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1.	Introduction	
 The last chapter argued that all proofs of the necessity of probabilities fail. They are 

deductive arguments for a contingent conclusion, that probabilities must be used to represent 

inductive degrees of support or subjective degrees of belief. Thus the proofs must employ 

premises that are deductively at least as strong as or even stronger than the conclusion sought, 

the necessity of probabilities. It follows that any proof of the necessity of probabilities can be 

undone merely by examining the premises of the proof and revealing the presence of the 

necessity of probability, in whatever congenial disguise is used to hide it. Moreover the last 

chapter predicted that any program of demonstration of the necessity of probabilities will be 

trapped forever in a cycle of near misses, corrections and renewed attempts, none of which ever 

succeed completely, for the program’s goal is unattainable. 

 The present chapter offers an extended illustration of these conclusions through the recent 

literature that seeks to demonstrate the necessity of probabilities by means of considerations of 

accuracy alone, where accuracy here means quantifiable closeness to the truth. That closeness is 

in turn measured by numerical scoring rules, which will become the major focus of what follows. 

                                                
1 I thank Joshua Fry, Lee Elkin and Richard Pettigrew for helpful discussion. 



 2 

If these scoring rule vindications succeed, they have the potential of displacing the decision 

theoretic approaches, for the scoring rule approach has no need to envisage elaborate scenarios 

with agents adapting beliefs to decisions that maximize utilities. Credences are chosen simply by 

the criterion of accuracy. The approach depends on an appealing dominance argument: if our 

credences are not probabilistic, then they will always be dominated by probabilistic credences in 

the sense that, whatever may be the case, we improve accuracy by shifting from the non-

probabilistic credences to the probabilistic credences. 

 The discussion below will proceed within the framework routinely employed by the 

scoring rule literature. Its suppositions include:  

• credences in any two propositions are always comparable; 

• the relation of comparison can be captured by a real-valued degrees in the interval 0 to 1. 

Each of these and others like it also require justification; and attempts to justify them would in 

turn face just the same issues of circularity developed here. 

 The focus of attention in the analysis below will be the particular scoring rule employed 

to measure the accuracy of credences. We shall see that almost every slight change in the rule 

undoes the demonstration; and almost every larger change leads to a wide variety of alternative 

results. This fact shows that it is not the general notion of accuracy that drives the proof, for 

accuracy alone gives very little. Rather everything depends on the delicate selection of an 

accuracy measure tailored to give the desired result. Here is the circularity. It is in this delicate 

fine-tuning that the probabilistic credences are presumed in disguised form. 

 The response has been a flourishing of attempts to make the choice of the fine-tuned 

scoring rule seem necessary or inevitable or perhaps just natural. We find a regress of reasons 

that never quite terminates in success; or a proliferation of alternatives, each of which is replaced 

by another, without apparent end. This endless, frustrating dynamic is just what was predicted by 

the general argument against all proofs of the necessity of probabilities. 

 The exploration here of scoring rule approach will necessarily be partial. The literature on 

the topic is so large that a mere chapter can only scratch the surface. The goal is not to review 

every demonstration. Rather it is to display by example how the regress and proliferation of 

reasons comes about in this specific instance. In case after case, we shall see that plausible 

assumptions that initially appear independent of the assumption of the necessity of probabilities 

actually contain the assumption in covert form. An ardent vindicator will, no doubt, have further 
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demonstrations that I have not discussed and may urge these as finally resolving all difficulties. I 

can only respond with some confidence as I would to a circle squarer or angle trisector: these 

further demonstrations would in turn succumb under scrutiny. For if they are to succeed, they 

must employ premises logically at least as strong as the conclusion sought. 

 The accuracy driven demonstration of the necessity of probabilities draws on a much 

larger literature in meteorology, economics and subjective Bayesianism that uses scoring rules 

for other purposes. These other uses will be sketched in Sections 2 and 3 below. They include the 

elicitation of true but secret probabilities from subjects who, we are to suppose, might otherwise 

not reveal them. In that context, the adaptation of scoring rules specifically to probabilities is 

benign, since these uses presume explicitly that credences are probabilistic. Use of these adapted 

rules in the newer context of the vindication of probabilities ceases to be benign for there we are 

no longer allowed to presume that all credences are probabilities: the circularity of vindication 

lies precisely in that adaptation. 

 The original form of the accuracy driven demonstration of the necessity of probabilities 

will be developed in Section 4. It employs a quadratic Brier scoring rule. This rule, we shall see, 

so favors probabilities that it rewards subjects with non-probabilistic credences for lying that 

their credences are probabilities. In Section 5, we shall see that the success of this original 

accuracy driven vindication depends on selection of exactly the Brier scoring rule and not any 

other in its neighborhood. When we replace the power of 2 in the Brier score formula by a more 

general exponent n, the slightest change in the exponent--a shift from 2 to 2.01 or to 1.99--is 

enough to undo the proof. Section 6 will reflect on how little in the original proof comes from 

the mere idea of accuracy, as opposed to the careful choice of scoring rule. Section 7 will review 

attempts to justify the restricted choice of scoring rule. 

 Sections 8 will describe the “strictly proper” scoring rules that have been introduced into 

the larger literature with a different purpose. They are a generalization of the Brier scoring rule, 

contrived to preserve its key property of favoring probabilities. Hence, as we see in Section 9, 

the success of strictly proper scoring rules in the dominance proof is to be expected. However 

that contrived favoring of probabilities is precisely how the proof can covertly assume 

probabilities at the outset. Section 10 will review the inevitable failure of attempts to justify 

independently the restriction to strictly proper scoring rules in the dominance analysis. Section 
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11 will remind us once again of the pitfalls of “natural” criteria. Section 12 has a short 

conclusion. 

2	Origins	in	Frequencies	
 The present literature in scoring rules has origins in considerations of frequencies. 

Identifying them proves important in understanding what otherwise looks like arbitrariness in the 

systems now used. 

 In 1950, meteorologist and statistician Glenn Brier addressed a vexing problem in 

systems used to track the reliability of meteorologists’ weather forecasts. The systems were 

leading meteorologists to deliver something other than their best forecasts in efforts to improve 

their ratings. They would, as Brier (1951, p.10) put it, be “ ‘hedging’ or ‘playing the system.’” 

For example, as Brier and Allen (1951, p. 843) note, if a temperature forecast must be given as a 

single number, the forecaster may choose to report different temperatures according to the 

statistic that would be used to measure the forecaster’s reliability. If it was measured by a count 

of how many predictions proved exactly right, the best strategy is to report the most probable 

temperature. If reliability is measured by mean absolute error, then the best strategy is to report 

the median temperature. If reliability is measured by the root-mean-square error, then the mean 

temperature is best. The forecaster’s best judgment has been overshadowed by a concern for the 

performance measure. 

 Brier’s solution was to propose an assessment system that would not reward efforts to 

play the system: the forecasts are given as probabilities and a “verification score”—later call the 

“Brier score”—is computed according to scheme in which higher scores represent poorer 

performance. If there are n possible, mutually exclusive weather condition, the forecaster 

predicts them with probabilities x1, …, xn. The best forecasts are to be given the lowest scores. 

So, if condition i does not occur, a term in xi2 is added to the score. The higher is the probability  

xi, the more defective the prediction and thus the worse, that is, the higher the score. 

Correspondingly, if condition k arises, a larger associated probability xk should contribute less to 

the score. This is achieved by adding a term (1- xk)2 to the score. The final score P is recovered 

by averaging this sum over the N possible occasions over which the forecaster is scored. 
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 Write xik for the probability predicted on occasion i for condition k. The actual outcomes 

are encoded in the matrix Eik, where Eik =1 encodes occurrence on occasion i of condition k; and 

Eik =0 encodes its failure to occur. The “verification score” Brier proposed is  

P = 1
N

Eik − xik( )2
k=1

n∑i=1

N∑                                                          (1) 

At first, the choice of a reward (1-x)2 for correct predictions and a punishment of x2 seems 

arbitrary. One might imagine that almost any decreasing or increasing functions of x, 

respectively, would serve equally well. That turns out not to be the case, for this score has an 

important property shared by relatively few other scores, as we shall see in Appendix B below. 

The property appears in the case of N occurrences of some circumstance for which the same 

probability forecast xk for condition k is appropriate for each occurrence. The frequency fk of the 

k-th condition among the N occurrences is given by fk = Σi=1,N Eik/N. For this case, Brier (1951, 

p.2) described the key property:2  

It is also easy to show that if [f1, …, fn] are the relative frequencies that the event 

occurred in classes 1, 2, …, [n], then the minimum score that can be obtained by 

forecasting the same thing on every occasion is when 

     [xik = fn] 

In this special case, Brier’s verification score reduces to  

P = f1 (1 - x1)2 + f2 x12 + f3 x12 + … + fn x12 

+ f1 x22 + f2 (1 - x2)2 + f3 x22 + … + fn x22  

+ … 

+  f1 xn2 + f2 (1 - xn)2 + f3 xn2 + … + fn (1- xn)2                                                       (2) 

The optimal (minimum) score arises when the derivative of P with respect to each of the x1, …, 

xn vanishes: dP/dx1 = … = dP/dxn = 0. An easy calculation shows the minimum occurs when:  

xi = fi                            for i = 1, …, n                                    (3) 

 Brier predicted the effect of the use of this score on a forecaster (1950, p.2) 

                                                
2 The square brackets indicate minor changes from Brier’s notation to mine. 
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A little experience with the use of the score P will soon convince him that he is 

fooling nobody but himself if he thinks he can beat the verification system by 

putting down only zeros and unities when his forecasting skill does not justify such 

statements of extreme confidence. And in the complete absence of any forecasting 

skill he is encouraged to predict the climatological probabilities instead of 

categorically forecasting the most frequent class on every occasion. 

Two features of Brier’s verification score are noteworthy. First, Brier assumed at the outset that 

the forecasters’ predictions, both private and public, are probabilities. There are no weights that 

do not normalize to unity and thus need correction to bring them into conformity with the 

probability calculus. Second the score is designed to ensure that forecasters’ probabilities are 

well calibrated in the sense that they are given the best scores when their forecast probabilities 

for the conditions match the frequencies of the conditions. In this calibration, the probabilities 

are calibrated to the short-term frequencies in N occurrences. These are not long-term, infinite 

limit frequencies, but the actual frequencies in a run of N occurrences, where N may be quite 

small. 

