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1.	Introduction	
 No single calculus of inductive inference can serve universally. There is even no 

guarantee that the inductive inferences warranted locally, in some domain, will be regular 

enough to admit the abstractions that form a calculus. However, in many important cases, when 

the background facts there warrant it, inductive inferences can be governed by a calculus. By far 

the most familiar case is the probability calculus. 

 That many alternative calculi other than the probability calculus are possible is easy to 

see. Norton (2010) identifies a large class of what are there called “deductively definable” logics 

of induction. Generating a calculus in the class is easy. It requires little more than picking a 

function from infinitely many choices. 

 The harder part is to see whether some specific calculus is warranted in some particular 

domain. This and the following chapters will provide a few illustrations of unfamiliar cases. In 

them, the warranted calculus is not the probability calculus. The systems to be investigated are: 

in this chapter, infinite lottery machines; and, in subsequent chapters, continuum-sized outcome 

sets, which include nonmeasurable outcomes; indeterministic physical systems; and the quantum 

spin of electrons. 
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 The focus of this chapter, a fair infinite lottery machine, selects among a countable 

infinity of outcomes, 1, 2, 3, … without favor. It allows us to pose a series of inductive problems. 

In this arrangement, how much support inductively is given to the outcome of some particular 

number, say 378? Or to some finite set of numbers, say all those between 37 to 256? Or to some 

infinite set of numbers, such as the even numbers or the prime numbers? The answers to these 

questions will be supplied by the inductive logic applicable to this domain. 

 The warranting facts that pick out the logic will be the physical properties of the infinite 

lottery machine. The inductive logic will be the same for all properly functioning infinite lottery 

machines. Thus the pertinent warranting facts will be just those that they have in common. That 

is the fact that they choose a number without favoring any. 

 The example of the infinite lottery machine has already proven troublesome. We shall see 

in Section 2 that an unreflective application of the probability calculus to it fails. The literature 

has explored several ways of modifying the calculus to accommodate the infinite lottery. They 

include dropping countable additivity and introducing infinitesimal probabilities. In subsequent 

sections, I will argue that neither of these modifications succeeds. The defining characteristic of 

the infinite lottery is that it chooses its outcomes without favoring any one. That characteristic is 

captured formally in the condition of “label independence” of Section 3. It says that the chance 

of an outcome with some definite number or a set of them is unaffected if we permute the 

numbers that label the outcomes. This condition, it is argued in Sections 4 and 5, is incompatible 

with the (finite) additivity of a probability measure. This additivity is the familiar property that, 

if we have two mutually exclusive outcomes, then we can add their probabilities to find the 

probability of their disjunction. Thus the chance properties of an infinite lottery machine cannot 

be represented by a probability measure. Attempts to continue to do so, it is argued in Section 6, 

amount to altering the background facts presumed. These attempts do not solve the problem but 

merely exchange it for a different problem that can be solved with a probability measure. Section 

7 explores a non-standard calculus that is warranted by specific configurations of an infinite 

lottery machine. Section 8 outlines how we can give intuitive meaning to the values in the non-

standard calculus and use it to make predictions. Section 9 extends the logic to repeated, 

independent drawings of the lottery. Section 10 uses the extension to show that the chances of 

frequencies of outcomes in these repeated drawings do not conform with probabilistic 

expectations so that frequencies cannot be used to reintroduce probabilities. Section 11 defends 
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the failure of what is there identified as the “containment principle.” Section 12 reports briefly on 

work elsewhere on the unexpected complications found when we try to determine the extent to 

which an infinite lottery machine is physically possible.  Section 13 concludes. 

 Finally, Appendix A reviews the so-called “measure problem” of eternal inflation in 

modern cosmology. It turns out to be essentially the same as the difficulty of fitting an additive 

probability measure to an infinite lottery machine. 

2.	The	Initial	Difficulty	
 The infinite lottery machine entered the literature because it poses an immediate problem 

if we wish to use the probability calculus as the applicable inductive logic. That problem arises 

from a tension between two conditions. First, the machine chooses each number without favor. 

So each outcome n must have equal probability P(n):  

ε = P(1) = P(2) = … = P(n) = …                                                          (1) 

Second, the outcomes are mutually exclusive and at least one must happen. Hence all these 

probabilities must sum to unity in the infinite sum:  

P(1) + P(2) + … + P(n) + … = 1                                                          (2) 

No value of ε can satisfy both (1) and (2). For if we choose some ε  > 0, no matter how close this 

ε to zero, then (2) is the summing of infinitely many non-zero ε’s. Summing only finitely many 

will eventually exceed the unity required in (2). If, instead, we set ε = 0, then (2) is the summing 

of infinitely many zeroes, which is zero. 

 Two types of solutions have been proposed in the literature. The most popular, advocated 

by Bruno de Finetti (1972; §5.17), targets the fact that (2) requires the summing of an infinity of 

probabilities. This infinite sum operation is qualitatively different from merely summing finitely 

many probabilities. For the infinite summation is carried out in two steps. First, one sums finitely 

many terms, up to some large number N, say: 

S(N) = P(1) + P(2) + … + P(N) 
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One then takes the limit of S(N) as N grows infinitely large. De Finetti proposed that we discard 

this rule of “countable additivity”1 and employ only the first step, “finite additivity,” in which we 

are allowed to add only finitely many probabilities. The outcome is that we no longer require 

summation condition (2) for the infinite lottery machine; and we can now employ ε = 0 in (1), 

without running into contradictions. De Finetti’s proposal has been subject to extensive critical 

scrutiny. See, for example, Bartha (2004), Blackwell and Diaconis (1996), Kadane, Schervish, 

and Seidenfeld (1986), Kadane and O’Hagan (1995) and Williamson (1999). 

 Setting ε = 0 amounts to setting the probability of each individual number outcome (or 

any finite set of them) to zero. That seems too severe to some. Might we not manage by 

assigning a very, very tiny probability—an “infinitesimal” amount—to each outcome? Non-

standard analysis provides a mathematically clean way of doing just this. The possibility has 

been explored by, for example, Benci, Horsten, and Wenmackers (2013) and Wenmackers and 

Horsten, (2013); and it has been subjected to critical scrutiny by, for example, Pruss (2014), 

Williamson (2007) and Weintraub (2008). 

 Neither of these repairs to probabilistic analysis will be pursued further here since, as I 

will now argue, no such repair is adequate. The infinite lottery requires an even greater departure 

from normal ideas of probability. 

3.	Label	Independence	
 To proceed, we must clarify just what is meant by “choosing without favor” or, as it is 

sometime said, having a “fair” lottery. Taking this to mean that each outcome has equal 

probability is untenable since it presumes that the probabilistic treatment is adequate. We need 

an analysis that does not make this presumption. In the following, I shall speak of the “chance” 

of an outcome, where the term will no longer designate a probability. Just what it designates will 

be determined through the development of the inductive calculus that governs it, in the sections 

that follow. 

                                                
1 The full condition of countable additivity applies to any infinite set of mutually incompatible 

outcomes {A1, A2, … , An, … } and asserts that P(A1 or A2 or …) = P(A1) + P(A2) + … , where 

the ellipses “…” indicate that the formulae continue for all n. 
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 What it is to choose without favoring any outcome can be specified through the 

requirement of “label independence.” The driving intuition is that, when outcomes are chosen 

with favor, then the chances will, in general, differ with different outcomes. Holding a ticket for 

the outcome labeled “37” may be preferable to, say, “18,” if the outcome labeled “37” is favored 

over the one labeled “18.” If, however, the choice is made without favor, then we should be 

indifferent to whether we have the outcome labeled “37,” “18” or any other label. Moreover, that 

indifference should remain no matter how the lottery machine operator switches the labels 

around over the various outcomes. We should not care to which outcome our label “37” is 

attached, for none is favored. 

 The general requirement is that the chances are unaffected by any permutation of the 

labels. A permutation moves labels from outcomes to outcomes such that every outcome starts 

and ends with exactly one a label; no labels are discarded; and no new labels are introduced. 

More formally, the requirement is: 

Label independence 

All true statements pertinent to the chances of different outcomes remain true when 

the labels are arbitrarily permuted. 

We can see how it works by taking the case of a finite randomizer, the roulette wheel. Such a 

wheel has, in the American case, 38 equally sized pockets on its perimeter. It is spun and a ball 

projected in the opposite direction. The pockets are numbered from 1 to 36, 0 and 00; and the 

outcome is the pocket in which the ball eventually comes to rest. As long as the wheel is well 

balanced with equal sized pockets and the croupier spins and projects with vigor, the ball with 

pass over the wheel many times and arrive with equal chance in each pocket. Under those 

conditions, the choice of labeling of the pockets is immaterial. We could, without compromising 

the fairness of the wheel, peel off the labels that mark each pocket and rearrange them in any 

way we please. 

 To apply label independence, we start with a statement true of a properly made roulette 

wheel: 

Pockets 11 and 23 are the same size. 

Under a permutation that switches label 11 with label 3 and label 23 with label 10, the 

proposition now asserts a truth expressed in the old labeling as: 

Pockets 3 and 10 are the same size. 
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Proceeding with further permutations, we see that the label independence of the statement 

amounts to the assertion that any two pockets have the same size. Similarly the following is true 

of any well functioning roulette wheel: 

The ball ends up in pockets 1 to 12, 

roughly as often as it does in pockets 13 to 24. 

Under label independence, it remains true if we permute the labels of pockets 13 to 24 with those 

of pockets 25 to 36. It now expresses a truth expressed in the old labeling as 

The ball ends up in pockets 1 to 12, 

 roughly as often as it does in pockets 25 to 36. 

Thus the label independence of the second statement reflects the fact that the relative frequency 

of outcomes in a set of pockets depends merely on the number of pockets in the set. 

 The qualification “pertinent to the chances” is essential, for there are many statements 

true of a roulette wheel whose truth is not preserved under arbitrary permutation of the pocket 

labels. For example, in an American wheel: 

Pockets 3 and 4 are diametrically opposite on the wheel. 

This statement does not remain true under most permutations of the pocket labels. However, 

since the statement is not pertinent to the randomizing function of the wheel, the failure does not 

violate label independence. 

