets gravitationally bound to our sun. Such 

comets return regularly and are more likely to be encountered by us. Should the ellipse not fit 

then finally the comet hunter reverts to an hyperbola, which is the trajectory of a comet that will 

visit us just once. 

 While polynomials are familiar in curve fitting, they are inappropriate for systems with 

periodic behaviors, such as tides at various coastal locations. Since these tides are periodic, one 

might expect that the appropriate functions of time t are just sin(t) and cos(t) and their harmonics, 

sin(2t), sin(3t), …, cos(2t), cos(3t), … For we know from the theory of Fourier analysis that 

linear combinations of these harmonics will return even the most complicated of the possible 

periodic tidal motions. This expectation underestimates how strongly background facts control 

the choice of functions fitted to tidal data in the actual practice of tide prediction. The functions 

routinely fitted to tidal data consist of a sum of harmonics, each with an identifiable physical 

 
14 This example and the example of tidal prediction are developed in greater detail in Norton (ms, 

Ch.6). 
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basis in the background facts. The most important harmonic constituent is the “principal lunar 

semidiurnal M2” that arises from the tidal bulge raised by the moon. The next most important is 

the “principal solar semidiurnal S2” that arises from the lesser tidal bulge raised by the sun. 

These two harmonic constituents are just the first of very many. In the nineteenth century, 

Thomson, who initiated this form of analysis, employed 23 constituents, each with a physical 

basis. For tidal predictions in US coastal regions, the United States National Oceanic and 

Atmospheric Administration (NOAA) expanded this set to a standard set of 37 constituents. 

Difficult locations may require over 100 constituents. 

6.4 Ptolemy and Copernicus, Understood Materially. 

 The Copernican heliocentric system is favored inductively over the Ptolemaic geocentric 

system. That favoring is not secured, however, by a factual simplicity of the world. Whatever 

may be the simple merits of the geometry of Copernican astronomy, those simple merits must be 

balanced against something that is far from simple. It requires a sixteenth century natural 

philosopher to accept that, contrary to all appearances, the earth spins on its axis and careens 

through space around the sun. Making sense of that—dare I say—is no simple matter. Providing 

a proper foundation for the invisibility of this compound motion required the creation of a new 

science of dynamics in over a century of work by Galileo, Newton and others. 

 Until this thorny dynamical problem was solved, Tycho Brahe’s astronomical system was 

momentarily a credible compromise. In it, the planets orbit the sun; and the sun orbits the earth, 

carrying the planets with it. This compromise keeps all the geometric advantages of the 

Copernican system while avoiding its dynamical drawbacks. While in some informal sense, 

Brahe is trading simplicity and complexity, there is no formal scheme balancing them and there 

is no appeal to a fact of worldly simplicity whose import was unambiguous. Other natural 

philosophers such as Galileo found a different balance. Brahe was merely seeking an account 

that fitted best with his background facts: the appearance of the motions and the appearance of a 

resting earth. 

 Nonetheless the Copernicans were indicating correctly an evidential superiority of the 

Copernican heliocentric system over the Ptolemaic geocentric system as far a purely 

astronomical considerations were concerned. If we view the comparison materially, we can see 

that it was just a matter of the specifics of the Copernican system being better supported 
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evidentially than those of the Ptolemaic system. The background assumption that warrants 

inferences in the Ptolemaic system is that, qualitatively, the retrograde motion of the planets is 

explained in each case by an epicycle-deferent construction. The corresponding inferences in the 

Copernican system are warranted by the assumption that the planets maintain roughly circular 

obits, but that the retrograde motion of the planets arises from an imposition of the motion of the 

earth upon them. 

 In the Copernican system, the appearances of planetary motion then fix many of the 

details. Corresponding details must be set by independent stipulation in the Ptolemaic system. 

