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1.	Introduction	
 Reasoning by analogy is a venerable form of inductive inference and was recognized 

already millennia ago by Aristotle. Over these millennia it has been the subject of persistent 

analysis from the perspective of formal approaches to inductive inference. The goal has been to 

find the formal criteria that distinguish good from bad analogical inference. These efforts have 

met with mixed success, at best. 

 As we shall see below, the difficulties these efforts have faced are similar to those facing 

the formal explication of other sorts of inductive inference. If analogical reasoning is required to 

conform only to a simple formal schema, the restriction is too permissive. Inferences are 

authorized that clearly should not pass muster. This familiar problem is illustrated below in the 

case of a generic account of analogical inference, drawn from the older literature and described 

in Section 2. This is Joyce’s (1936, p. 260) account, which I label “bare analogy” to reflect its 

simplicity. It has long been recognized that bare analogy authorizes too many inferences. This 

failure and its long-standing recognition is recounted in Section 3. 

 The natural response has been to develop more elaborate formal templates that are able to 

discriminate more finely since they capture more details of various test cases. Two elaborations 

are recounted here. Section 4 reviews Hesse’s two-dimensional account, which is in turn derived 

from an analysis by Keynes. Section 5 reviews Bartha’s articulation model. It was designed to 

remedy the shortcomings of Hesse’s account by still further elaborations. Section 6 describes 
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how these elaborations cannot escape the inevitable difficulty. Their embellished schema are 

never quite embellished enough. There is always some part of the analysis that must be handled 

intuitively without guidance from strict formal rules.  

 Section 7 turns to the material approach. According to it, the continuing expansion of the 

schema of the formal approach is inevitable since, according to the material approach, there is no 

single formal schema that can embrace all cases. As one tries to find schema that fit a growing 

body of cases better, the schema must introduce further distinctions and elaborations; and it must 

do so without end. For there are always new instances to be accommodated and a need for 

schema that fit more closely. 

 That the material approach is a better way to understand analogies and analogical 

inference in science is indicated by a curious divergence between the philosophical literature and 

the scientific literature. The philosophical literature categorizes analogy as a form of inference to 

be analyzed using some version of the formal methods of logical theory. The scientific literature 

approaches analogies as factual matters to be explored empirically; or at least it does so for the 

important analogies that figure centrally in the sciences. For the scientists, there are many 

inferences associated with the analogy. But the analogy itself is a factual matter. 

 This gap between the philosopher and the scientist is hard to close if we approach 

inductive inference formally. If, however, we take a material approach to inductive inference, the 

gap closes automatically and the difficulties faced by the formal approach evaporate. We no 

longer need to display some universal schema that separates the good from the bad analogical 

inferences.  Rather an analogical inference is good just in so far as there is a warranting fact to 

authorize it. Each warranting fact can be identified on a case by case basis without the need for it 

to conform with some elaborate template. That warranting fact is the factual analogy that 

scientists pursue empirically. 

 Sections 8, 9 and 10 illustrate the material approach with three cases of analogies in 

science: Galileo’s discovery of mountains on the moon, the Reynolds analogy in fluid flow and 

the liquid drop model of the atomic nucleus. Section 11 presents general conclusions. An 

appendix provides technical details of the Reynolds analogy and a little of its history. 
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2.	Bare	Analogy	
 Argument by analogy has long been a standard in the inventory of topics of logic texts in 

the older tradition. It is specified formally in terms drawn ultimately from syllogistic logic. Joyce 

(1936, p. 260) states it as: 

S1 is P. 

S2 resembles S1 in being M. 

[therefore] S2 is P. 

Mill (1904), Book III, Ch. XX, §2) gives an equivalent characterization in words: 

Two things resemble each other in one or more respects; a certain proposition is 

true of the one, therefore it is true of the other. 

This simple argument form has proven quite fertile in the history of science. Galileo observed 

shadows on the moon that resembled the shadows of mountains on the Earth in both their shape 

and motion. He pursued the resemblance to posit that there are mountains on the moon and to 

determine their height. Darwin’s celebrated argument in the early chapters of Origin of Species 

exploits an analogy between domestic selection by breeders and the selective processes arising in 

nature. Gravity and electricity resemble one another in being forces that act between bodies or 

charges, diminishing in strength with distance. So in the eighteenth century, it was natural to 

expect that the analytic methods Newton developed for gravity might apply to electricity as well, 

even issuing in an inverse square law. Two more fertile analogies will be developed in more 

detail below: analogies among transport phenomena, notably the Reynolds analogy; and the 

analogy between an atomic nucleus and a liquid drop. 

3.	Its	Failure	
 In spite of this record of success, descriptions of the argument form also routinely 

concede its inadequacy. Joyce (1936, p. 260) insists that the scheme he had just described has 

further hidden conditions. 

The value of the inference here depends altogether on the supposition that there is a 

causal connexion between M and P. If this be the case, the inference is legitimate. 

If they are not causally related, it is fallacious; for the mere fact that S2 is M, would 

then give us no reason for supposing that was also P. 
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This amounts to a gentle concession that the formal scheme laid out is not able to separate the 

good from the bad analogical inferences. The addition, the fact of a causal connection, lies well 

outside the vocabulary of syllogistic logic in which this argument form is defined. That 

vocabulary is limited to individuals and properties and assertions about them using “not,” 

“Some…” and “All…” For example: “Some As are not B.”  

 Recalling classic examples of the failure of analogical reasoning shows us that this 

pessimistic appraisal is still too optimistic. The depressions Galileo found in the moon’s surface 

resemble terrestrial seas. But there are no water filled seas on the moon’s surface. Lines on the 

surface of Mars resemble terrestrial canals. But there are no such canals on Mars. Fish and 

whales resemble one another in many of their features. But one extends the resemblance at one’s 

peril. Whales are mammals, not fish, and do not breathe through gills or lay eggs. In the 

eighteenth and early nineteenth century, heat was found to flow like a fluid from regions of 

higher heat density (that is, higher temperature) to those of lower heat density. Pursuit of the 

resemblance leads one to conclude that heat is a conserved substance. That heat is not conserved, 

but is convertible with work, was shown by the mid 19th century by Joule and others. Studies by 

Clausius, Maxwell and Boltzmann showed that heat is not even a substance in its own right. It is 

really a disorganized distribution of energy over the very many components of other substances. 

In the nineteenth century, the wave character of light was reaffirmed. In this aspect it resembles 

the wave motions of sound or water waves. Since both these waves are carried by a medium, the 

air or water, analogical reasoning leads to the positing of a corresponding medium for light, the 

ether. The positing of this medium fared poorly after Einstein introduced relativity theory. 

 We see through these examples that formally correct analogical inferences frequently 

yield false conclusions. Joyce’s added requirement of a causal connection is not sufficient to 

reveal the problems of the analogical failures just listed. Water on the moon or Mars would be 

causally connected with seas and canals. The property of surviving underwater is causally 

connected with having gills. The passage of heat from regions of higher to lower temperature is 

causally connected with the heat as a substance and temperature measuring its concentration. The 

wave motion of light is causally connected with the supposed medium that carries the waves. 