4.	Abandoning	Finite	Additivity	
 There are no surprises when label independence is used to characterize how a finite 

randomizer, such as a roulette wheel, picks outcomes without favor. Matters change when label 

independence is applied to an infinite lottery machine. The reason is that labels on infinite sets of 

outcomes can be permuted in ways that are impossible for finite sets. It is easy to permute them 

so that the labels for some infinite set of outcomes end up assigned to one of its proper subset. It 

follows from label independence that the set and its proper subset have the same chance. If 

chances are probabilities, that means that they have the same probability. Assembling several 

permutations like this soon contradicts the requirement that the probability of an outcome is the 

sum of the probabilities of its disjoint parts. That is a striking result that bears being repeated. If 

outcome A is the disjunction of mutually exclusive outcomes B or C or D, that is, 
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A = (B or C or D), 

and B, C and D pairwise contradict, then we can have cases in which 

Chance (A) = Chance (B) = Chance (C) = Chance (D)                                   (3) 

which is incompatible2 with finite additivity,3 which requires 

P(A) = P(B) + P(C) + P(D)                                                    (4) 

That is, the label independence of an infinite lottery machine requires us to abandon finite 

additivity for a measure of the chance of sets of outcomes. Since finite additivity is essential to 

the definition of probability, it follows that chances cannot be probabilities for an infinite lottery 

machine. 

5.	An	Example	of	the	Failure	of	Finite	Additivity	
 An illustration of the failure of finite additivity in (3) and (4) is provided by an example 

reported in Bartha (2004, §5) and Norton (2011, pp. 412-15). Assume that the chance function 

“Ch(.)” measures the chance of the different sets of outcomes of an infinite lottery machine, 

recalling that the notion of chance employed here, so far, is only loosely defined and need not be 

a probability measure. For some numbering of the outcomes, the labels on the sets of even 

numbered outcomes4 

even = {2, 4, 6, 8, …} 

and on the sets of odd numbered outcomes 

odd = {1, 3, 5, 7, …} 

can be switched one-one by a permutation: 

1↔2, 3↔4, 5↔6, 7↔8, … 

 Hence, by label independence, the two sets must have equal chance:  

                                                
2 Unless all the probabilities are zero. 
3 The full condition of finite additivity applies to any finite set of mutually incompatible 

outcomes {A1, A2, …, An} and asserts that P(A1 or A2 or … or An) = P(A1) + P(A2) + … + 

P(An). 

4 Here and henceforth I move without warning between a set representation of an outcome, even 

= {2, 4, 6, …} and an equivalent propositional representation, even = 2 or 4 or 6 or … 
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Ch(even) = Ch(odd)                                                         (5) 

 Now consider the four sets of every fourth number. 

one = {1, 5, 9, 13, …} 

two = {2, 6, 10, 14, …} 

three = {3, 7, 11, 15, …} 

four ={4, 8, 12, 16} 

By similar reasoning each of one, two, three, and four have equal chance:  

Ch(one) = Ch(two) = Ch(three) = Ch(four)                                           (6) 

So far, nothing untoward has happened. All this is compatible with the Ch(.) function being a 

probability measure. This will now change. 

 Consider two sets of outcomes: one and the set whose members are in (two or three or 

four). Since all the sets are countably infinite, we can have the following two-part permutation of 

the labels. The first switches one to one the labels on odd with those on one: 

1↔1, 3↔5, 5↔9, 7↔13, … 

The second part switches one to one the labels on even with those of (two or three or four): 

2↔2, 4↔3, 6↔4, 8↔6, 10↔7, 12↔8, 14↔10, 16↔11, … 

For convenience, since the set one now carries the labels that originated in odd, let us also call it 

odd*; and similarly (two or three or four) is also called even*. That is, we have two names for 

each outcome set: 

one = odd*    (two or three or four) = even* 

Since the new labels of outcomes in odd* and even* can also be switched one-one with each 

other, analogously to (5), they must also have equal chance. That is:  

Ch(even*) = Ch(odd*)                                                      (7) 

Combining we have 

Ch(two) = Ch(three) = Ch(four)           [from (6)] 

= Ch(one)                                [from (6)] 

= Ch(odd*)                              [since one and odd* name the same set] 

= Ch(even*)                             [from (7)] 

= Ch(two or three or four)       [since (two or three or four) and even* 

name the same set] 
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These last equalities violate5 finite additivity (4), since a finitely additive probability measure 

P(.) must satisfy: 

P(two) + P(three) + P(four) = P(two or three or four) 

6.	Finite	Additivity	Must	Go	
 The simple example shows that label independence for an infinite lottery is incompatible 

with the finite additivity of a probability measure. To proceed, at least one of them must be given 

up. Both Bartha (2005, §5) and Wenmackers and Horsten (2013, p. 41) find giving up finite 

additivity too great a sacrifice. In my view, we have no choice but to sacrifice finite additivity. 

For label independence is a defining characteristic of an infinite lottery machine. Without it, we 

can no longer say that the infinite lottery machine chooses its outcomes without favoring any. 

There is no comparable necessity for probability measures, other than our comfort and 

familiarity with them. 

 To persist in describing the chance properties of an infinite lottery machine by a 

probability measure is, in effect, to change the problem posed. For no single probability measure 

can satisfy all the equalities derived above from label independence. We must choose which 

subset will be satisfied. That choice amounts to adding extra conditions on the operation of the 

infinite lottery machine. While the augmented problem may be quite well-posed and even 

interesting, it is a different problem. The extra conditions must breach label independence, so 

that we no longer describe a device that chooses outcomes without favor. We have not solved the 

original problem, but merely changed it to a different problem we like better. 

 To see how this favoring can come about, consider the two equalities (5) and (7). If the 

chance function is a probability function P(.), then they become 

P(even) = P(odd) = 1/2                                                       (5a) 

P(even*) = P(odd*) = 1/2                                                    (7a) 

We cannot uphold both if we note that the probabilistic version of (6) requires 

P(one) = P(two) = P(three) = P(four) = 1/4                                   (6a) 

For then P(odd*) = P(one) = 1/4; while P(even*) = P(two) + P(three) + P(four) = 3/4, in 

contradiction with (7a). 
                                                
5 Unless all the probabilities are zero. 
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 To preserve the applicability of a probability measure, we have to block one of (5a) or 

(7a). A simple strategy is to select a preferred numbering of the outcomes, such as the original 

labeling, and then define the probability of each set of outcomes in the natural way. That is, we 

consider the sequence of finite, initial sets 

{1}, {1, 2}, {1, 2, 3},  …, {1, 2, 3, …, n} , …                                  (8) 

The probability of some nominated outcome set is defined as the limit of the frequency of 

outcome set members in this sequence. For the outcome even, we have  

P(even) = Limn! ∞ n/2n = 1/2                         n is even 

= Limn! ∞ (n+1)/2n = 1/2                  n is odd                                  (9) 

Definitions of the form (9) using the sequence (8) gives the expected probabilities (5a) and (6a) 

for P(even), P(odd), P(one), P(two), P(three) and P(four). However they fail to return (7a), since, 

as before, we have P(odd*) = P(one) = 1/4 and P(even*) = P(two or three or four) = 3/4. 

 There is a second, parallel “starred” analysis that preserves the equality of (7a) while 

giving up (5a). It proceeds exactly as above, but replaces the sequence (8) with one natural to the 

starred labeling of outcomes. That is, the starred labels assigned to outcomes after the 

permutation conform with 

odd* = {1*, 3*, 5*, 7*, …} = {1, 5, 9, 13, …} 

even* = {2*, 4*, 6*, 8*, …} = {2, 3, 4, 6, 7, 8, 10, 11, 12, ….} 

In place of (8), it has the sequence: 

{1*} = {1}, {1*, 2*} = {1, 2}, {1*, 2*, 3*} = {1, 2, 5},  {1*, 2*, 3*, 4*} = {1, 2, 5, 3}, …   (8a) 

Using the sequence (8a), definitions of probability based on relative frequencies akin to (9), will 

give starred results that are the reverse of the unstarred results. That is, we shall secure (7a) 

P(even*) = P(odd*) = 1/2, but not (5a). 

 In comparing the unstarred and starred analysis, we see how each improperly favors 

certain outcomes in the judgment of the other. The unstarred analysis gives P(odd*) = 1/4 and 

P(even*) = 3/4, improperly favoring even* over odd*, according to a starred analysis. However 

the starred analysis gives gives P(odd) = 1/4 and P(even) = 3/4, improperly favoring even over 

odd, according to an unstarred analysis. 

 Thus describing an infinite lottery machine with a probability measure replaces the 

original requirement of selection without favor, by selection under by the added restriction that 

the selection must respect also a preferred numbering scheme and the limiting ratios native to it. 
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 That some such change in the problem is required if probabilities are to be retained was 

noted by Edwin Jaynes. He was a leading proponent of objective Bayesianism and a master of 

the memorable riposte, which he formulated for this case as follows (2003, p.xxii). 

 Infinite-set paradoxing has become a morbid infection that is today spreading in a 

way that threatens the very life of probability theory, and it requires immediate 

surgical removal. In our system, after this surgery, such paradoxes are avoided 

automatically; they cannot arise from correct application of our basic rules, because 

those rules admit only finite sets and infinite sets that arise as well-defined and 

well-behaved limits of finite sets. The paradoxing was caused by (1) jumping 

directly into an infinite set without specifying any limiting process to define its 

properties; and then (2) asking questions whose answers depend on how the limit 

was approached. 

 For example, the question: ‘What is the probability that an integer is even?’ can 

have any answer we please in (0, 1), depending on what limiting process is used to 

define the ‘set of all integers’ (just as a conditionally convergent series can be made 

to converge to any number we please, depending on the order in which we arrange 

the terms). 

 In our view, an infinite set cannot be said to possess any ‘existence’ and 

mathematical properties at all – at least, in probability theory – until we have 

specified the limiting process that is to generate it from a finite set. 

The bluster of Jaynes’ riposte cannot cover the fact that he can offer no good reason for 

eschewing infinite sets that do not come with a preferred ordering or numbering scheme. If we 

must eschew all such sets, then we are precluding from inductive analysis cases that arise in real 

science. The problems just rehearsed in Sections 5 and 6 above have played out almost exactly as 

a foundational problem in recent inflationary cosmology, the “measure problem,” where the lack 

of a preferred order on an infinite set of pocket universes has precluded introduction of a 

probability measure over them. The problem is reviewed in the Appendix. This should quell 

fears that that the problem of fitting a probability measure to an infinite lottery machine is merely 

the contrarian whimsy of eccentric theorists and idle philosophers. The problem has a connection 

and application in real science. 
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7.	The	Inductive	Logic	Warranted	for	an	Infinite	Lottery	Machine	
 The defining characteristic of an infinite lottery machine is that its choice of outcomes 

respects label independence. That characteristic rules out an inductive logic whose strengths of 

support are probability measures. According to the material theory of induction, the background 

facts warrant the inductive logic appropriate to the domain. Label independence, the 

characteristic common to all infinite lottery machines, is the key, warranting fact. It acts 

powerfully and leads us to the following inductive logic. 

