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1.	Introduction	
 The previous chapter examined the inductive logic applicable to an infinite lottery 

machine. Such a machine generates a countably infinite set of outcomes, that is, there are as 

many outcomes as natural numbers, 1, 2, 3, … We found there that, if the lottery machine is to 

operate without favoring any particular outcome, the inductive logic native to the system is not 

probabilistic. A countably infinite set is the smallest in the hierarchy of infinities. The next 

routinely considered is a continuum-sized set, such as given by the set of all real numbers or 

even just by the set of all real numbers in some interval, from, say, 0 to 1. 

 It is easy to fall into thinking that the problems of inductive inference with countably 

infinite sets do not arise for outcome sets of continuum size. For a familiar structure in 

probability theory is the uniform distribution of probabilities over some interval of real numbers. 

One might think that this probability distribution provides a logic that treats each outcome in a 

continuum-sized set equally, thereby doing what no probability distribution could do for a 

countably infinite set. That would be a mistake. A continuum-sized set is literally infinitely more 

complicated than a countably infinite set. If we simply ask that each outcome in a continuum-

sized set be treated equally in the inductive logic, then just about every problem that arose with 

the countably infinite case reappears; and then more. 

                                                
1 My thanks to Jeremy Butterfield for a close reading of this chapter that led to many corrections. 
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 This chapter will explore what sorts of inductive logics can implement uniformity of 

chance over an outcome set of continuum size. The notion of uniformity used is label 

independence, as already developed in the previous chapter. To start, we will presume the 

outcome set is “bare,” that is, it has no further structure beyond its continuum size. Then, in 

Section 2 below, we shall see that label independence imposes on it an inductive logic something 

like the infinite lottery machine inductive logic, but with more sectors. This is an unfamiliar 

logic, remote from a probabilistic logic. 

 If we seek a sense of uniformity of chance compatible with a probabilistic logic, we must 

weaken the requirement of label independence. It will be weakened in successive sections in 

three stages. In Section 3, the unrestricted requirement of label independence is weakened by 

requiring that the independence holds only for permutations that preserve a σ-field of subsets of 

a continuum-sized outcome set. This is a natural first step, since probability measures in 

continuum sized outcome sets are standardly only defined over such subsets. We will find that 

this weakening is insufficient. A probability measure fails to conform with the weakened 

requirement of label independence. The failure is not remedied by a further weakening that only 

allows permutations that are involutions. The applicable logic turns out to be akin to that of the 

completely neutral support of Chapter 9.  

 In Section 4, label independence will be further weakened by assuming that the 

continuum outcome set has its own metrical structure, commonly the metrical geometry of a 

space. The permutations of label independence are restricted to those that preserve areas or 

volumes of this metrical geometry. This weakened version of label independence is, finally, 

compatible with a probabilistic logic: it is one that matches probabilities with the space’s areas or 

volumes. 

 The success, however, proves limited. For if the metrical space is infinite in area or 

volume, a probabilistic logic cannot provide uniformity of chances. It is easy to see that a 

metrically adapted label independence requires that this uniformity be expressed by the same 

inductive logic that applies to the infinite lottery machine. This inductive logic is the one that 

applies to the stochastic process of continuous creation of matter in Bondi, Gold and Hoyle’s 

steady state cosmology. Its application to this case is teased out in enough detail to return some 

curious results. 



 3 

 That this last inductive logic is applicable is demonstrated by decomposing the space into 

infinitely many parts. The parts are then reassembled in a way that respects the background 

metrical structure of the space, but precludes an additive measure. This construction is one of the 

simplest of a corner of mathematics that explores “paradoxical decompositions.” This literature 

is introduced in Section 5. It has explored more thoroughly the difficulties faced when we seek to 

use additive measures to gauge the size of sets in a metrical space. The construction of Section 4 

employed a decomposition into infinitely many parts. If our space had hyperbolic geometry, then 

a remarkable construction reported by Wagon (1994) shows that similar results can be achieved 

by decomposing the space into just three parts each of infinite measure. 

 This literature in paradoxical decompositions is the locus of nonmeasurable sets. These 

are sets in a metrical space to which no area or volume can be assigned consistently. While the 

difficulties for probability measures have so far arisen only in metrical spaces of infinite area or 

volume, these nonmeasurable sets become problematic for probability measures that match the 

areas and volumes of spaces with finite total area of volume. For such a probability measure will 

fail to assign a value to these nonmeasurable sets. Since these nonmeasurable sets impose a 

fundamental limitation on the use of probability measures in such spaces, they will be pursued in 

the remainder of the chapter. 

 Section 6 will review the simplest example, a Vitali set. Since a Vitali set is metrically 

nonmeasurable, it is beyond the reach of a probability measure adapted to the spatial metric. 

Instead, the chance that some outcome of a random process will be found in a Vitali set is shown 

to follow a familiar inductive logic, that of the infinite lottery machine. This section also 

discusses the awkwardness that nonmeasurable sets are not constructible by the means normally 

employed in set theory. Rather their existence is posited by the axiom of choice. 

 Finally in Section 7, I recount a nonmeasurable set described by Blackwell and Diaconis 

(1996) that comes closer to the sorts of systems commonly treated in accounts of inductive 

inference. It is a probabilistically nonmeasurable outcome set that arises with infinitely many 

coin tosses. In Section 8, I show that there is a weak inductive logic native to the example that I 

call an “ultrafilter logic.” 

 Overall, this investigation shows that, in many cases for a continuum sized outcome set, a 

probabilistic logic fails to apply. Other, non-probabilistic logics do apply locally to the specific 

problem posed. To recount them, they appear as: 
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Section 3.6, Section 4.2, Section 6.2: variations on an infinite lottery machine logic. 

Section 8: an ultrafilter logic. 

2.	The	Inductive	Logic	of	Uniform	Chances	in	a	Bare	Continuum	
 How might an inductive logic provide equal support or equal chances to every outcome 

in a space of continuum size? To answer, we need to specify the applicable notion of equality or 

uniformity of chances. That condition was developed in the previous chapter. An infinite lottery 

machine selects among a countable infinity of numbers fairly, that is, without favoring any. Each 

of the infinity of outcomes was assigned a unique number label. The fairness of the lottery was 

expressed in the condition:2 

Label independence  

All true statements pertinent to the chances of different outcomes remain true when 

the labels are arbitrarily permuted.  

That individual outcomes have equal chance is secured through propositions like: 

Outcomes numbered “37” and “18” have the same chance. 

The statement remains true no matter how we redistribute number labels across the outcomes. 

This indifference to the labels assigned to individual outcomes can only come about if all 

outcomes have the same chance. It is otherwise with statements like: 

Outcome number “37” has greater chance than outcome number “18.” 

This statement cannot remain true under a relabeling that switches labels “37” and “18,” 

assuming that the relation of “greater chance” is asymmetric. 

 The same applies to sets of outcomes: 

The odd numbered set of outcomes has the same chance 

as the even numbered set of outcomes. 

This statement remains true no matter how we may permute the number labels over the outcomes. 

Once again, this indifference of the sets to the numbers that label their elements can only come 
                                                
2 Here and below, a permutation is a one-one map on the label set or, correspondingly, on the 

outcome set. In the previous chapter, these sets were countable. In conformity with modern 

usage, the term “permutation” will continue to be used when the label of outcome set is 

continuum sized. The term is synonymous with bijection. 
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about if the two sets have the same chance. From similar statements, it follows that two sets of 

outcomes have the same chance just in case there is a permutation of the number labels that 

reassigns the numbers labeling the first set to the second set. 

 We now apply label independence to an outcome set of continuum size. We saw in the 

previous chapter that the chance values assigned to sets of outcomes of an infinite lottery 

machine drawing were divided into two sectors, the finite sector and the infinite sector. 

Replicating the procedure of the previous chapter for the new case of a continuum-sized outcome 

set, we find a similar, but more complicated structure, with three sectors. In the continuum case, 

the chance of an outcome in various outcome sets has the indicated values and associated 

informal interpretation: 

Finite set of outcomes of size n:  

A countable infinity of values, V(n), n = 1, 2, 3, …; “very unlikely.” 

Countably infinite set of outcomes: 

one value only, V(countably infinite); “unlikely.” 

Continuum-sized infinite set of outcomes:  

For an outcome set of continuum size and whose complement is continuum sized, 

one value only, V(continuum-co-continuum); “as likely as not.” 

For an outcome set of continuum size and whose complement is countably infinite, 

one value only, V(continuum-co-countable); “likely.” 

For an outcome set of continuum size and whose complement is finite,  

V(continuum-co-finite n), n = 1, 2, 3, …; “very likely.” 

The strength of support grows as we move down this list. The distance between the sectors is 

very great since we step up the hierarchy of infinites. We could, presumably, find many results 

that match those of the infinite lottery machine logic and many more that are not in it, because of 

its extra structure. However I will pass over this exercise. What matters for our purposes is that 

the fullest implementation of uniformity in a continuum-sized outcome set leads to a logic that is 

quite different from a probabilistic logic. 
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3.	Uniformity	over	a	σ-Field	of	Outcomes	

3.1	A	Uniform	Probability	Distribution	

 The logic of the last section is very different from a probabilistic logic. We were driven 

to this logic by the requirement of label independence. If we are to find conditions more 

conducive to a probabilistic logic, we will need to weaken this requirement. To map a pathway 

for the weakening, we need to see our goal: a uniform probability distribution over a continuum-

sized outcome set. Take the especially hospitable case3 of outcomes labeled by real numbers in 

the interval [0,1], that is the set of real numbers x, such that 0≤x≤1. The uniform probability 

distribution over this interval is derived from a probability density function  

p(x) = 1                                                            (1) 

and it is plotted in Figure 1. 

 

 
Figure 1. Uniform Probability distribution 

 

We extract probabilities from this probability density for sets of outcomes by computing the 

corresponding areas under the curve. The probability of an outcome labeled by a real number in 

the interval [a, b], where 0≤a≤b≤1, is the area shown in the figure and, of course, is equal to b-a. 

 This distribution certainly looks like it is choosing without favor among the continuum 

sized outcome labeled by [0,1]. The curve in Figure 1 is flat. It is also free of a problem facing a 

                                                
3 It is hospitable since, otherwise, if either end of the interval extends to infinity, a uniform non-

zero  probability density over the interval integrates to an infinite probability over the whole 

interval. 
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uniform probability distribution over a countably infinite outcome space: there is no countably 

additive, uniform probability distribution over the set. For such a distribution, each outcome 

would have to be assigned the same probability. If that value is zero, then their countably infinite 

sum is also zero, in contradiction with the requirement that the probabilities of all mutually 

exclusive outcomes must sum to unity. In contrast, the probability density (1) can assign zero 

probability to each of its continuum many outcomes without a corresponding difficulty. The 

summation of an uncountable infinity of zeroes is not a well-defined operation in standard 

probability theory. 