 We may want to discount these sorts of failure as a familiar artifact of inductive inference 

in general. When one infers inductively one always takes an inductive risk and inevitably, 
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sometimes, we lose the gamble. The frequency with which we lose the gamble has supported a 

more pessimistic conclusion on analogical inference in science (Thouless, 1953, Ch. 12): 

Even the most successful analogies in the history of science break down at some 

point. Analogies are a valuable guide as to what facts we may expect, but are never 

final evidence as to what we shall discover. A guide whose reliability is certain to 

give out at some point must obviously be accepted with caution. We can never feel 

certain of a conclusion which rests only on analogy, and we must always look for 

more direct proof. Also we must examine all our methods of thought carefully, 

because thinking by analogy is much more extensive than many of us are inclined 

to suppose. 

This unreliability of analogical reasoning is a fixture of handbooks of logic. They commonly 

have sections warning sagely of the fallacy of “false analogy.” The reader is entertained with 

numerous examples of conclusions mistakenly supported by analogies too weak to carry their 

weight. The difficulty with these accounts is that the falsity of the analogy is only apparent to us 

because we have an independent understanding of the case at hand. There is little beyond banal 

truism to guide us away from false analogies when the difficulty was not already obvious at the 

outset.1 Merely being warned to watch for weak analogies is unlikely to have helped an early 

nineteenth century scientist who infers that light waves must be carried by a medium, as are 

other waves; or that heat is a fluid since it resembles one in so many features. Until further 

empirically discovered facts are considered, these analogies seem quite strong. 

 After reviewing many examples of successful and unsuccessful analogies, Jevons (1879, 

p. 110) comes to a sober and cautious conclusion: 

There is no way in which we can really assure ourselves that we are arguing safely 

by analogy. The only rule that can be given is this, that the more closely two things 

resemble each other, the more likely it is that they are the same in other respects, 

                                                
1 Bartha (2010, p. 19) has performed the useful service of collecting a list of eight 

“commonsense guidelines.” They include: “(CS1) The more similarities (between the two 

domains), the stronger the analogy.” “(CS3) The greater the extent of our ignorance about the 

two domains, the weaker the analogy.” “(CS5) Analogies involving causal relations are more 

plausible than those not involving causal relations.” 
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especially in points closely connected with those observed . … In order to be clear 

about our conclusions, we ought in fact never to rest satisfied with mere analogy, 

but ought to try to discover the general laws governing the case. 

Once one has been steeped in the literature on analogical reasoning and has sensed both its 

power and resistance to simple systematization, it is easy to feel that Jevons’ rule is not such a 

bad outcome, in spite of its vagueness. It is a good tonic, therefore, to recall what successful 

rules look like in deductive logic. Modus ponens2 is a valid inference, always. Affirming the 

consequent3 is a deductive fallacy, always. We should take this as a warning. That our rules need 

to be protected by vagueness and ambiguity may be an alert that there is no precise rule to be 

found. 

4.	Two-Dimensional	Analogy:	Hesse’s	Account	
 If a formal account of analogical inference is to succeed, it will need to be significantly 

richer than the schema of bare analogy just discussed. There have been important efforts in this 

direction. The most successful and the most promising of these richer accounts is due to Mary 

Hesse and, more recently, Paul Bartha. First I will sketch the central, common idea of the 

account and then give a few more details of Hesse’s and Bartha’s versions. 

 An analogical inference passes from one system to another. Following Bartha (2010, p. 

15), I will call the first the “source” and the second the “target.” A successful analogical 

inference, in this richer account, does not just pass a property from the source to the target. It 

passes a relation over the properties of the source to the analogous relation over the properties of 

the target. The source may carry properties P and Q where P and Q stand in some causal, 

explanatory or other relationship. If the target carries a property P* analogous to P, the 

analogical inference authorizes us to carry over the relation to the target system, where we now 

infer to a property Q* that stands in the same causal or explanatory relation to P*. This is the 

crucial enhancement. This relation makes it reasonable to expect that, if the target system carries 

P*, then it also carries Q*. I call this approach “two dimensional” because we have relations 

                                                
2 If A then B; A; therefore B. 
3 If A then B; B; therefore A. 
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extending in two dimensions: there are relations contained within each of the source and the 

target systems; and there are the relations of similarity between the two systems. 

 Hesse’s (1966) study of models and analogies in science provided a fertile tabular picture 

in which the two dimensions are arrayed vertically and horizontally. Hesse gave tables 

illustrating particular examples. Bartha (2010, p.15) extracts the general schema as 

 

Source Target  

P P* (positive analogy) 

A ~A* (negative 

~B B* analogy) 

Q Q* (plausibly)  

 

The first column indicates the properties carried by the source and the second indicates those 

carried by the target. Properties corresponding under the analogy are indicated by adding an 

asterisk. The property P* in the target corresponds to P in the source. 

 The table indicates the introduction of the terms “positive analogy” and “negative 

analogy,” drawn originally from Keynes (1921, Ch. XIX). The positive analogy is the properties 

on which the source and target agree; the negative analogy is the properties on which they 

disagree. Establishing possession of the as yet unaffirmed property Q* by the target is the goal of 

the analogical inference. The table does not indicate the relations obtaining in the two 

dimensions, the vertical and the horizontal. They are specified by Hesse (1966, p. 59) as: 

“…horizontal relations will be concerned with identity and difference… or in general with 

similarity and vertical relations will, in most cases, be causal.” 

 The general sense is that the strength of support for this conclusion depends on a trade-

off between the positive and negative analogy. The stronger the positive analogy, the more the 

conclusion is favored; but the stronger the negative analogy, the more the conclusion is 

disfavored. However I have found no simple formula or simple synoptic statement in Hesse’s 

text for how this balance is to be effected. In discussing a particular example, however, Hesse 

(1966, pp. 58-59) gives guidelines for a particular case. These guidelines can be generalized by 
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the simple expedient of suppressing the particulars of the case by ellipses and the substitution of 

symbols in order to simulate a general schema.4 We recover: 

The validity of such an argument will depend, first, on the extent of the positive 

analogy compared with the negative … and, second, on the relation between the 

new property and the properties already known to be parts of the positive or 

negative analogy, respectively. If we have reason to think that the properties in the 

positive analogy are causally related, in a favorable sense, to [Q], the argument will 

be strong. If, on the other hand, the properties of the [target] which are parts of the 

negative analogy tend causally to prevent [Q*] the argument will be weak or 

invalid. 

If any general schema is intended by Hesse, it must be this or something close to it. There is 

considerably more discussion in Hesse’s text, but I find it mostly inconclusive. The chapter 

“Logic of Analogy” (p.101) is devoted to the question of whether the presence of an analogy 

makes it reasonable to infer to some new property of the target system. “Reasonable” is given a 

weak reading only; it amounts only to the comparative notion of one hypothesis being more 

reasonable than another. Grounding for the comparative judgment is then sought in several then 

extant approaches to evidence, with largely negative results. 