7.1	Equal	Chance	Sets	

 The logic divides outcomes sets into types such that all sets of the same type must have 

the same chance. To implement this division, we require that two outcomes sets are of the same 

type if the members of the two sets can be mapped one-one to one another by a permutation of 

labels. That means that the outcome sets must have the same size (i.e. cardinality). In addition, 

the complements of the sets must also be the same size, else the requisite permutation of labels 

will not be possible. What results are sets of outcomes of the following types:6 

finiten: a set with n members, where n is a natural number. 

Examples of finite3 are {1, 2, 3}, {27, 1026, 5000} and {24, 589, 2001}. 

infiniteco-infinite: an infinite set whose complement is also infinite.  

An example is the infinite set of even numbers {2, 4, 6, …} since its complement is the infinite 

set of odd numbers {1, 3, 5, …} 

infiniteco-finite-n: an infinite set whose complement is finite of size n. 

An example of infiniteco-finite-10 is the set of all numbers greater than 10: {11, 12,  13,…) since 

its complement is the finite set {1, 2, 3, …, 10}. 

                                                
6 Co-infinite means that the complement of the set is infinite. Co-finite means that the 

complement of the set is finite. 
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7.2	Chance	Values	

 The requirement of label independence entails that sets of outcomes of the same type 

must be assigned the same chance. Thus the chance function Ch(.) in this logic can only have the 

following set of values:  

Ch(finiten) = Vn, where n = 1, 2, 3, …                                                          (10a) 

Ch(infiniteco-infinite) = V∞ = “as likely as not.”                                            (10b) 

Ch(infiniteco-finite-n) = V-n, where n = 1, 2, 3, …                                         (10c) 

And for completeness we add in the two special cases 

Ch(empty-set) = V0 = “certain not to happen”                                             (10d) 

Ch(all-outcomes) = V-0 = “certain to happen”                                             (10e) 

According to (10a), all equal-sized finite sets of outcomes have the same chance: any n 

membered finite set has the same chance Vn. This is required by label independence since some 

permutation can always switch the labels between any two finite sets, as long as they are the 

same size. Similarly, (10b) tells us that all infinite sets that are co-infinite have the same chance. 

We have already seen an example above in (5) and (7): 

Ch(even) = Ch(odd) = Ch(even*) = Ch(odd*) = V∞ 

Since each of the four infinite sets are co-infinite, there is a permutation that switches their labels. 

By label independence, they have the same chance. Since every co-infinite infinite set of 

outcomes is assigned the same value V∞ as its complement set, we informally name this value 

“as likely as not.” Finally, (10c) can be interpreted similarly to (10a). 

7.3	Comparing	Chance	Values	

 The conditions (10) are powerful restrictions. They preclude the chance function Ch(.) 

being an additive probability measure. However they leave the logic underspecified. We do not 

yet know whether the values Vn, V∞, V-n are the same or different; and, if they are different, 

how they compare with one another. To arrive at the conditions (10), we used label invariance 

only. Further restrictions can enrich the logic. 

 A qualitative ranking of the strengths of support derives from the idea that the chance of a 

set of outcomes cannot be diminished if we add further outcomes to the set. This condition 
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induces the relation “≤,” which is read as “is no stronger than.” It obtains between values A and 

B when the outcomes that realize a value A can be a subset of the outcomes that realize a value B. 

As a result, the relation inherits the properties of set theoretic inclusion. It is antisymmetric, 

reflexive and transitive. It is easy to see that:  

V0 ≤	V1 ≤ V2 ≤ V3 ≤	…≤	V∞ ≤	…	≤	V-3 ≤ V-2 ≤	V-1 ≤ V-0                             (11) 

One might think this condition unavoidable. It is not. It is merely familiar and amounts to one 

construal of the meaning of strength of support. A somewhat similar condition fails in the 

“specific conditioning logic” of Norton (2010, §11.2). 

 Further discriminations, if they happen at all, must be warranted by further background 

facts, whose truth must be recovered from the physical properties of the pertinent chance process. 

One case that is easy to motivate physically arises if we have an additive measure that is not 

normalizable. That is, the total measure of its space is infinite. It arises if we have a space in 

which lengths, areas or volumes are defined, the total space has infinite length, area or volume 

and the chances of some event occurring in a region of the space are measured by its length, area 

or volume. This case is developed more fully in the next chapter on “Uncountable Problems” in 

Section 4. An illustration recounted there derives from steady state cosmology. According to it, 

the chance of a hydrogen atom being created in some region of our cosmic infinite Euclidean 

space is proportional to the region’s volume. 

 To apply the infinite lottery logic this case, we divide the space into infinitely many parts 

of equal length, area or volume. An outcome finiten arises when the event is realized in some 

subset of the space of n of these parts. Its chance is measured by n. Correspondingly, the chance 

associated with any infinite volume of space will be measured by ∞. That is, we have:  

Ch(finiten) = Vn = n       where n = 1, 2, 3, …                                    (12) 

Ch(infiniteco-infinite) = V∞ = Ch(infiniteco-finite-n) = V-n = ∞ 

The inequalities relating the various values of Vn in (11) become strict inequalities. 

V0 <	V1 < V2 < V3 <	…	< V∞                                              (11a) 

If the outcome of the infinite lottery machine lies in some finite set of outcomes, then the chance 

relations (12) match those of a finite probabilistic randomizer with the same finite set of 

outcomes. That is, the chances of different outcomes in the finite set will behave like 

probabilities defined as:  



 15 

P(A|B) = Ch(A)/Ch(B)                                                      (13) 

where A is a subset of B and B is a finite set of outcomes. 

 The conditions (11a) and (13) are not assured. They can fail, depending on the particular 

physical instantiation of the infinite lottery machine. Such a failure would arise if the randomizer 

is based on the non-probabilistic, indeterministic systems described in Chapter 15 below. The 

conditions succeed for the “Spin of a pointer on a dial” device of Norton (2018).  

 Correspondingly, while label independence does not force it, we may require as an 

additional assumption in some more specific logic that:7 

V∞ < …	<	V-3 < V-2 <	V-1 < V-0                                           (11b) 

In the following section, we shall see why this additional assumption fits naturally into the 

formal properties of the chance function. 

 These inequalities along with relations (10), (11), (12) and (13), all assumed henceforth, 

characterize an inductive logic native to an infinite lottery machine well enough for us to see that 

such logics differ significantly from a probabilistic logic.  

 A curious outcome of the analysis is that this logic is the reverse of the one de Finetti 

(1972; §5.17) proposed for an infinite lottery. In his logic, additivity was preserved for outcomes 

comprised of infinite sets; but it was trivialized for outcomes of finite sets, since these latter were 

all assigned zero probability. In the present logic, non-trivial additivity is maintained for finite 

sets through (12) and (13), but additivity fails through (10b) for most infinite sets. 

8.	Interpreting	the	Inductive	Logic	
 The chance function Ch(.) of Section 7 specifies an inductive logic. Its formal properties 

are clear. However we may well ask what its quantities mean. What should we think when we 

learn that some outcome has such and such a chance value? This question is asking less than is 

usually asked, in the analogous circumstance, when we seek an interpretation of probability. It is 

                                                
7 Considerations of cardinality make natural the strict inequality V∞ <	V-n for all n. However, 

unlike the case of Vn, I have been unable to conceive possible background facts that would 

warrant strict inequalities among the individual values of V-n as shown in (11b). Might an 

inventive reader be able to conceive such facts? 
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not asking for an explicit definition, such as is sought by a relative frequency interpretation of 

probability or from the subjectivist Bayesian definition of probability in terms of betting 

quotients. One can have an understanding of a magnitude, adequate for practical applications, 

without an explicit definition of it. Since the values of the chance function (10) are so unfamiliar, 

that is all that is sought here. 

8.1	The		Probabilistic	Model	

 The problem of developing some informal understanding of an initially abstruse quantity 

arises also for ordinary probabilities. We can use its solution as a model for the new chance 

function. Take the simple case of a coin toss, whose outcomes can be heads H or tails T. How are 

we to understand the probability assertion that P(H) = 0.5? How are we to distinguish that 

probability assertion from nearby assertions like P(H) = 0.4 or P(H) = 0.6? To be told that a 

probability of 0.4 is weaker than a probability of 0.5 is true but merely qualitative and falls well 

short of the precision we expect. 

 We gain a better understanding of such assertions, sufficient to discriminate among them, 

by contriving associated circumstances of either very high or very low probability. For example: 

If P(H) = 0.5, then, with probability near one, the frequency of H among many, 

independent coin tosses will be close to 0.5. 

If P(H) = 0.4, then, with probability near one, the frequency of H among many, 

independent coin tosses will be close to 0.4. 

Sentence like these, by themselves, are not sufficient to give informal meaning to the quantity 

P(.). All we have is one probability statement, that P(H) = 0.5, associated with another statement 

concerning an outcome with probability near one. Without something further, we will be trapped 

forever in a self-referential web of statements in which probabilistic assertions are made about 

other probabilistic assertions, without otherwise clarifying what any probabilistic assertion 

means. The axioms and definitions used to deduce all these assertions can be modeled in many 

systems with an extensive quantity whose magnitude is additive. To break out of the self-

referring trap, we use a rule that coordinates large and small values of probability with informal 

judgments of expectation about chancy outcomes: 
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Rule of coordination for probability. 

 Very low probability outcomes generally do not happen; and very high probability 

outcomes generally do. 

Thus we come to some understanding of the difference between P(H) = 0.5 and P(H) = 0.4: we 

expect each to deliver roughly 50% or 40% H respectively in repeated, independent coin tosses. 

 This interpretive rule, in various forms, has a long history and has come to be known as 

“Cournot’s Principle.”8 In his canonical treatment of the foundations of probability theory, 

Kolmogorov (1950, p. 4) has a version of this rule that employs the locution “practically 

certain”:  

(a) One can be practically certain that if the complex of conditions S [Fraktur 

capital S] is repeated a large number of times, n, then if m be the number of 

occurrences of event A, the ratio m/n will differ slightly from P(A). 