3	Eliciting	Credences	
 Brier used his score as a way of matching weather forecasts with short-term frequencies. 

At around the same time as Brier’s work, a second literature sprang up in which the same devices 

were used for a different purpose. (See, for example, McCarthy, 1956; De Finetti, 1965; Savage, 

1971; and de Finetti, 1974, Ch.5.) The literature addressed a subject who harbored certain 

credences or subjective probabilities and the task was to elicit those credences. The means was to 

assign a score to probabilities announced by these subjects. The Brier score is most commonly 

used, but not exclusively so. For example, Brier’s score formula (2) is used but its terms are 

interpreted differently. The quantities xi are the subject’s announced probabilities and the 

quantities fi are the subject’s true beliefs. Replacing frequencies fi by probabilities pi, we have a 

penalty function: 
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P = p1 (1 - x1)2 + p2 x12 + p3 x12 + … + pn x12 

+ p1 x22 + p2 (1 - x2)2 + p3 x22 + … + pn x22  

+ … 

+  p1 xn2 + p2 xn2 + p3 xn2 + … + pn (1- xn)2                                                    (2a) 

If the Brier score is a penalty that the subject seeks to minimize, the analog of (3) above shows 

that the subject does best by announcing the subject’s true beliefs.  

 The literature presents different scenarios to motivate an interest in what otherwise seems 

an arcane scenario of dissembling subjects who may not announce their true subjective 

probabilities. Murphy (1956, p. 654) imagines a forecaster and a client. The client uses the 

penalty as a way to “keep the forecaster honest,” where the quote marks are Murphy’s. De Finetti 

(1965, §3; 1974, §5.5) is more detailed. He imagines scenarios in which an expert makes a 

probabilistic recommendation. A geologist, for example, may announce probabilities on the 

success of drilling an oil well at a particular site. We interest the geologist “in giving an honest 

answer; in expressing his deep felt belief”3 by associating the score with the fee to be paid to the 

geologist on completion of the drilling. In another scenario, probabilistic bets are made on the 

outcome of sporting events and the payoff tied to the score. Finally, it is proposed that answers to 

multiple choice exam questions be given as probabilities and that the final score be computed as 

a Brier score. 

 For our purposes, however, minimizing the Brier score works too well. Our concern 

includes credences that may not be probabilities. Imagine that the true credences pi of the subject 

are not probabilities. They are just a set of numbers p1, …, pn that do not sum to unity. The 

minimum of the penalty function P of (2a) occurs when the reported values x1, …, xn are not the 

true credences p1, …, pn but the true credences normalized to unity. 

 To see this, note that the minimum of (2a) with respect to varying xi arises when we have 

dP/dx1 = … = dP/dxn = 0. Thus we have: 

0 = dP/dx1 = -2 p1 (1 - x1) + 2 p2 x1 + 2 p3 x1 + … + 2 pn x1 

= -2 p1 + 2 x1 (p1 + p2 +  p3 + … +  pn) 

                                                
3 De Finetti (1974, p. 193; emphasis in original). 
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and similar conditions for the remaining x2, …, xn. Rearranging we have 

xi = pi/ (p1 + p2 +  p3 + … +  pn)                 for i = 1, …, n                         (3a) 

The credences reported are the true credences renormalized, so they sum to unity. 

 Thus, elicitation of true credences by means of a Brier score rewards subjects for lying 

and saying that their credences are probabilities, when they are not. This is an indication that the 

scoring method is biased towards probabilities, for it rewards a shift to probabilities, even when 

they are not the quantities sought. 

4.	The	Dominance	Argument	
 What is distinctive about this last literature is that, first, the elicitation is governed by 

pragmatic factors. The students’ score best on an exam or the geologist will be paid the most if 

they reveal their true probabilistic credences. Second, the primary focus is the eliciting of 

credences, already assumed to be probabilities. It is not offered as a way of demonstrating that 

one’s credences must be probabilities.4  

 A more recent development of this literature sought to alter both features. (See for 

example, Rosenkrantz, 1981, 2.2; Joyce, 1989, 2009; Pettigrew, 2016.) It produced an argument 

for the necessity of probabilities that is presently enjoying considerable popularity. The core idea 

is that credences should be distributed not on pragmatic grounds but in a way that optimizes the 

accuracy of the credences. The main result is that the accuracy of a non-probabilistic credence 

can always be improved by switching to probabilistic credences, no matter which outcome 

obtains 

 The simplest instantiation of the argument employs a Brier score. We have n mutually 

exclusive outcomes E1, … , Er, over which credences x1, … , xr, are distributed. All credences 

here and henceforth are restricted to the interval [0,1]. The original Brier score (1) or (2), (2a) is 

broken up into r component loss functions Li, i = 1, …, r, according to which of outcome E1, … , 

Er obtains:  

                                                
4 For completeness, the devices needed are present. They are just not emphasized. The essential 

step of the dominance argument is mentioned in passing in the captions to Figure 1 and 2 of De 

Finetti (1965, p. 92) and Figure 5.3 of De Finetti (1974, p. 189). 
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L1 = (1 - x1)2 + x22 + x32 + … + xr2 

L2 =  x12 + (1 – x2)2 + x32 + … + xr2 

                  … 

Lr =  x12 + x22 + x32 + … + (1 - xr)2                                           (4) 

Greatest accuracy is achieved by minimizing these scores. Hence it is natural to characterize the 

quantities as “losses” to be minimized; and to think of an increasing loss score as a measure of 

increasing inaccuracy. 

 The association of loss with inaccuracy derives from the loss generating functions used. 

That is, each loss function Lk, associated with outcome Ek obtaining, is a sum of r terms:  

g1(xi) = (1 – xi)2     when i = k 

g0(xi) =  xi2           when  i  ≠  k                                                        (5) 

Generating function g1(xi) assures that a larger xi makes a smaller contribution to the loss, for the 

case in which Ei obtains. Generating function g0(xi) assures that a larger xi makes a larger 

contribution to the loss in all the remaining cases. 

 With these loss functions (4), no matter which of E1, … , Er will obtain, we always 

improve accuracy by replacing a non-probabilistic credence with a probabilistic credence. The 

argument is seen graphically in the simplest case of two outcomes E1, E2, with credences x1, x2. 

Figure 1 shows the space of credences with individual points <x1, x2>, where both credences are 

restricted to values in [0,1]. On the left, the figure shows curves of constant loss L1. They are 

circular arcs, centered on the corner point, <x1, x2> = <1,0>, On the right, the figure shows the 

corresponding curves of constant loss L2. The diagonal dashed line represents those credences 

conforming with the additivity of the probability calculus. That is, x1 + x2 = 1.  
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Figure 1. Dominance of probabilistic credences using a Brier score 

 

 Pick any point in the space not on this diagonal, such as point A. It represents credences 

that violate the additivity axiom of the probability calculus. If we move along line AB, 

perpendicular to the diagonal, to the point B on the probabilistic diagonal, we replace the non-

probabilistic credences at A with the probabilistic credences at B. We see in the figure on the left, 

that replacing credences at A by those at B reduces the loss L1. The same is true if we approach 

probabilistic credence B from a corresponding non-probabilistic credence A’, on the other side of 

the diagonal. That is, among all credences on the line AA’, the probabilistic credence at B has the 

lowest loss L1. That is, it is the most accurate among them if E1 occurs. The same lines AB, A’B 

are shown on the right. Once again, among all credences on the line AA’, the probabilistic 

credence at B has the lowest loss L2. It is the most accurate among them if E2 occurs. That means 

that whichever of E1 or E2 occur, the probabilistic credence at B is the most accurate among all 

credences on the line AA’. Probabilistic credence B dominates: we achieve greater accuracy by 

replacing any non-probabilistic credence in AA’ with a probabilistic credence B. 

 In both cases, what is key is the concavity of the curves5 of constant loss towards the 

direction of smaller loss. Thus moving towards the diagonal of probabilistic credences moves us 

to credences of smaller loss. 

                                                
5 To preclude confusion, “concavity” here simply reports that the curves of constant L1 are 

geometrically concave towards the point that represents certainty of E1’s occurrence. The same 
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 The result generalizes to the case or r outcomes, E1, … , Er. The easy way to see it is to 

identify a differential condition that expresses the dominance. In the case of two outcomes E1 or 

E2, each probabilistic credence <x1, x2> on the diagonal x1 + x2 = 1 dominates a set of non-

probabilistic credences {<x1+k, x2+k>} where k can have any value, both positive and negative, 

that generates points within the space. Each such set forms a line, such as AA’ of Figure 1, that is 

perpendicular to the diagonal of probabilistic credences and will intersect it at one dominating 

point. For the case of L1 and L2 restricted just to the set {<x1+k, x2+k>}, the dominating point 

satisfies: 

dL1
dk

= dL2
dk

= 0  

We now give the same analysis for the case of r outcomes, E1, … , Er. The hypersurface in the 

space of x1, x2, …, xr, corresponding to probabilistic credences is  

x1 + x2 + … + xr = 1 

Each such point < x1, x2, …, xr> dominates points in the set {< x1+k, x2+k, …, xr+k >}, where k 

is both positive and negative as before. The dominating point will satisfy an extension of the 

differential condition above:  

 

dL1
dk

= dL2
dk

=…= dLr
dk

= 0                                                      (6) 

To find the dominating point, we start with some point < x1, x2, …, xr> in the set that is not 

necessarily the dominating point and seek the value of k that satisfies condition (6). L1 expressed 

as a function of k is 

L1(k) = (1 - x1 - k)2 + (x2 + k)2 + (x3 + k)2 + … + (xr + k)2 

A short computation shows that the condition (6) for L1 is satisfied when  

k =  (1 – (x1 + x2 + … + xr))/r 

                                                                                                                                                       
property is described in Section 7 below, by standard convention, as the “convexity” of the 

function L1. This usage presumably reflects geometrical convexity in the direction of increasing 

L1. 
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and, by the obvious symmetry in the formulae, the same value of k leads to satisfaction of 

condition (6) for the remaining loss functions.6 

 Thus the dominating point in the set has credences 

Xi  = xi + (1 – (x1 + x2 + … + xr))/r 

For i = 1, …, r. It is easy to confirm that these dominating credences satisfy the additivity 

condition 

X1 + X2 + … + Xr = 1 

That is, the dominating credence point < X1, X2, …, Xr> is probabilistic. 