 In spite of these encouraging signs, the uniform probability distribution fails to 

implement the requirement of label independence. Take statements such as 

(Eq) The probability of events labeled by real numbers in [0, 0.5] is the same as 

the probability of events labeled by real numbers in [0.5, 1], 

Since the permutations admissible under label independence are entirely unrestricted and can 

scatter the labels about in all imaginable ways, it is easy to see that this and many other 

statements like it fail to remain true when the number labels permuted. Some restriction on the 

permutations is needed if label independence is to apply. 

3.2	The	σ-Field	

 One of the founding results of modern measure theory is that an additive measure, such 

as a probability measure, cannot assign a measure to all subsets of points in a space if the space 

is sufficiently large. Then there are many nonmeasurable sets. In Section 6 below, we shall see 

the standard example that arises in the interval [0,1] of real numbers, a Vitali set. As a result, 

probabilities can be defined only for a preferred subset of all the subsets of real numbers in [0,1]. 

The resulting restriction on the scope of probability measures has been built into the modern 

mathematical formalism from the outset. Kolmogorov (1950), the locus classicus of the modern 

tradition, introduces the distinction in his definitions. A probability measure is defined in the 

context of a set of “elementary events.” (p. 2, Ch. II) It is, for example, the set of outcomes 

labeled by real numbers in [0,1]. However a probability is not automatically defined for all 

subsets of this set. Rather, at the outset, probabilities are defined only for some of these subsets. 

These are the “random events” that form a field or algebra of sets. That is, the field or algebra is, 

by definition, closed under the finite union, finite intersection and complement of its members. 



 8 

When the set of elementary events is infinite, the fields or algebras are required to be σ-fields or 

σ-algebras. That is, they are closed under countably infinite unions and intersections. 

 Since a probability measure can assign probabilities only to some of the subsets of 

elementary event labeled by real numbers in [0,1], those sets have to be identified if the 

probability measure is to be adequately defined. The standard procedure is to work backwards 

from those probabilities that we cannot forego. In forming the probability distribution associated 

with (1), we expect that, whatever else, the probability assigned to all intervals of the form [a,b] 

above is b-a. So we include in the σ-field all intervals of the closed form [a,b] as well as half-

open [a,b), (a,b] and and open (a,b).4 We then require that the σ-field associated with the 

uniform distribution be one that contains all these intervals and is closed under all countable 

unions and intersections. It is not obvious that such a field should exist or, if so, that it is unique. 

Both are assured by the Extension Theorem (Kolmogorov, 1950, p. 17).5 

3.3	σ-Field	Adaptation	

 The uniform distribution does not assign probabilities to all subsets of the elementary 

events labeled by real numbers in [0,1]. It follows that the truth of statements concerning subsets 

of elementary events cannot be preserved under an arbitrary permutation of the numbering of the 

elementary events used in the statement. The permutation may take a set for which a probability 

is defined to one that is nonmeasurable. What is a true statement for the original set about its 

probability may fail to be true when those same number labels are applied to a nonmeasurable set, 

for the latter set has no probability. Thus the subsets in the σ-field are favored in the sense that a 

probability is defined for them only. Label independence fails. 

 If a probability density (1) is to conform with label independence, we need to weaken 

label independence. A first step in this weakening is to restrict the permutations so that they only 

map sets of events in the σ-field to sets of events in the σ-field.  

σ-Field Adapted Label independence  

                                                
4 By the usual convention [a,b) contains all x for which a≤x<b, etc. 
5 See Rosenthal (2006, Ch. 2) for a more expansive introduction to this result of great 

foundational importance. 
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All true statements pertinent to the chances of different outcomes remain true when 

the labels are permuted by all permutations that preserve the sets of the σ-field.  

A consequence is that sets of elementary events labeled by some open, half-open or closed 

interval of real numbers, always remain labeled by such intervals under all permutations to be 

considered.  

3.4	Failure	

 While σ-field adaptation is a necessary adaptation if the uniform probability density (1) is 

to be compatible with label independence, it turns out not to be sufficient. The uniform 

probability density (1) still does not conform with the weakened requirement. The permutations 

of the weakened requirement are continuous functions on x that invertibly map the interval [0,1] 

back to [0,1]. The condition of invertibility is essential. Otherwise the function would be 

redistributing the number labels in such a way that one elementary event is assigned more than 

one new number label. There are of course very many such invertible functions. Label 

independence requires that all of them leave the probability distribution unchanged. The trouble 

is that virtually all of them do not leave it unchanged. 

 One example illustrates the general behavior. We start with two events consisting of 

elementary events labeled by real numbers x in the intervals [0, 0.5] and in [0.5, 1.0]. The 

probability density (1) assigns equal probability of 0.5 to each event. As we saw above in (Eq), 

label independence requires that this statement remain true when we permute the numbers that 

label the elementary events. We use an invertible, continuous function to carry out the 

permutation. Let that function map each real number x in [0,1] to a new value y in [0,1] 

according to: 

y = f (x) = 1− x2                                                                   (2) 

To use the function as a permutation of labels, we take the elementary event that was originally 

labeled y and assign it the new real number label x. The number x is “carried along” by the 

function. Under this permutation, as shown in Figure 2 on the left, the two events originally 

labeled with real numbers in the intervals [0, 0.5] and in [0.5, 1.0] are mapped to the events 

originally labeled with real numbers in the intervals [0.8666, 1] and in  [0, 0.8666], respectively. 

These last events are now assigned the new, carried along number labels in the intervals [0, 0.5] 

and in [0.5, 1.0] respectively. 
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Figure 2. Uniformity of Probability Not Preserved under Permutation 

 

These two intervals have unequal probabilities under the probability density (1): the probabilities 

are 1-0.8666 = 0.1333 and 0.8666 respectively. The permutation (2), however, assigns them new 

number labels in the intervals  [0, 0.5] and in [0.5, 1.0] respectively. Statement (Eq) is false if we 

use the permuted number labels. Label independence is violated. 

 What would it take for label independence to be preserved? The condition needed is 

simple. A permutation like (2) can “carry along” the probabilities assigned to the origin set to the 

destination set. The key condition is that this carried along probability must match that originally 

assigned to the destination set. That is what failed for the permutation (2) above. 

 We can give this condition a general formulation as follows. The probability assigned to 

some small interval x to x+dx is approximated by p(x)dx. Under the permutation, the number 

labels in the interval x to x+dx are now reassigned to events originally labeled by numbers in the 

interval y to y+dy. These events were originally assigned a probability approximated by p(y)dy. 

The condition that this original probability and the carried along probability agree is: 

p(y)dy = p(x)dx, in case dx and dy have the same sign; or  

p(y)dy = -p(x)dx, in case they differ in sign. 



 11 

Taking the limit of dx and dy to zero, we have6 

p(y) = p(x) dx
dy

                                                            (3) 

Here p(y) is the new probability density induced by the carrying along of the original probability 

density by the permutation, expressed in the original number labels. 

 A short calculation shows that the carried along probability density of (3) when computed 

for the permutation (2) and the source probability density (1) is 

p(y) = y
1− y2

 

This induced probability density is no longer uniform over its argument, y. Thus, statement (Eq) 

will turn from true to false under permutation (3), violating label independence. 

 These last considerations lead directly to the general condition that must be satisfied by 

all permutations if label independence is to be preserved. It is simply 

p(y) = p(x)                                                                 (4) 

Comparing (3) and (4), we see that this equality of probability densities can only be secured if 

dx
dy

= 1 . This last condition is violated by almost every permutation of the number labels. For 

y(x) a continuous, differentiable function of x, it is satisfied only by two cases y=x and y=1-x. 

 The outcome is that the probability density (1) does not distribute the chances over a 

continuum set of elementary events indifferently, in the sense captured by the requirement of σ-

field adapted label independence. For there are just two “right” ways to apply the numbering. 

That suggests that there is more structure hidden in the example than merely a continuum-sized 

set and its σ-field of subsets. 

3.5	Involutions	

 Before proceeding, we should visit briefly with a tempting escape from the problems just 

developed. Might we propose that some x is the “right” labeling to use; that it has some property 

                                                
6 The absolute norm in |dx/dy| keeps p(y) positive in both cases above. Note that |dx/dy| is either 

always positive or always negative, since the conditions of continuity and invertibility requires 

x(y) to be everywhere increasing or everywhere decreasing. 
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intrinsic to the problem; and that a permutation y is somehow ill-suited, since it takes us to 

another labeling that lacks the property? 

 The particular function (2) above was chosen with just this possibility in mind. For it is 

an involution, which means it has the characteristic property that a double application of the 

function returns the original argument. That is x = f(f(x)). This means that there is a perfect 

symmetry in the relationship between x and y. Exactly the same functional form as (2) takes us 

back from y to x: 

x = f (y) = 1− y2  

Figure 2 on the right shows the inverse mapping of the interval y in [0, 0.5] to the interval x in 

[0.8666, 1]. The graph of an involution has the distinctive property of symmetry around the 

diagonal axis of the dashed line, y=x, shown in Figure 2. Clearly there are very many more 

involutions since this symmetry is all that is required. 

 The use of an involution responds directly to the idea that some labeling might be the 

“right” one. For it follows from the symmetry that, for any property that x bears with respect to y, 

there is a corresponding property that y bears with respect to x. Thus any decision that one of x or 

y is somehow favored cannot be derived from properties intrinsic to the parameters. For 

whatever case we make for favoring x based on the intrinsic properties of x, there is a 

corresponding case that can be made for y. What results is a further weakening of label 

independence: 

σ-Field, Involution Adapted Label independence  

All true statements pertinent to the chances of different outcomes remain true when 

the labels are permuted by all involutions that preserve the sets of the σ-field.  

The existence of many involutions then shows that this proposal for escape fails. There is no 

intrinsic property of one labeling x that distinguishes it. A preference for x must be imposed by 

us externally by fiat. Such an external imposition breaks label independence. We may, however, 

find an external basis for the imposition, as we shall see in Section 4 below. 
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3.6	The	Natural	Inductive	Logic	on	[0,1]	

 What if we forego the idea that inductive support must be represented probabilistically?7 

What inductive logic over the intervals of [0,1] conforms with these two weakened requirements 

of label independence? Even with these weakenings, it turns out that the only inductive logic 

admissible is akin to the infinite lottery machine logic.8 The logic assigns the same neutral value 

I to any interval9 (a, b), where 0≤a<b≤1 in [0,1], excepting (a, b)=(0,1): 

support((a, b)) = I                                                           (5) 

That this is the unique inductive logic conforming with the weakened label independence follows 

from two statements: 

(i) In some real number labeling of the elementary events, all intervals (a, b) of equal size 

|b-a| accrue the same support: support((0, 0.1)) = support((0.1, 0.2)) = support((0.2, 0.3)) 

=… etc. 

(ii) For any 0<a<1, 0<b<1, there exists an involution on [0,1] that maps the interval (0, a) 

to the interval (b, 1). By label independence, they have the same support.10 

Take any two intervals in the scope of (5): (a, b) and (c, d). By (i), they have the same support as 

(0, b-a) and as (1-(d-c), 1), respectively. Through (ii), label invariance entails that the intervals 

(0, b-a) and (1-(d-c), 1) have equal support. Hence all intervals in (5) have the same support, 

which we label as “I”. 