                                                
4 The unedited quote reads: 

Under what circumstances can we argue from, for example, the presence of human 

beings on the earth to their presence on the moon? The validity of such an 

argument will depend, first, on the extent of the positive analogy compared with the 

negative (for example, it is stronger for Venus than for the moon, since Venus is 

more similar to the earth) and, second, on the relation between the new property 

and the properties already known to be parts of the positive or negative analogy, 

respectively. If we have reason to think that the proper- ties in the positive analogy 

are causally related, in a favorable sense, to the presence of humans on the earth, 

the argument will be strong. If, on the other hand, the properties of the moon which 

are parts of the negative analogy tend causally to prevent the presence of humans 

on the moon the argument will be weak or invalid.  
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5.	Bartha’s	Articulation	Model	
 Bartha (2010, pp. 40-46) mounts a careful critical dissection of Hesse’s theory that 

reveals its problems and short-comings. Bartha’s own theory is the best-developed account of 

analogy I have found in the philosophical literature. It sets out to resolve the problems of Hesse’s 

account and is based on an extension of Hesse’s two-dimensional approach (p. 35).  The goal of 

Bartha’s (2010, Ch. 4) “articulation model” is to enable a judgment of the plausibility of an 

analogical inference. The term “plausibility” is itself employed as a term of art and is given two 

explications, probabilistic and modal (pp. 15-19). The articulation model proceeds with the 

vertical and horizontal relations of Hesse’s two-dimensional model. However the bulk of 

Bartha’s analysis is devoted to the vertical relations and it greatly extend those of Hesse. Instead 

of merely requiring that the properties of the source system are causally related, Bartha allows 

four different sorts of vertical relations among these properties: they may be predictive, 

explanatory, functional or correlative. The first two come in deductive and inductive forms. The 

final two come only in inductive forms. Analogical inference carries these relations from the 

source to the target system. 

 The conditions for a successful analogical inference in the articulation model are 

elaborate. There are two general principles (p. 25): “prior association,” which requires the 

existence of an explicit vertical relation that is to be extended by the analogical inference; and 

“potential for generalization,” which requires “no compelling reason” that precludes extension of 

the prior associations to the target system. The formal specification of the model then approaches 

the judgment of plausibility in two stages. The first, “prima facie plausibility,” requires the 

positive analogy to be relevant to the prior association and the absence of critically relevant 

factors in the negative analogy. The second stage assesses qualitative plausibility on the basis of 

three criteria: strength of prior association, extent of positive analogy and presence of multiple 

analogies. 

 The implementation of these two stages seems to differ according to the type of prior 

association. Further conditions become more clearly articulated, as the implementation proceeds. 

For example, in the discussion of “predictive/probabilistic analogies,” (pp. 120-21) it turns out 

that there are five important determinants of plausibility: strength of prior association, extent of 

correspondence, the existence of multiple favorable analogs, only non-defeating completing 

analogs and only non-defeating counteracting causes. Perhaps the most difficult case is that of 
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multiple analogies. Its treatment requires a formal extension of the original theory. A ranking 

relation “is superior than” is introduced as a partial ordering on the set of analogical arguments at 

issue. There is much more to explore in Bartha’s richly elaborated account. However, sufficient 

of both accounts has been developed here for me to indicate why I think a different approach is 

preferable. 

6.	Problems	of	the	Two-Dimensional	Approach	
 Hesse’s and especially Bartha’s analyses of analogy are impressive for their care and 

detail; they significantly enrich the original formal notion of bare analogy. In particular, Bartha is 

surely correct to refocus attention on the vertical relations within each of the source and target, as 

opposed to the horizontal similarity relations between them. For these vertical relations matter 

more—or so I shall argue below. If a formal analysis of analogical inference can succeed, this is 

likely the right direction. However, my view is that they are proceeding in the wrong direction. 

What was wrong with the bare notion of analogy was precisely that it tried to treat some 

inductive inferences formally rather than materially, and the resulting simple schema fitted 

poorly. The two-dimensional approach seeks to tighten the poor fit by including more formal 

apparatus. Yet each new formal notion brings with it further problems, compounding the 

difficulties and threatening an unending regress. Here are some of the problems. 

 Hesse strains to explicate in general terms even the simple notion of similarity that 

constitutes the horizontal relations.  She does not favor “formal analogy,” which refers to “the 

one-to-one correspondence between different interpretations of the same formal theory.” (1966, 

p.68) The simple example is the analogy of a father to the state. The scientific example (whose 

details are not elaborated) is “the formal analogy between elliptic membranes and the acrobat's 

equilibrium, both of which are described by Mathieu's Equation.” She continues: “This analogy 

is useless for prediction precisely because there is no similarity between corresponding terms.” 

(p. 69) Instead she favors “material analogy,” which are “pretheoretic analogies between 

observables.” (1966, p.68) Examples of the favored material analogy are the analogy of the pitch 

of sound with the color of light; and the sphericity of the Earth with the sphericity of the Moon. 

These material analogies reduce the similarity relation to sameness of properties. The Earth and 

Moon are analogous in their sphericity since they carry the same property, sphericity. 
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 While one can see the appeal of a limit to more secure material analogies, it is clearly 

overly restrictive. It disparages the fertile analogy between Newtonian gravity and Coulomb 

electrostatics, for example. It is a formal analogy in that it connects gravitational and electrostatic 

fields by virtue of their both satisfying the same field law (up to signs in the source term). There 

are other problems. A formal test that checks whether an analogy is material requires clear 

guides for when some term is “pretheoretic” and an “observable.” There are many traps here. 

The analogy between pitch and color can be implemented only if we have numerical measures of 

pitch and color. Since these measures depend on a wave theory for both, are they still 

pretheoretic? Since they are inferred from measurements, are they observables? 

 Hesse’s vertical relation is causality and it is similarly troubled. If we are to recover a 

serviceable, formal account of analogy, we must in turn have access to a serviceable formal 

account of causation. We must be able to confront each instance of a vertical relation with some 

formal criterion that tells us whether the relation is causal. Hesse’s (1966, p. 87) summary is 

vague on just what is meant by causal relations. The vertical relations are “causal relations in 

some acceptable scientific sense…,” which seems to suggest that discerning them is 

unproblematic. In this regard, Hesse seems unfazed by the plethora of candidate explications of 

causation that she lists. They include (1966, p.79) a Humean relative frequency account in which 

causation is co-occurrence; a hypothetico-deductive account, in which causal relations are 

delivered by some higher level law; a modal account in which causes are necessities; and an 

ontological account in which causes are productive. We can hardly expect each of these theories 

to agree in every application. We have to know which is the right theory and then how to apply it 

in a formal account. The length of Hesse’s list already indicates the difficulty in clarifying 

causation. Some half century after her list was formulated, we are now even farther from the goal 

of a general, formal account of causation. For my own quite pessimistic appraisal, see Norton 

(2003). 

 Bartha’s articulation model is designed to free Hesse’s more limited model from arbitrary 

restrictions. However, if an account this complicated is what is needed for a successful formal 

treatment of analogy, we surely have reason to wonder if a formal analysis is the right approach. 

Our starting point was a simple and familiar idea. If systems share some properties, they may 

share others. This idea has been used repeatedly to good effect in science. As we pass through 

the various efforts to explicate the idea formally, we have arrived at a multi-stage procedure with 
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many specializing components and trade-offs. Yet we are still not in possession of a fully 

elaborated formal schema. The trading off of many of the competing factors still seems to be 

effected at crucial moments by our inspection and intuitive judgment. 

