
 1 

December 3, 2016; May 15, 2017 

References to Ch 10 added August 7, 2017 
Field that initiates equation numbering:    

DRAFT	
Chapter from a book, The Material Theory of Induction, now in preparation. 

Indeterministic	Physical	Systems	
John D. Norton 

Department of History and Philosophy of Science 

University of Pittsburgh 

http://www.pitt.edu/~jdnorton 

 

1.	Introduction	
 The indeterministic systems to be investigated in this chapter share the common 

characteristic that determining one aspect of the system leaves others open. The most familiar 

cases are ones in which the present state of the system fails to fix its future state. We shall see 

several such systems here in Section 3. The most important are systems with infinitely many 

degrees of freedom, for this sort of determinism is generic amongst them. Rather than delve into 

the details of the physics of such systems, the mechanism that generates the indeterminism will 

be illustrated by the simplified system of the infinite domino cascade. 

 A different sort of indeterministic system will be explored in Section 4. At the risk of 

abusing the term, I will also describe as indeterministic systems in which, at the same moment of 

time, one component fails to fix others, contrary to normal expectations. The examples will be 

drawn from Newtonian gravitation theory. 

 Each instance of indeterminism poses a problem in inductive inference. From the known 

aspect, what strengths of inductive support are provided to the remaining underdetermined 

aspects? Given this present, what support is provided to the various possible futures? Given this 

mass distribution, what support is given to the various possible Newtonian potential fields? As 
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explained in Section 5, each of the problems has been chosen so that the complete background 

physics is transparent and transparently provides no probabilities over the various 

underetermined possibilities. The problem for inductive analysis is to find the strengths of 

inductive support for the different possibilities, without altering or adding to this physics. For to 

do otherwise is to change the problem posed. 

 We shall see in Section 6 that probabilities can only be assigned as strengths of inductive 

support if we add to the background facts. Normalization of a probability measure, for example, 

requires that the probabilities of different times of spontaneous excitation in a temporally 

indeterministic system diminish to zero as the times grow large. This diminution must happen at 

some rate: quickly or slowly; and fitting a probability measure to the process requires that some 

speed be chosen. To make that choice, however, is to add to the physics provided. 

 This is just the first of a series of problems that preclude the use of probabilities as 

strengths of support. The final example requires the adaptation of a uniform probability measure 

to an infinite dimensional space of Newtonian potentials. The infinity of the dimensions present 

especially intractable problems. 

 Section 7 then describes how the material theory of induction solves the inductive 

problems. We are to look to the background physical facts to provide the strengths of inductive 

support. By design, these facts provide very little. They allow us to say of various processes or 

components that they are necessary, possible and impossible. These three evaluations become the 

values of a spare, three-valued inductive logic. Its strengths of support coincide with those of 

“completely neutral support” described elsewhere, including Chapter 10 here. This completely 

neutral support can be fixed by certain invariances in space of possibilities; and we shall see that 

they are realized in this case as well. 

 We proceed first with a preliminary in Section 2 on the project now undertaken. 

2.	Why	Take	Simple,	Unrealistic	Physical	Systems	Seriously?	

 The illustrations to come involve simple, physically unrealistic systems that, mostly,1 we 

will not encounter in the ordinary practice of science. So why pay any special attention to them 

in investigations of inductive inference? There is a simple pragmatic reason for considering them. 
                                                
1 The exception is the example of the quantum spin of electrons. 
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If the analysis of the warranting relations is to be transparent, we need simple systems. We need 

systems in which the full set of background facts is easy to comprehend, so that their full import 

can be seen clearly and unequivocally. 

 This pragmatic reason, however, is not the principal one. The deeper reason for taking 

these simple systems seriously pertains to the range of applicability of inductive inference. We 

do not balk at reasoning deductively about fictitious systems, not matter how bizarre we may 

find them. Correspondingly, I see no reason to prohibit inductive inference over such systems. 

There is no guarantee, of course, that every system will admit rich inductive inferences. Just 

what is possible inductively will be determined by the background facts that obtain, as the 

material theory of induction asserts. When we ask which inductive inferences are warranted in 

the simple systems below, we will find that their strengths of inductive support cannot be 

probability measures. That is, we will find through counterexamples that the probability calculus 

does not provide a universally applicable logic of induction. 

 It may be tempting to block the counterexamples by insisting that the scope of inductive 

inference is limited to ordinary physical systems of the type we normally encounter in science. 

This would be an unnecessary restriction on the reach of inductive methods. Worse, it would be 

of no help in protecting the probability calculus as the universally applicable logic of inductive 

inference. For the restriction to ordinary systems gives up universal applicability at the outset. 

Moreover the restriction itself would conform with the material theory of induction, for the range 

of applicability of probabilistic inductive logic would be circumscribed by the factual restriction 

to ordinary systems.2 

3.	Temporally	Indeterministic	Systems	
 The general idea of determinism is that the fixing of one aspect of a system fixes some 

other. This section will address the case of temporal aspects. In a (temporally) deterministic 

physical system, the present state of the system determines its future states. With the notable 

exception of quantum measurement, physical systems are generally assumed to be deterministic. 

                                                
2 I set aside here the further problem of delineating just what will count as “ordinary.” Many of 

the systems ordinarily considered in science are highly idealized and thus highly unrealistic. 
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The present state of the planetary system fixes the future movements of the planets and whether 

there will be an eclipse on any nominated time. 

 Systems that violate temporal determinism have attracted considerable attention in recent 

decades in philosophy of physics, with the modern era marked by the publication of John 

Earman’s Primer (1986). Once we start to look for indeterministic systems, we find them in 

many places.  

3.1	The	Dome	

 One of the simplest indeterministic systems is the “dome.” Since it has been discussed 

extensively elsewhere (Norton 2003, §3; 2008), it needs only a brief recapitulation. A unit point 

mass slides frictionless over the surface of a dome in a vertical gravitational field with 

acceleration due to gravity g, as shown in Figure 1. 

 

 
Figure 1. The Dome 

 

The dome has a vertical axis of rotational symmetry about its apex and the surface is depressed 

below the apex by a (negative) height h = (2/3g)r3/2, where r is the radial distance to the point 

from the apex along the surface. The force F on the point mass along the surface of the dome is 

F = (d/dr) gh = r1/2 

and is directed outward from the apex. The motion of the point mass is governed by the equation 

of motion 

d 2r
dt 2

= r1/2                                                                      (1) 

r=0

h = 
(2/3g)r3/2

F = r1/2
r
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where t is time. Initially, at time t=0, the point mass is located at the apex r=0 at rest. Since the 

force at the apex is F = 01/2 = 0, one solution to the equation of motion is that the mass remains 

at the apex for all time: 

r(t) = 0        all t 

However there is a second family of solutions, in which the particle moves spontaneously at time 

t=T for any time T≥0: 

r(t) = (1/144) (t – T)4        all t≥T 

= 0       all t≤T 

In this second solution, the particle remains quiescent up to and including time t=T. Then it 

moves away from the apex in any direction. 

 This spontaneous excitation results entirely from the equation of motion. There is no 

hidden triggering event, such as a slight bump to the dome that may dislodge the point mass from 

the apex. If there is no spontantoues motion, it is so because the equations of motion allow it. If 

there is spontaneous motion at time T, it happens just because the equation of motion also allow 

it. 

 The dome is a Newtonian system with only finitely many degrees of freedom. That is, its 

state can be specified fully just by specifying a finite list of magnitudes: the position of the 

particle on the dome, its speed and its direction of motion. The dome is unusual in its 

indeterminism in that, generally, Newtonian systems with finitely many degrees of freedom are 

deterministic. It was devised originally to display an unusual exception to this generality. 

Because of its exceptional character, the indeterminism of the dome is highly sensitive to 

changes in the physical system and its indeterminism can be eliminated by small adjustments to 

it. 