 In this analysis, (i) is an assumption that amounts to requiring that there is at least some 

numbering that is naturally adapted to the equalities of support.11 Statement (ii) is derived from 

                                                
7 For comparison, the transformational behavior of probability measures under involutions has 

been explored in greater detail in Norton (2008). 
8 As with the infinite lottery machine logic, different supports are assigned to sets of outcomes of 

finite size or countably infinite size. 
9 For simplicity of exposition, I consider only open intervals (a,b). The same results apply to half 

open and closed intervals. 
10 For the statement “Events labeled by (0, a) have support X.” must be true also of events 

labeled by (b, 1) since this second set of elementary events can be relabeled through the 

involution by numbers in (0, a).  
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the properties of involutions. Readers who are satisfied that the statement is correct might like to 

skip over the details that follow. 

 Statement (ii) can be demonstrated though two families of involutions that are jointly 

dense in the unit square, as displayed in Figure 3. 

 

 
Figure 3. Two Families of Involutions on [0,1] 

 

These involutions derive from the formulae: 

y = A2 + A
x + A

− A  , all A>0,  and  y = B2 − B
x − B

+ B ,  all B>1. 

That they are involutions can be seen by rearranging each to give 
                                                                                                                                                       
11 Almost all of (5) can be derived with constructions like those of (ii). However no continuous 

involution can map all the equalities needed. None can map, say (0,0.5) to (0.1, 0.6). Something 

like assumption (i) is needed to complete derivation of (5). 
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(x+A)(y+A) = A2+A   and   (x-B)(y-B) = B2-B 

Since x and y enter symmetrically into these rearranged formulae, it follows that, in each case, y 

has the same functional dependency on x as x does on y. 

 Consider the interval (0, a) of (ii) for any 0<a<1. It follows from the density of the 

involutions that there always exists one involution that maps (0, a) to (b,1) for any 0<b<1. As 

Figure 3 shows, the A family of involutions, maps (0, a) to (b,1), where 0<b<1-a. The B family 

of involutions maps (0, a) to (b,1), where 1-a<b<1. The involution y=1-x, intermediate between 

the two families, covers the intermediate case of b=1-a, in which (0, a) is mapped to (1-a,1) 

4.	Uniformity	from	Metrical	Lengths,	Areas	and	Volumes	

4.1	Metrical	Adaptation	

 If the uniform probability density (1) is to conform with label independence, we will need 

to weaken the requirement still further. In many important cases, a continuum-sized outcome set 

has further structure: a spatial metrical structure, to which the probability distribution is required 

to be adapted. Metrical structure assigns lengths in one-dimensional continua, areas in two-

dimensional continua and volumes in three and higher dimensional continua. 

 When metrical structure is present, we often require adaptation of the chances to it. That 

means that sets of outcomes that are equal in length, area or volume have equal chances. These 

cases arise when, in accord with the material theory of induction, background facts warrant it. 

Here are some examples. A very long steel beam has defects randomly distributed through it. If it 

is stressed uniformly, this fact ensures that fracture is equally probable in portions of equal 

length. A dart is thrown at a dart board. Assuming disturbances from sufficiently many random 

factors, it is equally likely to strike regions of equal area. Under the physical principle of the 

maximization of thermodynamic entropy, a molecule of an ideal gas, free of external fields, is 

equally likely to be in parts of the containing vessel of equal volume. 

 This adaptation of chances to metrical structure can be implemented by restricting the set 

of the permutations in the requirement of label independence: 
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Metrically Adapted Label independence  

All true statements pertinent to the chances of different outcomes remain true when 

the labels are permuted by all permutations that preserve the metrical measures of 

outcome sets.  

A permutation preserves metrical measure just when labels identifying some metrically 

measurable set of outcomes are permuted to a new set of outcomes that has exactly the same 

metrical measure. In generic cases, such a permutation can switch any region with any other of 

the same metrical measure. In these cases, it follows from this weakened version of label 

independence that the chance of some outcome depends only on the length, area or volume 

associated with it. The statement “outcome A has chance such and such” must remain true when 

the labels identifying outcome A are relocated to any other part of the space under a metrical 

measure preserving permutation. The relocated outcome must have the same length, area or 

volume as the original, no matter how they may differ in their other properties. 

 These metrical measure-preserving permutations are allowed to preserve metrical 

measure patchwise. That is, they can divide up the space into patches and rearrange them, as 

long as the rearrangement preserves the measure of each patch. This last patchwise construction 

is a mainstay of traditional geometry. It is the standard method of proving equality of areas and 

volumes. Here is a rather pretty example that uses area-preserving permutations to prove 

Pythagoras’s theorem. It is due to Rufus Isaacs (1975). The square on the left of Figure 4 shows 

four right angles triangles, each with sides of length a, b and hypotenuse c. They enclose a 

central square of area c2, which is the “square on the hypotenuse” of Pythagoras’ theorem. The 

area associated with this square is redistributed under a permutation shown in two steps in the 

central two squares. First two triangles are permuted so that their positions are moved down the 

figure. Then two of the triangles are moved together up the figure. The result, shown in the 

square on the right, is that the region forming the square of area c2 has been relocated to a new 

region consisting of two squares, one of area a2 and another of area b2. These are the “squares on 

the other two sides.” They are shown by this construction to be equal to the square on the 

hypotenuse. 
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Figure 4. A Metric Preserving Permutation Proves Pythagoras’ Theorem 

 

 If the chances are expressed by probabilities, metrically adapted label independence 

requires equal lengths, areas and volumes to be equally probable. Familiar cases work just as we 

would expect. These successful applications of the probability calculus arrive easily. It is 

because an additive metrical structure is already present in the physical assumption that the 

spatial continua have lengths, areas or volumes native to them. Chances acquire that additive 

structure upon adaptation to the metrical structure. Disjoint volumes add to give the combined 

volume, so the chances of outcomes in them add also to give the disjoined chances. Since the 

total system length, area or volume may have an arbitrary magnitude, all that remains is to 

normalize the adapted chances to unity to recover probability measures. If the total area of dart 

board is 144 square inches, then the probability of the dart striking any nominated square inch 

area 1/144. 

4.2	The	Infinite	Lottery	Machine	Logic,	Again	

 We can now see which will be the troublesome cases: those in which the lengths, areas or 

volumes of the total system are infinite. For then normalization over a uniform measure is no 

longer possible. If the dartboard is infinite in area, then the probability of the dart striking any 

nominated square inch is 0 = 1/∞. Since the infinite area is a countable infinity of unit areas, the 

chance relations among them turn out to be the same as in the infinite lottery. That is, the 

requirement of metrically adapted label independence leads us to the same inductive logic as 

applies to an infinite lottery machine. 

 An easy way to see this is to continue with the infinite dart board, that is, the example of 

areas on an infinite Euclidean plane. A process identifies a point in the plane in such a way that 

its chances conform with metrically adapted label invariance. We can divide this plane into 

infinitely many tiles of equal, finite area. For convenience, let us pick square tiles. We consider 
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the outcome that the point selected is in one or more of these tiles. Each will have an equal 

chance. Infinitely many real number pairs label each square uniquely. Since there are a countable 

infinity of tiles, we can relabel them with a single natural number, 1, 2, 3, …. The resulting 

relabeling will now conform with the original, unrestricted requirement of label independence. 

Since the labels are natural numbers, the arguments of the previous chapter apply. The chances 

of outcomes in various sets of the tiles conform with the infinite lottery logic. 

 It now follows that all areas consisting of finitely many, n, tiles have the same chance and, 

as with the infinite lottery, they are assigned the chance value Vn. Since the areas of the tiles are 

additive, we have the further property of the additivity of these chance values. For all finite m 

and n, 

Vm+n = Vm + Vn 

These finite cases can be developed further in obvious ways. The more interesting cases, 

however, are outcomes in parts of the plane of infinite area. Crudely, under metrical adaptation, 

we expect trouble, since all infinite areas are equal. Using arguments carried over from the 

analysis of the infinite lottery machine, we will find that the chances of outcomes in all infinite-

co-infinite regions have the same value, called V∞ in the infinite lottery case. 

 To see this, divide the infinite plane into four quadrants, I, II, III and IV. We can then 

reproduce the argument concerning the sets one, two, three and four of the infinite lottery 

machine. We first number the tiles in the quadrant I with the numbers in the set  

one = {1, 5, 9, 13, ...} 

and then continue for quadrants II, III and IV with the numbers in the sets 

two = {2, 6, 10, 14, ...} 

three = {3, 7, 11, 15, ...} 

four ={4, 8, 12, 16, …} 

respectively, as shown on the left in Figure 5.  
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Figure 5. Rearranging Tiles over the Quadrants of an Infinite Plane 

 

 Since each quadrant contains a countable infinity of tiles, we can proceed just as we did 

with the infinite lottery machine. We can rearrange the tiles so that all those in quadrant I fill 

both quadrants I and III, while those formerly in quadrants II, III and IV fill just quadrants II and 

IV. Or we can rearrange the tiles so that those in quadrant IV fills quadrants I, II, and III, while 

those formerly in quadrants I, II and III just fill quadrant IV. This rearrangement is shown on the 

right in Figure 5. Since the rearrangement of tiles is merely a permutation of the labeling, it 

preserves chances. With further similar permutations, we can conclude: 

Ch (I) = Ch (I or II) = Ch(I or III) = …= Ch (III or IV) 

= Ch(I or II or III) = … = Ch (II or III or IV) = V∞                               (6) 

where “Ch(I)” designates the chance of an outcome in quadrant I. 

 Since this inductive logic has been elaborated more fully in the previous chapter, there is 

no need to duplicate the analysis here. Similar manipulations can show that this same inductive 

logic applies to one-dimensional continua with length and three- and higher dimensional 

continua with volume, if the chance processes in them conform with metrically adapted label 

independence. The next section provides an illustration in a science of this logic in a three 

dimensional space. 
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4.3	Continuous	Creation	of	Matter	in	Steady	State	Cosmology	

 The steady state cosmology of Bondi, Gold and Hoyle enjoyed considerable attention 

with its initial formulation of 1948, until it eventually succumbed to several empirical problems. 

The most notable was an enduring difficulty in explaining naturally the cosmic background 

radiation observed by Penzias and Wilson in 1964. The cosmology is based on the “perfect 

cosmological principle.” It goes beyond the more familiar cosmological principle in asserting 

that the universe presents the same average aspect to us not just at all positions in space, but at all 

times as well. 

 We know from measurements of the velocities of distant galaxies that the matter of the 

universe is everywhere expanding. That would normally entail that the average density of matter 

is everywhere decreasing, so it is lesser at later times. This decrease would violate the perfect 

cosmological principle. So steady state cosmology posits the continual creation of matter at just 

the right rate to maintain a constant, average matter density through time. Since ordinary matter 

is particulate in nature, this continual creation must be a discrete process with particles popping 

into existence stochastically. In Bondi and Gold’s (1948) original proposal, the rate of creation 

was (p. 256):12 

The required rate of creation … can be estimated as at most one particle of proton 

mass per litre per 109 years. 