 Rather than examining these problems in detail, I want to indicate one aspect of the 

articulation model that is directly relevant to the decision between a formal and a material 

approach to analogical inference. The vertical relations of the articulation model are 

characterized in inferential terms. When P and Q are related predictively, P entails Q. When P 

and Q are related through explanation, Q entails P so that P explains Q. The third and fourth 

functional and correlative relations are explicated similarly as inductive relations. Hence, in this 

model, an analogical inference passes a property, expressed in inferential terms, from the source 

to the target. That means the analysis is meta-logical, since the analogical inferences are 

performed at a higher, that is a “meta,” level on lower level structures that are in turn 

characterized by inferential properties. This meta-logical character places a rather extraordinary 

burden on the articulation model. If it is to give a formal schema for analogical inference, it must 

provide a schema for the analogical parts of the inference at the meta-level, and also schemas for 

each of the lower level forms of inductive inference. In short, it must solve the formal problems 

of analogical inference and also every other form of inference it invokes. 

 The simple solution to the last problem is to approach inductive inferences materially. 

Then to note that one may infer inductively from P to Q requires that there is some factual 

relation between P and Q that authorizes the inference. That is all it requires, for there is no 

supposition of a universal schema. This factual relation is what is passed by the analogical 

inference, so that the amended model would lose its meta-logical character. Rather than pursuing 

this hybrid material/formal model, let us return to the full material approach. 

7.	Analogy	in	the	Material	Theory	of	Induction	
 In the material theory of induction, that there is an analogy between two systems is 

captured in a fact that may be merely conjectured or, better, may be explored empirically. This 

fact of an analogy then warrants an analogical inference, which is the passing of particular 

properties of the source system to the target. The precise character of the fact of analogy and 

precisely which properties may be passed will vary from case to case. There will be at best a 
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loose similarity only between different analogical inferences in that, in all of them, we are 

authorized to pass properties from one system to another. There is no universal schema that can 

specify just which properties can be passed in which circumstances.  

 Hence, we should expect efforts to find a formal schema to face precisely the difficulties 

sketched in the last three sections. A simple formal schema will at best fit a range of cases 

imperfectly. Efforts to narrow the gap between the schema and the cases will require the 

proposal of more elaborate, more fragmented schemas. In an effort to capture a diversity not 

governed by any formal rule, they will need to divide the cases into a growing number of 

categories and subcategories. These refinements will allow a better fit, but the fit will never 

succeed perfectly for every case. We may eventually arrive at a formal system as elaborate as the 

articulation model, which, I have argued above, still falls short of the final, fully elaborated 

formal schema. No matter how complicated the successive proposals become, they will still 

never be adequate to all the cases. Gaps will remain. 

 There are two notions in the material analysis. The first is the fact of an analogy or just 

fact of analogy. This is a factual state of affairs that arises when two systems’ properties are 

similar, with the exact mode of correspondence expressed as part of the fact. The fact is a local 

matter, differing from case to case. There is no universal, factual “principle of the uniformity of 

nature” that powers all inductive inference. Correspondingly, there is no universal, factual 

“principle of similarity” that powers analogical inference by asserting that things that share some 

properties must share others.5 The fact of an analogy will require no general, abstract theory of 

similarity. The fact of analogy will simply be some fact that embraces both systems. There is no 

general template to which the fact must conform. 

 The second notion is an analogical inference warranted by a fact of analogy. Such an 

inference may arise if we know the properties of one system but not the other. We may then 

conjecture that there is a fact of analogy obtaining between the first system and the other system. 

                                                
5 If one is tempted by a principle of similarity, note that every failure of an analogy is a 

counterexample to a simple statement of the principle. The real principle would separate the 

projectable similarities from the unprojectable, even if only statistically. Formulating such a 

principle amounts to the same problem as finding a formal theory of analogy, which, this chapter 

urges, is an insoluble problem. 
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This conjectured fact then becomes the fact that warrants the inference. If the conjectured fact is 

unequivocal and held unconditionally, the analogical inference from one system to another may 

simply be deductive, with all the inductive risk associated with the acceptance of the fact of 

analogy. In other cases, there will be some uncertainty or vagueness in the conjectured fact of 

analogy. The analogy is asserted as likely; or even merely possible; or that the particular way the 

analogy is set up might not be correct, but something like it might be. These hesitations confer an 

inductive character onto the inference warranted by the fact of analogy. 

 The fact of analogy must be able to power this inference. Since there is no “principle of 

similarity,” the fact of analogy cannot merely assert some similarity between the two systems. It 

must assert a factual property of the second system that is sufficient to warrant the inference to 

its properties. For this reason, it will turn out that similarities between the two systems will be 

less important in the material analysis. Rather the similarities will appear more as conveniences 

of expression. It is cumbersome to specify how dark shapes on the moon appear as shadows of 

tall prominences when they obstruct linearly propagating sunlight. It is easy for Galileo to say 

that they are just like the shadows of mountains on the earth. 

 The material approach reorients our focus in two ways: 

First, the focus will be on the fact of an analogy, for that controls the inferential connection 

between source and target systems. Moreover, it will turn out in the examples below that the fact 

of an analogy will tend less to express a brute similarity between source and target systems. It 

will tend to express a property that they share. The fact of possession of this property by the 

target system will drive the resulting inference, rather than similarity with the source. 

Second, there will be no general formal principles sought to assess the strength or weakness of an 

analogical inference. Its strength will be assessed by examining the fact of analogy that warrants 

the inference. If we doubt the strength of the inference and wish to refine our assessment, we 

would not seek to refine and elaborate formal principles. We would not, for example, seek better 

guides on just how, as a matter of general principle, we should balance the competition of 

positive and negative analogies. We would instead engage in empirical investigations of the fact 

of analogy. Knowing more, the material theory asserts, enables us to infer better. 

 In the following, I will show these ideas are implemented in three cases of analogy. The 

first is Galileo’s discovery of the mountains of the moon. The second and third are analogies that 
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have played an important role in recent science: the Reynolds analogy for fluid flow and the 

liquid drop model of the atomic nucleus. 

8.	Galileo	and	the	Mountains	of	the	Moon	
 Galileo’s (1610) Siderius Nuncius—the Starry Messenger—is an extraordinary 

document. In it Galileo reports the discoveries he made when he turned his telescope onto the 

heavens and observed systematically. One of the most striking was that the surface of the moon 

has mountains and valleys analogous to those on earth. The announcement of that discovery 

provided strong support to a major shift in scientific thinking then underway. The heavens, it was 

coming to be realized, were not the realm of immutable perfection but rather more like the earth. 

Here was observational evidence that the moon was not a perfect heavenly sphere after all, but 

resembled the craggy, pockmarked earth. 

 Galileo did not directly see mountains on the moon. Their presence was inferred from 

what he saw. He tracked the advancing division between light and dark on a waxing moon. His 

telescope showed him that its edge was not a smooth curve but an “uneven, rough and very wavy 

line.” More important was the way it changed over time. As it slowly advanced, bright points of 

light would appear ahead of it. They would grow and soon join up with the advancing edge. 

Galileo finds the analogy to the illumination of mountains on earth irresistible. He exclaims 

(1610, p. 33): 

And on the earth, before the rising of the sun, are not the highest peaks of the 

mountains illuminated by the sun’s rays while the plains below remain in shadow? 

Does not the light go on spreading while the larger central parts of these mountains 

are becoming illuminated? And when the sun has finally risen, does not the 

illumination of plains and hills finally become one? 