5.	The	Problem:	Sensitivity	to	the	Scoring	Rule	Chosen	
 The analysis as laid out in the last section shows a dominance argument that appears at 

once elegant and compelling. This impression fades, however, when we realize that the 

dominance of probabilistic credences depends delicately on the scoring rule or inaccuracy 

measure chosen. Most scoring rules do not return the dominance of probabilities. Even rules that 

differ minutely from the Brier score are enough to undo the dominance. 

 To see this, replace the power of 2 used in the Brier score with a different exponent n. 

That is, the generating functions for what I shall call the “n-power” scoring rule are now 

g1(xi) = (1 – xi)n     when i = k 

g0(xi) =  xin           when  i  ≠  k                                                        (5a) 

where, as before, outcome Ek is the one that obtains. 

 For n>0, these will lead to what are, intuitively, accuracy measures. The function g1(xi) is 

strictly decreasing, so it rewards a higher credence xi in the result that obtains with a smaller loss. 

                                                
6 Based on geometric intuitions, the tacit assumption above was that the set of points {< x1+k, 

x2+k, …, xr+k >} is dominated by a single point. This assumption is now vindicated, since a 

single value of k produces a unique optimum for all loss functions. For completenss, the second 

derivative of all loss functions with respect to k is everywhere positive, so the optima computed 

are true minima. 
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The function g0(xi) is strictly increasing, so it punishes a higher credence in a result that does not 

obtain with a greater loss. The loss functions become 

L1 = (1 - x1)n + x2n + x3n + … + xrn 

L2 =  x1n + (1 – x2)n + x3n + … + xrn 

                  … 

Lr =  x1n + x2n + x3n + … + (1 - xr)n                                           (4a) 

Among all values of n>0, the only value that supports the dominance of probabilistic credences 

is n=2. The slightest deviation from it undoes the dominance. Choosing different values of n 

allows us a generate results of considerable variety, as we shall now see. 

5.1	Scoring	Rules	with	n>1	

 We begin exploring the dominance relations by considering loss functions with n>1. 

They exhibit dominance relations qualitatively similar to those of the Brier score. Their curves of 

constant loss are concave towards the region of lower loss, so that dominating points in the space 

arise in the same way, qualitatively, as in the case of the Brier score. However the credences that 

dominate are not probabilistic. Loss functions with 1<n<2 lead to superadditive credences. Loss 

functions with n>2 lead to subadditive credences. 

 To recall the definitions: if credences x(A) and x(B) for mutually exclusive outcomes A 

and B are subadditive, then the credence x(AvB) elicited for their disjunction satisfies x(AvB) < 

x(A) + x(B). If the credences are superadditive then we have for this last case that x(AvB) > x(A) 

+ x(B). In the analysis that follows, we will identify sub and super additive behavior in relation to 

the credence in the full outcome set to which credence 1 is assigned: 

x1 + x2 + … + xr > 1                                          (subadditive) 

x1 + x2 + … + xr < 1                                       (superadditive) 

 To see with least effort how these deviations from additivity arise, we calculate the 

dominating credence for the “diagonal” set of points:  

{< x1, x2, …, xr>: x1 =  x2 =  … = xr = x, 0≤x≤1}                                 (7) 

This is just the diagonal that runs from the origin <0,0,…,0> to <1,1,…,1> of the r-dimensional 

hypercubic space. The dominating point in the set is identified once again by condition (6). In 

this set, each loss function is the same function of x: 



 14 

L1 = L2 = … = L1 = L(x) =  (1 - x)n + (r-1) xn 

A short calculation that sets dL/dx=0 in accord with condition (6) shows that the minimum loss 

for all the loss functions occurs when7  

xdom =
1/ r( )1/(n−1)

1 / r( )1/(n−1) + 1−1/ r( )1/(n−1)
=

1/ r( )1/(n−1)
1 / r( )1/(n−1) + r −1( )1/(n−1) 1 / r( )1/(n−1)

               (8) 

 That is, < x1, x2, …, xr> = < xdom, xdom,…, xdom> dominates this diagonal set as the point of 

smallest loss. 

 To conform with the probability calculus, the r credences of this dominating point must 

be xdom = 1/r, so that their sum for the r outcomes, (r x 1/r), equals unity. This will happen only 

in two cases. First is the case of r=2, that is, of two outcomes only. Then (r-1)1/(n-1) = (1)1/(n-1) = 

1 and we have, for all n, that 

x1 = x2 = xdom = 1/2 

Second is the case of the Brier score, n=2. For then 1/(n-1) = 1, so that (r-1)1/(n-1) = (r-1); and we 

have for the dominating point 

x1 = x2 = … = xr = xdom = 1/r 

In all other cases, additivity fails. 

 For r>2 and n>2, the exponent in (8) satisfies 0 < 1/(n-1) < 1 and we have 

(r-1)1/(n-1) < (r-1) 

It follows from (8) that: 

xdom >
1/ r( )1/(n−1)

1 / r( )1/(n−1) + r −1( ) 1/ r( )1/(n−1)
=

1/ r( )1/(n−1)
r ⋅ 1/ r( )1/(n−1)

= 1
r

 

This entails that the r credences xdom sum to greater than unity (subadditivity): 

 x1 + x2 +…+ xr = rxdom >1 

 For r>2 and 1<n<2, the exponent in (8) satisfies 1/(n-1) > 1 and we have 

(r-1)1/(n-1) > (r-1) 

By analogous reasoning to the previous case, the r credences xdom sum to less than unity 

(superadditivity): 

                                                
7 For n>1, the second derivative d2L/dx2 > 0, everywhere, so the turning point is a minimum. 
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 x1 + x2 +…+ xr = rxdom <1 

 The failure of additivity arises with the slightest deviation from the Brier score exponent 

2. That is, the dominance argument fails to returns probabilities if the exponent is 2.01 or 1.99. In 

those cases, the deviations from additivity of the dominating credences will be small. The 

deviations can be made as large as we please simply by selecting suitably large or small values 

of n. 

 For example, for r=28 and n=4, we find xdom = 1/4. Then the credences sum to 

x1 + x2 + … + x28 = 28(1/4) = 7 

If we set r=11 and n = 11/10, we find xdom ≈ 10-10. Then the credences sum to 

x1 + x2 + … + x11 ≈ 11x10-10 

A more general sense of the range of possibilities is provided by a plot in Figure 2 of the sum S = 

r.xdom against n, for various values of r>2. Additivity is respected just when S=1. This arises 

only when n=2. All the curves intersect at S=1, n=2. 

 

 
Figure 2. Failure of additivity for n-power scoring rules 
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 These results are a special case of the general result demonstrated in Appendix A. That is, 

for n>1, the dominating points in the space of r credences x1, x2, …, xr lie on an r-1 dimensional 

hypersurface in the space of credences, satisfying:  

 
1= x1

n−1

x1
n−1 + (1− x1)

n−1⎡⎣ ⎤⎦
+…+ xi

n−1

xi
n−1 + (1− xi )

n−1⎡⎣ ⎤⎦
+…+ xr

n−1

xr
n−1 + (1− xr )

n−1⎡⎣ ⎤⎦
                      (9) 

For r>2, this surface coincides with the surface of additive probabilities 

1= x1 + x2 + … + xr 

 only when n=2. Otherwise, for n>2, the surface lies above this additivity surface and the 

credences are subadditive. For n<2, the surface lies below this additivity surface and the 

credences are superadditive.8 

 

5.2	Scoring	Rules	with	0<n<1	

 We now consider the case of loss functions (4a) with exponent n satisfying 0<n<1. This 

case exhibits behavior that is qualitatively different from the case of n>1. For now the surfaces of 

constant loss are convex towards the direction of smaller loss. That inclines credences to move to 

extreme values to secure smaller losses. This effect can be seen in the case of two outcomes, r=2, 

and a square root loss function, n=1/2. Then we have two loss functions: 

L1 = 1− x1 + x2  

L2 = x1 + 1− x2  

Curves of constant loss are plotted in Figure 3. Those for loss L1 are on the left; and those for 

loss L2 are on the right. Probabilistic credences satisfying x1 + x2 =1 lie on the dashed diagonal.  

                                                
8 Equation (8) picks out a point on this surface. It is recoved by substituting x1 = … = xr = x into 

(12) and solving for x. 
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Figure 3. Dominance of extremes with n = 1/2 

 

Repeating the analysis of Figure 1, we find in this case that moving credences away from this 

diagonal decreases both loss functions L1 and L2 and thus increases accuracy. An arbitrarily 

chosen additive credence at B is dominated by non-additive credences to which we arrive by 

following the arrows towards the extremes. Most striking is that the additive credences at x1 = x2 

= 0.5, are dominated by the credences x1 = x2 = 0; and x1 = x2 = 1. 

 This striking behavior of dominance of probabilistic credences by both subadditive and 

superadditive credences is an artifact of having just two outcomes, r=2. For the case of more that 

two outcomes, the dominating credences all have lower values and are superadditive. This is 

easy to see in the case of the diagonal set (7). All the loss functions for it are the same for the 

case of n=1/2: 

 L1 = L2 =…= Lr = L(x) = 1− x + (r −1) x  

More generally, for all 0<n<1, the loss functions are 

 L1 = L2 =…= Lr = L(x) = 1− x( )n + (r −1)xn  

For all these cases, the loss functions has a dominating minimum at the origin only: 

x1 = x2 = … xr = x = 0 
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where L = 1.9 When x1 = x2 = … xr = x = 1, L = r-1, which is greater than one for r>2. 