By the time of writing of Bondi (1960), the requisite creation rate was updated with new 

astronomical measurements of the rate of expansion of the universe. Bondi now estimated it as 

(1960, p. 143)13 

…on an average the mass of a hydrogen atom is created in each litre of volume 

every 5 x 1011years. 

The difference between creation of a particle of proton mass and of hydrogen atom mass is 

inconsequential. A hydrogen atom consists of a proton and an electron and the proton comprises 

roughly 99.9% of the atom’s mass. 

 For our purposes, the delicate question is just what stochastic rules govern the creation of 

these particles. The theorists ruled out the initially plausible possibility of matter creation within 
                                                
12 This corresponds to a mass creation rate of approximately 10-43 g/sec cm.3 (p. 265). 
13 This corresponds to a mass creation rate of approximately 10-46 g/sec cm3 (p. 143). 
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stars. Insufficient newly created matter could escape from stars to form new galaxies. (Bondi and 

Gold, 1948, p. 266; Bondi, 1960, p. 149). On grounds of simplicity, the theorists proposed 

creation processes uniformly distributed through space. From Bondi and Gold (1948, p. 268): 

According to this view the probability of creation taking place in any particular 

four-dimensional element of volume (spatial volume element x element of time) is 

simply proportional to its (four-dimensional) volume, the factor of proportionality 

being a function of position. By our argument in 4.1 this factor cannot vary very 

much from point to point.  

From Bondi (1960, p. 151): 

It seems simplest to suppose that the probability of creation in any small four-

dimensional element of space-time is simply proportional to its four-dimensional 

volume.  

On the strength of these remarks, we shall proceed in assuming the following stochastic model. 

In some fixed interval of cosmic time, there is an equal chance of creation of a hydrogen atom in 

each region of space of the same volume. Creation events are independent of each other. 

 Bondi and Gold assume that chance in this model can be probabilistic. They are mistaken. 

Since the space of steady state cosmology is Euclidean and, thus, infinite, this stochastic model 

conforms with metrically adapted label independence and will be governed by the infinite lottery 

machine inductive logic. As a result, the process of continual creation that they describe will not 

proceed quite according to normal expectation. 

 To explore the application of this logic to continual creation, imagine the Euclidean space 

of the cosmology divided into two infinite parts, “left” and “right” by some infinite plane. We 

will ask after the distribution of new particle creation events on the two sides of the plane in the 

course of a year. Since the average creation rate per unit volume of space is assumed non-zero, 

infinitely many particles will be created in each side over the year. Is this creation rate the same 

in both sides? That is, in the long run, are one in two creation events on the left side? 

 It is tempting to give the quick answer that the rate is infinitely many particles per year in 

both. Therefore, they are equal. This equality is something less than it seems. It does not support 

the further conclusion that one in two creation events are, in the long run, on the left side. Take 

the case in which the rate of particle creation per unit volume per year on the left side is 1,000 

times greater than on the right side. Since both volumes are infinite, this case too yields a 
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creation rate of infinitely many particles per year on both sides. Yet we do not expect one in two 

of them to be in this left side in the long run. It seems that a more refined means of comparing 

the rates of creation is needed. 

 In the course of a year, infinitely many particles will be created, but it will be a countable 

infinity. (There are a countable infinite of equal volumes of space. In each at most a finite 

number of particles will be created, usually zero or one.) If we track these creation events one by 

one, we can form the ratio of left side particle creation events to the total number. Among N 

particle creation events, there will be NL creation events in the left side. 

 Since left and right are equally favored, our expectation is that the ratio of NL/N will 

stabilize towards one half as we let N go to infinity. This expectation is not supported by the 

infinite lottery inductive logic. This case is isomorphic to the frequency of even numbers in 

repeated drawings from an infinite lottery machine. We saw in the previous chapter (§10.7) that 

the relative frequency of even numbers among all drawn does not stabilize to any definite value.  

 This result may seem to contradict the symmetry of right and left. Surely half of all 

creation events must happen on the left in the long run; and half must happen on the right? That 

expectation depends on the tacit assumption that there is an average in the long run to the 

fraction of creation events. We now see that there is not. The symmetry of left and right is 

preserved in the sense that no stable fraction arises in the long run for both left and right. 

 This result arises from tracking creation events in infinite volumes of space. If we restrict 

our consideration to finite volumes of space, then the normal probabilistic analysis succeeds. 

Over time, constant mass is preserved on average in each finite volume of space, as required by 

steady state cosmology. 

 Finally, as a minor point, this analysis involves a technical complication. It requires an 

enumeration of the particle creation events in the year by 1, 2, 3, 4, …, N, … so that the limit of 

the ratio NL/N can be formed. Such an enumeration is possible since there are only a countable 

infinity of creation events. However the enumeration must be dictated by a rule that is 

independent of whether the event is in left region or right region. The simplest such rule is to 

number the creation events by the their time order. We would number the temporally first event 

1, the second 2, and so on. The difficulty is that there may be no first event if the creation times 

have an accumulation point towards the past. That arises if, for example, the creation events 

happen at times (in years) 1/100, 1/101, 1/102, 1/103, … There can be multiple such 
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accumulation points. If there are accumulation points towards the future, then the enumeration 

can never pass them. 

 I believe the following rule will solve the problem. Divide the year into 1/10ths and 

assign 1, 2, 3, … to the first event in each 1/10th, if there is one in each 1/10th. Next divide the 

year in 1/100ths and assign the next numbers to the first unnumbered events in each 1/100th, if 

there is one in each 1/100th. Continue for 1/1000ths, 1/10000th... If several events have exactly 

the same creation time, assign them the same number and increment both N and NL in one step.14 

5	Paradoxical	Decompositions	

5.1	What	They	Are	

 The construction of Section 4.2 above is just the first of many that yield results 

troublesome to additive measures. It is one of the simplest instantiations of what is known as a 

paradoxical decomposition. Their specification is rather general. Following Wagon (1994, Ch. 1), 

such decompositions arise in the context of a set E that can be partitioned into a countable 

collection of pairwise disjoint subsets, A1, A2, A3, …, B1, B2, B3, … 15 

E = A1 ∪ A2 ∪ A3 ∪ … ∪ B1 ∪ B2 ∪ B3 ∪ … 

There must also be a group G that acts on the set E. Its elements map these subsets to other 

subsets of E. The original set E admits a paradoxical decomposition if elements of the group can 

map the A-sets of the partition to sets whose union exhaust E; and correspondingly for the B-sets. 

That is, there are elements of G, g1, g2, g3, … and h1, h2, h3, …, such that we have 

E = g1(A1) ∪ g2(A2) ∪ g3(A3) ∪ …  

E = h1(B1) ∪ h2(B2) ∪ h3(B3) ∪ …  

The standard definitions (Wagon, 1994, Def. 1.1, p. 4; p.7) do not explicitly allow for a common 

and important case: the mapping of the disjoint A-sets and B-sets onto E can be inverted. That is, 
                                                
14 This method will fail if infinitely many events have exactly the same time of creation. I 

presume this is not expected to happen. 
15 In the case that the A-subsets and the B-subsets each are finite in number, they do not need to 

be the same number. 
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a partition of the entire set E can be mapped back to either the A-sets or B-sets by elements of 

G.16 When this inversion is possible, then elements of the group G can map the A-subsets onto 

the B-subsets; and conversely. 

 The construction of Section 4.2 above conforms to the conditions of paradoxical 

decomposition. Quadrant IV might correspond to the A-sets and the union of quadrants I, II and 

III might correspond to the B-sets. The group is the group of isometries of a Euclidean space. 

These are the maps on the space that preserve metrical distance and thus also areas. They 

comprise translations, rotations and reflections. Moving a tile from one part of the space to 

another, while preserving its area, corresponds to allowing one of the isometries to act on it. In 

this case, it is a translation. 

 The conditions for a paradoxical decomposition are realized since a rearrangement of the 

tiles in quadrant IV can cover the whole space; and the same is true of the tiles in the union of 

quadrants I, II and III. The case that concerned us, however, was the further case in which 

inversions are possible. Then the tiles in quadrant IV can be swapped with those in quadrants I, 

II and III. The import of several swaps of this type was the non-additive chances (6). 

5.2	How	They	Extend	the	Analysis	

 There are two aspects of the argument of Section 4 for these non-additive chances that 

could be strengthened. First, the argument requires a decomposition into infinitely many subsets 

that are then rearranged to give the final result. One might worry that there is some trickery 

peculiar to the infinitude of the decomposition. 

(i) Can the construction still proceed if the decomposition is into finitely many parts only? 

Second, the total area of the Euclidean plane involved in the paradoxical decomposition is 

infinite. 

(ii) Are paradoxical decompositions possible if we require the total area or, more generally, 

the total volume of the space to be finite? 

The literature in paradoxical decompositions has provided affirmative answers to both questions. 

                                                
16 This inversion can fail if, for example, the image sets g1(A1), g2(A2), g3(A3), … are not 

disjoint. 
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 A paradoxical decomposition with finitely many subsets and using the group of 

isometries is not possible in the Euclidean plane. It is possible, however, if we move to non-

Euclidean geometries. After the geometry of Euclid, the next simplest geometries are the spaces 

of constant positive and negative curvature. The second case of constant negative curvature is a 

hyperbolic geometry. It is a space of infinite area. In it Euclid’s axiom of the parallels fails in this 

way: There is more than one straight line through a point, parallel to a given straight line 

elsewhere in the space. It can be visualized, piecewise, as the geometry induced on a saddle 

shaped surface in a higher dimensional Euclidean space. 

 Wagon (1994, pp. 61-68) shows that it is possible to divide up a two-dimensional 

hyperbolic space into three disjoint parts whose union exhausts the space and provides a 

paradoxical decomposition, using the isometry group. (See Wapner (2005, pp. 45-48) for a 

simplified and engaging development.) Call the disjoint parts A, B and C. If we choose a suitable 

axis of rotation, Wagon shows that it is possible to rotate A by 120o so that it now coincides with 

B. A further rotation by 120o then leaves A coincident with C. These rotations are isometries, so 

they preserve the areas of the parts rotated. 

 We might pause at this moment and imagine that a point is chosen randomly in the space 

such that metrically adapted label independence is respected. These rotations by 120o are 

metrically adapted permutations that can swap the labeling among the three sets A, B and C. 

Thus they have equal chances. If we assign probabilities to the chosen point being in A or in B or 

in C, we must then have 

P(A) = P(B) = P(C) = 1/3 

so that P(A) + P(B) + P(C) = 1. 

 The trouble is that rotations around a different point in the space lead to different results. 

With a different, suitably chosen axis of rotation, a rotation of A by 180o leaves it coincident 

with the union of B and C. Applying the same reasoning, we now arrive at probability 

assignments 

P(A) = P(B ∪ C) = P(B) + P(C) = 1/2 

They are incompatible with the first set of probability assignments. Once again we find that these 

chances cannot be represented by probabilities. 