3.2	Masses	and	Springs	

 Matters change, however, once we consider Newtonian systems with infinitely many 

degrees of freedom. An important example is a system of infinitely many interacting particles. It 

has infinitely many degrees of freedom since its state can only be specified by specifying 

infinitely many magnitudes, such as a the mass, position and velocity of each particle. Such 

systems are generically indeterministic. While circumstances need to be specially contrived to 

induce indeterminism among the systems with finitely many degrees of freedom, indeterminism 
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is simply the standard, generic behavior of these systems with infinitely many degrees of 

freedom. There are many examples in the literature. Often they arise in the supertask literature, 

as reviewed in Manchak and Roberts (2016). 

 The masses and springs example consists of an infinite chain of mass-spring-mass-

spring-… shown in Figure 2. 

 
Figure 2. Masses and Springs 

Its temporal behavior is recovered from an application of Newton’s laws along with Hooke’s 

laws for the springs. If the system is set initially in equilibrium with all the masses at rest and the 

springs unextended or uncompressed, then the system can remain in this quiescent state 

indefinitely. However, at any later moment, it can spontaneously self-excite with all the masses 

set in motion. The system is noteworthy for the ease with which a full mathematical description 

can be given and for what is represents physically. It is a standard model of a one-dimensional 

crystal, extended to infinite size. It indicates that more complex solids, such as infinite three-

dimensional crystals, will exhibit similar indeterminism.3  

 In all these systems, the infinity of the number of degrees of freedom is essential. A finite 

system, no matter how large, will not manifest the indeterministic behavior as freely. A finite 

chain of mass-spring-mass-spring-…, once quiescent, remains so for all time, no matter how 

large it is. 

3.3	The	Infinite	Domino	Cascade	

 Rather than work through the technical details of the examples, I will display a toy 

example, shown in Figure 3., that illustrates the mechanism that brings about indeterminism in 

all these infinite cases. In a domino cascade, dominoes or slender tiles are set on their edges in a 

                                                
3 I have argued in Norton (2012) that this fact ensures that the infinite component, 

thermodynamic limit of thermal physics cannot involve examination of a system that consists of 

infinitely components. Through their indeterminism, such infinite systems have qualitatively 

different properties from the real target of analysis, systems with many, but finitely many, 

components. 

......
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row, such that when one falls, it strikes another, leading it to fall; that falling domino strikes yet 

another, leading it to fall; and so on down the row. 

 Consider a very large row of dominoes, finite in number. We assume no external 

perturbing effects. There are no slight vibrations from passing trucks, no thermal agitation from 

air molecules, and so on. If it is set up at rest initially, it will remain so indefinitely. 

 Consider an infinite row of dominoes with the same provisions. As with the finite case, it 

can remain at rest indefinitely. However, it is also possible for it to be set into motion 

spontaneously. The final stages of this spontaneous motion are: 

• the first domino falls, because it was struck by the second domino that started falling earlier; 

• the second domino fell, because it was struck by the third domino that started falling earlier; 

• the third domino fell, because it was struck by the fourth domino that started falling earlier; 

and so on. 

As we proceed through the falling of the first, second, third, … dominoes, we trace the process 

back through time and eventually consider the falling of all infinity of the dominoes. 

 

 
Figure 3. Infinite Domino Cascade 

 This cascade of falls could not happen spontaneously if there were finitely many 

dominoes. For, as we trace back through the finite cascade, we would eventually come to the last 

domino. It would not fall because there are no further dominoes to fall on it. There is nothing to 

start the cascade. In the infinite case, we never come to the end of the cascade. For any domino, 

there is always a next domino to fall on it. So every domino falls. There is no first fall to initiate 

the cascade and no need for one. 

 All that remains now is to close a loophole. If each domino takes the same amount of 

time to fall onto the next, then the infinity of domino falls needed to complete the cascade 
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requires an infinite time. That does not make the process impossible. Rather it makes it 

uninteresting for our purposes, for it is simply a process that has been underway for all of an 

infinite past time. If each fall takes one second, then the Nth domino fell N seconds ago; and so 

on for N indefinitely large. 

 We close the loophole by contriving the geometry of dominoes such that each time of fall 

is successively shorter as we proceed along the cascade. If the successive dominoes require 1/2, 

1/4, 1/8, 1/16, … seconds to fall, then all infinity of them will have fallen after 1/2 + 1/4 + 1/8 + 

1/16 + … = 1 second. To an observer, the motion would appear as follows. The initially 

quiescent dominoes remain so for some time. Then, off in the distance of the infinite end of the 

row of dominoes, at the moment of spontaneous excitation, there is a disturbance that rapidly 

propagates towards the beginning of the row and leaves all the dominoes toppled. 

 Some delicacy is needed to arrange all the dominoes so that they can behave this way. 

The time each takes to fall on the next will depend on how hard it is struck and how close is the 

next domino. Under plausible assumptions, computed in Appendix A, the time each domino 

needs to fall onto the next scales in direct proportion to the distance between the dominoes. 

 Thus we secure the above schedule of acceleration of the falls by shrinking the distance between 

the dominoes in proportion to the times 1/2, 1/4, 1/8, 1/16, … If we assume that the widths of the 

dominoes are scaled similarly, then the cascade can be completed in finite time just if the length 

of the domino row is finite. 

 One outcome of this scaling is that the dominoes will become arbitrarily thin. One might 

imagine that this means that the dominoes become pseudostable rather like a pencil balanced on 

its infinitely sharpened tip. However none of the dominoes will be pseudostable, since a 

pseudostable system is one which is toppled by an arbitrarily small perturbation. Each domino 

will have a finite width, even if small, which forms a stable base. Toppling it requires some non-

zero work to lift its center of mass past its edge. 

 This is a toy model. However it illustrates how indeterminism arises generically in 

systems with infinitely many degrees of freedom. In such systems there are many cascades of 

excitation processes that cannot arise spontaneously in finite systems, since the finite system 

requires some initiating event to get the process started. In a system with infinitely many of 

degrees of freedom, these processes can happen spontaneously without need of some initiating 

event, for they are comprised of infinite cascades of events that have no first member. 
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 These general remarks can be made more precise. For a synopsis of the analysis for a 

more general case and for the quantitative analysis of the masses and springs example 

specifically, see Norton (2012, Appendix). 

4.	Indeterminism	Among	Components	of	a	System	
 In the indeterminism of the last section, the present state of the system fails to fix its 

future state. It may also happen that, at the same time, the state of some components of a system 

may fail to fix the state of other components, contrary to our expectations. The problem in 

inductive inference is then to determine the strengths of support afforded to these incompletely 

determined components. 

4.1	Gauge	Systems	

 There is a simple recipe for generating many problems of this type by injecting a small 

fiction into physics. Modern physical theories are replete with gauge freedoms. They arise when 

one has two descriptions that appear to be of distinct physical systems, but it turns out that the 

differences are merely artifacts of the descriptions used. It is “the Eiffel tower” and “la tour 

Eiffel.”  The two systems are the same physically. They just differ in their names. 

 Imagine, however, that through some novel physics we do find a way to distinguish the 

two. Then we would have a difference that makes a difference; and learning which is the correct 

one would become a problem in inductive inference. Since there are many gauge freedoms in 

modern physics, this stratagem can create many new inductive inference problems of just the 

type sought here. 

 Sometimes fact can mimic fiction. The gauge field associated with magnetism is the 

vector potential A. In classical physics, it is merely a useful adjunct in computing magnetic field 

strengths, but not a physically significant quantity in its own right. The coming of quantum 

theory initially showed promise of changing this circumstance. Bohm and Aharonov (1959) 

found a quantum effect that arose when there was an A field present, but no magnetic field. They 

initially offered it as evidence that the A field is physically significant. Later analysis showed the 

situation to be more complicated. 
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 For concreteness, I will elaborate one of the simplest gauge freedoms. In ordinary 

Newtonian gravitation theory, the physically significant quantity is the gravitational force on a 

unit test mass and the associated quantities of work. The distribution of all such possible forces 

over all space is the Newtonian gravitational force field f. For the case of the sun, the force field 

is given by the familiar inverse square law 

f (r) = GM
r2

                                                                  (2) 

where a force of magnitude f(r) on a unit test mass is directed towards the center of the sun. M is 

the mass of the sun, r the radial distance from the center of the sun to the test mass and G the 

universal constant of gravitation.  