 

5.3	Scoring	Rules	with	n=1	

 The final case uses the absolute norm. That is, the generating functions are now10 

g1(xi) = (1 – xi) when i = k 

g0(xi) =  xi          when  i  ≠  k                                                        (5b) 

where, as before, Ek is the outcome that obtains. In the case of two outcomes, this scoring rule 

exhibits qualitatively different behavior again. The two loss functions are 

L1 = (1-x1) + x2 = 1 - (x1- x2) 

L2 = x1 + (1-x2) = 1 + (x1- x2) 

The curves of constant loss for both are the same 

x1- x2 = constant 

They differ only in the values assigned to the curves. Since L2 = 2 - L1, the curves differ in the 

direction of increasing loss. These curves are plotted in Figure 4, with curves of constant L1 on 

the left; and curves of constant L2 on the right. 

 

                                                
9 Write, L(x,n) = (1-x)n + (r-1) xn.  We have L(0,n) = 1. Also L(x,1) = 1+(r-2)x  > 1, for all x>0, 

r>2. But L(x,n) > L(x,1), for all 0<n<1 and x>0, since then (1-x)n > (1-x) and xn > x. 
10 This case is often presented as the absolute norm, writing g1(xi) = |1 – xi|. Since 0≤xi≤1, the 

absolute operator |.| is superfluous. 
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Figure 4. Degeneracy of dominance with n=1 

 

In this degenerate case, dominance fails, since both loss functions are constant along the curves 

shown. Thus, as far as the accuracy measure is concerned, all the credences A, A’, A’’, … are 

equally accurate; and all the credences B, B’, B’’, … are equally accurate. 

 This degeneracy is not specific to the absolute norm n=1, but is recoverable in the case of 

two outcomes, r = 2. For example, take generating functions 

g1(xi) = 1 – h(xi)    when i = k 

g0(xi) =  h(xi)         when  i  ≠  k                                                        (5d) 

where, as before, outcome Ek is the one that obtains. Then, as above, curves of constant loss for 

both L1 and L2 are the same: 

h(x1) - h(x2) = constant 

Instead of a dominance relation, we find all credences on each of the curves to have the same 

loss L1 and L2 and thus to be equally accurate. We can take many increasing functions for h(x), 

such as h(x) = x2. For this case, these curves are hyperbolas, with an asymptote of x1= x2. 

 This degeneracy of the absolute norm rule does not persist when we move to more than 

two outcomes, r>2. Then, smaller valued credences dominate. The loss functions are 
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L1 = 1 - x1 + x2 + x3 + … + xr 

L2 =  x1 + 1 – x2 + x3 + … + xr 

                  … 

Lr =  x1 + x2 + x3 + … + 1 - xr   

For the diagonal set of credences (7), all the loss functions are equal 

L1 = L2 = … = L1 = L(x) = 1 + (r-2)x 

The dominating credence is  

x1 = x2 = … = xr = x = 0 

More generally, uniformly reducing credences in such a way that we remain within the space 0< 

xi < 1 (i = 1, …, r), uniformly decreases all the loss functions and thus increases accuracy. For 

example, we start at x = < x1, x2, …, xr> in this space and move to a new point: 

x - ε  = < x1-ε, x2-ε, …, xr-ε> 

for some increment ε>0 sufficiently small to keep us in the space. Then we have for all i = 1, … 

r, 

Li(x - ε) = Li(x) – (r-2) ε 

Thus the credence x is dominated by the uniformly smaller credence x - ε . We can continue 

descending to smaller credences until we finally strike the origin x = 0 or end up on one of the 

two dimensional edges of the hypercubic space (in which case the above degeneracy replaces the 

dominance relations). 

6.	Accuracy	Gives	Very	Little	
 In sum, the above exploration shows that the accuracy dominance of probabilistic 

credences is fragile. It depends critically on choosing exactly the right scoring rule. The Brier 

score belongs to a larger family of power rule scores (4a) and (5a), characterized by the exponent 

n. The case of n=2 is the only case among them that returns the dominance of probabilistic 

credences. Other values of n give widely varying results. For n>2, the dominating credences are 

subadditive. For 1<n<2, the dominating credences are superadditive. Scoring rules with 0<n≤1, 

generally exhibit dominance by the lower values of credence in the space. Cases of equal 

credence, such as the probabilistic xi=1/r, (i = 1, …, r) are dominated by all zero credences x1 = 
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x2 = … xr = 0, for example. We also saw anomalous cases of dominance by small and large 

credences and failures of dominance, in favor of equality of accuracy over some sets of 

credences. 

 If one is not antecedently committed to probabilistic credences, there is nothing 

especially troublesome in these results. We learn from them that a requirement of accuracy does 

not have univocal import. It must balance rewards for credence in the outcome that obtains with 

punishments for credences in those that do not. There are, it turns out, many ways to effect this 

balance. There is no obviously right way to do it. 

 Some rules, such as those with n>1, encourage prudence and direct credences towards 

intermediate values, while generally still not favoring probabilities. Others (such as n=1/2, r=2) 

effect the balance so that rashness is rewarded. All unit credences dominate in the equal credence 

case, since the reward for assigning unit credence to the outcome that obtains exceeds the 

punishment for assigning unit credence to the outcome that does not obtain. Still other rules 

encourage timidity. For them, assigning all zero credences is most accurate since the reward for a 

higher credence on the outcome that obtains is overwhelmed by the punishment for higher 

credences in outcomes that do not obtain. 

 These are widely varying results and we should accept them. To do otherwise and select 

among them for those we prefer, is simply to invalidate the whole accuracy-based method. We 

would not be using the method to inform our understanding and correct our prejudices. We 

would be using our prejudices to overturn what our method tells us. 

7.	Attempts	to	Justify	the	Choice	of	Scoring	Rule	
 If one is antecedently committed to probabilistic credences, matters look very different. 

These results are troublesome. One has to find some way to impugn virtually all the accuracy 

measures employed in favor of the very few that return the desired result. In effect, one must 

work backwards from the probabilistic result desired to a condition that will deliver it. When the 

working backwards is done well, the resulting conditions will be congenial to those who already 

conceive credences as probabilities. To others, however, they will appear arbitrary. 

 Rosenkrantz (1981, 2.2) is an early attempt to justify the Brier score independently within 

the context of the dominance based vindication of probabilities. He noted that, when it is used for 
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elicitation of credences, the Brier score has the property that a subject with non-probabilistic 

credences minimizes the loss by reporting credences that are proportional to the “true 

probabilities.” This, he calls “absolutely non-distorting.” Rosenkrantz conjectures but does not 

show that the Brier score is uniquely selected by this property, supplemented by other, weaker 

properties. The analysis seems hasty, since all strictly proper scoring rules (to be discussed 

below) share this property. Moreover the property does not seem praiseworthy, since it is just the 

result reported above in Section 3 that a Brier score elicitation rewards subjects for lying about 

their non-probabilistic credences by rescaling them to probabilities with a constant multiplicative 

factor. 

 Joyce’s (1998) proposal for restricting scoring rules is more definite and more confident. 

His “main theorem” (pp. 587-588) shows that probabilistic credences dominate if we use a 

scoring rule that satisfies six conditions that he names: 

Structure, Extensionality, Normality, Dominance, Weak Convexity, and Symmetry 

None of these conditions is a logical necessity. Each is merely natural for probabilists. Each 

introduces into the proof a contingent presupposition congenial to probabilists. As a result, each 

contributes to the circularity. Lest the analysis grow too lengthy, we consider only two of the 

strongest conditions, weak convexity and symmetry. 

 If two credences c and c’ have the same score on some outcome, then Weak Convexity 

requires that the score assigned to their midpoint, (c+c’)/2 is strictly less, unless c = c’. 

Considered abstractly, the requirement seems natural enough. “Weak Convexity is motivated by 

the intuition that extremism in the pursuit of accuracy is no virtue,” Joyce (p. 596) assures us. 

However weak convexity is violated by power scoring rules with 0<n<1. As we saw above in 

Section 6, that does not make them defective, but just different ways of balancing the rewards for 

true beliefs and punishments for false beliefs. To preclude them is not to learn from what 

accuracy measures tell us, but to tell accuracy measures what they should be doing to accord 

with our other notions. It is part of the artificial adjustment of the premises needed if the 

demonstration is to yield the predetermined result, the necessity of probabilities. 

 Weak convexity alone, however, does not restrict power scoring rules with n>1. The 

further restriction needed in the main theorem is “Symmetry.” If two credences c and c’ have the 

same score on some outcome i, then the distribution of scores over the intermediate credences is 

symmetric in the sense that, for any 0≤λ≤1 
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Li(λc + (1-λ)c’) = Li((1-λ)c + λc’) 

This condition does pick out just the quadratic Brier score from all n-power scoring rules as 

required.11 Thus, if we are working backwards to a predetermined result, the condition will seem 

apposite. However it is difficult to see any independent justification for it. Joyce’s rationale (p. 

597) merely restates what the formula says in words and suggests that Symmetry somehow 

precludes an improper favoring of one credence over another. 

 By the writing of his (2009), Joyce had presumably recognized the fragility of positing 

these conditions unequivocally. They were, he conceded, “not all well justified” (p. 264) and a 

reappraisal was undertaken. Indeed at times the commitment to the overall project is equivocal. 

The decline predicted earlier seems well underway. We are told (p. 266):  

Readers will be left to decide for themselves which of the properties discussed 

below conform to their intuitions about what makes a system of beliefs better or 

worse from the purely epistemic perspective. 

A proof has scant foundations if acceptance of its premises depends on the intuitions of 

individual readers. My intuitions about angles and lines are immaterial to the proof of Pythagoras’ 

theorem or the impossibility of duplicating the cube. In a notable compromise of the entire 

program of providing quantitative, normative guides to credences, we are informed that the idea 

that “epistemic goodness or badness for partial beliefs can be made sufficiently precise and 

determinate to admit of quantification” is merely a “useful fiction.” We are told (p. 267) of a 

newly named condition “admissibility” that “is not a substantive claim about epistemic 

rationality” but is a way to “capture one’s sense of what is valuable about beliefs from a purely 

epistemic perspective.” Nonetheless it is used to restrict the choice of scoring rules, although 

apparently on rather infirm ground. 