(b) If P(A) is very small, one can be practically certain that when conditions S are 

realized only once, the event A would not occur at all. 

This process of conveying meaning should not be confused with subjective Bayesians’ process 

of elicitation of probabilities. They determine, for example, that a subject has assigned 

probability 0.5 to H when the subject accepts even odds on either H or T. The present concern is 

how the subject, prior to the elicitation, came to judge that 0.5 is the appropriate probability to 

assign. That in turn requires some prior understanding by the subject of what probability 0.5 

means. 

8.2	The	Analogous	Analysis	for	the	Chance	Function	

 This same strategy can be used both to interpret the values of the chance function (10) 

and, at the same time, to display the predictive powers of the logic. The analogs of very low 

probability and very high probability outcomes are those with chance Vn and chance V-n. A 

                                                
8 For a brief survey, see Shafer (2008, §2). One must be careful to treat the rule as nothing more 

than an informal guide. Otherwise the danger is that one misidentifies very low probability 

events as strictly impossible and very high probability events as necessary. For de Finetti’s view 

of the rule, see de Finetti (1974, pp. 180-181). My use of the term “rule of coordination” is 

intended to recall Reichenbach’s notion of a coordinative principle. 
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chance Vn outcome is realized when the number drawn resides in a finite set among the infinitely 

many possibilities. This is not an outcome we should expect to happen since it is thoroughly 

swamped by the infinitely many numbers outside the set. A chance V-n happens when the 

number drawn resides outside some finite set. Since there are infinitely many possibilities 

outside the finite set that realize it, this is an outcome we should expect. That is, we have the 

interpretive rule: 

Rule of coordination for chance. 

Very low chance outcomes with chance Vn generally do not happen; and very high 

chance outcomes with chance V-n generally do. 

This rule divides outcomes sharply into three sets: 

outcomes in one of the finiten, which we do not expect; 

outcomes in infiniteco-infinite, which may or may not happen “as likely as not”; and 

outcomes in one of the infinite co-finite-n, which we do expect. 

 The application of this rule is simpler than in the probabilistic case for two reasons. First, 

in the present case, the division of outcomes into unexpected, intermediate and expected is sharp. 

This sharpness makes it natural to replace the inequalities of (11) by strict inequalities. In the 

probabilistic case, the division was muddier. Just how low should a probability be before its 

outcome is not to be expected? If one is pressed, one eventually introduces some arbitrary cutoff, 

knowing that any cutoff can be challenged if sufficient contrivance is allowed. 

 Second, the intermediate co-infinite infinite outcomes all are assigned the same chance 

values of V∞. The intermediate outcomes in the probabilistic case, however, are assigned a range 

of probabilities and further work is needed to distinguish them. For example, we separated the 

cases of probability 0.5 and 0.4 by considering a large number of independent trials. The 

comparable analysis is not needed for the chance function. However, as an exercise in applying 

the chance function, in Section 8.4 below, it is used to determine the chance of various 

frequencies of outcomes of even and odd numbers in many, independent drawings of an infinite 

fair lottery. 
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8.3	Applying	the	Rule	of	Coordination	

 To get a sense of how this rule is used, we can apply it to a simple case. Consider the 

chance that the number drawn is less than or equal to some large number N. This outcome set has 

N members and thus has chance VN. It is an outcome not to be expected. The outcome that the 

number is greater than N, however, is in the complement set and thus has chance V-N. It is an 

outcome we do expect. This must appear strange at first. For it tells us that no matter how large 

we make N – one million, one quadrillion, one millionmillion—we are sure the number drawn is 

greater, even though we are certain that some definite, finite number is drawn. There is only 

strangeness here, but no problem. It is how the chances are in an infinite lottery. All our calculus 

does is to relate that fact to us. 

9.	Repeated,	Independent,	Infinite	Lottery	Drawings9	

9.1	Applying	Label	Independence	

 To explore the application of this rule further and to see how the chance function behaves, 

consider the case of repeated, independent drawings from a sequence of identical infinite lottery 

machines. We will consider the case of N independent drawings from N machines: machine1, 

machine2, … , machineN. The combined outcome of N drawings will form an N-tuple such as 

<156, 27, 2398, …, 180>N 

where the subscript N reminds us that there are N elements in the tuple. The set of all such 

outcomes is ΩN. It is countably infinite since it is formed as a finite tuple of elements of a 

countably infinite set. 

 Label independence can be implemented once again. We consider permutations of the 

labels on the outcomes of each lottery machine individually. Under such permutations, any N-

tuple can be mapped to any other N-tuple. Thus label independence requires that the outcome 

represented by each N-tuple has an each chance. 
                                                
9 The analysis of Sections 8 and 9 was decisively advanced by ideas the emerged in an energetic 

email exchange with Matthew W. Parker. I thank him for this and also for helpful remarks on the 

present text. 
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 Label independence allows us to form equal chance sets of outcome sets, analogous to 

the equal chance sets of Section 7.1. Consider for example the set of all N-tuples such that every 

element in each of the member N-tuples is an even number. We will write this as10 

all-even = [even, even, …, even] N = {<n1, n2, n3, …, nN>N: all ni even} 

Analogously we have 

all-odd = [odd, odd, …, odd] N = {<n1, n2, n3, …, nN>N: all ni odd} 

When it happens that two sets of outcomes can be mapped onto each other by a label 

permutation, then label independence requires that the two sets have the same chance. Since they 

can be so mapped, all-even and all-odd have the same chance. They belong to the same equal 

chance set of outcome sets. 

 This shows that the inductive logic induced by label independence on repeated, 

independent drawings is similar in structure to that induced on single drawings. We shall see 

below that the full structure induced for the repeated case is more complicated. However there 

are simple sectors in the logic that are formally the same as the logic that applies to single 

drawings. 

9.2	A	Simple	Sector	

 A simple sector consists of a set of equal chance sets, where those equal chance sets can 

be totally ordered by set inclusion. That is, the equal chance sets form a chain such the outcomes 

of each equal chance set is a subset of those higher in the chain. Since the set of all outcomes ΩN 

is countably infinite, the equal chance sets will be of the familiar types finite n, infiniteco-infinite 

and infiniteco-finite-n of Section 7.1. Because they are also totally ordered, we can assign the 

chance values V0, V1, …, V∞, … V-1, V-0 of (10). If all the cardinalities are not realized by the 

equal chance sets, then the sector will only have a subset of these values. Thus the equal chance 

sets of a simple sector follow the same logic as that governing equal chance sets of single 

drawings. 

                                                
10 The square bracket notation [ … ] is used to preclude the misreading that all-even is a N-tuple 

of sets, whose first, second, third, …  members are each the sets of even drawings on machine1, 

machine2, machine3,… Note—this is a misreading! 
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 A caution: there are many simple sectors in the outcome space of repeated drawings. The 

chance values only have a meaning within the sector in which they are defined, relative to the 

chances of the other outcomes in the sector. Without further justification, we cannot assume that 

the chance of Vsomething in the outcome space of a single drawing has the same meaning chance 

of Vsomething in a simple sector of the outcome space of repeated drawings. 

 An example of a simple sector is the set of all outcomes in which all drawings return the 

same number. The outcome in which number 1 is drawn every time is 

1N = <1, 1, 1, …, 1>N 

with an obvious extension of the notation to all 2, all 3, … outcomes. Set complementation with 

the simple sector gives a notion of negation. For example11 

not 1N  = 2N or 3N or 4N or … 

not 2N  = 1N or 3N or 4N or … 

The outcome 1 N has a single member and is of type finite1. The complement not 1N  is of type 

infiniteco-finite-1. Thus:  

Ch(1N) = V1       Ch(not 1N) = V-1 

Applying the rule of coordination, we infer that an outcome in which all numbers drawn in N 

independent repetitions are 1 is not to be expected in relation to other outcomes in the sector. 

Correspondingly an outcome in which none of the numbers drawn is 1 is to be expected.  

 To identify further members in the sector, we ask whether we should expect all the N 

drawings to yield the same number, where the same number is found in some finite set, say {1, 2, 

3}. That is, the outcome is (1N or 2N or 3N). Proceeding as above, we find this outcome is not to 

be expected, since 

Ch(1N or 2N or 3N) = V3. 

We get a different result if we ask after the outcome in which all the numbers drawn are the same, 

but that number can be any in an infinite set of type infiniteco-infinite, such as the set of all even 

numbers; or the set of all odd numbers.  These two outcomes are (2N or 4 N or 6 N or …) and (1 N 

                                                
11 As before, I move without warning between the set representation of the outcome not 1N = 

{2N, 3N, 4N, …} and its equivalent propositional representation not 1N =  2N or 3N or 4N or … . 
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or 2 N or 3 N or …). Since these two outcomes can be mapped onto each other by a permutation 

of labels and because they are of type infiniteco-infinite, we assign the same value 

Ch(2N or 4 N or 6 N or …) = V∞ 

Ch(1N or 3 N or 5 N or …) = V∞ 

These outcomes are “as likely as not” in this sector. 

9.3	A	Finite	Simple	Sector	

 All the finite outcome sets in this last simple sector are subsets of another simple sector. 

Consider the outcome in which all the numbers drawn in the N repetitions are less than or equal 

to some big, finite number Big, where the numbers drawn need not be the same. This outcome 

corresponds to a set of BigN tuples in the outcome set ΩN. Thus we have 

Ch(all numbers less than or equal to Big) = VBigN. 

That is, since BigN is finite, the outcome is one that will generally not happen according to the 

rule of coordination. 

 This is a new sector since a permutation of labels cannot map the set of tuples here 

assigned the value VBigN onto the set assigned the value VBigN in the simple sector of Section 

9.2. For example, consider the finite2 equal chance sets in each sector. The sector this section 

will have outcomes like 

<2, 1, 1, …, 1>N or <3, 1, 1, …, 1>N. 