 The Newtonian gravitational potential field ϕ(r) is defined through the work W(r0, r1) 

needed to be performed against this force field when we move a unit test mass from one position 

r0 to another r1. That is, the potential fields ϕ(r0) and ϕ(r1) are related by 

W (r0,r1) =ϕ(r1)−ϕ(r0 ) = f dr
r=r0

r1∫ = GMdr
r2

= −GM
r1r=r0

r1∫ − −GM
r0

⎛
⎝⎜

⎞
⎠⎟

                               (3) 

We usually infer from (3) that ϕ(r) = −GM
r

. However we are really only authorized to infer to 

something weaker:  

ϕ(r) = −GM
r

+ K                                                                   (4) 

where K can be any number, positive or negative, large or small. 

 The choice of K leaves the physically significant quantities unaltered. That is, for all K 

we end up with the same work term W(r0, r1) in (3) since  

−GM
r1

+ K
⎛
⎝⎜

⎞
⎠⎟
− −GM

r0
+ K

⎛
⎝⎜

⎞
⎠⎟
= −GM

r1

⎛
⎝⎜

⎞
⎠⎟
− −GM

r0

⎛
⎝⎜

⎞
⎠⎟

 

and the same force field f(r) in (2) since 

f (r) = − d
dr

−GM
r

+ K⎛
⎝⎜

⎞
⎠⎟ =

GM
r2

 

The freedom in selection of different K’s is a gauge freedom and transforming between different, 

physically equivalent expressions for ϕ(r) by changing the value of K is a gauge transformation. 
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 The inductive inference problem posed is this. We introduce the fiction that some new 

physics will enable us to detect and distinguish among the gravitational potentials of (4). Given 

the gravitational force field f(r) of the sun (2), what is the inductive strength of support given to 

the gravitational potential fields ϕ(r) of (4) with different values of K? 

4.2	Newtonian	Cosmology	

 Indeterminism among components in a physical theory can arise without need for any 

fictitious physics. A simple example, inspired by Wallace (2016), arises in Newtonian 

gravitation theory. We expect that the specification of the position and masses of all bodies in the 

universe will fix the gravitational force on a test body and the gravitation potential field at any 

point in space. 

 That things are not simple precipitated an acute problem in Newtonian cosmology in the 

late 19th and early 20th century. Newtonian cosmology assumes that infinite Euclidean space is 

filled with a uniform matter distribution of constant density ρ. The expectation is that there is a 

unique gravitational force acting on any test body in such a universe. That force is calculated by 

summing all the gravitational forces acting on the test body from the uniformly distributed 

cosmic matter. The trouble is that there are many ways to sum these forces. Pick any resultant 

force you like and there is a way to carry out the sum so that the net force on the test body is just 

that force. For a survey of this period and for an example of the simple calculations that lead to 

the multiplicity of forces, see Norton (1999a). 

 In retrospect, the difficulty is all too easy to see. Contrary to expectations, the cosmic 

matter distribution does not fix the net gravitational force on the test body. Many fields are 

compatible with the one matter distribution and thus we can compute many forces on the test 

body simply by drawing quantities from different possible fields. 

 At the time, however, this possibility was overlooked since the loss of uniqueness of the 

force was unthinkable. Instead, many physicists found it obvious and even compelling that the 

symmetries of the problem must force a unique solution: there can be no preferred directions in a 

homogeneous, isotropic cosmology. So the net force can point in no direction. Hence there is no 

net force on the test body and, as a result, the gravitational potential field must everywhere be a 

constant. 



 12 

 We shall return below to this risky idea that physical intuition can override what well-

established equations say. Before we do, it is interesting to note that a favored resolution was to 

modify Newton’s inverse square law of gravity until it returned the expected constant 

gravitational potential. This computation was used by Einstein in 1917 as a foil to motivate his 

introduction of the cosmological constant into general relativity.  

 We can develop the difficulty as follows. A curious result of Newtonian gravitation 

theory concerns an infinite flat plate of matter of density ρ and thickness Δx. The gravitational 

force exerted by this plate on a test body turns out to be independent of the distance from the 

plate. It is just 

f = 2πGρ Δx.                                                          (5) 

directed along the line of shortest distance to the plate. (See Appendix B for a justification and 

demonstration of this result and further analysis of this example.) We can use this result to 

determine the gravitational force on a test body in a Newtonian cosmos. We divide the uniform 

matter distribution into infinitely many flat plates of thickness Δx and infinite area, arranged 

parallel to the y and z axes of a Cartesian coordinate system (x, y, z).  

 Consider a unit test mass at some fixed x-coordinate position, say x’=x. We can divide the 

matter distribution that acts gravitationally on it into two parts. As shown in Figure 4, the first 

consists of all those infinite plates between x’=-x and x’=x. The second consists of all the 

remaining infinite plates. 
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Figure 4. Unbalanced Forces in Newtonian Cosmology 

 

We have from (5) that each plate of thickness Δx contributes force 2πGρ Δx. Hence the force on 

the test body from the plates between x’=-x and x’=x is just their sum 

f(x y, z) = 4πGρx.                                                          (6) 

and is directed along the x-axis towards x=0. The remaining plates each exert the force 2πGρ Δx 

on the text body. The force will be in the +x direction if the plate is located at x’>x and it will be 

in the -x direction if the plate is located at x’<-x. Hence we can pair up the plates at coordinate 

positions +x’ and –x', matching one that exerts a force in the +x direction with one that exerts a 

force in the -x direction, so the net force from the pair is zero. This pairing exhausts all the matter 

of the second part, as shown in Figure 5. The net result is that the force on the test body is given 

by (6). 

 



 14 

 
Figure 5. Balanced Forces in Newtonian Cosmology 

 

 We can repeat this construction for every point in space, so that the expression (6) 

represents the gravitational force field due to the cosmic matter. This force field induces a 

gravitational potential through a relation analogous to (3) as 

ϕx (x, y, z) = f (x ', y, z)dx ' =
x '=0

x '=x

∫ 2πGρx2                                                       (7a) 

The problem should now be obvious. The division of the cosmic matter into plates perpendicular 

to the x axis was arbitrary. We could also have divided it into plates perpendicular to the y or the 

z axes. We could then replicate the above analysis and recover two distinct potential fields4 

ϕy(x, y, z) = 2πGρ y2                                                                (7b) 

ϕz(x, y, z) = 2πGρ z2                                                                 (7c) 

                                                
4 For experts: the potentials (7a, b, c) derive from physically distinct gravitational systems and 

not gauge equivalent along the lines of Malament (1995). For more, see Appendix B. 
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We can generate still further potential fields. Another arbitrary choice was to locate the center of 

the plates of the first part at x-coordinate 0. We could equally have chosen any x-coordinate, such 

as x0. We would then have arrived at the gravitational potential fields 

ϕx,xo(x, y, z) = 2πGρ (x - x0)2                                                          (8a) 

ϕy,yo(x, y, z) = 2πGρ (y - y0)2                                                          (8b) 

ϕz,zo(x, y, z) = 2πGρ (z - z0)2                                                           (8c) 

Taken together, we have many potentials compatible with the cosmic matter distribution. One 

might well suspect at this point, quite correctly, that we have only begun to explore the 

gravitational potential fields compatible with the cosmic matter distribution. 

 These potential fields form a large space and we can navigate through them by the 

following artifice. We start with any admissible potential, such as (7a). We arrive at another 

simply by adding a “harmonic function” to it. (A harmonic function is one that satisfies 

Laplace’s equation ∇2Φ = 0. For more, see Appendix B.) It turns out that 

Φ = 2πGρ (y2 - x2) 

is a harmonic function. Adding it to (7a) moves us to (7b): 

ϕx(x, y, z) +  Φ = 2πGρ x2 +2πGρ (y2 - x2) = 2πGρ y2 = ϕy(x, y, z) 

Another harmonic function is 

Φ = 2πGρ ((z-z0)2 - x2) 

Adding it to (7a) moves us to (8c). 