Galileo is careful to exempt certain darker areas on the moon whose shading does not change 

with time. In so doing, he provides a positive summary of his conclusion concerning the shadows 

of the mountains (pp. 37-38):  

They [these other markings] cannot be attributed merely to irregularity of shape, 

wherein shadows move in consequence of varied illuminations from the sun, as 

indeed is the case with the other, smaller spots which occupy the brighter part of 
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the moon and which change, grow, shrink, or disappear from one day to the next, as 

owing their origin only to shadows of prominences. 

There is a similar analysis that identifies the depressions in the moon’s surface that we now 

know as “seas.” 

 Once secure in the conclusion that the moving dark shapes seen on the surface of the 

moon are shadows of mountains and valleys, Galileo proceeds to the most striking result (pp. 40-

41). The higher the mountain, the farther ahead of the advancing edge that its peak will be 

illuminated. In some cases, Galileo noted, the peaks first appeared sometimes at more than one 

twentieth of the moon’s diameter. This illumination, Galileo presumed, came from a ray of 

sunlight grazing tangent to the moon’s surface at the edge of light and dark and then proceeding 

in a straight line to the mountain peak. These presumptions reduced computing the height of the 

mountain to the simple geometry of triangles. The result was a height of four miles for the largest 

mountain, which fares well against modern assessments. 

 Galileo’s presentation of the analogy of earth and moon is compelling. However, from 

the perspective of the logic, the arguments are presented in fragments only and the reader is left 

to fill in the details. No doubt, once we undertake this exercise, different reconstructions of the 

logic will emerge. Here is one way of reconstructing it from the material perspective. 

 The controlling fact of the analogy is just this: 

The mode of creation of shadows on earth and of the moving dark patterns on the 

moon is the same: they are shadows formed by straight rays of sunlight. 

This fact then authorizes two inferences. They both start with the same premise: 

There are points of light in the dark that grow (as Galileo described) ahead of the 

advancing bright edge on the moon. 

They proceed to two conclusions: 

The bright points are high, opaque prominences. 

The higher ones are as much as 4 miles high. 

Both inferences proceed deductively if the fact of analogy is as stated. The details are tedious, so 

I will not rehearse them. It is simply a matter of inferring from a shadow to the shape that 

produced it. For example, the moment a bright spot first appears ahead of the advancing edge, 

we know that the bright spot lies on a straight line, tangent to the moon at the edge of the 
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advancing brightness. It now follows that that bright spot is elevated above the spherical surface 

of the moon, and by an amount recoverable by simple geometric analysis of triangles. 

 It is worth noting two features of the inferences. First, the analysis looks initially like a 

textbook instance of a simple analogical inference. Loosely, the earth and moon are similar in 

their shadows; the earth has mountains causing them; therefore the moon does too. However 

closer inspection shows that notions of analogy and similarity play a small role. The earth 

functions as a convenient surrogate for any uneven body turning under unidirectional light. 

Galileo could equally have called to mind a person’s head turning in a room lit by a lantern. As 

the person’s face turns to the light, the tip of the nose would first be lit, before the full nose. 

What matters is the posit that the moon and its changing pattern of light and dark result from 

shadows cast. The inference is not driven as much by analogy as by subsumption of the moon 

into a larger class of illuminated bodies. 

 Second, the above reconstruction contains deductive arguments only. Galileo’s full 

analysis is inductive. The inductive elements have been confined above by the selection of the 

fact of analogy. It comes after the inductive part of the analysis is complete. In that inductive part 

Galileo infers that the moving dark patches are shadows formed by straight rays of sunlight. The 

basis for his conclusion is the way the bright and dark spots change; they move just like shadows 

so cast. However that does not entail deductively that they are shadows. The inference is 

inductive, albeit a fairly safe one. To see that it is inductive, we need only recall that the 

inference requires also the assumption that no other mechanism could produce patterns of light 

and dark that move as Galileo observed. 

 Galileo is taking the inductive risk of accepting this assumption. Other mechanisms are 

possible and further analysis would be needed to rule them out conclusively. One lies close at 

hand. In the middle of his discussion, Galileo seeks to assure us that the mountains and valleys 

need not be visible to us in the periphery of the moon, where we are aligned to see them in 

elevation. As an addendum to his discussion, he conjectures that the moon’s surface may be 

covered by a layer of “some substance denser than the rest of the ether.” (p. 39) This substance 

may obstruct our view of the lunar terrain at the moon’s periphery, for then our gaze passes 

through a great thickness of the material. Noting that the illuminated portion of the moon appears 

larger, Galileo conjectures that some interaction between this material and sunlight may be 

deflecting our gaze outward. Finally, puzzled that “the larger spots are nowhere seen to reach the 
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very edge,” Galileo conjectures: “Possibly they are invisible by being hidden under a thicker and 

more luminous mass of vapours.” (p. 40) 

 The illumination of the mountain tops ahead of the advancing edge employs light that 

grazes the moon’s surface and thus passes through a great thickness of this optically active, 

denser material. Galileo needs to assume that this optical activity is insufficient to create 

illuminated mountain tops as something like mirages, that is, by the bending of light towards us 

by this denser medium. 

9.	Reynolds	Analogy	
 The explicit identification of analogies has played a prominent role in the analysis of 

transport phenomena. These are processes in fluids in which momentum, heat and matter are 

transported. Analogies within these processes form a standard chapter or more in the textbooks. 

The earliest of these analogies is the “Reynolds analogy,” named for Osborne Reynolds, the 

nineteenth century scientist-engineer who founded the field. Its central idea is of an identity of 

the processes that transport momentum and heat. Hot gases flowing through a tube, for example, 

are slowed by friction with the tube’s walls. This friction transfers momentum out of the gas and 

that loss is manifested as a need to maintain a pressure difference to keep the gas flowing. The 

gas will also transfer heat to the cool tube walls. In the analogy, the two processes operate with 

identical mechanisms. For more discussion see the account of the Reynolds’ analogy below in 

Appendix A. 

 This textbook attention to an analogy is quite revealing, since it shows directly how a 

particular science conceives an analogy. It conceives the analogy as an empirical fact. The fact 

has two modes of expression, as reported in the Appendix. In the looser mode, the analogy 

asserts that the mechanisms or laws governing momentum and heat transfer are the same. That 

version is somewhat ambiguous. Since heat and momentum are different quantities with different 

properties, just how can the mechanisms or laws be the same? If we construe the sameness to 

mean that the rates of momentum and heat transfer are numerically proportional under the same 

conditions, then there is a simple quantitative expression of this sameness in terms of two 

dimensionless numbers. The friction factor f measures the frictional losses of momentum from a 
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moving fluid; the Stanton number St measures the rate of heat transfer. This second, more 

precise form of the analogy sets these two numbers equal, up to a constant factor: f/8 = St. 

 In material terms, this literature is equating the analogy with the fact of analogy. The 

associated analogical inferences are present, but draw only subsidiary attention. The most 

common is to use the analogy to authorize an inference from momentum transfer to heat transfer. 

That is, if we know the friction factor f for some system, we use the fact of analogy to infer to 

the Stanton number St. From the Stanton number we can infer rates of heat transfer. This 

inference has great practical utility. Friction factors are relatively easy to determine from 

pressure differences. The corresponding rates of heat transfer are a great deal harder to measure. 