The relative sizes of the planetary orbits are fixed in the Copernican system; but these sizes must 

be set by independent stipulation in the Ptolemaic system.15 In the Copernican system there are 

only two possibilities for planets: either their mean positions align with the sun and their 

retrograde motions carries them to and fro across the sun; or they exhibit retrograde motion only 

when in opposition to the sun. This conforms with the appearances. The Ptolemic system can 

make no corresponding assurance. This conformity must be built in by independent supposition 

for each planet. These and more differences give the Copernican system a strong evidential 

advantage.  

 These last remarks are merely a sketch of a lengthy and complicated collection of 

inferences that demonstrate the evidential superiority of Copernican system. Laying it out in 

detail is challenging, especially if one is engaged in polemics. There the rhetoric calls for a 

compelling synopsis. How better to convey the Copernican advantage than by pointing to its 

simplicity and harmony in comparison with the Ptolemaic system? Yet it is simpler only in 

requiring fewer independent posits and more harmonious in that the determination of some 

features necessitates others. There is no manifestation of a deeper principle of parsimony in 

nature. 

 
15 For an extended account, see the Chapter, “The Use of Hypotheses in Determining Distances 

in Our Planetary System.” 
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7. Bayes 

7.1 The Problem 

 The examples of forms of inductive inference so far have given only qualitative 

assessments. If the Copernican system is better supported by the astronomical evidence than the 

Ptolemaic because it requires fewer independent assumptions, just how much better is that 

support? Merely reciting “much better” may be all we can say. To many that will fall far short of 

what is wanted. Can we not measure support quantitatively? And if we can, might questions of 

strength of support be reduced to objective computations? 

 Something like this is the promise of Bayesian analysis. The founding tenet of objective 

Bayesianism is that degrees of inductive support are measured by conditional probabilities. A 

typical analysis begins with some prior probability distribution, which represents the support 

accrued by some hypothesis prior to inclusion of the evidence at issue. The import of the 

evidence on the inductive support of the hypothesis is found by conditionalizing on the evidence, 

usually through Bayes’ theorem, to form the posterior probability. There is, I hope, no need to 

elaborate since, of all schemes in the modern literature, this one is now best known. 

 The difficulty with the Bayesian system is that it is too precise and irremediably so. There 

will be cases in which degrees of support can be represented responsibly by probabilities. They 

arise in narrowly prescribed problems. For example, since we can recover population frequencies 

for various genes, we can ask what is the probability that this sample of DNA was drawn from 

some donor randomly selected from the population. However evidential questions of a more 

foundational character are rarely given to us in a context rich in probabilities. Then insisting on a 

Bayesian analysis can be satisfying in the sense that we replace vague notions of strength of 

support by precise, numerical probabilities. However the impression of progress is an illusion. 

The prized numerical precision has been introduced by our own assumptions that do not reflect a 

corresponding precision in the system investigated. We risk mistaking our manufactured 

precision for that of the world. 

 The standard view of a Bayesian account is that probabilities are supplied by default and 

in abundance. The material approach reverses this. According to it, we are not authorized to any 

probabilities by default. Probabilities can only be introduced when the background facts warrant 

it; and a thorough analysis can display the pertinent warrants. Adopting that new default protects 
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us from the spurious precision that troubles so much of Bayesian analysis. For we can only 

introduce precise probabilities if the precision of the facts of the context allow it. To do 

otherwise is to risk asserting results that are merely artefacts of applying an inductive logic ill-

suited to the problem at hand.16 

7.2 Sunrises and Laplace’s Rule of Succession 

 The problem has been with Bayesian analysis from the outset. It can already be seen in 

one of the earliest Bayesian analyses. Laplace asked after the probability that the sun will rise 

tomorrow morning, given the past history of sunrises. This was already an established question. 

Before him, Hume had urged that our past history of sunrises gave no assurance of future risings. 

Richard Price, author of an appendix to Bayes’ posthumously published paper, applied Bayes’ 

inverse method to the problem to compute the odds of a future sunrise.17 Laplace would now 

give his application of the probability calculus to the problem. His 1814 analysis (1902, p. 19) is 

a celebrated application of his “rule of succession.” To put some formulae on Laplace’s non-

symbolic narrative, the analysis depended on several assumptions. We assign a probability q to 

the rising of the sun. 