 The remarkable fact is that there are infinitely many harmonic functions and they are 

linearly independent. That means that we cannot reduce the set by expressing some as linear 

combinations of others. If we represent an infinite set of linearly independent harmonic functions 

as Φ1, Φ2,  Φ3, …, then adding any linear combination of them to an admissible potential 

produces another. Thus we arrive at an infinite dimensioned space of gravitational potentials  

ϕx + a1Φ1 + a2Φ2 + a3Φ3 + …                                                          (9) 

where the space is parameterized by infinitely many parameters a1, a2, a3, … which can each 

independently take on all values, positive and negative, large and small. The potentials of (7a, b, 

c) and (8a, b, c) are just some of the simplest potentials in the space. 
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 The inductive problem to be addressed shortly is to determine the support for each of the 

solutions in the space of potentials defined by (9), given the spatial geometry and matter 

distribution of Newtonian cosmology. 

 Since both the spatial geometry and the matter distribution are isotropic and 

homogeneous, it is natural to assume that the gravitational potential will share some or all of 

these symmetries. One may even have a strong intuition, as did the physicists of the past, that the 

potential must share these symmetries. Imposing them would have the effect of greatly reducing 

the size of the space of potentials (9). While the resulting reduced problem is interesting its own 

right, it is not the one to be addressed here. We do not assume homogeneity and isotropy of the 

potential field, for there is no compulsion to assume either. It is not an assumption that can 

derived from the corresponding symmetries of the geometry and the matter distribution and, as 

the viablility of the potentials (9) show, it is not enforced on individual potentials of Newtonian 

gravitational theory. 

5.	Inductive	Analysis	of	Temporally	Indeterministic	Systems	
 The indeterministic systems of Sections 3 and 4 above each pose a problem in inductive 

inference. Take certain fixed aspects of a system: its present state or certain of its components. 

Find the strength of inductive support that aspect provides to some other aspect: the system’s 

future state or certain others of its components. The systems have been chosen so that all share 

the following two properties: 

• The physics described is an exhaustive account of the totality of background facts. 

There are no further hidden background facts. 

• The physics leaves one aspect of the system underdetermined, but provides no 

probabilities for the different possibilities. 

An essential condition to be placed on the inductive analysis is that it merely extracts and 

displays the relations of inductive support already present in the fully specified systems. That is, 

setting off the controlling idea for emphasis: 

The analysis may not impose new physics. 
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For to impose new physics is to introduce new facts that alter the problem posed. What would 

result might well be a cogent analysis of some problem, but it would not be an analysis of the 

problem originally posed. 

6	A	Probabilistic	Analysis	
 Let us attempt to represent the strengths of inductive support as probabilities. We shall 

see that this analysis inevitably imposes new physical facts on the systems. 

6.1	Temporally	Indeterministic	Systems5	

 The temporally indeterministic systems of Section 3 all involve systems that remain 

quiescent until some time t=T of spontaneous excitation. The inductive problem is to determine 

the strengths of support for various times T. Initially, this looks like a problem tailor-made for 

probabilistic analysis, for it is similar to the problem of radioactive decay: a radioactive atom 

remains quiescent until the moment of decay. This moment is governed by the familiar law of 

radioactive decay. The  probability P(T) of decay in the time interval from 0 to T is 

P(T) = 1 – exp(-T/τ)                                                             (10) 

where the time constant τ of the decay is related to the empirically determined half-life of the 

element by T1/2 = τ ln 2. 

 This law of radioactive decay is the natural probabilistic law adapted to these cases, for it 

is the unique law with “no memory” of what happened in the past. That is, whether the atom will 

decay in the moments immediately to come is independent of how long the atom has survived so 

far, without decaying. It has no memory of whether that past survival was long or short. 

 If we write Q(T) = 1 - P(T) for the probability that the atom does not decay in the initial 

time T, then this no memory property is expressible as 

Q(T+u) = Q(T).Q(u)                                                     (11) 

That is, the probability that the atom survives undecayed for a total time T+u is given by the 

probability that it survives first for time T and then, given no decay, that it then survives for a 

further time u. The no memory property says that these last two probabilities are independent, so 

                                                
5 The analysis of this section draws on Norton (2010a). 
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the probability of the conjunction of their outcomes is just the product of (11). This relation 

entails the exponential decay law (10).6 

 The probability distribution (10) expresses a physical chance. It is immediately and 

naturally converted into a logic of induction through the conditional probabilities it induces on 

pairs of hypotheses concerning the time of decay. For example, write: 

 H(T1, T2): the hypothesis that the time T of spontaneous excitation occurs in the 

interval T1≤T< T2  

If we take as our background B the physical description of the radioactive atom, then the support 

accrued to the hypothesis from B that the atom will decay sometime up to time T is just given by 

P(H(0, T)|B) = P(T) = 1 – exp(-T/τ) 

The support for the hypothesis of decay between T1 and T2, from the evidence that decay 

happens by time T > T2 > T1 is 

P(H (T1,T2 ) |H (0,T )) =
exp(−T1 /τ )− exp(−T2 /τ )

1− exp(−T /τ )
 

 All this is unremarkable and it seems to be the natural analysis to apply to the 

spontaneous excitations of Section 3. Here, however, our familiarity with radioactive decay is 

leading us astray. For the probabilistic law (10) includes a time constant τ. The magnitude of the 

time constant has a profound effect on the dynamics, as shown in Figure 6. 

 

                                                
6 Differentiate (11) with respect to u and find dQ(T + u)

d(T + u)
⋅ d(T + u)

du
= dQ(T + u)
d(T + u)

=Q(T ) ⋅ dQ(u)
du

. 

Evaluate this expression at u=0 and recover dQ(T)/dT = k Q(T), where k = dQ(u)/du|u=0 is a 

constant independent of T. The solution is Q(T) = constant . exp(kT). Since the atom must 

eventually decay, P(T) = 1 - Q(T) must go to unity as T goes to infinity. Hence we must have 

“constant” = 1 and k = -1/τ, for any τ>0. 
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Figure 6. Effect of Different Time Constants τ on the Probability of Spontaneous Motion 

 

A small time constant entails that spontaneous excitation is all but sure to happen soon. If τ is one 

millisecond, then there is a probability of 0.999 of spontaneous excitation in time τ ln 1000 = 

6.91τ = 6.91 milliseconds.7 A large time constant entails that spontaneous excitation is very 

unlikely to happen soon. If τ is one thousand years, then there is a probability of only 0.001 of 

spontaneous excitation in τ ln 1.001 = 0.001τ = one year. 

 Since use of the probabilistic law (10) requires selection of a time constant τ, it can only 

be employed if we, in effect, make some judgment about how soon the spontaneous excitation 

will occur. We already have the complete physics of the systems of Section 3. There is no time 

scale provided and no judgments of sooner or later. All the physics tells us is that spontaneous 

excitation is possible.  

 Thus to apply the probabilistic law (10) is to introduce new physics. That is, it is to 

change the problem posed to a new one to which probabilistic methods happen to be well-

adapted.  

 The analysis above is just a beginning. There are many ways to apply probabilistic 

analysis to this problem of spontaneous excitation. While some are quite ingenious, none 

succeed. Here are a few of the possibilities. 

 The physics is indifferent to which is the time T of spontaneous excitation. So a natural 

choice is a uniform distribution of probability over all values of T from zero to infinity. The 

immediate difficulty is that the probabilities of such a uniform distribution cannot sum to unity. 

We set equal the probability of equal intervals 

ε = P(H(0,1) |B) = P(H(1,2) |B) = P(H(2,3) |B) = P(H(3,4) |B) = …                        (12) 
                                                
7 To arrive at these estimates, invert (10) to recover T = τ ln [1/(1-P)]. 
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Since there are infinitely many of these intervals, the total probability is 

ε + ε + ε + ε + ε + … = ∞ x ε = ∞. 

This is a failure of the probability distribution to normalize: these probabilities should sum to the 

unit probability required by the axioms of probability theory for the entire outcome space. 

 While this failure is usually treated as fatal, the normalization condition is sometimes 

dropped, under the expectation that conditionalization may lead to a normalized probability 

distribution. However, even if this expectation is sometimes met, the real problem with the 

distribution (12) is that it still adds to the physical facts. It assures us that, for example, H(0,2) is 

twice as probable as H(0,1). If we make the usual connections to frequencies, that means that we 

should expect H(0,2) to arise roughly twice as often as H(0,1) in many repeated trials. The 

physical facts for these systems include no such provision. They simply allow that any of the 

times in these hypotheses may be the time of spontaneous excitation; and nothing more. 