No permutation of labels can map these onto the tuples such as 

<4, 4, 4, …, 4>N or <5, 5, 5, …, 5>N 

 in the corresponding finite2 equal chance sets of the simple sector of Section 9.2  

 We cannot directly compare chance values across different sectors. However our rule of 

coordination enables us to make some coarser judgments. What of the outcome that at least one 

of the numbers in N independent drawings is greater than Big? This outcome set is the 

complement of the last set considered with BigN members. Thus this outcome set is co-finite 

infinite so that the outcome is to be expected according to the rule of coordination. That is, no 

matter how big we make Big we must always expect that at least one of the numbers drawn in N 

drawings will be greater than it. 
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 Similarly we cannot directly compare the chance values across the different sectors of 

Sections 9.2 and 9.3. However our rule of coordination, applied to tuples of drawings, tells us 

that outcomes realized by finitely many tuples of drawings generally do not happen. If we now 

assume that outcomes realized by infinitely many tuples of drawings are more likely than the 

finite case, we arrive at a result that is surely surprising to someone whose intuitions about 

chance have been tutored by the probability calculus. It is more likely that all N numbers drawn 

are the same than it is that all N numbers drawn are less than or equal to some number Big, no 

matter how big we make Big. This holds no matter how large we make N.  

9.4	A	“Likely	as	Not”	Sector	

 Here are examples illustrating outcomes to which the “as likely as not” chance of V∞ is 

assigned. Consider the numbers drawn in N independent repetitions of the infinite lottery: 

all-even: all numbers drawn are even numbers 

all-odd: all numbers drawn are odd numbers 

all-powers: all numbers drawn are powers of 10, 

that is, 10, 102, 103, 104, … 

not-all-powers: all numbers drawn are NOT powers of 10, 

that is, not and of 10, 102, 103, 104, … 

Each of these outcomes corresponds to sets of tuples in ΩN  of type infiniteco-infinite. They can 

each be mapped into any other by a permutation of the labels on the individual lottery machines. 

It follows that they have equal chance: 

Ch(all-even) = Ch(all-odd) = Ch(all-powers) = Ch(not-all-powers) = V∞ 

This will seem surprising if we think that there are vastly fewer outcomes in all-powers than in 

not-all-powers, since there are vastly fewer powers of ten than numbers that are not powers of 

ten. Any surprise should be eradicated by recalling that both these sets are countably infinite. 

The impression that one is bigger than the other is purely an artifact of labeling. Label 

independence warns us that such artifacts of labeling should be ignored. The two sets in these 

examples are equinumerous and equinumerous in their complements and can be mapped onto 

each other by a label permutation. 
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9.5	Further	Sectors	

 The chance logic of repeated independent infinite lottery drawings includes further 

sectors with more complicated properties. An indication of their nature follows from 

consideration of two independent drawings. Consider the outcome that the first number drawn is 

1 and that the second number drawn is even, that is [1, even], and then another outcome [1 or 2, 

even]. Both can be mapped one-one by label permutations onto infinite-co-infinite sets of pairs. 

However no permutation of labels can map [1, even] to [1 or 2, even]. Thus they cannot be 

required by label independence to have the same chance value. We would need to assign them 

different chance values. In an obvious notation they might be V1,∞ and V2,∞. In this notation, 

the outcome [even, even] would be assigned the value V∞,∞. The applicable chance logic would 

then reside in relations analogous to those of (11), such as V1,∞ ≤ V2,∞ ≤	…	≤	V∞,∞; and 

V1,∞ = V∞,1; V2,∞ = V∞,2; etc. 

10.	Relative	Frequencies	of	“as	likely	as	not”	Outcomes	

10.1	Can	frequencies	reintroduce	probabilities?	

 The inductive logic induced by label independence precludes an ordinary probabilistic 

logic. We might wonder, however, whether probabilities can be reintroduced indirectly by an 

empirical approach. We carry out many, independent drawings and let the limiting behavior of 

the frequencies reintroduce probabilities. This approach would succeed with a finite lottery. In 

independent repetitions, we expect with high probability, that roughly half the numbers drawn 

will be even and half of them odd. That is a consequence of the probabilistic fact that an even 

number is drawn with probability 1/2.  

 We should not expect similar results in an infinite lottery, for the value V∞ assigned to 

both even and odd outcomes is quite removed in its formal properties from a probability 1/2. We 

shall see in this section by direct calculation that the chance function of the infinite lottery does 

not return the favoring of relative frequencies of odd and even outcomes such as would be 

needed to reintroduce a probability of one half for each. 
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10.2	Odd	and	even	outcomes	

 Consider N > 1 independent drawings of the lottery as in Section 9. The outcome sets that 

interest us are sets of N-tuples of the form 

[odd, odd, …, even, odd, even, even]N 

= {<n1, n2, n3, …, nN>N : 

ni is an odd number in the positions marked “odd” 

and an even number in the positions marked “even”} 

Since each of odd and even are realized by infinitely many numbers, the set of N-tuples realizing 

any particular outcome set of the form [odd, odd, …, even, odd, even, even] N is infinite. 

Correspondingly there are infinitely many ways that the complement set could be realized. Thus 

the outcome is co-infinite infinite and it has chance V∞ of the simple sector of Section 9.3. 

 Permuting the labels on the individual lottery machine outcomes, we find that each of 

these outcome sets can be mapped onto any other. For example the outcome set  

[odd, odd, …, even, odd, even, even]N 

can be mapped onto the outcome set 

all-odd = [odd, odd, …, odd, odd, odd, odd]N 

We take the lottery machines in the positions marked “even” in the first outcome set and apply a 

permutation of labels that switches odd and even numbers. It follows that all the outcome sets of 

odd and even outcomes in this subsection have equal chances. 

10.3	Frequencies	of	even	outcomes	

 Our concern is not just the outcome sets of Section 10.2. We want to know the chances of 

n even numbers in N independent draws. Those chances are assigned to larger outcome sets. The 

case of n=0 is the all-odd tuple above. The case of n=1 is realized as the union of N outcome sets 

1 even = [even, odd, …, odd, odd, odd, odd]N 

  ∪ [odd, even, …, odd, odd, odd, odd]N  ∪ 

… 

  ∪ [odd, odd, …, odd, odd, odd, even]N 
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In general, the number of these outcome sets to be joined to form the set of n even outcomes is 

given by the combinatorial factor C(N,n) = N!/(n! (N-n)!). This combinatorial factor is always 

finite for finite N and n. It follows that there are still infinitely many N-tuples of individual 

outcome numbers that realize the outcome of exactly n even numbers in any order amongst the N 

drawings; and also infinitely N-tuples in the complement set.  

 As a result it is natural to assign the chance value V∞ to each outcome of n even numbers 

among N draws, for any n. We might then continue with the natural supposition that each 

outcome of n even numbers among N draws has the same chance, for any n. I drew just this 

conclusion in an earlier draft of this chapter and reported it in a paper (Norton, manuscript, §9). 

 Unfortunately the inference to this conclusion is a fallacy and I retract it. That the 

outcomes have the same chance requires that they be in the same sector of the infinite logic. The 

values V∞ reported might be drawn from different sectors. Then they would have an immediate 

meaning only within each sector. To conclude that they represent equal chances requires further 

argumentation. Ideally, we would need to show that permuting the labels takes us from one 

outcome of n even numbers to any other, which would show that they are within the same sector 

after all. This has not been shown and cannot be shown. 

 For it is easy to show that the outcome set of n=0 even numbers drawn cannot be mapped 

by a label permutation onto the outcome set of n even numbers drawn, where 0 < n < N. To see 

this, for the purpose of a reductio, assume otherwise: that there is such a mapping for some 

particular value of 0 < n < N. Then a permutation of labels must include mappings of N-tuples of 

the form 

<o1,1, o1,2, o1,3, … o1,N>  ! <e1,1, ?, ?, …, ?>   

<o2,1, o2,2, o2,3, … o2,N>  ! <?, e2,2, ?, …, ?>   

… 

<oN,1, oN,2, oN,3, … oN,N>  ! <?, ?, ?, … , eN,N>   

Here o1,1, o1,2, … , oN,N are odd numbers that enter into N-tuples that map to N-tuples with even 

numbers e1,1, e2,2, …, eN,N in the positions shown. The “?, ?, ?, …” represent further numbers 

that may be odd or even, but have at least one odd number in each N-tuple. 

 Since the label permutations are carried out independently on each machine, it now 

follows that the label permutation on the set of machines must also include the map 
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<o1,1, o2,2, o3,3, …, oN,N>  ! <e1,1, e2,2, e3,3,  … , eN,N >   

However this mapping is not included in the mapping supposed, for an N-tuple drawn from n=0 

even outcome set is mapped to an N-tuple drawn from the n=N even outcome set. This 

contradiction completes the reductio. 

 While not all outcome sets with n even numbers can be mapped onto each other. There 

are a few mappings that do succeed. We can map the outcome set with n even numbers among N 

draws onto the outcome set with N-n even outcomes merely by a permutation that switches 

everywhere odd and even numbers in each lottery machine. Thus we have 

Ch(n even) = Ch(N – n even) for all 0 ≤ n ≤ N 

In Appendix B, it is shown that this last possibility exhausts all the possibilities for equivalences 

under label permutation in the case of n even outcomes. That is, it is shown that a label 

permutation cannot map the outcome set n even to the outcome set m even, unless n = N – m. 

 In the following two sections, we shall see that we can infer enough equivalences under 

label permutation to show that the essential point reported is correct: the chances of n even 

outcomes do not make likely a stabilization of frequencies that accord with probabilistic 

expectations. 

10.4	The	Chances	of	N	odd	versus	N	even	in	N	drawings	

 The simplest case arises with the two extremes all-even and all-odd. They are in the same 

sector since a permutation of the individual lottery labels can map one onto the other. To probe 

their chance behavior, consider another property: 

div m  = set of numbers divisible by m 

and its complement not div m. The outcomes even and odd are the special case of m=2. We have 

from earlier that a permutation of labels can map each of even, odd, div m, not div m onto each 

other. So they individually have the same chance. It now follows immediately that the same is 

true of the N tuples 

all-even = [even, even, …, even, even, even, even]N 

all-odd = [odd, odd, …, odd, odd, odd, odd]N 

all-div m = [div m, div m, …, div m, div m, div m, div m ]N 

all-not div m = [ not div m, not div m, …, not div m, not div m, not div m, not div m ]N 
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They have equal chance, so we may write: 

Ch(N div m in N) = Ch(N even in N) = Ch(N odd in N) =  Ch(N not-div m in N) 

These equalities differ markedly from probabilistic expectations. Since we have P(div m) = 1/m 

and P(not-div m) = (m-1)/m, we expect 

P(N div m in N) = [ 1/m ]N << P(N not-div m in N) = [(m-1)/m ]N 

That is, the outcome (N not-div m in N) is (m-1)N times as probable as outcome (N div m in N). It 

is the basis of the probabilistic expectation that not-div m outcomes are likely to occur much 

more frequently than div m outcomes (for m >2). The equalities of the chance function do not 

reflect this probabilistic favoring or the associated expectations concerning frequencies. 