 This practical utility of the Reynolds’ analogy means that there is some premium on 

determining just how good an analogy it is. When faced with this problem, the literature does not 

seek guidance from a formal theory of analogical reasoning. It does not ask for rules on how to 

trade off the competition of positive and negative analogy. The refinement of the analogy is 

regarded as an empirical question to be settled by measurement. The equation to be tested is just 

that f/8 = St. It was evident already quite early that the analogy obtains only in special cases. It 

fails for fluids in laminar flow and even liquids in turbulent flow, but succeeds as a relatively 

poor approximation for gases in turbulent flow. Since the fundamental analysis of fluids in 

turbulent flow is difficult, the exploration of the analogy and refined versions that replace it, has 

remained largely a matter of brute-force empirical measurement. 

10.	Liquid	Drop	Model	
 In the 1930s, after the discovery of the neutron, the new field of the nuclear physics was 

born. The nucleus of an atom was recognized as consisting of many particles. The most common 

isotope of Uranium, U238, consists of 92 protons and 146 neutrons, which sums to an overall 

nucleon number of 238. The nucleus was found to exhibit energetically excited states, somewhat 

like the excitations of an electron in a hydrogen atom. However the single particle methods that 

had worked so well for electrons in atoms were inapplicable to the many-body problem posed by 

the atomic nucleus. The many particles of the nucleus, all clustered together, seemed something 

like the many molecules clustered together in a liquid drop. The liquid drop model of the nucleus 
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was based on this analogy. The hope was that the physics of drops might also coincide with at 

least some of the physics of nuclei. 

 The liquid drop model was already an established element of nuclear theory6 in the 

1930s, before it found its most popular application. In 1939, Lise Meitner and Otto Frisch (1939) 

sent their celebrated letter to Nature in which they proposed that certain processes were dividing 

the nuclei of Uranium atoms. This “fission” process, they suggested, could be understood using 

the liquid drop model. The capture of neutrons by Uranium nuclei may be sufficient stimulus to 

break them apart, much as an unstable liquid drop is easily broken up by a slight tap. The idea 

was taken up by Bohr and Wheeler (1939), who extended the liquid drop model quantitatively to 

encompass fission. 

 A liquid drop is held together because its constituent molecules are attracted to each 

other. For molecules deep within the drop, these attractions do not pull markedly in any direction 

and thus, by themselves, do not contribute to the drop’s cohesion. Molecules near the surface, 

however, are attracted towards the drop by those deeper in the drop. A drop may have many 

shapes. However the larger the surface area, the more it has molecules on its surface seeking to 

move towards the center. Hence the drop naturally adopts a shape with the smallest surface area, 

a sphere, as its lowest energy state. This tendency to spherical form is commonly described as 

arising from a tension in the surface driving the drop to its smallest area. The general theory 

assigns a surface tension energy to the drop, proportional to its surface area. If the drop is 

energized by tapping, for example, it oscillates, somewhat like the ringing of a struck bell. As the 

drop deforms and increases its surface, it excites to higher energy states and absorbs the added 

energy of the tap. Finding the spectrum of these oscillations was an already solved problem of 

classical physics. 

 The motivation for the liquid drop model of the nucleus is the idea that the stability of the 

nucleus arises is some analogous way. It leads to the assumption that there is a nuclear energy 

corresponding to the surface tension energy of the drop. The volume of a nucleus is proportional 

to A, the number of nucleons. Volume varies with radius3 and surface area with radius2. 

                                                
6 For an early review before fission, see Bethe (1937, §53). For a history of the origin of the 

liquid drop model, see Stuewer (1992). I thank Michel Janssen for drawing Roger Stuewer’s 

history of the liquid drop model to my attention. 
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Therefore the surface area of the nucleus varies as A2/3 and the liquid drop model posits an 

energy proportional to A2/3. Further, the various excitation modes of the nucleus were assumed 

to correspond to those of a liquid drop with suitably adjusted parameters. 

 Finally, the instability of a nucleus that results in fission could be analyzed quantitatively. 

The surface tension effect tends to hold the nucleus together. However a nucleus is positively 

charged, carrying Z protons. This positive charge creates forces that drive the nucleus apart. 

They come to be favored as the nucleus grows larger. The point at which they overcome surface 

tension is computed in the model by finding the state in which the slightest energizing of the 

nucleus will lead to such violent oscillations that the nucleus must split. The computation yields 

a stability condition expressed in terms of the number of protons Z and the number of nucleons 

A. The ratio Z2/A must be less than 42.2 (as quoted by Blatt and Weisskopf, 1979, p. 304). U238 

is perilously close to this figure, so it is expected to be prone to fissioning. For it, Z2/A = 922/238 

= 35.5. This result is traditionally quoted as a great success for the model. 

 The model appears, initially, to be a textbook case of analogical inference. In their 

synoptic treatise on nuclear physics, Blatt and Weisskopf (1979, p. 300) give what amounts to an 

inventory of the positive and negative analogies. “We find the following points of analogy,” they 

remark and then proceed to list three elements of the positive analogy. They can be stated in 

simplified form, writing “A” for both the number of molecules in the drop and the number of 

nucleons in the nucleus. They are: 

• The volume of a liquid drop and the volume of a nucleus are both approximately 

proportional to A. 

• The energy to evaporate a drop and the binding energy of nucleus are both approximately 

proportional to A, subject to correction by a surface tension term. 

• Surface tension corrects this energy for a liquid drop by an additive term in A2/3; and a 

semi-empirical formula for the binding energy of a nucleus also has an additive term in 

A2/3. 

However Blatt and Weisskopf harbor considerable doubts about the analogy. “It is probable that 

this analogy is only very superficial,” they continued. What followed amounted to an inventory 

of the negative analogy, consisting of: 
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• The stability of a liquid drop derives from repulsive forces that preclude molecules 

approaching one another by less than a minimum distance of the order of the size of 

electron orbits. There is no similar limit known for the approach of nucleons. 

• Molecules in a drop follow the classical dynamics of localized particles. Nucleons have de 

Broglie wavelengths of the order of inter-nucleon distances and are governed by quantum 

mechanics. 

At this point in the narrative, what is needed is some assessment of how good the analogy is. 

What Blatt and Weisskopf do not do is to try to assess the competition between these rivaling 

factors by appeal to general rules such as one might expect from a formal approach to analogical 

inference. Rather, they derive the formula for the energy levels of a nucleus as indicated by the 

model and subject it to experimental test. They decide (p. 305) that the energy levels fit 

observation poorly. “ The liquid drop model of the nucleus is not very successful in describing 

the actual excited states. It gives too large level distances.” However the liquid drop model 

works better when it comes to fission: “The limit for stability against fission is well 

reproduced…” 

 This mode of assessment is just what the material theory calls for. The fact of analogy, as 

revealed through this assessment, is a rather bare one. It is: 

 The energy of a nucleus has an additive surface term proportional to A2/3; and the 

nucleus’ oscillatory modes match those of a liquid drop with corresponding 

parameters. 

This fact is sufficient to support the inferences made under the model; and this fact is what Blatt 

and Weisskopf are actually putting to test.7 

 We also see once again that the similarity of the source and target is a subsidiary matter. 

What matters to the analogy is what is expressed in the fact of analogy, that the liquid drop and 

nucleus share just the properties listed. 