                                                
11 An easy way to see this is to consider credences (xdom+ε) among the diagonal set (7) in the 

immediate vicinity of the dominating point xdom, for n>1. The symmetry of scoring rule Li will 

manifest in the vanishing of the cubic term in ε3 in the power series expansion 

Li(xdom + ε) = Li(xdom) + ε Li’(xdom) + ε2/2 Li’’(xdom) + ε3/6 Li’’’(xdom) + … 

However Li’’’(xdom)=0 only in the case of n=2. 
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 One should not fear that Joyce (2009) has abandoned the original project entirely. For 

eventually, Joyce settles on what is offered as the “least restrictive” of the theorems that employ 

dominance ideas to demonstrate the necessity of probabilities. The theorem, details of which are 

found in Joyce (2009, pp. 287-88), depends, among others, upon the condition of “Coherent 

Admissibility.” (p. 280) This condition dismisses a scoring rule as “unreasonable” if it assigns a 

worse score to a probabilistic credence than to a non-probabilistic one in the case of all outcomes. 

  Leitgeb and Pettigrew (2010, p. 246) seem to me to give the correct appraisal. Coherent 

Admissibility is far from benign since… 

… it accords a privileged status to probability functions. We are inclined to ask: 

Why is it that we are justified in demanding that every probability function is 

admissible? Why are we not justified in demanding the same of a belief function 

that lies outside that class? And, of course, we must not make this demand of any 

nonprobability function;… 

Just this sort of privileging of probabilities seems quite benign if one is working backwards from 

the predetermined conclusion that credences must be probabilities, for the condition says that a 

scoring rule cannot preclude probabilities, as Joyce says, “a priori” (p. 280). It does not appear 

benign to those who have not already prejudged the outcome. 

 A real difficulty for probabilists is that once one becomes convinced that credences have 

to be probabilities, it is hard to conceive how alternatives could be cogent. This may be behind 

Joyce’s (2009, p, 283) concerns that the all-zero valued credences that can dominate with power 

scoring rules when 0<n≤1. His assessment is severe. He calls them “logically inconsistent,” 

since: 

The believer minimizes expected inaccuracy by being absolutely certain that 

every [proposition] is false even though logic dictates that one of them must 

be true. 

This accusation of logical inconsistency will be unwelcome to proponents of the Shafer- 

Dempster theory of belief functions. Complete ignorance is represented there by assigning zero 

valued belief functions Bel to all outcome sets excepting the universal set. We see here that 

Joyce’s assessments are driven by a prior commitment to interpret credences as probabilities, so 
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that zero credence coincides with certain falsity. 12 In the Shafer-Dempster theory, a zero belief 

function can be interpreted as demarcating an interval of belief stretching from zero to one.  

 In my view, the most promising avenue for restriction of scoring rules is through the class 

of “strictly proper” scoring rules that are much used elsewhere. Joyce (2009, §8) discusses and 

defends them. Let us first review them. 

8.	Strictly	Proper	Scoring	Rules	
 This class of scoring rules arose in a different context, that of scoring a predictor’s 

performance and of the elicitation of subjective probabilities. It addresses the problem that most 

alternatives to the Brier rule do not deliver probabilistic credences at their minima. 

 For example, we can generalize the Brier rule by replacing its exponent 2 by an 

arbitrarily selected n, as in the n-power rule of (5a) above. It is shown in Appendix B below that 

the only value of n that gives a rule that correctly elicits probabilities is n=2. For all n>2 (and 

r>2), the power rule (5a) elicits subadditive credences. Alternatively, if 1<n<2, then the n-power 

rule elicits superadditive credences. 

 These general n-power rule elicitations have an awkward property something like the 

reverse of the n=2 Brier rule. We saw above in Section 3 that the Brier rule elicits an additive 

probability measure, even when the subject’s true credences are not probabilistic. The n-power 

rule (for n not 2) elicits credences that are not probabilities, even when the subject’s true 

credences are probabilities. 

 The upshot is that the formal properties of the credences elicited by the scoring rule 

method will only be probabilities if the rule used is very carefully tuned to give just that result. 

The standard response in the literature on elicitation and on assessment of a predictor’s 

performance is to restrict the scoring rules under consideration to “strictly proper” scoring rules. 

 As background to the notion, we recall that a general scoring rule employs two functions: 

g1(x) to reward a credence x in what turns out to be the true outcome; and g0(x) to punish a 
                                                
12 Of course, even for probabilists, zero probability does not coincide with certain falsity, but 

merely measure zero improbability. De Finetti’s finitely additive treatment of the infinite lottery 

assigns zero probability to each outcome individually. That a dart strikes any particular point on 

the board is a probability zero outcome, although one must happen. 



 26 

credence x in an outcome that turns out not to be true. The loss score assigned to elicited 

credences x = <x1, x2, …, xr> for true probabilistic credences or true frequencies 

p = <p1, p2, …, pr> is  

L(p, x) =   p1 g1(x1) + … + p1 g0(xi) + … + p1 g0(xr) 

+ … 

+ pi g0(x1) + … + pi g1(xi) + … + pi g0(xr) 

+ … 

+ pr g0(x1) + … + pr g0(xi) + … + pr g1(xr)                     (10a) 

The most direct definition (such as given in Gneiting and Raftery, 2007, p. 359) simply asserts 

that: 

Strictly Proper I 

A scoring rule L is strictly proper just if L(p, x)  ≥ L(p, p), for all pi in 0 ≤ 

pi ≤ 1, i = 1, …, r, with equality only when x = p.  

This definition explicitly rules out by fiat any scoring rule that fails to elicit x as a probability 

measure. Note that the definition is so strong that, like the Brier rule, a strictly proper scoring 

rule will elicit a probability even when subject’s true credences are not probabilities. To see this, 

imagine that the subject’s true credences are a non-probabilistic q = (q1, q2, …, qr). We can 

normalize them to a probability 

p = <p1, p2, …, pr> = q/Q = <q1/Q, q2/Q, …, qr/Q> 

by dividing by Q = (q1+ q2 + … + qr). If the subject’s true probability is p, we know that the 

scoring rule will elicit x = p. By the definition of strictly proper scoring rules, x = p is the unique 

value of x that minimizes L(p,x). However, L(p, x) is linear in p, so that L(p, x) = L(q, x)/Q. 

Hence x = p will also minimize L(q, x) uniquely. That is, if the subject’s true credences are a 

non-probabilistic q, a strictly proper scoring rule will reward the subject most if the subject lies 

and reports a probabilistic, normalized credence p = q/Q. 

9.	Strictly	Proper	Scoring	Rules	in	the	Dominance	Argument	
 This favoring of probabilities by strictly proper scoring rules is unproblematic in the 

context in which the notion was introduced. For when they are used to elicit probabilities from a 
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subject, we begin with the assumption that the subject’s credences are already probabilities. 

Correspondingly, when we use the rule to assess the performance of a predictor against the actual 

frequencies of outcomes, these actual frequencies are also additive measures. 

 The use of strictly proper scoring rules ceases to be benign, however, when they are used 

as part of a vindication of probabilities. For strictly proper scoring rules are engineered to favor 

probabilities and will yield them even then they are not the subject’s credences. They exhibit the 

same favoring of probabilities if they are used as accuracy measures in the dominance arguments 

used to vindicate probabilities. A much-noted theorem in the scoring rule literature (see, for 

example, Predd et al., 2009, p. 4788) asserts exactly this: any non-probabilistic credence q is 

strongly dominated by a probabilistic credence p, where “strongly dominated” means that p has 

a strictly lower score than q for all possible outcomes, when the scoring rule used is strictly 

proper. 

 A simpler but less transparent definition of a strictly proper scoring rules lets us display 

the dominance in an example.  

Strictly Proper II13 

A scoring rule L is strictly proper just if pg1(x) + (1-p)g0(x) is uniquely 

minimized at x=p for all 0 ≤ p ≤ 1.  

This definition is equivalent to the definition Strictly Proper I. (For a demonstration of the 

equivalence, see Appendix D.) 

 This simpler form of the definition lets us see quickly how probabilistic credences 

dominate in a special case, that of the “diagonal” set (7) of credences above. For the general 

scoring rule, the generalization of the r loss functions (4) and (4a) above is: 

L1 = g1(x1) + g0(x2) + g0(x3) + … + g0(xr) 

L2 =  g0(x1) + g1(x2) + g0(x3) + … + g0(xr) 

                  … 

Lr =  g0(x1) + g0(x2) + g0(x3) + … + g1(xr)                                              (4a) 

For the diagonal set (7) of credences, all these loss functions reduce to the same expression: 
                                                
13 Predd et al (2009, p. 4787) also include the requirement that the functions g0(x) and g1(x) are 

continuous. Schervish, Seidenfeld and Kadane (2009, p. 205) relax the condition of continuity. 

Some of my analysis assumes differentiability of these functions, however. 
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L = L1 = L2 = … = Lr = g1(x) + (r-1) g0(x) = r . [ (1/r) g1(x) + (1-1/r) g0(x) ] 

The second definition of strict propriety tells us directly that all these loss functions are uniquely 

minimized when 

x = x1 = x2 = … = xr = 1/r 

That is, all credences in the set are strongly dominated by this probabilistic credence. 

 The selection of a strictly proper scoring rule in the accuracy driven vindication of 

probability amounts to a delicate fine-tuning of the analysis to give just the probabilistic result 

antecedently desired. The extent of the fine-tuning depends on just how sparsely strictly proper 

scoring rules are distributed among scoring rules that we would intuitively judge to be admissible 

measures of accuracy. 

 In short, the strictly proper rules are very sparsely distributed among this larger class of 

rules. This is already suggested by theorems such as in Schervish (1989) that show how all 

strictly proper scoring rules can be generated from selection of a small class of functions. We can 

more directly gauge the sparseness by means of the second definition above. In brief, we have 

considerable freedom in selecting either of the functions g0(x) or g1(x). But once one is fixed, 

then so is the other; and we can generate arbitrarily many scoring rule that are not strictly proper 

simply by selecting different functions for the second. 