10.5	Chances	of	Intermediate	n	even	drawings	in	N	drawings	

 The last section shows that the chance of frequencies of div m in N drawings is 

independent of m for the extreme n = N case of all-div m. This independence of the chances from 

m holds for all values of n. That is, the chance of 0, 1, 2, … occurrences of a div m number in N 

drawings is independent of the value of m. Below I sketch a diagrammatic proof for the simple 

case of N=2. The proof will then be generalized to all N. 

 In two independent drawings, we will represent the four possible outcomes sets as 

OO = [odd, odd]   OE = [odd, even]   EO = [even, odd]   EE = [even, even] 

The frequency n = 0 corresponds to OO; n = 1 to (OE or EO); and n = 2 to EE. Figure 1 one lays 

out the pairs of individual number outcomes in a grid. (It only shows a finite corner of the 

infinite grid.) The first number drawn is on the horizontal axis and the second number drawn is 

on the vertical axis. The set of pairs that comprise OO is shown by the distribution of the labels 

“OO”; and so on for the remaining outcomes.  
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Figure 1. Distribution of outcomes OO, OE, EO and EE in a two lottery outcome space 

 

We will permute the labels so that the outcome sets for n = 0,  n = 1 and n = 2 even outcomes 

coincide with the outcomes sets for n = 0,  n = 1 and n = 2 div 6 outcomes. 

 A permutation of the labels of the first lottery can be represented in the figure by leaving 

the labels in their positions on the axes and permuting the columns associated with the first 

lottery’s numbers. The requisite permutation shifts the first five odd numbered columns, 1, 3, 5, 

7, 9 to the left; and then places the first even numbered column 2 after it; and so on for the all the 

column numbers: five odd numbered columns, then an even numbered column, repeatedly. The 

result is shown in Figure 2. 
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Figure 2. Result of permuting the columns 

 

To complete the manipulation, we perform the same permutation on the labels of the second 

lottery. That is, we perform the corresponding permutation of the rows to which the second 

lottery’s numbers are associated. The result is shown in Figure 3  
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Figure 3. Result of permuting the columns and rows 

 

We read from Figure 3 that the outcomes have been relocated as follows 

n = 0 even outcomes (OO) coincides with n = 0 div 6 outcomes 

n = 1 even outcomes (OE or EO) coincides with n = 1 div 6 outcomes 

n = 2 even outcomes (EE) coincides with n = 2 div 6 outcomes 

Thus the chances of n even outcomes equals the chances of n div 6 outcomes, for all n. 

 The figure shows the manipulation for the case of m = 6. It is clear that it will succeed for 

any value of m>2. It follows that the chances of the frequencies are independent of whether we 

are asking after even numbers, or numbers divisible by 6 or 10 or 100 or 1000. That is, the 

chances of these frequencies do not conform with the probabilistic expectations that even 

numbers appear in repeated trials roughly half the time and that those divisible by 6 or 10 or 100 

or 1000 appear roughly 1/6 or 1/10 or 1/100 or 1/1000th the time, respectively. 
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10.6	The	general	case12	

 The general result is that the chances of n div m outcomes in N drawings is independent 

of the value of m for all 0  ≤ n ≤ N. 

 To see it, first note that there is a permutation of the label numbers of one lottery machine 

such that the set div m is mapped exactly onto the set div k for any m, k > 1. That is, under the 

permutation, all number labels divisible by m are switched with all number labels divisible by k. 

The construction of the N=2 case displays the permutation for the case of m = 2 and k = 6. 

  Consider any N-tuple of outcomes that has exactly n outcomes divisible by m, that is, is 

drawn from the set div m. Under the permutation, this N-tuple is mapped to one that has exactly n 

outcomes divisible by k, that is, drawn from the set div k. Now consider the set of all N-tuples 

with exactly n outcomes divisible by m. The same permutation will map it to the set of all N-

tuples with exactly n outcomes divisible by k. Thus label independence entails that the two sets 

have the same chance and we can write: 

Ch(n div m in N) = Ch(n div k in N) = Ch(n even in N) 

for all 0 ≤ n ≤ N  and any m, k > 1. Since the outcomes of n even and N-n even may be mapped 

into each other, we can extend these equalities of chances: 

Ch(n div m in N) = Ch(n even in N) = Ch(N-n even in N) =  Ch(N-n even m in N) 

for all 0 ≤ n ≤ N.  

10.7	Frequencies	do	not	give	us	probabilities	

 What these results show is that the tempting strategy for reintroducing probabilities fails. 

The temptation is to say “Do the experiment. Run many independent drawings from lottery 

machines. Read the limiting frequencies in many drawings. They will reveal to you the 

probabilities hidden in the lottery machines!”  

 The strategy fails since the chances of different frequencies do not mass in a way that 

would reveal probabilities. Probabilistic intuitions would lead us to expect that drawing all N 

numbers divisible by 100 in N draws would be much less likely that drawing all N numbers not 

divisible by 100 in N draws. Yet they have the same chance so we have no reason to expect the 

second over the first. 

                                                
12 I thank Matthew W. Parker for this proof. 
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 These same probabilistic intuitions would lead us to expect that the most likely numbers 

of even drawings in N drawings would cluster around N/2. Numbers of even drawings far from 

N/2 would be unlikely. From this clustering, we could recover a probability of one half for an 

even number. The trouble is that this same clustering around N/2 is likely for outcomes divisible 

by 10 or 100 or 1000. We would then have to infer that numbers divisible by 10, 100 or 1000 or 

any other number greater than 2 also have a probability of one half. No ordinary probability 

distribution can realize these probabilities.13 

 The calculations reviewed in this Section and in Appendix B show that the chances of 

securing n or m even numbers in N repeated independent draws from infinite lottery machines 

are incomparable for most n and m. Thus this section leaves open whether imposition of further 

background facts will lead to further relations that will lead to chances favoring certain 

frequencies of outcomes. However what has been shown is that if there is any favoring, it is not 

of a type that can be used to reveal underlying probabilities as long as the fair character of the 

infinite lottery is preserved. 

11.	Failure	of	the	Containment	Principle	
 This infinite lottery logic will likely be discomforting for someone whose intuitions are 

guided by probability theory. One source of discomfort may be that the removal of elements 

from an outcome set commonly does not reduce the chances of the outcome. It would seem 

natural that the set of even numbered outcomes {2, 4, 6, 8, …} must be assigned greater chance 

than the set of every fourth numbered outcome {4, 8, 12, 16, …}. This second set is properly 

contained in the first. However the present logic assigns the same chance to both. We might 

express the intuition more clearly as: 

                                                
13 Assume otherwise. Then the probability of drawing a number divisible by 2r is one half, for 

any r>1. Since the probability of drawing a number divisible by 2 is also one half, it follows the 

probability of drawing numbers divisible only by 21, 22, …, 2r-1, is zero. But since r can be set 

as large as we like, we infer that the chance of a number divisible by any power of two is zero, 

which contradicts the probability of one half for even numbers. 
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The containment principle. If a set of outcomes A is properly contained in a set of 

outcomes B, then the chance of A is strictly less than the chance of B: 

Ch(A) < Ch(B). 

If the background facts support it, there is no problem with a logic that conforms with this 

principle. However the principle cannot lay claim to a preferred status. As is always the case, 

whether a logic has some feature is decided by prevailing background facts. The background fact 

of label independence entails the failure of the containment principle. 

 Two further considerations reduce the appeal of the principle: 

 First, the containment principle has not been uniformly respected in familiar probabilistic 

applications. There is a probability zero of a dart hitting any particular point on a dartboard of 

continuum many points. The same zero probability is assigned to the dart hitting any of a 

countable infinity of points on the dartboard, even if that set contains the single point originally 

considered. In another example, we follow de Finetti’s prescription for the infinite lottery and 

employ a probability measure that is only finitely additive. Then the probability of drawing a one 

is the same the probability of drawing any number less one hundred million. Both are zero 

probability outcomes. 

 Second, the containment principle by itself is insufficient to induce chances that can 

compare all sets of outcomes. Since the set of even numbered outcomes is disjoint from the set of 

odd multiples of three {3, 9, 15, 21, 27, …}, we are left unable to compare their chances. In such 

cases, we may be inclined to retain the chance assignments of the present logic: if disjoint 

outcome sets (and their complements) are equinumerous, then they are assigned the same chance. 

What results, however, is a non-transitive comparison relation for chances. We have from 

considerations of equinumerosity that: 

 Ch({2, 4, 6, 8, …}) = Ch({3, 9, 15, 21, 27, …}) 

Ch({4, 8, 12, 16, …}) = Ch({3, 9, 15, 21, 27, …}) 

If transitivity of the comparison relation for chances is supposed, it follows that: 

Ch({4, 8, 12, 16, …}) = Ch({2, 4, 6, 8, …}). 

This equality contradicts the containment principle, which tells us that: 

Ch({4, 8, 12, 16, …}) < Ch({2, 4, 6, 8, …}). 
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If transitivity is dropped, we will be unable to assign a single value to each chance, but only 

assign pairwise comparisons of strength. Presumably some accommodation of the two 

approaches can be found eventually, but it may not be pretty or simple. 

 In sum, we should use the containment principle when the background facts call for it. 

When they do not call for it, we should feel no special loss at its failure. 

12.	Is	An	Infinite	Lottery	Machine	Physically	Possible?	
 The discussion so far has presumed the physical possibility of an infinite lottery machine. 

In what sense are they physically possible? Elsewhere (Norton, 2018; Norton and Pruss, 2018, 

Norton, manuscript a) I have pursued the question is greater detail. The answer proves to be 

more complicated and much more interesting than one might first imagine. 

 The natural starting point is to seek some design that employs ordinary probabilistic 

randomizers, such as coin tosses, die throws and pointers spun on dials. We run into difficulties 

immediately. We will need infinite powers of discrimination to distinguish among the infinitely 

many possible pointer outcomes crammed onto the scale etched onto the surface of the dial. If 

we use coins or dice, we will need to use infinitely many of them to create an outcome space big 

enough to hold the countable infinity of outcomes of the infinite lottery machine. 

 If we are undaunted by the task of flipping infinitely many coins or reading pointer 

positions with infinite precision, the prospects for an infinite lottery machine seem good. 