 Another possibility was explored more fully in the earlier Chapter: Infinite Lottery 

Machines. It is that we drop the requirement of countable additivity that allows us to sum the 

infinitely many ε’s above. Instead, we are allowed to sum finitely many only, that is, we are 

restricted to finite additivity. The result is that we can set ε=0 in (12) without breaching 

normalization. All the individual hypotheses of (12) are assigned zero probability 

0 = P(H(0,1) |B) = P(H(1,2) |B) = P(H(2,3) |B) = P(H(3,4) |B) … 

but their infinite disjunction is assigned unit probability.8 Finite disjunctions of them are also 

assigned zero probability 

P(H(0,3) |B) = P((H(0,1) v H(1,2) v H(2,3)) |B) 

= P(H(0,1) |B) + P(H(1,2) |B) + P(H(2,3) |B) = 0 + 0 + 0 = 0 

This is promising initially, since all finite intervals of times are treated equally, even if as zero 

probability outcomes. 

 The difficulty is that the finitely additive measure is still adding significantly to the 

physics. For even finitely additive measures must assign unit probability to some set of 

outcomes; and these become privileged as the events we expect to happen. There is no way to 

assign this privileged set without adding to the physics. For example, the above measure assures 

                                                
8 Or, more carefully, one less whatever probability is assigned to the hypothesis that there is 

never a spontaneous excitation. 
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us that the time of spontaneous excitation is, with probability 1, greater than or equal to T=1: 

P(H(1,∞) |B) = 1. The physics is equally indifferent to the times of spontaneous excitation as it is 

to the inverse times of spontaneous excitation, 1/T. If the finitely additive measure is a 

reasonable way to represent complete indifference, then it should work equally well when it is 

applied to the inverse times 1/T. In that application, by parallel reasoning, we arrive at the result 

that, with probability one, P(H(1/1,∞) |B) = 1. But H(1/1,∞) = H(1,∞) =H(0,1),9 so that we have 

a contradiction with the earlier probability assignment P(H(0,1) |B) = 0. 

 The escape from the contradiction is to decide that only one of the two finitely additive 

measures may be used. That, however, amounts to selecting a privileged subset of probability 

one times of excitation: the times between 0 and 1, or between 1 and infinity. The physics makes 

no such distinction. It is an addition forced on us by the probabilistic measure. 

 Two further probabilistic embellishments have been treated elsewhere in Norton (2010a) 

and in earlier chapters. First, one might try to escape the need to select a single time constant τ in 

(10) by adopting the complete set of measures (10), for all values of τ, as the representation of 

the strength of support. The motivation is correct in that it seeks a representation weaker than a 

single probability measure. However it is too indirect in that it seeks to preserve probability 

measures by using them to simulate a different, non-additive logic. The better approach is simply 

to write down that logic directly, as is done in Section 7 Below. 

 Second, one might adopt the measure of (10) as a subjective degree of belief. The earnest 

but possibly unrealizable hope is that repeated conditionalization will wash away the subjective 

opinion and leave behind the objective bearing of evidence, or at least some approach to it. Once 

again, the motivation is good, but the execution poor. Again, the better approach is merely to 

write down the warranted logic directly. 

6.2	Probabilities,	Empirically?	

 While we may not be able to recover probabilities from the physics governing these 

indeterministic systems, might we introduce them through an empirical artifice? To take a 

concrete case, imagine that somehow we are able to physically realize a dome. We might then set 

up very many of them and just observe what happens. Might we find that that the frequencies for 

                                                
9 Aside from the inclusion of T=1 in H(1/T,∞), but not in H(0,1). 
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different times of spontaneous excitation stabilize towards limiting values? We could then 

introduce probabilities, set in value to those empirically determined, limiting, relative 

frequencies. 

 Dawid (2015) considers an even simpler case in the same spirit. What if we have 100 

domes and find that they all excite spontaneously at exactly 16.8 seconds? Might we then infer to 

a deterministic rule: spontaneous excitation occurs at 16.8 seconds for all domes? 

 How we treat these proposals will depend on how certain we are of the background, 

governing physics. Are we certain of the background physics or are we not? 

 In the first case, we remain certain that the Newtonian physics specified is the totality of 

the physics governing the processes. That all excitations occur at 16.8 seconds is compatible with 

the indeterministic physics, but it is not something we could predict from that physics, at the 

exclusion of many other possibilities. Correspondingly, the background physics authorizes no 

further predictions, even after we have seen all 100 domes excite at 16.8 seconds. We should 

remain as uncertain of the next excitation time as we were prior to seeing the first dome in the 

imagined experiment. 

 This situation is quite similar to that of a gambler in a casino at a roulette wheel. 

Neglecting 0 and 00, the chance of a black on a properly functioning wheel is 1/2. Imagine, 

however, that the gambler steps up to the table with the wheel and finds 20 successive spins to 

yield black. Assume the gambler is confident of the background theory: the wheel is functioning 

properly. All the gambler can properly conclude is that an extremely unlikely event has occurred. 

Twenty successive black outcomes is possible, just improbable. 

 What the gambler should not now think is that the wheel is on some sort of “streak” so 

that, contrary to the physical construction of the wheel and the laws of probability, the next 

outcome is more likely to be black. To think that is to commit a notorious gambler’s “streak” 

fallacy. 

 It is the same with the dome. As long as we remain convinced that the Newtonian physics 

described is the totality of the physics that governs the dome, repeated excitations at 16.8 

seconds is merely a coincidence. In a similar vein, the indeterministic physics does not support 

the existence of stable limiting frequencies for different excitation times. Any appearance of such 

stability is mere coincidence that cannot be expected to persist. 
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 That was the first case. In the second case, we become uncertain that the Newtonian 

physics described is all that governs the actual domes of our experiment. We suspect that some 

further or some other physics is at play. What physics it might be is hard to say, since the entire 

scenario is built from multiple layers of fiction. I leave it to the reader’s imagination. Whatever 

alternative physics we may suspect here is what will guide the inferences. 

 Once again, the situation is similar to that of the gambler. The probability of 20 black 

outcomes is exceedingly small: 1/220, which is roughly 1/1,000,000. Having seen such an 

improbable occurrence, the gambler would reasonably suspect that something odd is afoot. 

Perhaps the wheel has some ingenious cheating device that is malfunctioning and delivering all 

black outcomes. If the gambler believes that to be the case and that the cheating device will 

continue to operate well, the gambler would be well warranted to conclude that the next outcome 

will be black. 

 In short, as long as we retain the presumptions made at the outset of the totality of the 

physics governing the indeterministic systems, any empirically observed regularities of the type 

suggested will be of no help to us inductively. To expect otherwise is to commit a fallacy 

analogous to the gambler’s “streak” fallacy. 

6.3	Systems	with	Indetermimism	Among	their	Components	

 The inductive problems posed in Section 4 are to find the inductive strengths of support 

afforded to underdetermined components of a physical system by those that are fixed by the 

problem specification. Much of the analysis of Section 6.1 can be carried over to the 

probabilistic analysis of these problems. Probabilistic analysis fails in the same way. In addition, 

the infinite dimensionality of the space of underdetermined potentials (9) in Newtonian 

cosmology raises more problems. 

 The simplest problem was posed in Section 4.1. We are to choose among the infinitely 

many gauge equivalent fields of (4). This choice amounted to selection of a value of the constant 

K, which can take any real value, positive or negative, large or small. 

 The straightforward approach is to represent strength of inductive support by a 

probability distribution over K. However, since K has an infinite range, the distribution must be 

attenuated towards zero for large positive and large negative values of K. Otherwise it will not 

normalize to unity. Here the difficulty is like that faced by the probabilistic law (10). The rate of 
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attenuation will be represented by some parameter or some characteristic of the distribution that 

is akin to the selection of the time constant τ in (10). Any choice of a rate of attenuation, 

however, is an addition to the physics of the gauge system. 