11.	Conclusion	
 The material theory of induction succeeds in simplifying our understanding of analogical 

reasoning in its acceptance of the dual role of facts: they may be premises in arguments and they 
                                                
7 For a more recent assessment with similar import see Wagemans (1991), pp. 8-12. 
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may also serve as warrants of inference. Crucially, the material theory allows that displaying 

such facts provides the justification of the analogical inference and is the endpoint of analysis 

that seeks to determine the validity of the analogical inference. While there will be similarities 

among different analogical inferences, there will be no overarching similarity of sufficient power 

to allow the separation of good and bad inductive inference by purely formal means. 

 A formal approach faces a more elaborate challenge. It can allow that a fact of analogy 

can somehow play a role in justifying an analogical inference. But this recognition cannot 

terminate a successful formal analysis. The validity of an analogical inference must be 

established ultimately by displaying conformity with a universal schema. The enduring difficulty 

is that, no matter how elaborate these schemas may have become, none proves to be final and 

complete. That this difficulty is irremediable is predicted by the material theory of induction. 

Appendix	A.	Reynolds	Analogy	

The	General	Idea	

 In the dynamic analysis of systems with moving fluids, analogies have been found 

between three of the most important types of processes. The three processes are often called the 

“unit operations” of chemical engineering. They are momentum transfer, heat transfer and mass 

transfer. 

 The simplest and most studied instance is a fluid (gas or liquid) flowing in a cylindrical 

tube. As the fluid flows through the tube, its passage is resisted by friction with the wall of the 

tube. At the center of the tube, the fluid moves with the greatest velocity and therefore has the 

highest momentum density. At the wall of the tube, friction has brought the fluid to a halt, so that 

the outermost layer of fluid has no momentum. This frictional slowing is understood as a 

momentum transfer process. Momentum from the inner part of the fluid is passed to its outer 

surface, where it is lost to friction. This loss of momentum must be compensated by an applied 

force if the fluid is to continue flowing. That applied force creates a pressure difference along the 

length of the tube. 

 Heat transfer can arise in same system. The tubes might be in the boiler of a steam 

engine. Hot flue gases from the fire pass through a bundle of tubes that are surrounded by a 

jacket of boiling water. Heat is transferred from the gases in the tubes, through the tube walls 
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into the water. To illustrate mass transfer, we might imagine that the gases contain some 

contaminant that is to be scrubbed out. The inner surface of the tube carries some absorbing 

solution. In the mass transfer operation, the contaminant passes from the gas into the solution. 

 The analogies arise from the idea that the mechanisms of three processes are the same, so 

that they are governed by the same quantitative laws. That simple idea has proven to be difficult 

to verify in all generality. The earliest proposals for implementing the analogies proved to work 

only under very restrictive conditions. In spite of the early failures, the idea of the analogy has 

proven appealing and has generated a literature of many different and more complicated 

implementations. 

 Our interest is the underlying logic used with these analogies. We can recover that well 

enough merely by looking at the first and best known analogy, the “Reynolds analogy.” It is the 

proposition that the mechanisms of momentum and heat transfer are the same. Texts differ in 

their statements. Here are a few selected at random: 

Reynolds postulated that the mechanism for transfer of momentum and heat are 

identical. (Foust et al., 1960, p. 173.) 

…Reynolds suggested that momentum and heat in a fluid are transferred in the 

same way. He concluded that in geometrically similar systems, a simple 

proportionality relation must exist between fluid friction and heat transfer. (Kakaç 

and Yener, 1995. p. 203) 

Reynolds proposed that the laws governing momentum and heat transfer were the 

same. (Glascow, p. 156) 

These statements are strong and it is not entirely clear how they are grounded.  

The	Original	Reynolds	Analogy	

 Reynolds’ authority is routinely invoked. Reynolds’ (1874) original note certainly 

proposes some connection between the rate of heat transfer and internal motions in a fluid. 

However it is unclear that he intends a complete identity of both mechanism and law as asserted 

above. His analysis was not conducted in the context of the modern theory of transport 

phenomena and his paper does not give the quantitative expression now attached to the analogy. 

There are none of the dimensionless numbers we shall see shortly: no friction factors or Stanton 
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numbers. Reynolds’ own celebrated analysis of fluid flow in pipes was published nine years 

later. Reynolds’ synopsis of his 1874 paper from his later collected papers reads: 

The heat carried off by a fluid from a surface proportional to the internal diffusion 

of the fluid near the surface—the two causes natural diffusion of the fluid at rest, 

and the mixing due to the eddies caused by visible motion—the combined effect 

expressed by: H = At + Bρvt—this affording an explanation of results attained in 

Locomotive Boilers—experimental verification. (Reynolds, 1900, p.xi)8 

For later reference, this equation is numbered by Reynolds as (I): 

H = At + Bρvt                                                             (I) 

The closest Reynolds comes to a direct assertion of analogy arises in connection with a second 

equation he numbers as (II) 

R = A’v + B’ρv2                                                            (II) 

where R is the resistance to fluid flow in the pipe. The essential quantitative assumption of 

Reynolds’ (1874, p. 83) analysis was: 

And various considerations lead to the supposition that A and B in (I) are 

proportional to A’ and B’ in (II). 

This analogy asserts less than the sameness of laws. In drawing an analogy between momentum 

and heat transfer, the temperature difference t is analogous to the velocity v, for each magnitude 

drives the transport. Heat transport arises from a temperature difference and momentum transport 

arises from the velocity differences of a velocity gradient. Under this association, the “B” term of 

equation (I) would need to be Bρt2, which it is not. 

 There is a way that the equations (I) and (II) can be fully analogous, however Reynolds 

does not make these details explicit, so we cannot know if he intended them. We assign dual 

roles to the velocity v. In its first role, it measures the fluid flow, so that the term ρv measures 

fluid flux. In its second, it drives momentum transport and is analogous to temperature difference 

t. We would then suppose that the first appearance of v in the v2 term of (II) represents fluid flux 

and the second v in the v2 term of (II) represents driving force. Then both B terms of (I) and (II) 

would have the analogous form “B (fluid flux) (driving force).” 
                                                
8 H is the time rate of heat passed per unit surface area, t is the temperature difference between 

the surface and fluid, ρ is the fluid density, v its velocity and A and B are constants. 
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 Reynolds’ explicit use of a more limited analogy that determines how large the velocity v 

needs to be for the “B” term of (I) to dominate. The proportionality of the constants enabled 

Reynolds to argue that this arose under the same conditions for which the B’ term of equation 

(II) dominates. That, he reported, arose for “very small” v.9 

 There was an immediate practical application of the dominance of the B term for 

commonly arising velocities. When it dominates, the temperature of the discharged fluid is 

independent of the velocity v.10 That means that a locomotive boiler operating with larger flue 

velocities would be equally efficient at withdrawing heat from the flue gases no matter how great 

the flow of flue gases. This result, Reynolds could report with obvious satisfaction, explained an 

otherwise surprising fact about boilers: they are “as economical when working with a high blast 

as with a low.” (p. 84) 

The	Modern	Reynolds	Analogy	

 If we cannot ground the analogy of the modern textbooks in Reynolds’ original work, 

there are informal justifications available. There are two regimes for fluid flowing in tubes. If the 

flow is slow or the fluid very viscous, then the flow is laminar. It has the perfectly regular 

streamlines of slowly flowing honey. When the velocity is high, however, these perfect lines are 

disturbed by tumultuous eddies, readily visible if smoke or a tracing dye is injected into the fluid. 