P(rising) = q                                                                   (1) 

 Antecedent to all evidence of any risings, we allow that q can have any value from 0 to 1. We 

represent that latitude by assign a uniform probability density p to the interval. That is,18 

p(q) = 1     for 0 £ q £ 1                                                          (2) 

Next Laplace assumed that the individual occurrences or otherwise of a sunrise are 

probabilistically independent events. These assumptions were sufficient to enable Laplace to 

 
16 The Material Theory of Induction, Ch. 10, §4 gives examples of such spurious results in the 

form of the inductive disjunctive fallacy (“Why is there something rather than nothing?”) and the 

lamentable doomsday argument. 
17 For more on Hume and Price, see the chapter, “The Problem of Induction,” below. See Zabell 

(1989) for more of the history of the rule of succession. 
18 Lest it pass unnoticed, the probability P and probability density p are distinct and should not 

be conflated. 
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compute the probability of a sunrise on the n+1th occasion, given a history of s risings on n past 

occasions:19 

P(n+1th rising | s risings on n past occasions) = (s + 1)/(n + 2)                 (3) 

If the sun rose on all past n occasions, then the rule of succession gives us 

P(n+1th rising | n risings on n past occasions) = (n + 1)/(n + 2)                 (4) 

The more risings we see, the better supported evidentially is the next rising. Its probability 

approaches one arbitrarily closely with enough risings. Laplace immediately translated this 

probability into a wager: 

Placing the most ancient epoch of history at five thousand years ago, or at 182623 

days, and the sun having risen constantly in the interval at each revolution of twenty-

four hours, it is a bet of 1826214 to one that it will rise again to-morrow.20 

7.3 What is Wrong With It? 

 This precise quantitative result and its operationalization in a bet is momentarily 

satisfying and perhaps even thrilling, if numerical precision is the goal. Yet a moment’s more 

reflection reveals that the precision attained is fabricated and fanciful. There are two problems, to 

be addressed in the next two sections: 

• First, the impression of recovery of a result of some generality is illusory. 

• Second, a probabilistic analysis is the wrong analysis for the problem as actually posed by 

Laplace. 

Laplace’s analysis has been chosen for scrutiny here since its simplicity enables us to see both 

problems quickly. We might imagine that the development of the Bayesian approach after 

Laplace has addressed and resolved these problems. To some extent, this has happened. Where 

these problems persist most notably, however, is in Bayesian analyses in philosophy of science. 

 
19 See the Appendix for a summary of the computation. 
20 The computation of the number of days in 5000 years as 182623 is an obvious error, too low 

by a factor of 10. Five thousand years corresponds to 5,000 x 365 = 1,825,000 days or 5,000 x 

365.2422 = 1,826,211 days depending on how one counts days in the year. The odds reported by 

Laplace of 1,826,214 to one indicate that Laplace’s real estimate of the number of days in 5,000 

years is 1,826,213. The erroneous 182,623 results from dropping the tens digit 1. 
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There these methods are routinely applied to problems with vague specifications. The goal is to 

supplant their vagueness with mathematical precision. This laudable goal, however, can only be 

achieved by imposing assumptions whose precision is unwarranted by the problems posed. As 

with Laplace’s sunrises, the precision of the ensuing analysis is an illusion of our own 

manufacture. 

7.4 Failure of Generality 

 Laplace’s “rule of succession” is presented with a suggestion of some sort of general 

applicability. Perhaps it is a general demonstration that probabilistic analysis defeats Hume’s 

skeptical challenge to inductive inference. While the application to sunrises specifically is far-

fetched, perhaps it shows that probabilistic analysis can solve the sort of inductive problems 

Hume charged as insoluble. Or perhaps more modestly it is, at least in simple cases, a convenient 

starting point for how we are to think of projecting a record of successes and failures inductively 

into the future. 