 One might also try to avoid the problem by employing an unnormalizable probability 

distribution akin to (12). Once again, this will add to the physics, for it requires us to assign 

higher probability to larger intervals of K, even through the physics does not authorize it. Finally 

the difficulties of the finitely additive measure can be replicated here as well. 

 The still harder case for probabilistic analysis is that of Newtonian cosmology in Section 

4.2. For now we are to distribute probabilities uniformly over the space of potentials (9). Its 

individual solutions are picked out by specifying values for the infinitely many parameters a1, a2, 

a3, … That is, it is an infinite dimensional space. The familiar problem is that we cannot easily 

assign an additive measure over such spaces since the parameter values range from minus 

infinity to plus infinity. In the examples so far, it is the requirement of normalization of the 

measure of the full space to unity that forces the problem. The new problem with an infinite 

dimensional space is there is still no well behaved, uniform measure over this space, even if we 

drop the requirement of normalization. 

 To see this, recall that probabilities behave like volumes in space. So, for continuity with 

familiar notions, let us continue to call them volumes. First consider a space of parameters a1, a2, 

…, an of finite dimension n. The set of all points for which 0< ai < 2, all i, forms a cube of side 2. 

This cube consists of 2n cubes of unit side. In a three dimensional space, the side 2 cube consists 

of 23 = 8 unit sided cubes. If we assign unit volume to each unit cube, the side 2 cube just has 

volume 2n. 

 For any finite n this relation is unproblematic. That ceases to be so when we take the case 

of the infinite dimensional space. For then, the sided 2 cube consists of an uncountable infinity 

2∞ of unit cubes. Since the measure is uniform, all the unit cubes have the same volume. There 

are two cases: the unit cubes have non-zero volume; and the unit cubes have zero volume. 

 If the unit cubes have some finite, non-zero volume, then it follows that the side 2 cube 

must have infinite volume. This follows using only finite additivity of the volumes. For if we 

suppose any finite volume for the side 2 cube, then we need only sum finitely many of the unit 
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cubes to recover a summed volume greater than it. Of course, if the unit cubes have infinite 

volume, then so must also the side 2 cube. 

 The other possibility is that the unit cubes have zero volume. Then the side 2 cube can 

also have zero volume. However it may also have a finite, non-zero volume or an infinite volume. 

This may seem odd, since we are supposing the side 2 cube to consist of nothing but zero volume 

unit cubes. Why not add up all these zeroes and get zero volume? The problem is that there are 

an uncountable infinity 2∞ of zeroes and adding uncountable infinity of them is an undefined 

operation.10 The volume of the side 2 cube must merely be greater than the sum of the volumes 

of finitely many unit cubes; or (if countable additivity is assumed) of a countable infinity of them. 

So its volume can be non-zero.11 

 These results can be applied to a cube anywhere in the space. Every cube can be 

decomposed into 2∞ half-sided cubes; and every cube is itself a component cube of a doubled-

sided cube. What results are three possibilities for the uniform measure. The two simple ones are 

just that all cubes have either zero volume or infinite volume. The complicated case is that there 

is some value L such that an L sided cube has finite, non-zero volume. Since the measure is 

uniform, all cubes of side L will have this volume. It follows by replicating the above reasoning 

that all smaller cubes that can be compounded to form cube of side L must have zero volume; 

and all larger cubes that can be built from cubes of side L must have infinite volume. 

 This third option violates the requirement that we add nothing to the physics, for it 

singles about quite particular, preferred sets of parameters as just those that reside in the cubes of 

side L. Since parameter values correspond to gravitational potentials, this is a privileging of 

certain sets of potentials. 

 Combining the three possibilities, cubes in this space will almost everywhere have either 

zero volume or infinite volume. One can see this result informally by noting what happens when 

                                                
10 This is a familiar result. Each point in the unit intervals of reals is of zero length. Since there 

there are an uncountable infinity of them, we cannot add them to find the length of the unit 

interal of reals, which is not zero, but one. 
11 This is an uncommon possibility. In discussions of measures on infinite dimensioned spaces, it 

is usually assumed that the spaces are separable, which allows that each region can be composed 

of a countable infinity of equal volume subregions. Separability fails in this case. 
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we scale up or scale down any region by a factor M. That is, we multiply all the parameter values 

in the set specifying the region by M. The volume of the region will scale by a factor Mdimension 

of space = M∞. This factor is zero if M<1 and infinity if M>1. This suggests that almost all 

volumes will be zero or infinity. For a finite, non-zero volume cannot stay finite and non-zero 

under any scaling, either up or down. It becomes an infinite or a zero volume respectively. 

However employing this factor M∞ directly in a more thorough argument is not straightforward 

since it leads to indeterminate arithmetic forms. For example, scale up a zero volume by an 

infinite factor M∞, when M>1. The new volume is “0 x ∞,” which is an expression that cannot be 

evaluated. 

 Note that these troubles arise without assuming that the volume of the total space 

normalizes to unity. If we retain countable additivity, the possibilities above admit only two 

values for the volume of the entire space: zero or infinity. 

 It might be tempting to drop countable additivity, assign zero volume to any bounded 

region and unit volume to the whole space. One does not escape the difficulty already developed 

above for finitely additive measures in the case of spontaneous excitations. Briefly, the measure 

ought to be indifferent to whether we parameterize the space with the original parameters ai or 

their inverses, 1/ai. Then we would assign zero volume to the side 2 cube in the inverse 

parameterization 1/ai for which 0<|1/ai| < 1, all i. But this region corresponds to the entirety of 

the space in the original parameterization, 1 < |ai| < ∞, excepting a zero volume cube 0< |ai| < 1. 

In the original parameterization, this region is assigned unit volume. 

7.	The	Inductive	Logic	Warranted	

7.1	The	Logic	

 The material theory of induction directs us to look to the background facts to determine 

which logic is warranted. In the cases of this chapter, the background facts are, by careful 

contrivance, such as to support essential no non-trivial inductive inferences at all. They allow us 

merely to say that certain outcomes are possible but to provide no discriminations of the nature 
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of “more possible” or “less possible.” This lack of discrimination can be codified into a formal 

calculus with three values:12 

nec = necessary 

poss = possible 

imp = impossible 

These values are assigned to strengths of inductive support, written as “[A|B],” where this 

symbol represents the strength of inductive support afforded to proposition A by proposition B. 

The little structure these strengths have is induced by deductive relations among the 

propositions; or, in other terms, by set theoretic containment amongst the sets of possibilities. 

That is, we have:  

[A|C] = nec, if C deductively entails A. 

= imp, if C deductively entails not-A. 

= poss, otherwise. 

 

(13) 

The logic is empty until we specify the propositions to which it applies. Many choices are 

possible here. One convenient choice arises in the context of the spontaneously exciting systems 

of Section 4.1. The propositions over which this logic is defined are: H(T1, T2), as defined in 

Section 6.1; B: the proposition that describes the background physical facts of the system; and, 

for completeness, H(∞): the time of spontaneous excitation T= ∞. Proposition H(∞) corresponds 

to the case in which there is no spontaneous excitation. 

 The logic now authorizes us to assign strengths of support such as 

[H(T1, T2) | B] = poss, for any T2 > T1. 

[H(∞) | B] = poss 

[H(1, 2) | H(0, 4)] = poss 

[H(0, 4) | H(1, 2)] = nec 

[H(0, 4) | H(10, 20)] = imp 

There is a natural and obvious generalization to the systems of Section 4 with indeterminism 

among the system components. 

                                                
12 This logic has been developed in various forms in Norton (2008a, 2010a and 2010b) and in 

Chapter 10. 
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 An important property of this logic is that it is not additive, in contrast with the 

probability calculus. That is, if A1 and A2 are mutually exclusive propositions, such that  

[A1|C] = [A2|C] = poss, then it is possible that [A1vA2 | C] = poss. Overall, we violate additivity 

since 

[A1|C] = [A2|C] = [A1vA2 | C]                                                          (14) 

The additivity of a probability measure would require in this case that  

P(A1|C) + P(A2|C) = P(A1vA2 | C) 

 so the probabilities assigned to A1, A2 and A1vA2 cannot be equal unless we have the 

exceptional case of all probability zero outcomes. 