 A curious sidelight is that this case of a hyperbolic space could almost be applied directly 

to the example of steady state cosmology of Section 4.3. The spacetime of steady state 
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cosmology is a de Sitter spacetime. Bondi, Gold and Hoyle introduced a cosmic time that slices 

the spacetime into spaces at different instants of cosmic time. They chose a slicing that yields 

Euclidean spaces. A de Sitter spacetime is rich in symmetries. It turns out that there are other 

ways of slicing it that admit different cosmic times. In another choice of cosmic time, the spaces 

at each cosmic instant are hyperbolic in their geometry. If we ask for matter to be created 

continuously by some stochastic process that is uniform in the hyperbolic space, the construction 

just sketched, promoted to a three dimensional space, shows that this uniformity cannot be 

represented probabilistically. The demonstration does not require decomposition into infinitely 

many parts, but just the three indicated. However the cogency of this more elegant construction 

is lessened by the fact that a slicing of a de Sitter spacetime into hyperbolic spaces is 

uncongenial to steady state cosmology. For in this slicing, the radius of curvature of the space 

would vary with cosmic time. (See Bondi, 1960, p. 145.) While this variant slicing is simply 

another way of displaying the spacetime structure of the steady state cosmology, its associated 

cosmic time is not one in which the perfect cosmological principle can be expressed. 

 The areas A, B and C of this construction are not as simple geometrically as the quadrants 

of Euclidean space used in Section 4.2. Each consists of infinitely may parts, with the parts 

touching only at points, as shown in the rather pretty diagrams in the references above. However 

decomposition of the hyperbolic space into these three parts is notable in one aspect: it does not 

require the axiom of choice. The significance of this statement will be clarified below. 

 The hyperbolic space is infinite in area and the three parts A, B and C are also infinite in 

area. That infinity allows them to be rotated into one another in ways that preclude a finite, 

additive measure for the areas. For when areas are infinite, we can write all of the following: 

Area(A) = Area (B) = Area (C) = ∞ 

Area(A) = Area (B ∪ C) = Area (B) + Area (C) = ∞ 

Since these equalities cannot all be satisfied if the areas of the parts are finite, one might expect 

that a paradoxical decomposition of a space of finite area or volume is not possible. 

 That expectation proves incorrect. There are paradoxical decompositions of spaces of 

finite volume. The celebrated example is the Banach-Tarski paradox. It has been discussed in 

such detail elsewhere, that it needs only the barest statement here. See Wapner (2005, Ch.5) for a 

very clear development; and Wagon (1994) for a mathematically more thorough treatment. The 

basic result is that a sphere in three-dimensional Euclidean space can be decomposed into five 
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parts. The parts are then rearranged in space, where the rearrangement employs only volume 

preserving isometries. The result is two spheres, each with the same volume as the original 

sphere.  

 The air of paradox reflected in the name derives from the apparent impossibility of the 

process. We decompose a sphere into parts that can be recombined into two spheres whose total 

volume is double that of the original sphere, where all the rearrangments are isometries. The air 

of paradox is dispelled, however, once we find that four of the five parts in the standard 

decomposition are nonmeasurable in the background metric of Euclidean space. They are not 

simple volumes of the type normally encountered in geometry. They are scatterings of infinitely 

many points that defy simple geometric description. No volume can be consistently assigned to 

them.17 Thus the constructions are revealed as very fancy versions of a more familiar 

decomposition. We can take a countable infinity of entities labeled 1, 2, 3, … and divide them 

into the set of odd labeled entities and the set of even labeled entities. If we now relabel the 

entities in each set with 1, 2, 3, … and 1, 2, 3, …, we have doubled the set of entities, or at least 

that is what the labeling indicates. 

 While Banach-Tarski like constructions have proven enormously stimulating to 

mathematical inquiry,18 the most important contribution to our concerns here arises at the outset. 

                                                
17 A point to which we will shortly return: the axiom of choice is needed to arrive at their 

existence. 
18 When one first encounters these constructions, one might be quite amazed that a mortal 

mathematician could discover them. Or at least that was my reaction. What I found very helpful 

was the recognition that the more complicated constructions derive from a simple piece of group 

theory. The elements of the free group with two generators a and b consist of finite strings of 

symbols like abba-1b-1a of arbitrary, but always finite length. It is easy to see that a paradoxical 

decomposition is possible in this set of group elements. Any good treatment shows it. All that 

remains is to realize the generators in some geometrical setting, for example as rotations in space, 

and in a way that preserves the free group properties. Banach-Tarski like paradoxes then appear 

and they require three dimensions of space, since in two dimensions the two generators a and b 

cannot be realized. The complications of the geometry of the rotations mask the constructions’ 

simple origins. 
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It is that there are nonmeasurable sets. Their existence represents some sort of obstacle to the 

universal applicability of additive probability measures in inductive inference. The next section 

turns to look at how these nonmeasurable sets arise. 

6.	A	Nonmeasurable	Set	

6.1	A	Vitali	Set	

 The simplest example of a nonmeasurable set, used almost universally as in introduction 

to the general idea, is a Vitali set. (See Kharazishvili, 2004, ch. 1; Wagon, 1994, pp. 7-8; Wapner, 

2005, pp. 132-35) The version to be developed here will be a subset of the interval of real 

numbers [0,1), that is all real numbers x such that 0≤x<1. These real numbers will be the angular 

coordinates that cover a circle as shown in Figure 6. 

 
Figure 6. Equivalent numbers used in the construction of a Vitali Set 

 

Two real numbers are defined to be equivalent under the relation “~” if they differ only by a 

rational number. That is x ~ y just in case there is a rational number r such that y = x ⊕ r. 

Addition “⊕” is modulus 1 addition. To compute it, the numbers x and r are added by ordinary 

arithmetic. If the resultant exceeds one, one is subtracted. If it is negative, one is added. This 
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modular rule ensures that the sum shown always remains in the interval [0,1). Figuratively, 

addition by r just steps us repeatedly round the circle of Figure 6. This figure shows points 

equivalent under successive addition of the rational number 0.22 = 11/50, that is 0, 0.22, 0.44, 

0.66, 0.88, 0.10, 0.32, … 

 Since the relation is an equivalence relation, it divides all the real numbers in [0,1) into 

disjoint equivalence classes. They are distinguished by a number that, as I shall say, “seeds” 

them. The rational number 0 seeds an equivalence class that contains all the rational numbers in 

[0,1). This shows immediately that each equivalence class has infinitely many seeds: every 

rational number in [0,1) seeds the same class. Irrational numbers seed other classes. The 

irrational 1 2  = 0.7071…seeds a class that contains ( 2 −1) / 2  = 0.2071… since 

1
2
− 1
2
= 2 −1

2
 

The simple graphic of Figure 7 displays the partition of [0,1) into the equivalence classes. 

 

 
Figure 7. Choices that Form a Vitali Set 

 

The points in the square are all the real numbers in [0,1). Each is uniquely picked out by the seed 

of the equivalence class to which is belongs and the rational increment added to the seed to 

arrive at it. The vertical axis shows the seeds used to create each equivalence class. The axis has 

many gaps in it since all duplicated seeds are eliminated. Its seeds include only one rational 
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number and only one of 1 2  and ( 2 −1) / 2 . The horizontal axis shows the values in [0,1) 

that the various members of each equivalence class can take after all the rationals are added to 

the seed of the equivalence class. Each equivalence class is represented by a single horizontal 

line. 

 A Vitali set is formed by taking just one number from each equivalence class. This means 

that the difference between two elements in the set cannot be a rational number. Forming the set 

amounts to taking a vertical section in the square shown in Figure 7. It seems obvious at this 

point that such a section can be taken. (This is a point to which we will return shortly.) Moreover 

there are very many ways that this section can be taken, so very many sets can be Vitali sets. We 

just need to settle on one to proceed. Call it Vit(0). 

 To demonstrate that this is a nonmeasurable set, we need a measure, for a set can be 

nonmeasurable only with respect to some specified measure. We take the uniform distribution 

(1) over [0,1) as that measure. Its uniformity gives it the property of translation invariance. That 

is, if the probability density assigns some probability P(A) to a subset A of [0,1), then it assigns 

the same probability to the set Ax produced by translating all numbers in A by the same amount 

x:19 P(Ax) = P(A). Applying a uniform translation by r to all the numbers in the Vitali set Vit(0), 

we form the translated set Vit(r). Figure 7 shows Vit(0.25). 

 It is easy to see that the set of translated Vitali sets, for all rational numbers r, partition 

the interval [0,1), as shown in Figure 8. 

 

                                                
19 That is, Ax is {y ⊕ x: y ∈ A}. 



 31 

 
Figure 8. Vitali Sets Partition [0,1) 

 

That is their union is [0,1) and the translated sets are pairwise disjoint. The first follows by 

construction, since every number in [0,1) is either in Vit(0) or arrived at from an element of 

Vit(0) by adding a rational r to it, which means that it is a member of Vit(r). Two translated 

Vitali sets V(r) and V(s) are disjoint for unequal rational numbers r and s. For otherwise they 

share a common element of the form x ⊕ r = y ⊕ s, where both x and y are elements of V(0). 

However this last equation entails that x and y differ by a rational number. This cannot be true of 

any two distinct elements of V(0), since each is drawn from a distinct equivalence class.  

 Assume for purposes of a reductio argument, that the Vitali set is measurable under the 

uniform density (1) and that is has a probability P. Since the probability density is invariant 

under translation, it follows that all uniformly translated Vitali sets Vit(r) have the same 

probability. The set of rational numbers is countable.20 Therefore there are countably many 

translated Vitali sets. The countable sum of their probabilities must be unity. That is, the 

summation of a countable infinity of probabilities P must be unity. No real number P can satisfy 

this condition. If P is zero, the countably infinite sum is zero. If P is greater than zero, no matter 

                                                
20 For each rational can be represented by the ratio p/q of natural numbers p and q. The pair can 

then be mapped one-one to an infinite subset of the natural numbers by the formula 2p3q. 
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how small, the countably infinite sum is infinite. We have arrived at a contradiction. The Vitali 

set Vit(0) is not measurable under the uniform density (1). 

6.2	The	Infinite	Lottery	Machine	Logic,	Again	

 How does the existence of nonmeasurable sets like a Vitali set affect inductive inference? 

We can set up an inductive inference problem that uses this Vitali set by assuming that a real 

number has been chosen in the interval [0,1). We will assume that the choice is uniform in the 

sense that the chance of selection in any set, if defined, is unchanged by translations of the set. It 

follows that the distribution of chances in the space conforms with metrically adapted label 

independence, where the permutations are translations that preserve the metric associated with 

the probability density (1). It now follows that each of the translated Vitali sets Vit(r) must have 

equal chances. For any pair of Vitali sets, Vit(r) and Vit(s), a translation by s-r shifts the labels on 

the first set to the second. 

 The inductive problem is to determine the chances that the point selected lies in one of 

the Vitali sets, or in some union of them. The probability measures derived from the uniform 

density (1) cannot supply chances for these outcomes, for it is not defined on them. Rather, the 

applicable logic is the infinite lottery machine logic of the previous chapter. To see this note that 

the countably many Vitali sets Vit(r) can be relabeled by the natural numbers 1, 2, 3, … Each 

Vitali set V(1), V(2), … has the same chance and, under the new labeling, conforms with the 

original, unrestricted requirement of label independence. These are just the conditions to which 

an infinite lottery machine conforms. By repeating the arguments concerning it, we can infer 

that: 

Chance that the point chosen is in some finite set of Vitali sets of size N is VN. 