 From the perspective of the material theory of induction, it does none of these. It is a 

theorem in probability theory, untroubling merely as a piece of mathematics. However, as an 

instance of inductive inference, it is untethered from real problems in the world. Any inductive 

rule, such as the rule of succession, can only be applied to some particular problem if the 

background facts of the domain warrant it. Without that tethering, it is just a piece of 

mathematics. 

 To which inductive problems can the rule be tethered? That is, which problems are such 

that their background facts warrant the rule. We find that there are very few and they are 

artificial.21 

 It is no surprise that the rule of succession fails for the real problem of sunrise prediction. 

The pertinent background facts are rich. Sunrises come about from the rotation of the earth on its 

axis; and this rotation is one that can only be disrupted by the most cataclysmic of cosmic events. 

Absent such a cataclysm, successive risings are perfectly correlated; and after such a cataclysm, 

successive failures to rise are perfectly correlated. The assumption of probabilistic independence 
 

21 We might compare this rule with the ideal gas law in the thermodynamics of gases. It is 

derived from highly idealized assumptions. Unlike the rule of succession, the ideal gas law 

applies to a wide range of ordinary gases in ordinary circumstances. 
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for each sunrise fails. If we are serious about predicting such a cataclysm from, say, an errant 

galactic body, then our analysis would need to inquire after the distribution of such bodies in our 

neighborhood and to hope that sufficient information is forthcoming so that probabilistic 

predictions of cataclysmic collisions with earth can be mounted. 

 Laplace had no illusions that his analysis was close to one that accommodated what we 

know factually of sunrises. He continued the report on the bet quoted above by saying: 

But this number is incomparably greater for him who, recognizing in the totality of 

phenomena the principal regulator of days and seasons, sees that nothing at the 

present moment can arrest the course of it. 

This does not appear to be a retraction of his analysis, but may merely be a statement that it gives 

an excessively modest lower bound to the probability appropriate to our real epistemic situation. 

 If not sunrises, then might Laplace’s analysis apply to the expectation of live human 

awakening? Then biological facts as summarized in mortality tables provide the background 

facts needed to assess the probability of a human awakening tomorrow, given some past history 

of awakenings. A 20 year old male has a 20 year history of successful awakenings. Mortality 

tables22 tell us that a male has a probability of 0.998827 of surviving the next year. Taking the 

approximation that the probability of a successful awakening each morning in the year is the 

same, the probability of success on the next morning is 0.9988271/365 = 0.999996784. The same 

computation for a 100 year old female gives us a probability of success in awakening the next 

morning as 0.698451/365 = 0.99901722. The rule of succession does not apply. 

 These examples may be multiplied. Laplace’s analysis is almost never warranted by 

background facts. Where does it apply? Laplace’s own text shows us a way. The problem of 

sunrises comes at the end of Laplace’s Chapter 3. Virtually all the other examples in that chapter 

are of familiar games of chance and associated randomizers: the tossing of coins, the throwing of 

dice and the drawing of black or white balls randomly from an urn. Consider this problem: 

An urn contains a very large number of coins, which are biased in all possible ways. 

The biases are uniformly distributed over all possible values: coins with a chance of 

heads q appear in the urn with the same frequency for all q in the entire range from 

 
22 Provided by the US Social Security Administration at 

https://www.ssa.gov/oact/STATS/table4c6.html 
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0 to 1. We select a coin at random from the urn.23 We toss it 1,826,213 times and 

find heads on every toss. What is the probability that the next toss is a heads? 

It requires only a little reflection to see that all the conditions for Laplace’s rule of succession are 

satisfied. The background facts warrant the application of Laplace’s rule of succession. It assures 

us that the odds of a head on the next toss are 1,826,214 to one. 