7.2	Invariances	

 Norton (2008a, 2010b) and Chapter 10 argued that this logic (13) represents the case of 

completely neutral support; that is, the case in which we have no reason at all to favor any of the 

contingent propositions in any degree. It was shown that the logic can be derived in two ways 

from two invariance properties. We shall see below that these invariances are respected to a great 

extent in these systems. However, do recall that the logic (13) of Section 7.1 was not derived 

from these invariances, but directly from the possibilities allowed by the background physical 

facts. 

Redescription	

 The first invariance is invariance under redescription. This invariance is commonly 

employed in the context of the principle of indifference. It arises when we redescribe a system in 

a way that preserves our indifferences. 

 Take, for example, the value of the parameter K in the Newtonian gauge system of 

Section 4.1. Represent a useful set of hypotheses by: 

HK(k1, k2): the parameter K lies in the interval k1≤K< k2 

On the basis of the background facts B, we are indifferent to K lying in equal ranges of values, so 

we have 

poss = [HK(0, 1) | B] = [HK(1, 2) | B] = [HK(2, 3) | B] = [HK(3, 4) | B] 

= [HK(4, 5) | B] = [HK(5, 6) | B] = [HK(6, 7) | B] = [HK(7, 8) | B]  
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Now replace the parameter K by L = K3. Since L is an equally good parameter to use in (4), we 

can also write 

poss = [HL(0, 1) | B] = [HL(1, 2) | B]   

However HL(1, 2) = HK (1, 23) = HK (1, 8) 

= HK (1, 2) v HK (2, 3) v HK (3, 4) v HK (4, 5) v HK (5, 6) v HK (6, 7) v HK (7, 8) 

Combining with HL(0, 1) = HK(0, 1) we recover 

poss = [HK(1, 2) | B] = [HK(2, 3) | B] = [HK(3, 4) | B] 

= [HK(4, 5) | B] = [HK(5, 6) | B] = [HK(6, 7) | B] = [HK(7, 8) | B] 

= [HK (1, 2) v HK (2, 3) v HK (3, 4) v HK (4, 5) v HK (5, 6) v HK (6, 7) v HK (7, 8) | B] 

This is an example of the failure of additivity of the type of (14). 

Negation	

 The second invariance is invariance under negation. If the support for some proposition A 

is completely neutral, then we have no grounds to assign it more or less support than its negation 

not-A. We must assign the two equal support. That is, the strength of support remains unchanged 

under the negation map that sends hypotheses to their negations. 

 This negation map can be implemented in the case of systems that can spontaneously 

excite as follows. Write 

HT(T1, T2): the time of spontaneous excitation T lies in the interval T1≤T< T2 

Hypothesis HT(0, 1) says that this time lies in 0≤T<1. Its negation, not-HT(0, 1), asserts that that 

the time of spontaneous excitation lies in 1<T≤∞. Negation invariance of the strengths of support 

requires the equality 

[not-HT(0, 1) | B] = [HT(0, 1) | B]                                          (15) 

We can see that this equality obtains according to the rules of (13). For 

not-HT(0, 1) = HT(1, ∞) v H(∞) 

and from the rules 

[not-HT(0, 1) | B] = [ HT(1, ∞) v H(∞) | B ] = poss 

as well as 

[HT(0, 1) | B] = poss 
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All these hypotheses accrue equal support poss from the background B since none are 

deductively entailed by B.  

 We can also derive negation invariance from redescription invariance. Consider the 

support, not for various times T, but for the inverse times 1/T. If we are indifferent to the two 

parameterizations of the time, T and 1/T, then we would have, under description invariance: 

[HT(0, 1) | B] = [H1/T(0, 1) | B] 

The interval 1<T≤∞ is the same 0≤ 1/T <1. That is, 

not-HT(0, 1) = H1/T(0, 1)  

Combining we infer 

[HT(0, 1) | B] = [H1/T(0, 1) | B] = [not-HT(0, 1) | B] 

This is just negation invariance (15). 

8.	Conclusion	
 According to the material theory of induction, there is no logic or calculus of inductive 

inference that applies universally to all problems in inductive inference. It follows that there are 

problems in inductive inference in which strengths of support cannot properly be represented by 

probability measures. This chapter illustrates this claim with examples of indeterministic 

physical systems contrived to be resistant to a representation of strengths of inductive support as 

probabilities. The contrivance depends on finding simple physical systems in which a full 

specification of the background physical facts can be given and their burden easily discerned. An 

inductive analysis must determine strengths of inductive support without requiring alteration of 

or addition to these background facts. In the examples presented, using probabilities to represent 

strengths of supports requires just such additions. For this reason their use fails. 

 The material theory of induction asserts that the applicable logic of induction is 

determined by these background facts. Their paucity supports a very weak, three-valued 

inductive logic that happens to coincide with the completely neutral strengths of inductive 

support elaborated elsewhere. 

 The inductive problems of this chapter all involve problems of indeterminism in which 

certain aspects of a system fail to fix certain other aspects. Problems of this sort do arise in recent 

science. The most obvious involves singularities in general relativity. Singular spacetimes can 
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develop in many ways into the future. The possibilities are not determined and there are no 

probabilities provided by general relativity to weight the different possibilities. 

 A white hole is the temporal inverse of a black hole. When systems fall into a black hole, 

their structures are obliterated by the black hole, whose properties are merely mass, charge and 

angular momentum. If we now take the time reverse of the falling in, anything that can fall into a 

black hole can also be ejected by a white hole. The possibilities are not determined. 

 In relativistic cosmology, the big bang is a spacetime singularity in our common past, out 

of which the entire universe issued. The long-standing puzzle has been to explain why this 

singularity issued in a universe that is so nearly spatially homogeneous and isotropic and with 

spatial curvature very close to zero. Here is a problem in inductive inference. Given the 

background facts of general relativity and that there is an initial singularity, what support do we 

have for the various possible cosmologies that may arise? There are very many possible 

configurations other than the particular one manifested in our universe; and there are no good 

reasons provided in pre-inflationary cosmology13 that we should have just these initial 

conditions and not others. 

 It is tempting to convert these last facts into the claim that it is very improbable that we 

have the initial conditions we do. But such a claim, if read literally, solves the inductive problem 

by means of a probability measure. Since the background facts listed provide for no probabilities, 

their introduction is as illicit as in the contrived examples of this chapter. 

 The moral of the chapter is that we should be prepared for problems in inductive 

inference in which strengths of support are not well-represented by probability measures. To do 

otherwise, to persist in representing strengths of inductive support universally as probability 

measures, risks unwittingly importing new facts that change the problem posed to a new one 

amenable to probabilistic representation. The outcome is that we will not have solved the 

problem actually before us but a different one that we wished we had.  

                                                
13 The once common claim that inflationary cosmology does provide these reasons is now 

challenged. See for example Holland and Wald (2008). 
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Appendix	A:	Toppling	Dominoes	
 A domino has width W, height H and mass m and is separated from the next domino by 

an inter-domino distance L. To be toppled, a small impulse is needed to push the domino from its 

vertical position until it strikes the next domino, as shown in Figure 7. 

 

 
Figure 7. Geometry of a Toppling Domino 

 

As the center of mass of the domino pivots on one edge, if forms an inverted pendulum. Call the 

angular position of the center of mass θ as it pivots around the edge and set θ=0 when the center 

of mass is directly over the edge. If the distance along the circular arc traced by the center of 

mass of the domino is x and the center of mass is located in the geometric center of the domino, 

then the gravitational force on the center of motion in the direction of the arc is mg sinθ, for g the 

acceleration due to gravity. The equation of motion in time t is m d 2x
dt 2

= mgsinθ ≈ mgθ , where 

sin θ  is approximated as θ for the small angles we encounter here. Since θ = x/(H/2), we have 

d 2θ
dt 2

= k2θ  
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where k2 = g/(H/2). This inverted pendulum equation of motion admits the general solution 

θ(t) = A sinh (kt) + B cosh (kt), for undetermined constants A and B. We set θ(t) = 0 when t=0, so 

that B=0, and arrive at: 

θ(t) = A sinh (kt) 

In toppling, the center of mass of the domino is first lifted by the rotational pivot about the edge 

and then falls under gravity once past the edge. 