These eddies mix the fluid quite efficiently. They will carry the fluid in bulk from the center of 

                                                
9 Reacting to Reynolds’ name, modern readers will likely find it irresistible to associate the 

conditions in which the A and B term dominate as regimes of laminar and turbulent flow 

respectively. However, Reynolds’ (1883) celebrated study of laminar and turbulent flow was 

published nine years later and supports different relations. In it, Reynolds (p. 975) reports that 

previous experiments had adhered to laws i = v2 or i = Av + Bv2, where i is a pressure term. He 

now corrects these laws by setting the pressure term proportional v in the laminar regime and to 

v1.723 in the turbulent regime. 
10 When the B term dominates, it follows from (I) that the heat withdrawn H is proportional to 

the mass flux ρv. So doubling the mass flux will just double the heat withdrawn, which entails 

that there is no change in the temperature reduction of each unit of mass of the flue gases passing 

through the boiler. 
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the tube to the wall and back. In this process, they transport both the momentum and heat of the 

fluid, making it plausible that the same law governs both transports. It is at best a weak 

grounding, for we proceed with little more than a caricature of turbulence and ignore a laminar 

region in the fluid that will be at the tube’s inner surface. Since the plausibility argument can be 

given at best for turbulent flow, some authors limit assertion of the Reynolds analogy to 

turbulent flow. This is so with Kay and Nedderman (1974, pp. 143-44), who also sketch the 

above grounding.  

 Whether well-grounded or not, the goal is to generate a quantitative relation from the 

analogy. To do that, we need to find quantitative measures of both momentum and heat transfer. 

In the case of fluid flow in tubes, the pressure difference, ΔP, is an easy-to-measure 

manifestation of the momentum transfer process within the tube. This pressure difference will 

depend upon many other factors. It will change with many variables: the average speed of the 

fluid v, the length of the tube L, its diameter D, as well as the physical properties of the fluid, 

such as its density ρ. If we seek general regularities that govern this pressure difference, it turns 

out that we can accommodate many of these variables by considering a dimensionless number 

formed from these variables. The most commonly used is a dimensionless number, the friction 

factor11 

f = (D/L)ΔP/(ρv2/2) 

We need not linger over why this particular combination of variables is introduced. It will be 

sufficient for our purposes to treat f as generalized measure of pressure difference and thus a 

measure of momentum transport. 

 In the case of heat transport, we are interested in the time rate q that heat is transmitted to 

the tube walls. The total rate will vary with the area of the walls A and the temperature 

difference ΔT  between the tube wall and the fluid mean temperature that is driving the transport. 

To accommodate these variables, the goal of analysis is usually a heat transfer coefficient h, 

where 

h = q/AΔT 

                                                
11 The definitions of these dimensionless numbers can sometimes differ in constant factors. I 

follow the conventions of Foust et al. (1960). 
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Since the heat capacity at constant pressure CP, mean velocity v and fluid density ρ can also 

affect the process, it turns out to be most convenient to embed the heat transfer coefficient in the 

dimensionless Stanton number 

St = h/CPρv 

Once again, we need not linger now over just why the number is assembled as it is. We need 

only treat it as a generalized measure of the rate of heat transport. 

 Determining just how much momentum and just how much heat are transported out of 

the tube under nominated conditions is not easy. If the flow is turbulent, it cannot be done from 

first principles. However if we assume with the modern Reynolds analogy that the same process 

transports both, then, whatever the amounts may be, they are closely connected. A fairly 

straightforward if tedious computation (given in the next section) finds that connection to be 

expressed as an equality between the two dimensionless numbers that measure momentum 

transport and heat transport: 

f/8 = St 

This is the quantitative statement of the Reynolds analogy. It is an empirical claim that can be 

tested quite readily. It turns out only to hold under quite limited conditions. It holds as a 

relatively poor approximation for gases in turbulent flow, but fails for liquids and fluids in 

laminar flow. See Glasgow (2010, pp. 156-57) for a brief historical sketch of the discovery of 

limits to the analogy and of efforts to improve it. 

Generating	the	Quantitative	Relation	

 Now we will linger over why the two numbers St and f are chosen to be as they are. 

Following Foust et al, 1960, p. 173, we may generate the quantitative expression for the 

Reynolds analogy, f/8=St, as follows. The context is a fluid of density ρ flowing with mean 

velocity v in a tube of diameter D and length L. Momentum, heat and, in general, other quantities 

are transferred to the tube wall. It is assumed that this transport of an unspecified quantity is 

governed by the relation 

flux at wall = -K (concentration at wall – mean concentration ) 

The “flux at wall,” is the time rate of transport of the quantity per unit wall area. The two 

concentrations are just the amount per unit volume of the quantity, respectively at the wall and 

averaged over the whole fluid. The real point of the equation is to define the general transport 
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coefficient K, whose values will vary with any change in the physical properties of the fluid and 

the geometry of the tube. 

 The supposition is that this equation holds for both heat and momentum transport, so that 

we can define a coefficient Kheat and Kmom for each. The quantitative expression of the 

Reynolds analogy arises from setting the two coefficients equal. 

 For the case of heat, the “flux at wall” is q/A, where q is the total rate of heat transport 

from the fluid and A is the tube wall area. The concentration of heat is just ρCPT. Hence we can 

write 

q/A = -Kheat (ρCPTwall - ρCPTmean) =  -Kheat ρCP (Twall - Tmean) 

The second equality obtains if both ρ and CP vary negligibly over the system.  In general this 

assumption fails. However, for common engineering applications, it holds quite well in a wide 

range of cases. If we compare this last equation with the definition of the heat transfer coefficient 

h 

q/A = hΔT = -h (Twall - Tmean) 

we can then identify  

Kheat = h/ρCP = (h/ρCPv) v = St v 

where St = h/ρCPv is the Stanton number defined earlier. 

 For the case of momentum, we proceed as follows. The total pressure force acting on the 

fluid is (pressure drop) x (flow area) = ΔP πD2/4. By Newton’s second law, this quantity is the 

total rate of loss of momentum from the fluid. All this momentum is lost through transport to the 

tube wall, since friction from the wall surface is the only other force acting on the fluid. The tube 

wall has area L πD. Hence  

momentum flux at wall = (ΔPπD2/4) / (LπD) = (ΔP/4)(D/L) 

The momentum concentration is (mass density) x velocity. At the wall, the velocity is zero, since 

the fluid is halted by friction with the tube wall. Thus the momentum density at the wall is zero. 

The mean momentum density is just ρv. Combining and substituting into the general transport 

equation used to define K we recover 

(ΔP/4)(D/L) =  -Kmom (0 – ρv) 

so that 
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Kmom = (D/L) (ΔP/4ρv) = (1/8) v (D/L) ΔP/(ρv2/2) = v f/8 

where f =  (D/L)ΔP/(ρv2/2) is the friction factor defined earlier. 

 We now express the Reynolds analogy in the setting equal of the two coefficients12 

Kheat = St v = v f/8 = Kmom 

from which we recover the quantitative expression for the Reynolds analogy 

St = f/8 
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