Chance that the point chosen is in some infinite-co-infinite set of Vitali sets is V∞. 

Chance that the point chosen is in some infinite-co-finite set of Vitali sets, where the 

complement is of size N, is V-N. 

The familiar results now follow. There is the same chance that the point chosen is in the infinite 

set of Vitali sets that have even numbered labels, in those with odd numbered labels, in those 

with labels that are powers of ten: 1, 10, 100, 1000, … etc. On many repetitions there is no 

stabilization of frequencies such as would conform with a probability measure. We do not 
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stabilize with roughly half the points selected in the odd numbered set and half in the even 

numbered set.  

6.3	The	Axiom	of	Choice	

 This last analysis assumes that a logic of induction should accommodate outcomes in 

nonmeasurable sets like the Vitali sets. However these nonmeasurable sets have a disputed status 

in mathematics. The difficulty derives from a key step in the analysis. The Vitali set V(0) was 

formed by selecting just one element from each of the equivalence classes above. It was simply 

assumed that such a selection is possible. To see that matters are not quite so simple, one should 

reflect on just how we are to make the selection. Might we choose the smallest or largest element 

in each equivalence class? That fails since there might be no smallest or largest element. Might 

we choose that element that is the median value, that is, the one that comes half way through? 

Since the equivalence classes are infinite, “half way through” is ill-defined. Might we choose the 

element whose value coincides with the mean of all members in the equivalence class? That fails 

since there may be so such element. 

 We might suspect that all these failures derive from a poor imagination. There is some 

recipe, we might hope, even if very complicated, that lets us specify which set is our Vitali set 

V(0). However it turns out that no one has been able to find a constructive formula that can 

specify the uncountable infinity of choices needed. There are formal results that suggest but do 

not prove that no such constructive formula is possible. Rather, the best we can now do is simply 

to assume that there does exist a set comprised of just one element from each equivalence class. 

At first glance, the existence of such sets seems so straightforward that it can hardly be doubted. 

But then we find reasons for doubt. Since a Vitali set results from an uncountable infinity of 

selections of numbers from an uncountable infinity of equivalence classes, if there are any Vitali 

sets, then there are very many of them. Yet when we try positively to specify just one, we can 

find no way to do it. If they exist, all we can say is that they are somewhere in very great 

numbers in the mathematical universe. We just cannot specify precisely where. 

 These last considerations have been codified into more precise mathematics. The 

standard treatment of sets is the Zermelo-Fraenkel set theory.21 Its axioms were developed to 

                                                
21 For an easier introduction, see Stoll (1979, Ch. 7). 
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rescue set theory after Russell’s paradox showed its naïve foundations fatally flawed. In the 

naïve set theory, we assume that a set can be formed as those things that satisfy any condition we 

can specify. Famously Russell used this rule to create the set of all sets that do not contain 

themselves as elements. The set is contradictory in that it can be member of itself if and only if it 

is not a member of itself. 

 To avoid this problem, Zermelo-Fraenkel set theory is restrained in just what sets it 

allows to exist. Its axioms do provide cautiously for the existence and behaviors of certain sets 

and include what amount to principles of set construction. The axiom schema of subsets tells us 

that we can always create a new set as a subset from another by placing some restrictive 

condition on elements in the original set. This replaces the problematic naïve rule with a benign 

rule, since its set delineating condition can only carve off a set from an already existing set. It 

does not permit formation of Russell’s set. Other axioms assert the existence of the null set; of 

the union of two sets that are already elements of another set; of the power set of all subsets of a 

set; and of an infinite set constructed by specific conditions. 

 Constructive axioms of this type proved able to recover much of set theory. However 

they are not rich enough to provide for the sets like the Vitali sets of the last section. It turned out 

that their existence could only be secured by introducing a new, non-constructive axiom that 

merely asserted the existence of certain sets, but gave no recipe for their construction. That 

axiom is the “axiom of choice,” or something equivalent to it. That axiom amounts to the 

assertion that, if we have a set of member sets that are pairwise disjoint, then there exists another 

set comprised of just one element from each of the member sets. The Vitali set Vit(0) formed 

above is just such a set. The presumption that it exists amounts to applying the axiom of choice. 

 The axiom of choice has been surrounded by an air of uncertainty. A major motivation 

for the uncertainty was the discovery of the Banach-Tarski paradox, for the formation of the sets 

in the paradox require the axiom. As a result, treatments of the paradox routinely include labored 

discussions of the cogency of the axiom. See, for example the ominously numbered Chapter 13 

of Wagon (1994). As far as I can see the question of the admissibility of the axiom and thus of 

nonmeasurable sets remains open simply in virtue of the lack of any well-principled means to 

decide for or against it. 

 The original basis for arguments against it was the intuitive inadmissibility of results like 

the Banach-Tarski paradox. To block the paradox, one had to overturn something in the 



 35 

foundations of set theory. The axiom of choice stood out as the easiest target because of its non-

constructive character. But if one reconciles to the Banach-Tarski paradox so that it becomes the 

more benignly labeled Banach-Tarski theorem, then this basis for rejecting the axiom of choice 

is lost. Other reasons for rejecting it are hard to find. Its truth is not empirically decidable. There 

is no physical test we can perform to detect the existence of nonmeasurable sets of points 

specifically in some physical space. The axiom has been shown to be consistent with the other 

axioms of the Zermelo-Fraenkel set theory, so there no problem in logic in adding it to the 

axioms of the theory.  

 Correspondingly, however, there seems to be no decisive grounds for adding the axiom 

of choice to the other axioms of Zermelo-Fraenkel set theory. Just as there is no empirical way to 

falsify the axiom, there is no empirical way to demonstrate it. Rather the principal motivation for 

employing it seems to be pragmatic: much useful mathematics depends upon it. For example, 

Zorn’s lemma, which is equivalent to the axiom of choice, is needed to demonstrate that every 

vector space has a basis.22 

 This pragmatic attitude is perhaps not so different from a simpler one. No measurement 

can distinguish whether a physical magnitude is an irrational real number or some nearby 

rational number. Any measurement has some inexactness. We can never affirm by direct 

measurement that the hypotenuse of a right-angled triangle with unit sides is exactly the 

irrational number 2  = 1.41421… as opposed to the nearby rational numbers 14/10 or 141/100 

or 1414/1000 and so on. However if we forego the possibility of irrational lengths in space, we 

forego the right-angled triangles of Pythagoras’ theorem. Instead the best we would have would 

be many triangles, all with sides of rational length, that come arbitrarily close to the side lengths 

of Pythagoras’ theorem. We may congratulate ourselves on the purity of our prudence in 

restricting ourselves to the observationally more secure. Our reward would be mathematical 

complexities that would propagate pain and misery through the entirety of our physical theories. 

 Our question here is not simply that of the admissibility of the axiom choice. It is a 

slightly different one. Should an account of inductive inference be responsible for relations 

among propositions that pertain to nonmeasurable sets? To forego exploring these relations 

                                                
22 See Brunner et al. (1996) for an extended analysis of the role of the axiom of choice in the 

mathematics of quantum theory. 
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would require positive reasons for precluding nonmeasurable sets. I do not see them unless we 

are prepared to entertain anthropocentric perspectives on the world. That might happen if we are 

so committed a subjectivist that we reduce the scope of inductive inference to relations among 

things that we can construct. That attitude seems quite presumptuous to me. That nonmeasurable 

sets outstrip our constructive prescriptions seems to me quite reasonably explained by the 

weakness of those prescriptions. They are weak, as we have repeatedly learned. We would like a 

finite axiom system whose theorems would include all the truths of arithmetic. Goedel’s famous 

theorem shows that no finite axiom system can do this. It tells us that our arithmetic axiomatic 

methods are weak in their reach. If finite prescriptions are essential to us, we run into trouble at 

the very start of mathematics. There is an uncountable infinity of real numbers in [0,1]. Yet our 

language admits of only countably many sentences for describing them. Most real numbers 

outstrip our descriptive reach. Return now to nonmeasurable sets. Are there, we might ask, 

nonmeasurable sets of points in our physical space? Whether there are or not is a physical fact 

about space and true whether our finite constructive devices allow us to give a precise 

description of them. 

 In my view, as long as the status of these sets remains open, we should consider what an 

inductive logic must do to accommodate them. For a general understanding of the nature of 

inductive inference must be expansive enough include these accommodations. To do otherwise is 

to prejudge the status of nonmeasurable sets and artificially restrict the scope of inductive 

inference. It is in that permissive spirit that the explorations of this chapter are undertaken. 

7.	Blackwell	and	Diaconis’	Nonmeasurable	Coin	Toss	Event	
 Most instances of nonmeasurable sets arise in the esoteric realm of abstract mathematics. 

When we use the sets to specify chancy events, that makes the events seem distant from the 

concerns of an inductive logic that may apply to real science. It would help to reduce that 

distance if we could find nonmeasurable events that arise in the archetypal probabilistic problem 

of sequential coin tosses. Blackwell and Diaconis (1996) have described such events. An account 

of them will be given in this section. An interesting bonus is that the apparatus needed to 

describe the events enables specification of another inductive logic that, while very weak, applies 

to events that are otherwise probabilistically nonmeasurable. 
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7.1	Tail	Events	

 Blackwell and Diaconis’ event arises in the case of infinitely many coin tosses. Each toss 

has a probability of 1/2 of a head H or a tail T; and the tosses are all probabilistically 

independent. Our elementary events will be infinite sequences of heads and tails. If we let 

variables a1 = H or T, a2 = H or T, a3 = H or T, …, then such an infinite sequence is represented 

by the infinite tuple a = < a1, a2, a3, …>. The nonmeasurable event will be one of what is called 

a “tail set,” or, as I shall call them here, “tail event.” These are events whose properties (such as 

the probability, if defined) depend only on the long term behavior of the infinite sequence, that is, 

on its tail.  

 Such events are familiar and important. For example, elementary events like  

<H, T, H, T, H, T, H, T, …> and <H, H, T, T, H, H, T, T, …> 

are distinctive in that the limiting relative frequency of heads H is 1/2. This distinctive property 

is shared by many other elementary events that differ in finitely many of the individual coin 

tosses. For example 

< H, H, H, H, H, H, H, H, H, H, H, T, H, T, H, T, H, T, …> 

differs from <H, T, H, T, H, T, H, T, …> only in its first few tosses. It will still return a limiting 

relative frequency of heads H of 1/2. The heavy weighting towards H in the early tosses is 

eventually and inexorably swamped by the later tosses. 

 Each of these elementary events has a probability given by the infinite product 1/2 x 1/2 x 

1/2 x …. That is, each has probability zero. There are infinitely many elementary events that 

return this limiting relative frequency. We combine23 them disjunctively to form the event 

“half”: that the infinitely many coin tosses return a limiting relative frequency of heads H of 1/2. 