 Laplace’s analysis illustrates a common problem with Bayesian analysis. It has a small 

repertoire of tractable templates. They include sampling problems, such as drawings from urns; 

and problems in games of chance, which are based on physical randomizers, like thrown dice, 

shuffled cards and tossed coins. The supposition is these templates can be applied to problems 

that bear only superficial resemblance to the original problems of sampling or games of chance. 

This supposition mostly fails. Inductive problems in the real world—especially the more 

interesting ones—are rarely structurally like simple problems of sampling or games of chance. 

7.5 Probabilities are Inapplicable 

 Laplace’s mention of his analysis as applying to sunrises can and, indeed, should be taken 

only as a colorful embellishment intended to make an arid technical problem appear less dry. For 

the problems is posed by assumption in a factually barren landscape. The problem’s formulation 

fails to provide the background facts that are required to warrant an inductive inference. To 

describe the problem as inferring from the evidence of 182623 sunrises is misleading, if taken 

seriously. Calling them “sunrises” triggers the sorts of background knowledge mentioned above 

that we are supposed to discount. Successive sunrises are very strongly correlated, yet Laplace’s 

analysis makes them probabilistically independent. A better description might be the vaguer 

evidence statement: 

We have 1,826,213 successes. Will the next occasion be a success? 

The only answer we can give is that we cannot say. The evidence is given in a vacuity of 

background facts. It supports no inductive inference. We need background facts on the nature of 

the occurrences to warrant an inductive inference. When they are supplied, we can determine just 
 

23 I follow Laplace in overlooking the practical and principled difficulties of selecting randomly 

from an urn with an infinity (here uncountable) of balls or coins. A safer system spins a pointer 

on a dial to select a number randomly between 0 and 1. We then construct a coin with that 

number as its bias. 
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which inductive inferences are warranted. Which they are will vary from circumstance to 

circumstance. Laplace’s analysis will almost never apply. 

 If we persist in applying a Bayesian analysis and recover results of any strength, where 

none are warranted, all we can conclude is that these results are artefacts of a misapplied 

inductive logic. Once we are alerted to the danger, it is easy to see how Bayesian analysis 

introduces factual presumptions under the guise of benign analytic machinery. The idea that the 

unspecified occurrence can be represented by a probability distribution at all is an example. It 

commits us to factual restrictions that go beyond the factual barrenness presumed. To assign a 

middling value to the probability, P(rising) = q = 0.5, is not to be neutral. It is to say that, loosely 

speaking, in situations similar to that of the analysis, we should expect an occurrence in roughly 

half of them. 

 Then there is the attempt to represent the complete openness over which value of q 

applies. Laplace does his best here by assuming a uniform probability distribution (2) over q. 

This uniform distribution once again goes beyond the factual barrenness presumed. For that 

distribution makes many strong claims. It says that a value of q in the interval (0, 0.1) is as 

probable as a value of q in the interval (0.5, 0.6) but only half as probable as a value of q in the 

interval (0.5, 0.7). The interval (0, 0.99) is highly probable and its complement (0.99, 1.0) highly 

improbable. These are strong statements. The absence of background facts means that none of 

them are authorized. 

 The difficulty of representing evidential neutrality in a probabilistic analysis is well-

known. Various techniques known as “imprecise probability” can be used to ameliorate the 

failure of a uniform probability density to represent adequately a complete indifference over the 

values of the parameter q.24 In one approach, we replace the single prior probability density (2) 

 
24 Might we escape these problems by adopting subjective Bayesianism? Then the prior 

probability distribution is merely uninformed opinion and may be freely chosen, as long as it 

preserves compatibility with the probability calculus. This popular approach has had a malign 

effect if one’s interest is inductive support and bearing of evidence. For once one allows opinion 

free admission into one’s system, it becomes very difficult to remove its taint from one’s 

judgments of inductive support. The limit theorems that are supposed to purge the subjectivity 

apply in limited, contrived circumstances that do not match the real practice of science. 
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over q by the set of all25 probability densities over the interval [0, 1]. When we apply the rule of 