Infinitely many coin tosses produce an outcome space of continuum size, that is, an order of 

infinity higher than that needed for the countably infinite outcomes of the infinite lottery 

machine. Somewhere in it we would expect to find a countable infinity of outcomes that 

implement an infinite lottery machine. 

 However in Norton (2018), as corrected by Norton and Pruss (2018), we found a 

maddening problem.  With some ingenuity, we can use ordinary probabilistic randomizers to 

form infinite lottery machines. However in every design we could imagine, there was always a 

probability of zero that the machine would operate successfully. The persistence and 

recalcitrance of the failure gave the clue that the problem was not merely one of an impoverished 

imagination for the design of the infinite lottery machines. There was some unidentified matter 

of principle defeating all attempts. 
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 In Norton (manuscript a) that matter of principle is recovered from what I would 

otherwise have imagined to be the arcana of measure theory and axiomatic set theory. The 

probabilistic randomizers will provide us with an outcome space expansive enough to host the 

infinite lottery outcomes that encode results “1,” “2,” “3,” and so on. If a probability is defined 

for each of these outcomes, then that probability must be the same for each and can only be zero. 

For otherwise, if it is greater than zero, we need only sum finitely many of the equal, non-zero 

probabilities P(1), P(2), P(3), … to arrive at a sum greater than one. That sum contradicts the 

normalization of the probability measure to unity. If, however, we set each of the probabilities 

P(1), P(2), P(3), … to zero, then the probability that any one of the infinite lottery outcomes, 1, 2, 

3, …, arises is zero. For it is given by the sum  

P(1) + P(2) + P(3) + … = 0 + 0 + 0 + … = 0 

That means that the infinite lottery machine operates successfully only with probability zero. 

 The escape is to use infinite lottery outcomes to encode results “1,” “2,” “3,” … that are 

probabilistically nonmeasurable. Norton (manuscript a) describes two designs that do this. The 

same difficulty besets both. Their designs presume the existence of the nonmeasurable outcome 

sets, but do not specify which those sets are. That means that, after the randomizers settle into 

some end state, we cannot know the outcome set to which they belong. The number selected as 

the infinite lottery outcome is inaccessible to the user, rendering the device useless. 

 It turns out that, as far as we know, this failure must always happen. For all known 

examples of nonmeasurable sets are nonconstructive and we have some reason to expect that 

none can be constructed. That means that we are allowed to assume their existence, commonly 

by virtue of the axiom of choice of axiomatic set theory, or something equivalent to it.14 

However there is no explicit description for which they are. We are caught in a dilemma. If an 

infinite lottery machine based on ordinary probabilistic randomizers is to return a result we can 

read, it will do so successfully only with probability zero. If we demand a probability of success 

greater than zero, then we can have it, but the result of the infinite lottery machine will be 

inaccessible to us. 

 These results apply only to infinite lottery machines constructed from ordinary 

probabilistic randomizers. They do not preclude other designs. Norton (2018, manuscript a) 

                                                
14 For more on nonmeasurable sets and the axiom of choice, see Chapter 14. 
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describes designs based on quantum mechanical systems. In the simplest, one takes a quantum 

particle in a definite momentum state. It consists of a wave uniformly distributed over space in 

the direction of the momentum. Divide that space into a countable infinity of intervals of the 

same size, numbered 1, 2, 3, …. If we now perform a measurement on the position of the particle, 

it will manifest with equal chances in each interval. An infinite lottery machine has been 

implemented. 

 While the exercise of designing these infinite lottery machines is entertaining, I take a 

more permissive view of them. For hundreds of years, the paradigm of a probabilistic system in 

probability theory was the coin toss, die throw and card shuffle. Yet prior to quantum theory, our 

best science told us that none of these was a true randomizer. Probability theory thrived merely 

by supposing that these real randomizers were imperfect surrogates for true but unrealizable 

probabilistic randomizers: idealized ideal coin tosses, die throws and card shuffles. We can, I 

propose, take the same attitude to infinite lottery machines. They are an idealized case that can 

be added to our repertoire of idealized randomizers. We can and should ask what inductive logic 

is adapted them. 

 Finally, we should separate the issue of the cogency of the design of an infinite lottery 

machine from the cogency of the infinite lottery logic described in this chapter. We may not be 

able to specify explicitly which are the infinite lottery outcomes of a probabilistically based 

machine. But, on the authority of the axiom of choice, they exist. So we can ask what chance 

each has of being realized; and we should expect a suitable logic of induction to tell us. 

13.	Conclusion	
 The infinite lottery remains one of the most popular arguments used to establish that the 

countable additivity of a probability measure must be reduced to mere finite additivity. What this 

chapter shows is that the implications of the infinite lottery are still stronger. It requires also that 

we abandon finite additivity. The existing literature has been reluctant to accept this further 

conclusion for it requires abandoning probabilities as the gauge of the possibility of the various 

outcomes. However, as I argued in Section 6, to persist in the use of a finitely additive 

probability measure for this purpose is to change the problem posed by adding further conditions, 
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such as a preferred numbering of the outcomes. The original infinite lottery problem is solved by 

a non-additive logic such as developed in Sections 7 and 8. 

 The new chance logic of these Sections will seem strange to those already steeped in 

probabilistic thinking. The strangeness is merely a result of its unfamiliarity. It is easy to lose 

sight of how abstruse is even the notion of probability. It was once unfamiliar to all of us. 

Imagine trying to convey to someone new to it that there is a probability of 0.5 that their unborn 

child will be a girl. We may eventually convey the idea by saying: 

“What is the probability of a girl? 

It is the same as getting heads on a fair coin toss.” 

This formulation uses a physical randomizer as a benchmarking device. 

 Now consider the cosmologists described in Appendix A. They consider the infinitely 

many like and unlike patches spawned by eternal inflation. They find the chance properties of the 

patches to conform with label independence; and they find themselves confused by the resulting 

chance behavior. We should be able to use the same benchmarking strategy to clarify these 

chance properties for them: 

“What is the chance of a like patch? 

It is the same as the chance of an even number in an infinite, fair lottery.” 
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Appendix	A:	The	“Measure	Problem”	in	Eternal	Inflation15	

A1	Inflation	and	Eternal	Inflation	

 Inflation in cosmology is a brief period of very rapid expansion in the very early universe. 

It has the same effect as taking a wrinkled rubber sheet and stretching it to an enormous size. The 

wrinkles are all but eliminated. This smoothing process motivated in large part the introduction 

of inflation into cosmological theory in the 1980s. The smoothing would explain why the cosmic 

matter distribution is so uniform on the largest scale and why the geometry of space is so close to 

flat. It also explains why, contrary to expectations of exotic particle theories, we see no magnetic 

monopoles. The inflationary stretching of space exiles them to parts of the cosmos we cannot see. 

 Under continuing criticism, the status of inflation in modern cosmology remains mixed. It 

was unclear that there ever was a pressing need to explain these features of the cosmos through 

further theory. The matter driving inflation was initially supposed to come from novel particle 

physics: a “GUT,” that is, a grand unified theory. Those efforts failed. The driving matter is now 

just a novel matter field, the inflaton, posited ad hoc with just the right properties. Moreover, the 

search for a viable form of inflation has led to multiple versions, so that it is not so much a single 

theory as a program of research. 

 Nonetheless, the notion has proven quite appealing and it has become a staple, if debated, 

topic in cosmology. The strongest argument for it comes from its treatment of quantum 

fluctuations. During inflation, tiny, evanescent quantum fluctuations are amplified to cosmic 

scales, where they are “frozen in” as classical perturbations in matter density that match the 

nonuniformities we observe now. 

 The original idea was that there would be an early period of inflation, driven by the 

exotic matter of the inflaton field. This rapid expansion would cease and be followed by a more 

slowly expanding state, driven by familiar forms of matter and radiation. Eternal inflation is a 

variation in which this cessation of inflation never happens universally. Rather it happens in 
                                                
15 For a fuller discussion of the measure problem and its inductive analysis, see Norton 

(manuscript). 
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patches, with each patch reverting to a modestly expanding universe with ordinary matter. Each 

is a pocket universe or little island universe. Outside these patches, inflation continues. Since 

inflating space grows so much faster than the space of the patches, the universe overall persists 

eternally in an inflating state, continuously spawning non-inflating pocket universes. One of 

these pocket universes is our observable universe. 

A2	The	Measure	problem:	Should	we	be	here?	

 The immediate question asked of eternal inflation is whether we should expect a spawned 

pocket universe to be like our observable universe. It would count against eternal inflation if a 

universe like ours is exceptional among the non-inflating universes spawned. The measure 

problem is the problem of finding a way to quantify how much we should expect patches like 

ours. 

 The difficulty can be seen in a simplified version of the problem in which we introduce a 

binary classification: pocket universes like ours versus pocket universes unlike ours. We gauge 

the extent to which a universe like ours will come about in eternal inflation by asking after the 

distribution of like and unlike over the pocket universes. It is natural to ask for the probabilities 

of each. That query leads to trouble. 

 Alan Guth introduced inflation to cosmology in the early 1980s. Here is his development 

of the problem (2007, p. 11): 

 However, as soon as one attempts to define probabilities in an eternally 

inflating spacetime, one discovers ambiguities. The problem is that the sample 

space is infinite, in that an eternally inflating universe produces an infinite number 

of pocket universes. The fraction of universes with any particular property is 

therefore equal to infinity divided by infinity—a meaningless ratio. To obtain a 

well-defined answer, one needs to invoke some method of regularization. 

Since there is a countable infinity of these pocket universes, we can see the similarity to 

the infinite lottery problem. It is like asking after the distribution of even and odd tickets 

in the lottery. Guth continues the above remarks by making the connection: 

 To understand the nature of the problem, it is useful to think about the integers 

as a model system with an infinite number of entities. We can ask, for example, 

what fraction of the integers are odd. Most people would presumably say that the 
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answer is 1/2, since the integers alternate between odd and even. That is, if the 

string of integers is truncated after the Nth, then the fraction of odd integers in the 

string is exactly 1/2 if N is even, and is (N + 1)/2N if N is odd. In any case, the 

fraction approaches 1/2 as N approaches infinity. 