Since the individual tosses are probabilistically independent and each of probability 1/2, we can 

apply the strong law of large numbers to conclude that the event half will occur with probability 

one, P(half) = 1. 

                                                
23 If we think of the events as propositions, then we are “or”ing them together. If we think of 

them as elements of a set, we are collecting them into a set. 
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 This last paragraph describes the distinctive property of a tail event: its probability is 

unaffected by whatever may happen in finitely many of the tosses that comprise it. More 

precisely: 

Tail event characterization 1: a tail event is probabilistically independent of the 

outcome of any finite set of tosses. 

Recall that two events A and B are probabilistically independent just if P(A & B) = P(A).P(B). 

This defining property means that half is independent of the conjunction (a1= H) & (a2= H) & 

(a7= H) & (a63= H), so that: 

P(half & (a1= H) & (a2= H) & (a7= H) & (a63= H)) 

= P(half) . P((a1= H) & (a2= H) & (a7= H) & (a63= H)) 

and similarly for any other finite set of tosses. 

 There are many other tail events. For example: 

quarter: the limiting relative frequency of heads H is 1/4. P(quarter) = 0. 

three-quarters: the limiting relative frequency of heads H is 3/4. P(three-quarters) = 0. 

interval-no: the limiting relative frequency of heads H lies in some interval of reals that does 

not contain 1/2: P(interval-no) = 0. 

interval-yes: the limiting relative frequency of heads H lies in some interval of reals that does 

contain 1/2: P(interval-yes) = 1. 

even-H: an infinite number of even numbered tosses are head H. P(even-H) = 1 

Tolstoy: the infinite sequence contains, infinitely often, the entirety of Tolstoy’s War and 

Peace, encoded in binary using H and T, as well as every variant of the same length 

created by all possible typographical errors.  P(Tolstoy) = 1. 

 It may at first seem that this list of examples is uncreative in the sense that every 

probability is a zero or a one. Those zeroes and ones are unavoidable however. The Kolmogorov 

(1950, pp. 69-70) Zero-One Law asserts that all tail events to which probability can be assigned 

are of probability zero or one only. 

 The proof of the law involves some mathematical complications. Rosenthal (2006, §3.5) 

gives a serviceable formulation as well as a helpful account of tail events. The basic idea behind 

the proof, however, is so simple and striking as to bear mention. As we saw above, the defining 

characteristic of a tail event we shall call “tail” in infinitely many coin tosses is that it is 
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probabilistically independent of any event formed from only finitely many coin tosses, such as 

one we will here call “finite.” That means 

P(tail & finite) = P(tail) .  P(finite) 

for all possible finite. The unusual circumstance is that the event tail is a member of the infinite 

set of events formed from all possible instantiations of finite, when closed under finite and 

countable unions and intersections.24 This leads eventually to the curious result that tail is 

independent of itself! Substituting tail for finite in this last equation and noting that tail & tail = 

tail, we have 

P(tail) = P(tail & tail) = P(tail) . P(tail) 

This equation admits only two solutions 

P(tail) = 0     and     P(tail) = 1 

 Since we will shortly be dealing with nonmeasurable events, we will need another 

characterization of tail events that does not explicitly invoke probability measures. That 

condition is simply that  

Tail event characterization 2: if a = < a1, a2, a3, …> is an elementary event within 

some tail event and b = < b1, b2, b3, …> is any elementary event that differs from it 

in only finitely many tosses, then b is also in the tail event. 

This new characterization entails the original one above in case the events concerned have well 

defined probabilities. To see this, pick any finite set, such as a1 and a3. Let us say that  

aH.H… = < a1 = H, a2, a3 = H, a4, a5, a6, …> 

is an elementary event in some tail event where a2, a4, a5, a6, … have some values that are kept 

fixed in what follows here. The new condition requires that all combinations of alternative values 

of a1 and a3 appear in other elementary events in the tail event. These additional events are 

aH.T… = < a1 = H, a2, a3=T, a4, a5, a6, …> 

aT.H… = < a1 = T, a2, a3 = H, a4, a5, a6, …> 

aT.T… = < a1 = T, a2, a3 = H, a4, a5, a6, …> 

The probabilistic contribution to the tail event by these four elementary events is 

                                                
24 That is, the σ-algebra formed from all instantiations of finite. 
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P(aH.H… v aH.T… v aT.H… v aT.T…) = P(aH.H…) + P(aH.T…) + P(aT.H…) + P(aT.T…) 

=  P(a1 = H) . P(a3 = H). P(<a2, a4, a5, a6, …>) +  

     P(a1 = H) . P(a3 = T). P(<a2, a4, a5, a6, …>) + 

     P(a1 = T) . P(a3 = H). P(<a2, a4, a5, a6, …>) + 

     P(a1 = T) . P(a3 = T). P(<a2, a4, a5, a6, …>) 

= P(<a2, a4, a5, a6, …>). 

This is just the probabilistic contribution to the tail arising when tosses a1 and a3 are excluded, 

which shows the probability is independent of the tosses a1 and a3. Repeating for all other finite 

combinations of tosses, we see that the probability of the tail event is independent of any of these 

finite combinations, which is the first characterization of tail event above. 

7.2	An	Intermediate	Tail	Event	E25	

 We can start with a tail event of probability zero. By adding new elementary events to it, 

we can expand it to a tail event of probability one. For example, we might start with the tail 

event interval-no that is defined by the limiting relative frequency of heads lying in the interval 

0.9 to 1.0. Since 0.5=1/2 is not in that interval, this tail event has zero probability. We 

continuously expand the interval by adding more elementary events until the interval becomes 

0.4 to 1.0. At the moment when the interval expands to include the limiting relative frequency of 

                                                
25 Alex Pruss has pointed out another way that a nonmeasurable tail event may be formed in this 

coin tossing example. Each elementary event has a reversed event in which every H is replaced 

by T and every T by H. We form maximal equivalence classes of elementary events, such that 

two events in the same class differ only in finitely many of the individual coin toss outcomes. 

For each such equivalence class U there is reversed class Ur consisting of the reversals of the 

elementary events in U. The entire outcome set is partitioned by an infinity of (unordered) pairs 

of such classes: {U, Ur}, {V, Vr}, … Using the axiom of choice for collections of two-membered 

sets, we choose one equivalence class from each pair. Their union is the tail event N. The entire 

outcome set is partitioned by N and its reversal Nr. The event N satisfies conditions (a) and (b) of 

Section 7.3 and thus is nonmeasurable. See http://alexanderpruss.blogspot.com/2017/11/heres-

simple-construction-of-non.html 
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heads of 0.5, its probability will flip from zero to one. Writing “rf” for the limiting relative 

frequency of heads and assuming that the intervals include their end points, we have 

P(rf in 0.6 to 1.0) = 0 

P(rf in 0.55 to 1.0) = 0 

P(rf in 0.51 to 1.0) = 0 

P(rf in 0.50001 to 1.0) = 0 

P(rf in 0.5 to 1.0) = 1 

P(rf in 0.49999 to 1.0) = 1 

P(rf in 0.45 to 1.0) = 1 

 This last example suggests that, as we assemble sets of elementary events into events, we 

find no tail events intermediate between events with probability zero and those with probability 

one. Certainly there are none in the sequence just considered. However that last sequence 

included by construction only tail events with well-defined probabilities. What Blackwell and 

Diaconis demonstrate is that there are very many tail events, intermediate between events with 

zero and one probability, and that these tail events are probabilistically nonmeasureable. No 

probability can be assigned to each of them. 

 We begin assembling Blackwell and Diaconis’ event “E” as a set of elementary events, 

making our focus the presence of H toss outcomes. The first elementary event in E is just one 

that consists of all H: 

aall-H = <H, H, H, H, H, H, H, H,…> 

We now add to E all elementary events that differ from aall-H in only finitely many tosses. They 

include: 

<T, H, H, H, H, H, H, H,…> 

<H, T, H, H, H, H, H, H,…> 

<H, H, T, H, H, H, H, H,…> 

… 

< T, T, H, H, H, H, H, H,…> 

< T, H, T, H, H, H, H, H,…> 

… 

Call them “infinite H, finite T” elementary events. There are as many of these elementary 

outcomes as there are subsets of the natural numbers. That is, there is a higher order of infinity of 
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them. Nonetheless, the probability of the event just formed is zero. It is a tail event characterized 

by a limiting relative frequency of heads of one. Our starting point is essentially the same as the 

growing intervals of tail events above. 

 We will add many, many more elementary events to E but in a way that avoids the 

flipping of probability from zero to one. We achieve this by adding elementary events in a way 

that conforms with a specific set of rules. To express them, we need to define the intersection 

operation ∩ on elementary events. The intersection of elementary events a and b is the 

elementary event a ∩ b that has H in every position that has H in both a and b and T otherwise. 

For example: 

a = <H, T, H, T, H, T, H, T, …> 

b = <H, H, T, T, H, H, T, T, …> 

a ∩ b = <H, T, T, T, H, T, T, T, …> 

The complement ac of an elementary event is just that same event a with each occurrence of H 

switched to T and each occurrence of T switched to H. For example: 

a  = <H, T, H, T, H, T, H, T, …> 

ac = < T, H, T, H, T, H, T, H,…> 

The event E is a set of elementary events, where we write elementary event a is a member of E 

as a ∈ E. 

 The rules for forming E are that the following conditions are respected as the elementary 

events are added: 

I. The “no-H” elementary event ano-H = <T, T, T, T, …> is not in E. 

ano-H ∉E. 

II. (“containment”) If a ∈ E and b arises by replacing some T in a by H, then b is also in E. 

If a ∈ E and a ∩ b = a, then b ∈ E.  

III. (“intersection”) The intersections of elementary events in E are also in E. 

If a ∈ E and b ∈ E, then a ∩ b ∈ E. 

IV. (“exhaustion”) For every element a, either a or its complement ac is in E. 

For all a, either a ∈ E or ac ∈ E 
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V. (“free”) The infinite intersection of all elementary events in E is the “no-H” event. 

 
∩
a∈E
a = ano−H   

Those with mathematical interests will recognize these five conditions as defining a free 

ultrafilter. The first three specify a filter. The fourth makes the filter an ultrafilter; and the fifth 

makes it a free ultrafilter.26 

 These conditions impose a definite structure on the elementary events that comprise E. 

From III. and I., we have that every intersection of elementary events in E must have some H 

toss outcomes. Thus, for all elementary events a, just one of a or its complement ac can be 

included in E. Condition V. ensures that every elementary event in E must contain infinitely 

many H toss outcomes.27 

 The set of “infinite H, finite T” elementary events along with aall-H satisfies all these 

conditions, excepting IV.28 While we have not fully specified the content of E, we can already 

see at this stage that any possible set E must include this set. This follows from II and the fact 

that I requires that some H must be present in all the events of any possible set E.  

                                                
26 Blackwell and Diaconis do not implement the ultrafilter structure directly on the tuples that 

form the elementary events. Rather they form sets of indices of the locations of H in the tuples. 