 To see this, assume that g0(x) is fixed at some function suitable for penalizing a credence 

x on an outcome that does not obtain. We have from the second definition that 

pg1(x) + (1-p)g0(x) has a unique minimum, for fixed p, when x=p. This minimum arises when the 

derivative with respect to x vanishes 

p dg1(x)
dx

+ (1− p) dg0 (x)
dx

= 0  

Substituting x=p at this minimum, we have 

x dg1(x)
dx

+ (1− x) dg0 (x)
dx

= 0  

Since p can have any value in  0 ≤ p ≤ 1, this relation is a restriction on the functions g0(x) and 

g1(x) for any x in the same range. It follows that   

g1(x)− g1(0) = − 1− y
y

⎛
⎝⎜

⎞
⎠⎟0

x

∫
dgo(y)
dy

dy                                           (11) 



 29 

Reading from right to left in this formula, fixing g0(x) fixes g1(x) up to the additive constant 

g1(0). Selecting any other function for g1(x) will yield a scoring rule that is not strictly proper. 

For example, if we fix g0(x) = xn for n>1, then a short calculation shows that g1(x) must be 

g1(x) = x
n − n

n−1( )x +1  

up to the additive constant g1(0)=1. Any other choice of function for g1(x), such as the 

apparently “natural” n-power rule (5a), fails to be strictly proper. 

10.	Justifying	Strict	Propriety	
 A dominance-accuracy argument for probabilities that employs strictly proper scoring 

rules must provide independent grounds for the restriction to strictly proper scoring rules. That 

these rules are popular in the broader elicitation literature provides no such grounds. Indeed, it is 

quite the reverse. Since strictly proper scoring rules have been designed explicitly to favor 

probabilities, using them to preclude non-probabilistic credences is prima facie circular. Their 

favoring is so strong that, used as a means of elicitation, they will reward a subject with non-

probabilistic credences who lies and declares probabilistic credences. 

 All that can now prevent the analysis collapsing into circularity is some independent 

justification of the use of strictly proper scoring rules. Joyce (2009, pp. 277-79) attempts such a 

justification by means of the notion of “immodesty.” The quantity L(p, x) of (10a) is the 

probabilistically expected score using rule L of a credence x, according to the expectations of 

probabilistic credence p. A “modest” credence will judge L(p, x) < L(p, p). That is, it will judge 

some other credence x to have a lower expected score and thus to be more accurate than p itself. 

This is a poor situation for credence p, since considerations of expected accuracy indicate that, 

by p’s own assessment, credence x is the better one. The credences we should seek are, therefore, 

“immodest.” They are such that they are, by their own lights, the most accurate. 

 This favoring of immodest credences is, in effect, a guide for selecting scoring rules, for a 

credence can only be immodest or modest in relation to a scoring rule. This guide leads us 

directly to strictly proper scoring rules. We are asking for rules in which L(p,p) takes the 

minimum value in comparison with all other L(p, x). But just this property of a scoring rule is 

strict propriety, in form of definition I of Section 8 above. 
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 The justification of a restriction just to strictly proper scoring rules is still not complete. 

For nothing so far precludes another scoring rule that might render some non-probabilistic 

credence immodest. The analysis stalls at this point since we have no precise characterization of 

this last sort of scoring rule. Note that the score L(p, x) of a strictly proper rule is the expected 

score for credence x according to probability p. If we seek an immodest, non-probabilistic 

credence y, then we would replace p in the score by y. But then L(y, x) is no longer an 

expectation. It is unclear how the quantity should be interpreted.14 We have no clear way to 

characterize an immodest, non-probabilistic credence. 

 The regress of reasons must continue. In an attempt to complete the justification, Joyce 

considers cases of physical chances in which we naturally choose probabilistic credences. What 

credence can we have in the each of the six outcomes of a fair die throw, other than a probability 

of 1/6? Thus we should demand the hospitality condition of “Minimal Coherence” of our scoring 

rules: they should not preclude in advance probabilistic credences. That way credences 

concerning physical chance can be accommodated. If, however, we require both immodesty and 

the possibility of rules that favor probabilistic credences in their expectations, then we are led to 

strictly proper scoring rules. They are, by their definition, the only rule that can serve. 

 As we have seen so often before, this latest step in the regress of reasons will seem quite 

compelling to someone who antecedently favors probabilities. It is surely benign, they might 

think, to demand that we use scoring rules that are minimally hospital to probabilities in the 

sense that they do not automatically preclude them. To someone who has not prejudged the 

outcome, the demand is anything but benign.15 For the burden of the analysis shows that this 

demand is enough to force probabilistic credences in all cases.  

                                                
14 For example, expectation-like quantities computed using a non-probabilistic y fail to meet 

minimal conditions of an expectation. For example, the expectation for a quantity Q = <Q1, Q2, 

…, Qr> in the special case in which Q1= Q2 = …= Qr = Q, should be Q. However the sum 

Σi yiQi = Σi yiQ is equal to Q only when Σi yi = 1, which is the case of probabilistic credence y. 

15 Let us set aside the quibble that considerations of strict dominance in accuracy have been 

replaced by considerations of expected accuracy. That weakens the whole argument since 

maximizing expectations is not automatically always the best. 
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 If our earnest desire is not to prejudge, then should we not ask that our scoring rules be 

hospitable to more than just probabilistic credences? What we seem to learning is a troubling 

dogmatism in the whole approach of scoring rules. Once we demand hospitality for one favored 

type of credence, no others are sustainable. It seemed benign merely to demand a place in the 

lifeboat for the first class passengers. But now we see that this benign demand fills the boat and 

all the other passengers must perish.  

 If this last vindication is unsatisfactory, might we find another? Pettigrew (2016, Ch.4) 

offers another vindication of strictly proper scoring rules. The analysis depends upon positing 

several conditions on an inaccuracy measure that include what he calls: 

Divergence Additivity, Divergence Continuity and Decomposition 

We find once again that these conditions are congenial for a probabilist who knows that they will 

yield the required result. They appear arbitrary, however, to someone not antecedently 

committed to probabilities. 

 Divergence Additivity requires that the inaccuracy of some set of credences 

<x1, x2, …, xr> is measured by taking the arithmetic sum of the inaccuracies of the individual 

credences, using g1(xi) or g0(xi), according to whether the credence xi is in the true state or not. 

Summation seems, initially, to be an innocent requirement. Pettigrew (p. 49) calls it “the natural 

thing to do.” However it is far from innocent. For it represents a particular rule for determining 

the import of variation among the individual inaccuracy measures. Take the case of five 

credences, r=5, and assume that we have two different sets of inaccuracies provided by the 

functions g1(xi) or g0(xi): 

0.1, 0.1, 0.1, 01, 0.1  and  0.01, 0.01, 0.01, 0.01, 0.46 

How are we to summarize the combined inaccuracy in each case? Is the combined inaccuracy of 

the first the same as the second? Or does the presence of the large inaccuracy 0.46 in the second 

render the second case more inaccurate than the first? Or is this second case less inaccurate since 

four of its five components are very small, 0.01? Divergence Additivity measures the combined 

inaccuracy by summing the components. Since the components in each of the two cases sum to 

0.5, this condition judges them equal in combined inaccuracy. That is a quite specific way to 

trade off the import of non-uniformities of the second case. Since it competes with many other 

possible ways of trading of non-uniformities, merely finding it “natural” falls well short of the 

independent justification needed. 
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 Similar arbitrariness troubles the other two conditions. Briefly, Divergence Continuity 

requires the analogs of the functions g1(x) or g0(x) to be continuous in x. In the abstract, the 

requirement seems innocent. However requirements of continuity can be far from innocent. In 

geometry, we might think it innocent to require that some two-dimensional surface can be 

covered continuously by the familiar <x,y> coordinate system. However that condition restricts 

us to surfaces that are topologically “R2”. It precludes the surfaces of a sphere or a torus, even 

though both surfaces are, in a geometric sense, everywhere continuous. Finally, Decomposition 

arises from two further conditions, Calibration and Truth-Directedness, each of which, 

independently, looks quite natural. The difficulty is that these two conditions turn out to be 

incompatible, so that at least one is wrong. Once again naturalness proves to be a poor guide. 

Decomposition is a compromise condition that attempts to mediate between them. We may well 

wonder why it is a good idea to mediate between two conditions, one or both of which might be 

wrong. The mediation uses a formula that in turn appears arbitrarily chosen, unless one knows 

that it will enable to demonstration of the result sought. 

 All these efforts end up offering no escape from the problem that has dogged the 

accuracy-based vindication of probabilities from the start. We are trapped in an endless regress 

of reasons. The requirement of accuracy alone, it turns out, gives us very little. What really 

determines the outcome is our choice of scoring rule. Merely among n-power scoring rules, we 

can select any desired extent of super or subadditivity of our credences just by choosing a 

suitable n. If we are to vindicate a restriction to probabilistic credences, we must find further 

reasons that favor them. We find new reasons that seem natural; and then we realize that they are 

only natural if judged by our antecedent prejudice for probabilistic credences. Still further 

reasons are needed and the regress of reasons proceeds. 

11.	Naturalness	Gone	Astray	
 Selten (1998) provides a sobering illustration of the precariousness of accepting 

conditions on the basis of their naturalness. His interest is what he calls “the quadratic scoring 

rule.” It is used in something like an elicitation context in which a predicted probability 

distribution p is scored against a true probability distribution x by means of the “expected score 

loss.” His quadratic scoring rule is given in one form (p. 48) as 
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L(p | x) = (xi − pi )
2

i=1

r∑  

where the two distributions x = <x1, …, xr> and p  = <p1, …, pr> adopt the indexed values xi and 

pi over outcomes 1, …, r. Selten (p. 43) reports: “As far as the author knows, Brier (1950) was 

the first one who described this rule.” The principal result of the paper is a demonstration that its 

four axioms are satisfied uniquely by the quadratic scoring rule. 