 It would be convenient if there were some longest time this motion could take. One might 

imagine that, if the domino were given just the right, minmal push, it would pivot slowly and its 

center of mass would momentarily have zero speed as it passes over the edge at the apex of its 

motion. This cannot happen. A longer computation shows that this motion would require infinite 

time. (For more, see Norton, 2003, pp. 11-12.) 

 The best we can secure is that the center of mass, at the moment of passing over the edge, 

has some small linear speed V.  Since the angular speed is dθ(t)/dt = Ak cosh (kt), we require  

V/(H/2) = dθ(0)/dt = Ak cosh (k0) = Ak. Thus the solution is 

θ(t) = V/(kH/2) sinh (kt) ≈ Vt/(H/2) 

since, for small times, sinh (kt) ≈ kt. 

 The domino center of motion must move from its initial angular position 

θ=-W/H to its collision with the next domino at angular position θ=(L-W)/H. Substituting into the 

last equation for θ(t), we have L/H = Vt/(H/2) for the time t required by the domino to fall. That 

is 

t = L/2V 

Thus the time tn for the nth domino to fall is given by Ln/2V, where Ln is the distance between 

dominoes n and (n-1). Thus: 

Total time for cascade 

= Σn tn = (1/2V) ΣnLn = (1/2V) Total distance between dominoes 

If we assume that the domino width scales in the same way as the distance between the dominoes, 

the condition that the cascade completes in finite time reduces to the condition that the domino 

row be of finite spatial length. (Informally, this condition follows if we imagine that that the 

falling propagates through the chain at roughly a constant speed V.) 
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 An assumption of this analysis is that each domino has the same speed V as its center of 

mass passes its apex. One might wonder whether the system can provide each domino sufficient 

energy. Some qualitative considerations show that this will not be a problem. Each domino by 

supposition has speed V at its apex and thus kinetic energy (1/2)mV2. Assuming elastic collisions, 

it will pass this much energy to the next domino as well as the extra energy released when the 

domino center of mass falls to a lower height overall. 

 Indeed the problem will not be a lack energy to sustain the cascade, but the danger of a 

surfeit. For there are infinitely many dominoes of the same mass, each falling through a height in 

a finite time. If each domino falls to the same prone position, that will result in release of an 

infinite amount of energy. 

Appendix	B:	Newtonian	Cosmology	

 The force (15) exerted by an infinite, flat plate of density ρ and thickness Δx is 

independent of the distance to the plate is easy to see qualitatively. Consider the portion of the 

plate subtended by a very small angle Ω at the location of unit test mass. The volume and thus 

the mass of this portion is proportional to Ωr2. However the force exerted by this mass on the 

test mass diminishes with 1/r2. Hence the force is proportional just to Ω and independent of 

distance. 

 The full expression for the force is computed as follows. The distance r from the unit test 

mass to each part of the plate satisfies r2 = x2 + s2 where x the shortest distance to the plate and s 

the distance from the closest point on the plate to the part at issue. A circular ring of width ds at 

radius s in the plate exerts a force on the unit test mass of 

Gρ2πsdsΔx
r2

⋅ x
r
= Gρ2π xΔx sds

s2 + x2( )3/2
, 

where x/r is the cosine of the half angle at the base of the cone subtended by the ring. Integrating 

over all s, we recover (15) as 

f = 2πGρxΔx sds
s2 + x2( )3/2s=0

s=∞

∫ = 2πGρxΔx −1
s2 + x2( )1/2

s=0

s=∞

= 2πGρxΔx 1
x
= 2πGρΔx  
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 We can also compute the Newtonian gravitational potential field ϕ directly from 

Poisson’s equation 

  ∇2ϕ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
ϕ = 4πGρ                                                    (16) 

For constant ρ, the solutions (7a, b, c) and (8a, b, c) follow immediately. For example, we 

recover (7a) as 

∇2ϕx = ∇2 2πGρx2( ) = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
2πGρx2( ) = 2πGρ ∂2

∂x2
x2 = 4πGρ  

That Φ = 2πGρ (y2 - x2) is harmonic follows since 

∇2 (y2 − x2 ) = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
y2 − ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
x2 = ∂2

∂y2
y2 − ∂2

∂x2
x2 = 2 − 2 = 0   

That adding a harmonic function to a solution of Poisson’s equation (16) takes us to another 

solution follows from the linearity of the operator ∇2. If Φ is a harmonic function, which 

satisfies Laplace’s equation ∇2Φ = 0, and we add it to an existing solution ϕ of Poisson’s 

equation (16), their sum (ϕ + Φ) also satisfies Poisson’s equation, for 

∇2(ϕ + Φ) = ∇2ϕ + ∇2Φ = ∇2ϕ + 0 = 4πGρ 

The full set of harmonic functions is a linearly independent set. There is no simple way to write 

this set. In spherical coordinates (r, ϕ, θ), the harmonic functions are 

Φ(r, ϕ, θ) = (Ajrj + Bj/rj+1)Pjm(cos θ)(am cos mϕ + bm sin mϕ), 

for Aj, Bj, am, bm arbitrary constants; m = -j, -(j-1), …, (j-1), j; and j = 0, 1, 2, 3, …;  

and Pjm(cos θ) are the associated Legendre functions of cos θ. (From Bronshtein and 

Semendyayev, 1985, p. 463, after correction of apparent typographical errors.) 

Digression	for	Experts	

 Since this problem of Newtonian cosmology has attracted considerable attention in the 

philosophy of physics literature, I include a short digression for experts. 

 Among the solutions to (16) is one that is formed as the equally weighted sum of the 

three solutions (1/3) ϕx + (1/3) ϕy +(1/3) ϕz and is called by Malament (1995) a canonical 

solution centered at the origin 
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ϕcan = (2/3)πGρ (x2 + y2 + z2) = (2/3)πGρ r2                                        (17a) 

where the radial coordinate r satisfies r2 = x2 + y2 + z2. This solution has a special status as a 

solution with maximum isotropy: it is isotropic about the origin r = (x, y, z) = 0. That falls well 

short of the full homogeneity and isotropy that the early physicists expected. It has a preferred 

center at the origin of coordinates. Infinitely many more, distinct canonical solutions are possible, 

each centered at different points in space, r0 = (x0, y0, z0) ≠ 0. 

ϕcan =  (2/3)πGρ (r-r0)2                                                   (17b) 

Malament showed, however, that the differences among these canonical solutions were only 

apparent. He adopted the natural assumption that the physically real properties of a Newtonian 

cosmology manifest in the relative accelerations of point masses in free fall. It turned out that all 

the canonical solutions give the same relative accelerations. That is, the choice among them was 

merely the exercising of a gauge freedom. For further motivation for this choice of what is 

physically significant, see Norton (1995). 

 Malament’s analysis gave a satisfactory answer to this question: which isotropic, 

homogeneous Newtonian cosmologies are there? The answer is given uniquely by the canonical 

solutions. 

 Our present question is a different one. It is: which potential fields are fixed by a uniform 

matter distribution through Poisson’s equation (16). The answer to this question, as has been 

emphasized by Wallace (2016), is that there are infinitely many such fields and they form the 

infinite set (9). Only very few of them prove to be physically equivalent after the manner of 

(17a) and (17b). Solutions (7a), (7b) and (7c) are not physically equivalent. It follows from (6) 

that masses in free fall in (7a) ϕx experience relative accelerations in the x-direction but not in 

the y- or z-directions. Similarly masses in free fall in ϕy and ϕz experience relative accelerations 

respectively in the y- and z-directions only.  

 A natural way to block this failure of the mass distribution to determine the gravitational 

potential, as Wallace (2016) has emphasized, is to impose boundary conditions. All but the 

canonical solutions are eliminated if we require isotropy in the physically significant properties, 

as do Malament (1995, p. 492, p. 501) and Norton (1995, p. 513, footnote 2). However the 

imposition of this condition must be understood as a distinct choice we make in order to prune 

the space of solutions to a subset that happens to interest us. We cannot derive it from the 
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isotropy of space and the matter distribution, for the Poisson equation does not respect this 

symmetry in its individual solutions.  
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