succession, instead of recovering a single probability for the next occurrence, we recover a set of 

probabilities. In general, there is one for each of the probability densities in the set. That we 

admit all probability densities gives the appearance of the requisite independence from 

background facts. That appearance is an illusion since we are still assuming that the probability 

calculus applies at all, even in weakened form. The introduction of this imprecision is fatal, 

however, to the recovery of a non-trivial result. For, as we see in the Appendix, the set of all 

prior densities includes ones that lead to all possible probabilities from zero to one for the next 

sunrise. We start assuming that this probability can lie anywhere between 0 and 1 and must end 

without any restriction on this range. We will have learned nothing from the evidence, no matter 

how extensive our history of sunrises may be. 

7.6 Bayesian Analysis within the Material Theory of Induction 

 What are the prospects for Bayesian analysis from the perspective of the material theory 

of induction? Bayesian analyses can be applied profitably to many, specific inductive problems. 

Given what we know about errant galactic bodies, what should our expectations be for a 

cataclysmic collision with the earth that will disrupt our sunrises? Given patients with such and 

such prognosis, what is their life expectancy? These and many more problems like it are all 

welcomed by the material theory of induction. For in each case there are identifiable background 

facts that warrant the application of a probabilistic analysis. 

 Where Bayesian analysis fails is that it cannot provide an all-embracing framework with 

formal rules applicable to all problems of inductive inference. It will work well in specific 

problems, where the background facts warrant it. But any claim of general applicability, such as 

is sought in the philosophy of science literature, requires that the framework must be applicable 

to inductive problems whose background facts fail to authorize a probabilistic analysis. In these 

cases, persisting in applying a probabilistic analysis risks producing results that are artefacts of 

an inapplicable inductive logic. 

 
25 The scope of “all” is vague, but that vagueness is immaterial to the points made here. As a 

first pass, it designates all integrable functions with unit norm. 
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8. Conclusion 
 In reviewing the material theory of induction, this chapter has been restricted to particular 

instances of inductive inference. In each case, the warrant for the inferences is found in 

background facts. For the inference to be licit, these background facts must be truths. Since these 

facts make claims that commonly extend well beyond direct experience, we must ask what 

supports the truth of these background facts. The material theory of induction is uncompromising 

in its answer. The only way these facts can be supported is by further inductive inferences; and 

those further inductive inferences will in turn require a warrant in still further inductive 

inferences. How do all these inferences fit together? That is the subject of this volume and is 

taken up in the next chapter.  

Appendix: Laplace’s Rule of Succession 
 Consider n+1 probabilistically independent trials, each with a probability of success q, 

where q is itself uniformly distributed over the interval [0,1] according to (2). If there are s 

successes only among the first n trials, then the probability of success on the n+1th trial is given 

by 

P = P(success on n+1th trial | s successes in first n trials) 

=  P(success on n+1th trial AND s successes in first n trials) / P(s successes in first n trials) 

Since the number of successes s is binomially distributed, we have: 

 

The integrals may be evaluated using the integral identity 

                                               (A1) 

for whole numbers A and B. We recover 

                                                (2) 

It is the rule of succession (2) of the text. 
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 To show that alternatives to the prior probability distribution (1) can lead to P = r for any 

r between 0 and 1, consider the family of prior probability distributions:26 

  where 0 £ q £ 1 

for A and B whole numbers. Repeating the above calculation for P, we find 

 

Rewriting P as 

 

it follows that P à r in the limit of A, B à ∞ such that A/(A+B) à r. That is, we can bring P 

arbitrarily close to any nominated  0 £ r £ 1, merely by selecting A and B large enough in this 

limiting process. The prior probability p(q) masses all the probability arbitrarily closely to 

A/(A+B) in the process of taking the limit. The limit itself is no longer a function, but a 

distribution, the Dirac delta “function.” That is 

 

Selection of this distribution as a prior would force P to the value of r exactly, since all intervals 

of values not containing r would be assigned a zero prior probability. 
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