 This uniqueness is a strong result, so Selten goes to some pains to justify the naturalness 

of what might be the most contentious of the axioms, the fourth axiom, “neutrality.” It requires 

that the loss function L be symmetric in the two distributions: 

L(p|x) = L(x|p) 

Selten’s (p. 54) plea for the axiom is strong and plausible: 

 The interpretation of axiom 4 becomes clear if one looks at the hypothetical case 

that one and only one of two theories p and q is right, but it is not known which one. 

The expected score loss of the wrong theory is a measure of how far it is from the 

truth. It is only fair to require that this measure is “neutral” in the sense that it treats 

both theories equally. If p is wrong and q is right, then p should be considered to be 

as far from the truth as q in the opposite case that q is wrong and p is right. 

 A scoring rule should not be prejudiced in favor of one of both theories in the 

contest between p and q. The severity of the deviation between them should not be 

judged differently depending on which of them is true or false. 

 A scoring rule which is not neutral is discriminating on the basis of the location of 

the theories in the space of all probability distributions over the alternatives. 

Theories in some parts of this space are treated more favorably than those in some 

other parts without any justification. Therefore, the neutrality axiom 4 is a natural 

requirement to be imposed on a reasonable scoring rule. 

It is easy to accept this plea and, with it, neutrality as a reasonable demand for any scoring rule. 

The comfort will surely evaporate quite rapidly when one realizes that Selten’s naturalness 

requirements establish the uniqueness of a scoring rule (his “quadratic” rule above) that differs 

from Brier’s score (2a). Indeed Selten’s formula is incompatible with the general scheme (10a) 
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of strictly proper scoring rules now widely employed in the scoring rule literature.16 It precludes 

all strictly proper scoring rule. 

12.	Conclusion	
 What makes the circularity of this accuracy based approach harder to see at the outset is 

that it draws on a well-established literature on scoring rules in meteorology, economics and 

subjective Bayesianism. That literature developed the scoring rules for other purposes. They 

were used to reward meteorologists for their probabilistic predictions, when scored against the 

actual frequencies of weather conditions; or they were used to encourage subjects to match their 

publicly declared probabilities with their true but hidden probabilities. For these purposes, it was 

appropriate to work with a narrow subset of scoring rules, adapted antecedently to probability 

measures. Using different rules, ill-adapted to probabilities would have no point. 

 Matters change when we try to use scoring rules to demonstrate the necessity of 

probabilities. Now the careful selection of these same scoring rules ceases to be the practical 

adaption of the rules to the intended use. It amounts to the covert assumption of the very thing 

that is to be proven. For these favored rules—the Brier score and its generalization as strictly 

proper scoring rules—strongly favor probabilistic credences. As we saw above, if a subject 

harbors non-probabilistic credences and these scoring rules are used to elicit them, the subject 

will be rewarded for lying and reporting probabilistic credences. 

 All would be well with accuracy based vindications if solid, independent grounds could 

be found for use of these favored rules. However, no such grounds have emerged and, I argue, 

none can emerge. For all such grounds must covertly assume exactly what they seek to 

demonstrate. Instead, inevitably and as we have seen repeatedly in the present literature, the 

latest grounds will succumb under scrutiny. We are forever trapped in an endless regress of 

reasons. 

                                                
16 To see this, note that (10a) is linear in the probability measure pi, whereas Selten’s measure is 

quadratic in it. 
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Appendices	

Appendix	A.	Dominance	Relations	for	n-Power	Scoring	Rule	with	n>1	
 The n-power loss functions 

L1 = (1 - x1)n + x2n + x3n + … + xrn 

L2 =  x1n + (1 – x2)n + x3n + … + xrn 

                  … 

Lr =  x1n + x2n + x3n + … + (1 - xr)n                                           (4a) 

admit dominating points that lie on an r-1 dimensional hypersurface of the r dimensional space 

of credences, x1, x2, …, xr. Each point on the surface is a minimum for all r loss functions among 

a set of points lying on a curve in the space of credences. We write this curve as xi(λ), i=1, …, r, 

where λ is a path parameter. A dominance point is identified by means of the derivatives of the 

loss functions with respect to λ. The first derivatives are: 

 

dL1
dλ

= −n(1− x1)
n−1 dx1(λ)

dλ
+ nx2

n−1 dx2 (λ)
dλ

+…+ nxr
n−1 dxr (λ)

dλ
                      (13) 

and similarly for L2, …, Lr. The second derivatives are  

 

d 2L1
dλ 2 = n(n −1)(1− x1)

n−2 dx1(λ)
dλ

− n(1− x1)
n−1 d 2x1(λ)

dλ 2

+ n(n −1)x2
n−2 dx2 (λ)

dλ
+ nx2

n−1 d 2x2 (λ)
dλ 2 +…

…+ n(n −1)xr
n−r dxr (λ)

dλ
+ nxr

n−1 d 2xr (λ)
dλ 2

                      (14) 

and similarly for L2, …, Lr. To identify a dominance point, we set all the first derivatives (13) to 

zero. The results for dL1/dλ = 0 and dLi/dλ = 0 are, respectively,  

 
−(1− x1)

n−1 dx1
dλ

+…+ xi
n−1 dxi
dλ

+…+ xr
n−1 dxr
dλ

= 0                                 (15) 

 
x1
n−1 dx1
dλ

+…− (1− xi )
n−1 dxi
dλ

+…+ xr
n−1 dxr
dλ

= 0  

Subtracting the second from the first, we recover 
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dxi / dλ
dx1 / dλ

=
x1
n−1 + (1− x1)

n−1⎡⎣ ⎤⎦
xi
n−1 + (1− xi )

n−1⎡⎣ ⎤⎦
                                            (16) 

This expression (16), with i=2, 3, … , r,  can be used to replace expressions for dx2/dλ, dx3/dλ, 

… , dxr/dλ in (15), rewritten as: 

 
(1− x1)

n−1 = x2
n−1 dx2 / dλ
dx1 / dλ

+…+ xi
n−1 dxi / dλ
dx1 / dλ

+…+ xr
n−1 dxr / dλ
dx1 / dλ

 

After some manipulation, the reconfigured equation (15) reduces to the expression that identifies 

the r-1 dimensional hypersurface of dominance points:  

 
1= x1

n−1

x1
n−1 + (1− x1)

n−1⎡⎣ ⎤⎦
+…+ xi

n−1

xi
n−1 + (1− xi )

n−1⎡⎣ ⎤⎦
+…+ xr

n−1

xr
n−1 + (1− xr )

n−1⎡⎣ ⎤⎦
                (12) 

In the special case of n=2, the Brier score, this relation identifies the hypersurface of additive 

credences that conform with the probability calculus:17 

1 = x1 + …+ xi + … +  xr 

 To determine the disposition of the hypersurfaces of the remaining cases, we write the 

individual terms of (12) as 

yi =
xi
n−1

xi
n−1 + (1− xi )

n−1⎡⎣ ⎤⎦
 

They can be inverted to yield 

xi =
yi
1/(n−1)

yi
1/(n−1) + (1− yi )

1/(n−1)⎡⎣ ⎤⎦
                                               (17) 

where, following (12), we have 

1 = y1 + …+ yi + … +  yr 

A special case is r=2, for any n>1. For then y2 = (1- y1) we have 

x1 =
y1
1/(n−1)

y1
1/(n−1) + (1− y1)

1/(n−1)⎡⎣ ⎤⎦
= y1

1/(n−1)

y1
1/(n−1) + y2

1/(n−1)⎡⎣ ⎤⎦
 

x2 =
y2
1/(n−1)

y2
1/(n−1) + (1− y2 )

1/(n−1)⎡⎣ ⎤⎦
= y2

1/(n−1)

y2
1/(n−1) + y1

1/(n−1)⎡⎣ ⎤⎦
 

                                                
17 For this case, n-1=1 and xin-1 + (1–xi)n-1 = xi + (1 – xi) = 1. 
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so that the dominance points are also additive: 1 = x1 + x2. 

 Otherwise, for r>2 and n>2, we have from (17) that 

 
x1 >

y1
1/(n−1)

y1
1/(n−1) + y2

1/(n−1) +…+ yr
1/(n−1)  

since 

(1-y1) 1/(n-1) = (y2 + … + yr) 1/(n-1) < y21/(n-1) + … + yr1/(n-1)                     (18) 

by means of inequality (23) below. Using similar relations for x2, x3, … , xr, we recover 

 
x1 + x2 +…+ xr >

y1
1/(n−1) + y2

1/(n−1) +…+ yr
1/(n−1)

y1
1/(n−1) + y2

1/(n−1) +…+ yr
1/(n−1) = 1  

It follows that r>2 and n>2 is the case of subadditive credences. Repeating the above analysis for 

r>2 and 1<n<2, using inequality (24), we recover: 

x1 + x2 + … + xr < 1 

from which it follows that this is the case of superadditive credences. 

 The hypersurface (12) is picked out by the vanishing of the first derivatives, dL1/dλ = 

dL2/dλ =… = dLr/dλ = 0 for the curves xi(λ), i=1, …, r. To complete the analysis, we need to 

show that these points are true minima for the loss functions along the curves, so that the points 

on the hypersurface are dominance points. This in turn requires identification of the curves. 

 It will be sufficient to identify one set of curves as follows.18 In brief, we find the slope 

of the curve at each point on the hypersurface. We then take as the curve xi(λ) through that point, 

the straight line that has this slope as its slope everywhere. Select some point on the hypersurface, 

whose credences Xi satisfy equation (12). We have from (16) that 

dxi
dλ

= K
Xi

n−1 + (1− Xi )
n−1⎡⎣ ⎤⎦

 

                                                
18 The properties described above do not, I suspect, uniquely define the curves xi(λ). Identifying 

one set of curves is sufficient to display the dominance properties of the points of the 

hypersurface. 
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where K is some undetermined constant that is the same for all xi(λ). The constant is 

undetermined since its differing values give us the freedom to rescale the parameter λ arbitrarily. 