For example, <H, T, H, T, H, T, …> yields the set of odd numbers {1, 3, 5, 7, …}. The ultrafilter 

is implemented in the set of all these subsets of the natural numbers. 
27 To see this, assume otherwise that there is an elementary event fin(n) in E that has finitely 

many H—say, n of them.  If n>1, then there is an elementary event a such that a ∩ fin(n) and ac 

∩ fin(n) each have one or more H, but  each is strictly fewer than n. Since just one of a and ac is 

in E, it follows from the intersection condition III that there is another elementary event in E with 

fewer H than n. Iterating, it follows that, if there is an elementary event in E with finitely many H, 

then there is an elementary event in E with just one H. This elementary event fin(1) must be 

contained in every elementary event in E. Otherwise the intersection of fin(1) with some 

elementary event in E would be ano-H so that ano-H must also be in E by III, which then violates I. 

But if a ∩ fin(1) = fin(1) for all a in E, then the free condition V is violated. 
28 They are equivalent to a Fréchet filter. 
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 To satisfy exhaustion IV, we need to add further events. We have many choices over 

which to add. For example, we must add one of the elementary events in half 

a = <H, T, H, T, H, T, H, T, …> 

or its complement 

ac = < T, H, T, H, T, H, T, H,…> 

But we cannot add both. Next, we must choose among 

b = <H, H, T, T, H, H, T, T, …> 

bc = < T, T, H, H, T, T, H, H, …> 

Adding the tail event half flipped the probability of the continuously growing set of tails events 

above from zero to one. We now see that this tail event cannot be a subset of E. For all four of a, 

ac, b and bc are included in half. It also suggests that no tail event with a relative frequency in 

the vicinity of 0.5 can be in E. That these tail events are precluded from E gives the first 

indication that our path leads away from events with well defined probabilities. We may avoid 

the flipping of probability from zero to one by including only parts of these tail events in E. 

 We need to make many, many, many decisions of this type. We get a rough estimate of 

the number by noting that there are as many elementary events as there are members of the 

power set of the natural numbers, that is the set of all subsets of the natural numbers.29 We then 

make about that many choices of inclusion between each elementary event and its complement. 

This suggests that the number of ways of forming distinct Es is two orders of infinity higher than 

the natural numbers:30 it has the cardinality of the power set(power set (natural numbers)). There 

are very many possible events E! 

 The supposition, here, is that, if we persist in adding elementary events to E prudently, 

we will arrive at a set conforming with all the conditions. In particular, exhaustion IV will be 

satisfied. This is an apparently innocent supposition and essential to the formation of E. It is, 

however, a non-constructive assumption of existence. We have not specified just which 

elementary events can be added to satisfy exhaustion IV and, were we to try, our efforts to do so 

                                                
29 Each subset of the natural numbers corresponds to an elementary event. The odd numbers {1, 

3, 5, …} corresponds to <H, T, H, T, H, …>. 
30 A more precise analysis shows that this is the cardinality of the set of ultrafilters on the natural 

numbers. See Comfort and Negrepontis (1974, p. 147). 
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would fail. The existence assumption turns out to be of a similar character to the axiom of choice 

described above. More precisely, the existence of E is proved by the ultrafilter theorem. Its proof 

commonly employs Zorn’s lemma, which is equivalent to the axiom of choice. However, the 

ultrafilter theorem is logically weaker than the axiom of choice, as displayed in Herrlich (2006, p. 

18). 

 Nonetheless all the vacillations that surround the earlier construction of the Vitali sets 

arise again here. As reported above, my view is that we should persist in exploring these systems. 

To do otherwise is to prejudge the admissibility of axioms like the axioms of choice and thus to 

restrict artificially the scope of our inductive logics. 

7.3	Event	E	is	Probabilistically	Nonmeasurable	

 We can now prove that any event E conforming with the conditions I.-V. is 

nonmeasurable. For purposes of a reductio argument, assume that event E is measurable; and 

thus so also is its complement event Ec, the set of all elementary events not included in E. We 

will find that 

(a) from a symmetry, P(E) = P(Ec) = 0.5; and 

(b) since E is a tail event, by the Kolmogorov Zero-One Law, P(E) = 0 or 1. 

Since (a) and (b) contradict, the reductio is completed. The set E is not measurable. 

 To see (a), note that there is a one-one correspondence between elementary events in E 

and those in Ec: each a ∈ E corresponds to ac ∈ Ec. To implement the correspondence, we just 

flip H to T and T to H in each elementary event a. It follows that each set of elementary events a 

in E is mapped to a corresponding set in Ec with a mirror image structure, under the flipping of H 

and T. Thus, if a probability is defined for the first set, then the corresponding set has the same 

probability. An easy way to see this is to note that we turn some set of elementary events in E 

into the corresponding set in Ec, without making any changes to the physical tosses, merely by 

imagining that the labels on each of the coins is switched from H to T or T to H. If follows that, 

if E is probabilistically measurable, then so is Ec; and they have the same probability. Since P(E) 

+ P(Ec) = 1, we infer that P(E) = P(Ec) = 0.5. 

 To see (b), consider some elementary event a ∈ E. Let b be any elementary event that 

differs from a in finitely many of its toss outcomes. From exhaustion IV, we have that one of b 
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or bc is in E. If bc is in E, then so must a ∩ bc. But since a and bc agree only on finitely many 

toss outcomes, it follows that a ∩ bc has only finitely many H. We saw above that all elementary 

events in E have infinitely many H. Therefore b is in E. That is, for every elementary event in E, 

the event E also contains every other elementary event that differs from it in only finitely many 

toss outcomes. Recalling Tail event characterization 2 above, it now follows that E is a tail event. 

By the Kolmogorov Zero-One Law, it has probability zero or one. 

8.	The	Ultrafilter	Logic	
 The analysis above shows that probabilistic reasoning over the outcomes of infinitely 

many coin tosses cannot proceed if our considerations include the very many nonmeasurable 

events of type E. The probability calculus falls silent over them.31 

 There are so very many elementary events arising with infinitely many coin tosses that 

we run into problems with standard methods even prior to attempting probabilistic analysis. For 

example, we might try to characterize the event consisting of all elementary events in which 

there are (in some sense) more heads than tails. One natural approach employs limits. We 

consider a finite sequence of coin tosses and compute the ratio of the number of heads to the 

number of tails. The event of interest consists of all elementary events in which that ratio is 

greater than one. We then take the limit as the number of coin tosses goes to infinity. The event 

that results will be something less than what we sought. For it is easy to contrive elementary 

events for which the ratio in question has no limit. All of these will be omitted from the event. 

 Should we despair of inductive inferences that encompass all the elementary events of the 

infinite coin toss? It turns out that, if we are willing to consider rather weak systems of inductive 

logic, we can find one that applies. It is embodied in the conditions I.-V. of the last section that 

characterizes an ultrafilter. A popular way of explaining the import of an ultrafilter is that it is a 

specification of which sets are large. In this case, a set of elementary events satisfying the 

conditions I.-V. contain a large number of H; all the rest do not. What makes this a natural 

                                                
31 We can get no help from upper and lower probabilities. Blackwell and Diaconis (1996) also 

show that the lower probabilities of both E and Ec are zero. Thus the correspondingly intervals 

are maximally large. 
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understanding is that these conditions admit only elementary events with infinitely many H; and 

condition II explicitly continued to populate E with all those elementary events with more H in 

them. The notion of “large” at issue here is, in intuitive terms, vague. Let us simply turn this 

around and assert that what we mean by “large” is membership in some set E that conforms with 

I.-V. 

 What results is a two-valued inductive logic that responds to the evidence that the actual 

outcome of infinitely tosses contains many H. The elementary events in E are “supported” (one 

value) by the evidence as having many H. The remainder are “not supported” (the other value). 

The axioms of the logic are the conditions I.-V. above. They play the same role as the 

Kolmogorov axioms of probability theory. 

 There are infinitely many possible sets E of elementary events. This infinity enables the 

logic to have a dynamics loosely akin to that of conditionalization in probabilistic analysis. We 

start out with the choice of applicable E left entirely open. This is as evidentially neutral a 

starting point as the logic admits. We can then carry out the analog of conditionalization by 

restricting the admissible sets E to those with some particular elementary event or some set of 

elementary events. Loosely speaking this restriction introduces the new information that 

something in these elementary events is close to the actual outcome. More precisely, to 

conditionalize on some elementary event a in this way is say that some infinite subsequence of a 

must be common to all elementary events in E. For axiom III., in conjunction with the other 

axioms, requires that every elementary event in E have an intersection with a that has infinitely 

many H in it. 

 As with the probability calculus, there are restrictions on the events on which we can 

conditionalize. In the ordinary probability calculus, we cannot conditionalize on events with zero 

probability. Correspondingly, if we have conditionalized on a set of elementary events 

containing 

a = <H, H, H, H, T, H, H, H, H, T, H, H, H, H, T, …> 

we cannot then conditionalize on a set containing its complement 

ac = < T, T, T, T,  H, T, T, T, T,  H, T, T, T, T,  H, …> 

For the axioms preclude membership of both in E.  

 The logic is weak. It is merely two-valued and, as a practical matter, no finitely 

specifiable set of evidence will lead to complete determination of the membership of E. For, as 
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we have seen, the existence of ultrafilters must be assumed without a finite recipe for the 

construction of any one of them. If we exclude highly contrived fantasies, I cannot now think of 

a factual scenario whose background facts would require axioms I.-V. to govern our inductive 

inferences. 

 The value of the logic lies in reminding us that many logics of inductive inference are 

possible. If we infer probabilistically over outcomes of infinitely many coin tosses, we do arrive 

at many strong results. However their cost is all these inferences fall silent over the 

nonmeasurable events. If we are prepared to accept a weaker inductive logic, then we see that 

there is a logic native to the mathematical structure that does embrace all events. 

9.	Conclusion	
 The considerations of this chapter have been wide-ranging. They are, however, unified by 

a single question. How might an inductive logic represent the uniformity of chances over an 

outcome set of continuum size? It might have seemed that this is an easy case for a probabilistic 

logic. Is it not realized by a uniform probability density over some continuum-sized set such as 

the interval [0,1]? That proves not to be the case. If we define the uniformity of chances through 

the requirement of label independence, the inductive logic that arises is very far from a 

probabilistic logic. 

 The bulk of the chapter has tried to find how we may alter the requirement of uniformity 

until it matches what the probability calculus can provide. These alterations were introduced by 

weakening the requirement of label independence until we arrived at a version adapted to a 

background spatial metric. Even this weakening and the addition of background metrical 

structure met with limited success. For the inductive logic adapted to spaces of infinite area or 

volume is not probabilistic. Further, nonmeasurable sets arise in spaces of finite area and volume. 

They escape the reach of a probability measure if its probabilities are to match the spatial areas 

and volumes. The only escape from this last problem seems to be to find reasons to ignore these 

sets. That they are non-constructible is a tempting way to banish them from our consideration. 

However this escape comes at the cost of supposing that all that exists in mathematics and in the 

physical world described by mathematics is what we can construct by our meager, finite methods. 
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