 However, the ambiguity of the answer can be seen if one imagines other 

orderings for the integers. One could, if one wished, order the integers as 

1, 3, 2, 5, 7, 4, 9, 11, 6 ,...,                                            (11) 

always writing two odd integers followed by one even integer. This series includes 

each integer exactly once, just like the usual sequence (1, 2, 3, 4,...). The integers 

are just arranged in an unusual order. However, if we truncate the sequence shown 

in Eq. (11) after the Nth entry, and then take the limit N → ∞, we would conclude 

that 2/3 of the integers are odd. Thus, we find that the definition of probability on 

an infinite set requires some method of truncation, and that the answer can depend 

nontrivially on the method that is used. 

Guth correctly recognizes that recovering a well-defined probability requires us to add something. 

He calls it “regularization” and it corresponds to imposing an order on the set of outcomes quite 

analogous to that used in Section 6 above. The difficulty, of course, is that there are multiple 

choices for the ordering and each typically leads to a different probability measure. 

 In including regularization in the set up of the problem, Guth presumes more than is 

needed to arrive at it. The same problem is generated in Section 5 above merely by matching 

one-to-one infinite sets of the same cardinality. Paul Steinhardt is also one of the founding 

figures of inflationary cosmology and now one of its sternest critics. He sets up the problem 

using cardinality considerations alone (2001, p. 42): 

 In an eternally inflating universe, an infinite number of islands will have 

properties like the ones we observe, but an infinite number will not. The true 

outcome of inflation was best summarized by Guth: “In an eternally inflating 

universe, anything that can happen will happen; in fact, it will happen an infinite 

number of times.” 

 So is our universe the exception or the rule? In an infinite collection of islands, 

it is hard to tell. As an analogy, suppose you have a sack containing a known finite 

number of quarters and pennies. If you reach in and pick a coin randomly, you can 



 42 

make a firm prediction about which coin you are most likely to choose. If the sack 

contains an infinite number of quarter and pennies, though, you cannot. To try to 

assess the probabilities, you sort the coins into piles. You start by putting one 

quarter into the pile, then one penny, then a second quarter, then a second penny, 

and so on. This procedure gives you the impression that there is an equal number of 

each denomination. But then you try a different system, first piling 10 quarters, then 

one penny, then 10 quarters, then another penny, and so on. Now you have the 

impression that there are 10 quarters for every penny. 

 Which method of counting out the coins is right? The answer is neither. For 

an infinite collection of coins, there are an infinite number of ways of sorting that 

produce an infinite range of probabilities. So there is no legitimate way to judge 

which coin is more likely. By the same reasoning, there is no way to judge which 

kind of island is more likely in an eternally inflating universe. 

A3	No	Probabilities—No	Predictions	

 Guth seems optimistic that there will be a solution to the measure problem. Steinhardt is 

pessimistic and uses his pessimism as grounds for criticizing inflationary theory. However they 

agree that securing probabilities is essential to eternal inflation as a predictive theory. Guth (2007, 

p. 11) writes: “To extract predictions from the theory, we must therefore learn to distinguish the 

probable from the improbable.” Steinhardt (2011, p. 42) is more forthright in his concern: 

 Now you should be disturbed. What does it mean to say that inflation makes 

certain predictions—that, for example, the universe is uniform or has scale-

invariant fluctuations—if anything that can happen will happen an infinite number 

of times? And if the theory does not make testable predictions, how can 

cosmologists claim that the theory agrees with observations, as they routinely do? 

He then reviews with disdain the idea of imposing a measure on the islands (pp. 42-43): 

An alternative strategy supposes that islands like our observable universe are the 

most likely outcome of inflation. Proponents of this approach impose a so-called 

measure, a specific rule for weighting which kinds of islands are most likely—

analogous to declaring that we must take three quarters for every five pennies when 

drawing coins from our sack. The notion of a measure, an ad hoc addition, is an 
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open admission that in inflationary theory on its own does not explain or predict 

anything.  

Guth and Steinhardt share an all or nothing view: if probabilities cannot be secured, then the 

theory has failed as an instrument of prediction. This view is based on a widely accepted but 

false presumption: that the only precise way to deal with uncertainties is through probabilities. A 

major goal of this entire work is to show that this presumption is too severe and too narrow. We 

can still deal formally with uncertainty when probabilities are inapplicable. The background facts 

may merely warrant an inductive logic that is not probabilistic. In this case, the inductive logic 

warranted is summarized in the chance function (10). 

 We should separate the question of whether there is an inductive logic native to the 

situation from the question of whether we can secure the sorts of prediction we might like. In the 

case of eternal inflation, there is a well-defined inductive logic applicable. However it turns out 

not to support the sorts of predictions the cosmologists seek. The difficulty is that the inductive 

logic assigns the same chance V∞ to any universe in which there are infinitely many like pocket 

universes and infinitely many unlike pocket universes. Since this combination encompasses 

virtually all the possibilities that can be realized,16 the logic is unable to discriminate among 

them usefully, that is, in a way that might privilege like universes. 

 Some prediction is still possible. The chance function (10) has predictive powers, as 

shown in Sections 9 and 10 above. They may be weaker than the predictive powers of a full 

probability measure. But that is all that the specification of the infinite lottery permits. 

 More generally, we cannot demand that the universe gives us theories of the type that we 

happen to like. We may prefer theories of indeterministic processes always to be endowed with 

probabilities, for they enable strong predictions. However the world is under no obligation to 

provide such theories. Probabilities are not provided by the indeterministic systems described in 

a later chapter; and the theories are correspondingly weak in predictions. That fact does not make 

them failures as theories. They just happen to be the best the world will give us. 

                                                
16 There is an uncountable infinity of possible distributions of like and unlike over the countable 

infinity of pocket universes. The case in the main text occupies all of them excepting a countable 

infinity of exceptions that arise in universes finitely many like pocket universes, or in universes 

with finitely many unlike universes. 
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Appendix	B:	Inequivalences	Under	Label	Permutation	of	Outcomes	of	

Many	Independent	Drawings	
 The numbers drawn independently from N infinite lottery machines form an N-tuple 

<n1, n2, n3, …, nN>N. These N-tuples can be grouped into “ordered parity sets” such as 

[odd, odd, …, even, odd, even, even]N defined in the main text in Section 10.2. The outcome sets 

of primary interest are those with n even numbers in any order. They are the “unordered parity 

sets,” written “(n, N)”: 

(n, N) = Union of all ordered parity sets [parity, …., parity]N with exactly n even. 

where parity is either even or odd. The following is to be shown: 

 

Theorem 

No label permutation can map the unordered parity set (n, N) onto (m, N), for all 0 ≤ n ≤ N, 

excepting the trivial case of n = m, implemented by an identity map on labels; and the case of n = 

N – m, implemented by a label permutation that switches all odd with all even numbers. 

 

Proof 
 The case of n = 0 and 0 < m < N has been shown in Section 10.3. Switching “even” for 

“odd” in that demonstration shows the case of n = N and 0 < m < N. Here we need only consider  

0 < n, m < N in the theorem. 

 Assume for purposes of a reductio that there exists a label permutation f that maps the N-

tuple <n1, n2, n3, …, nN>N to <f(n1), f(n2), f(n3), …, f(nN)>N such that unordered parity set (n, N) 

is mapped onto (m, N), where n does not equal N-m.  

 It may be the case that a label permutation maps every member of some ordered parity 

set of (n, N) onto elements of the same ordered parity set of (m, N). The mapping is “onto” so 

that the image of the ordered parity set of (n, N) coincides with the ordered parity set of  (m, N). 

We shall say that the label permutation respects ordered parity sets just if this last property is true 

for every ordered parity set of (n, N). 

 There are N!/(n!(N-n)!) ordered parity sets that are subsets of (n, N); and N!/(m!(N-m)!) 

ordered parity sets that are subsets of (m, N). Unless we have the cases excepted in the theorem, 
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n = m or n = N - m, these two combinatorial factors are unequal. It follows that there can be no 

one-one label permutation that respects ordered parity sets for the cases considered in the 

theorem. 

 For example, there are four ordered parity sets for (1,4): EOOO, OEOO, OOEO, OOOE, 

written here in compact notation with “E” = even and “O” = odd. There are six ordered parity 

sets for (2,4): EEOO, EOEO, EOOE, OEEO, OOEE. A label permutation that respects ordered 

parity sets would have to map the members of each of the EEOO, EOEO, … of (2,4) onto 

distinct ordered parity sets EOOO, OEOO, … of (1,4). Since there are six of the former and four 

of the latter, this is impossible. 

 Set n as the number of evens for which N!/(n!(N-n)!) > N!/(m!(N-m)!). (There will always 

be an inequality since the case of equality, n = N – m, is excluded.) Since the label permutation 

cannot respect ordered parity sets, it follows that the permutation must “cross over” the 

boundaries somewhere of the ordered parity sets. That is, there must be two N-tuples that map as 

R = <r1, r2, r3, …, rN>N maps to f(R) = <f(r1), f(r2), f(r3), …, f(rN)>N 

S = <s1, s2, s3, …, sN>N maps to f(S) = <f(s1), f(s2), f(s3), …, f(sN)>N 

where f(R) and f(S) belong to the same ordered parity set of (m, N), but R and S belong to 

different ordered parity sets of (n, N). 

 To proceed, we form a new N-tuple T = <t1, t2, t3, …, tN>N by the rule 

ti = ri if ri is even; or if both ri and si are odd. 

= si if ri is odd and si is even. 

Each of R and S have n even numbers in their tuples. However the positioning of the even 

numbers in their N-tuples must be different somewhere since R and S come from different 

ordered parity sets. The definition of T is designed to collect all the even numbers from R and S 

such that T has at least one more even number than R and S. For example, if R = <1, 1, 2, 2> 

and S = <1, 2, 1, 2>, then T = <1, 2, 2, 2>. That is, T belongs to an unordered parity set, (n’, N), 

where n’ > n. 

 The label permutation f maps T as 

T = <t1, t2, t3, …, tN>N maps to f(T) = <f(t1), f(t2), f(t3), …, f(nN)>N 

Each f(ti) is either f(ri) or f(si). Since f(R) and f(S) both are members of the same ordered parity 

set of (m, N), it follows that f(T) is a member of the same ordered parity set (m, N). That is, the 
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label permutation f, maps an N-tuple T in (n’, N), where n’ > n, to an N-tuple f(T) in (m, N). 

Since a label permutation is invertible, it follows that there is no N-tuple in (n, N) that the label 

permutation maps to f(T). This mapping of T contradicts the initial assumption that the label 

permutation maps (n, N) to (m, N) and completes the reductio needed to establish the theorem. 
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