We can, for example, alter the value of K if we introduce a new parameterization λ’(λ) for which 

dxi
dλ '

= dxi
dλ

⋅ dλ
dλ '

 

To ensure that the path parameterization introduces no nuisance pathologies, it is convenient to 

set it, by stipulation, proportional to the natural Euclidean path length through 

dλ2 = constant . (dx12 + dx22 + … + dxr2) 

We select the constant in this expression so that the undetermined constant K is set to one. That 

is we now have 

 

dxi
dλ

= 1
Xi

n−1 + (1− Xi )
n−1⎡⎣ ⎤⎦

= mi (X1,…,Xr ) > 0                                       (19) 

where mi>0 since 0≤Xi≤1 for all i. The straight line with this slope mi that passes through the 

hypersurface point Xi at λ = 0 is 

xi(λ)=miλ  +  Xi 

For all such curves, we have 

dxi
dλ

= mi > 0  and d
2xi
dλ 2 =

dmi

dλ
= 0      i = 1, …., r 

Substituting these properties into the r expressions for d2Li/dλ2, i=1, …, r, analogous to (14), 

and recalling n>0, it is easy to see that all the second derivative terms are greater than zero. 

Hence the point of intersection of each curve Xi with the hypersurface (12) is a true minimum 

along each curve for all the loss functions L1, …, Lr. 

Appendix	B.	Credences	Elicited	by	n-Power	Scoring	with	n>1	
 The n-power scoring rule is generated by the functions (5a). The credences x = <x1, x2, 

…, xr> it elicits for a subject’s true probabilistic credences p = <p1, p2, …, pr> are those that 

minimize the loss function. 
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L(p, x) =   p1(1 – x1)n + … + p1xin + … + p1 xrn 

+ … 

+ pi x1n + … + pi (1 – xi)n + … + pi xrn 

+ … 

+ pr x1n + … + pr xin + … + pr (1 – xr)n                     (10b) 

To keep the analysis simple, consider only the generic case in which pi>0, all i. The first and 

second derivatives of L(p, x) with respect to x1 are 

 

∂L
∂x1

= − p1n(1− x1)
n−1 + (p2 +…+ pr )nx1

n−1 = − p1n(1− x1)
n−1 + (1− p1)nx1

n−1   

∂2L
∂x1

2 = p1n(n −1)(1− x1)
n−2 + (1− p1)n(n −1)x1

n−2  

and similarly for x2, …, xr. We seek the minimum loss with respect to x by setting all first 

derivatives to zero. We find for i = 1, …, r, that ∂L/∂xi = 0 leads to 

xi
1− xi

⎛
⎝⎜

⎞
⎠⎟

n−1

= pi
1− pi

⎛
⎝⎜

⎞
⎠⎟

 

The values selected by this condition represent a true minimum since ∂2L/∂xi2 > 0 for 0 ≤ xi ≤ 1, 

for all i. Solving for xi, the credences elicited are 

 xi =
(pi )

1/(n−1)

(pi )
1/(n−1) + (1− pi )

1/(n−1)                                                      (20) 

The credences elicited will correspond to probabilities pi only in the case of the Brier rule, n=2. 

For then we have 

xi =
(pi )

1/(2−1)

(pi )
1/(2−1) + (1− pi )

1/(2−1) =
(pi )

(pi )+ (1− pi )
= pi  

When n is not 2, but r=2, the rule will return additive credence x1 and x2: 

x1 =
(p1)

1/(n−1)

(p1)
1/(n−1) + (1− p1)

1/(n−1)  and x2 =
(p2 )

1/(n−1)

(p1)
1/(n−1) + (1− p2 )

1/(n−1)  

These elicited credences x1 and x2 will not correspond to the probabilities p1 and p2 unless we 

have the exceptional cases of p1 =0 or p1 =0.5 or p1 =1. 
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 In all other cases for n>1, we recover subadditive credences (for n>2) or superadditive 

credences (for 1<n<2). 

 To begin, consider the case of n>2. For r>2, we have from inequality (23) below that: 

 (p2 + p3 +…+ pr )
1/(n−1) < (p2 )

1/(n−1) + (p3)
1/(n−1) +…+ (pr )

1/(n−1)                           (21) 

Using 1- p1 =  p2 + … + pr , it becomes 

 (1− p1)
1/(n−1) < (p2 )

1/(n−1) + (p3)
1/(n−1) +…+ (pr )

1/(n−1)  

Substituting into (20) for the case of i=1, we have 

 
x1 =

(p1)
1/(n−1)

(p1)
1/(n−1) + (1− p1)

1/(n−1) >
(p1)

1/(n−1)

(p1)
1/(n−1) + (p2 )

1/(n−1) +…+ (pr )
1/(n−1)  

with similar formulae for x2, …, xr. We see that these credences are subadditive if we sum them: 

 
x1 + x2 +…+ xr >

(p1)
1/(n−1) + (p2 )

1/(n−1) +…+ (pr )
1/(n−1)

(p1)
1/(n−1) + (p2 )

1/(n−1) +…+ (pr )
1/(n−1) = 1  

where the credence in the set of all outcomes is 1. For the case of 1<n<2, using (24) below, we 

have, instead of (21), the inequality:  

 (p2 + p3 +…+ pr )
1/(n−1) > (p2 )

1/(n−1) + (p3)
1/(n−1) +…+ (pr )

1/(n−1)                           (22) 

Following analogous reasoning, we arrive at superadditive credences 

x1 + x2 + … + xr < 1 

Appendix	C.	Useful	Inequalities	
 The equalities used above are derived by considering the function  

f(x) = (x+y)1/(n-1) - x1/(n-1) - y1/(n-1) 

for some fixed value of y>0. Its first derivative is 

df (x)
dx

= 1
n−1 (x + y)

(2−n)/(n−1) − x(2−n)/(n−1)( )  

For n>2, the exponent satisfies -1<(2-n)/(n-1)<0. It follows that df(x)/dx < 0 for all x>0. Since 

f(0)=0, we have after integration of df(x)/dx that f(x)<0. That is, for all x>0 and y>0, n>2, 

(x+y)1/(n-1) < x1/(n-1) + y1/(n-1) 

Applying this inequality to (z2 +z3 + … + zr)1/(n-1) for all zi>0, we recover 
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 (z2 + z3 +…+ zr )
1/(n−1) < (z2 + z3 +…+ zr−1)

1/(n−1) + (zr )
1/(n−1)  

and then 

 (z2 + z3 +…+ zr−1)
1/(n−1) + (zr )

1/(n−1) < (z2 + z3 +…+ zr−2 )
1/(n−1) + (zr−1)

1/(n−1) + (zr )
1/(n−1)  

Further iteration eventually leads to: 

 (z2 + z3 +…+ zr )
1/(n−1) < (z2 )

1/(n−1) + (z3)
1/(n−1) +…+ (zr )

1/(n−1)                           (23) 

 For 1<n<2, we have that the exponent in f(x) satisfies (2-n)/(n-1)>0. Proceeding as before 

we now have 

(x+y)1/(n-1) > x1/(n-1) + y1/(n-1) 

which eventually leads to: 

 (z2 + z3 +…+ zr )
1/(n−1) > (z2 )

1/(n−1) + (z3)
1/(n−1) +…+ (zr )

1/(n−1)                        (24) 

Appendix	D.	Equivalent	Definitions	of	Strictly	Proper	Scoring	Rules	
  To show the equivalence of the two definitions I and II of strictly proper scoring rules, it 

is sufficient to show that definition II entails definition I; and to show the converse entailment. 

 

Strictly Proper II entails Strictly Proper I 

 The loss function L(p, x) of (10a) consists of a sum of r terms: 

p1 g0(xi) + … + pi g1(xi) + … + pr g0(xi) 

where i = 1, …, r. Definition II entails that each of these r terms individually is minimized when 

xi = pi. To see this for i=1, the term is rewritten as 

p1 g1(x1) + p2 g0(x1)… + pi g0(x1) + … + pr g0(x1) 

= p1 g1(x1) + (p2 +… + pi + … + pr) g0(x1) 

= p1 g1(x1) + (1- p1) g0(x1) 

Hence this term is minimized uniquely, according to definition II, when x1 = p1. The 

corresponding results for the remaining x2, x3, … follow analogously. Since x = p minimizes 



 42 

each term uniquely, it follows that x = p minimizes their sum, L(p, x), uniquely, which is 

definition I. 

 

Strictly Proper I entails Strictly Proper II 

 Definition I applies for all pi in 0 ≤ pi ≤ 1, i = 1, …, r. Thus it applies to the case in which 

only p1>0 and p2>0, but p3 = p4 = … = pr = 0. In this special case, the loss function reduces to 

L(p, x) =   p1 g1(x1) + p1 g0(x2) +… + p1 g0(xi) + … + p1 g0(xr) 

 + p2 g0(x1) + p2 g1(x2) +… + p2 g0(xi) + … + p2 g0(xr) 

There are no terms in L(p, x) in g1(x3), g1(x4), …, g1(x4), but these variables only appear in 

g0(x3), g0(x4), …, g0(xr). Since all suitable functions for g0(xi) are strictly increasing, the 

condition for minimization must include xi = 0 = pi, for i = 3, 4, …, r. Hence the minimization of 

definition I reduces to the simpler problem of minimizing: 

L(p1, p2, x1, x2) = p1 g1(x1) + p1 g0(x2) 

+ p2 g0(x1) + p2 g1(x2) 

That is, definition I requires minimization for fixed p1 and p2 of: 

L(p1, p2, x1, x2) = p1 g1(x1) + (1-p2) g0(x2) 

+ (1-p1) g0(x1) + p2 g1(x2) 

Definition I stipulates that this minimum is achieved uniquely when x1 = p1 and x2 = p2. Since x1 

and x2 can be varied independently in seeking the minimum, that minimum can only arise when 

the terms in which they appear 

p1 g1(x1) + (1-p1) g0(x1)     and    p2 g1(x2) + (1-p2) g0(x2) 

are individually, uniquely minimized by x1 = p1, for the first, and x2 = p2, for the second. 

 Either of these is equivalent to definition II, with the restriction that 0<p<1. The complete 

definition II allows 0 ≤ p ≤ 1. The two missing cases, p=0 and p=1, always conform with 

definition II, trivially. Hence definition I entails definition II. 
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