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1.	The	Wonder	of	Science	
 Our best science tells us wonderful things. The cold and dark skies of our universe were 

not so long ago in their entirety in a state of unimaginably high energy and temperature. The 

detritus that exploded from it congealed into stars, planets and galaxies. These systems of 

celestial masses are in turn held together by a curvature of the geometry of space and time itself. 

On a most minute scale, the matter of these systems and the light they radiate consist of neither 

waves nor particles but a curious amalgam that is, at once, both and neither. The organisms that 

walk on one of these planets, complete with their intricate eyes and thinking brains, emerged 

incrementally from crude matter, in tiny steps over eons of time. They were shaped only by the 

fact that a small, random change in one organism might give it a slight advantage over its rivals. 

The design specification of these accumulated advantages is recorded and transmitted through 

the generations of the organisms by its encoding in hundreds of millions of base pairs of a 

chemical found in every cell of each organism. 

 These, and many more ideas of science like them, are extraordinary. Their contemplation 

must eventually overwhelm with wonder even the most curious and flexible of minds. Only the 

dullest of wit or the most soured of skeptics could resist their charms. 

 For me, there is a still greatest wonder. These ideas are not the inventions of writers of 

myth and fiction. They could not be so, for their content far outstrips our meager human 

imaginations. Rather they are the result of careful, painstaking, systematic investigations of 
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nature, guided solely by inventive insight and cautious reasoning. They are discoveries. When 

these efforts go past the early speculative stages and succeed, their products are distinguished by 

a special relation with what we experience of the world. Those experiences provide the inductive 

support for successful science. They tell us that this is how the world is. 

 The explosive expansion of the universe is supported by the reddening of light from 

distant galaxies. That the curvature of the geometry of space and time keeps the planets in their 

orbits is supported by the most delicate measurements of slight anomalies in planetary motions. 

The curious quantum nature of matter in the small is supported by how light from excited gases 

is concentrated into just a few quite specific frequencies. The evolution of we humans from 

simpler organisms is supported by fossilized bones, whose chronology is recorded by their 

positions in layers of rock strata. The double spiral geometry of the molecules of 

deoxyribonucleic acid is supported by the patterns formed when X-rays diffract off material 

extracted from the nuclei of cells. 

 In all this, the essential relation is inductive support. It obtains between the propositions 

of science and those that express the evidence on which it rests. It enables us to assign an 

authority to the ideas of science that no other narrative can match. Without it, science becomes 

just another “way of knowing,” to use a popular oxymoron of the skeptics. Without this relation, 

we do not know anything of the world. We “know” but do not know. Without it, the ideas of 

science are no better than the fanciful creation stories of primitive mythologies. 

2.	Where	the	Philosophy	of	Science	Literature	Falls	Short	
 If we are to understand how science succeeds where these other narratives fail, we must 

understand how this relation of inductive support works. That is a core task for philosophy of 

science. Its efforts reside in the expansive literature on induction or inductive inference. The 

project of this book results from an enduring dissatisfaction with this literature. 

 There is no shortage of approaches in this literature. However, what is distinctive about 

these approaches is that they are fractured. There are many of them. They rise and fall with the 

generations and even with the particular philosopher consulted. Each has its successes and each 

has its failures. None, it seems to me, is by itself fully adequate to the task. 
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 Loosely speaking, there two traditions.1 One is qualitative and a few examples illustrate 

its pervasive problems. Evidence supports those hypotheses that, in various senses, generalize 

the evidence; or deductively entail the evidence; or explain the evidence; or provide a severe test 

of the evidence. Each case is troubled. There are so many ways one item of evidence can be 

generalized that most generalizations cannot be supported. Most applications of the simple 

scheme must fail. Similarly there are very many hypotheses that entail one item of evidence. The 

same problem arises. Most applications of this scheme will fail. The problem of proliferation is 

ameliorated if the hypothesis must not just entail the evidence but explain it. The meagerness of 

the gain is revealed when we realize that we have no general account of explanation precise 

enough to support a theory of inductive inference. The account rests ultimately on dubious 

intuitive judgments of what explains what and how well it does it. Severe testing requires a 

judgment that the evidence would likely not come about were the favored hypothesis false. To 

apply the scheme we must know what is likely in the case of this falsity. Excepting contrived 

situations like controlled studies, such judgments are at best speculative and at worst self-serving 

inventions. 

 The second tradition is quantitative. We assign a numerical measure to the support. The 

measure used almost universally is probability. The approach is, initially, appealing since we 

replace a vague “weakly supports” or “strongly supports” by precise numbers that must be 

combined by quite specific rules. Now we can calculate! My enthusiasm for this approach 

dampened when I found that its central theoretical tool, Bayes’ theorem, has a voracious appetite 

for prior probabilities and likelihoods. The trouble is that their values must be specified by 

considerations outside the calculation itself. Prudent or malicious choices for their values, more 

than the niceties of mathematical theorems, control the final result. Worse, as this Bayesian 

approach ascended to the momentary dominance it presently enjoys in the literature, its analyses 

became more and more separated from real applications to inductive inference in the sciences. 

They have drifted towards self-contained exercise in recreational probability theory. That 

separation is disguised by tendentious labeling of terms. A calculation best adapted to the 

accumulated results of many coin tosses is represented as giving some sort of understanding of 

how the accumulation of intricate and diverse evidence in science can support a univocal result. 

                                                
1 This is a hasty dissection of an enormous literature. See Norton (2005) for a more careful 
dissection and categorization. 
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 The situation has not been improved by a rash decision to conceive of the prior 

probabilities of Bayes’ theorem subjectively, that is, as freely chosen opinions that can vary from 

person to person. For once one has let arbitrary opinion into the system, the probabilities cease to 

measure strengths of inductive support, but only some indissoluble amalgam of them with 

arbitrary opinion. These problems are not resolved but compounded with dubious analogies. We 

are told a fable of a punter at a racetrack making monetary bets with bookies who are determined 

to take every advantage possible. This epistemic situation is supposed sufficiently close to that of 

scientists weighing evidence for big bang cosmology or a neural basis for cognition that all 

should conform to the same principles of rationality. 

3.	The	Material	Approach	
 The upshot of these accumulated woes is that philosophy of science as a discipline cannot 

now offer those outside it a univocal account of inductive support. My goal in this book and in 

the larger program of research it embodies is to solve this problem. The clue to its solution is 

found in the observation that each of the accounts sketched above do work somewhere. If we are 

investigating controlled trials, then ideas about severe testing are apt. If we are interested in 

matching DNA from blood samples with that of accused offenders, then we can use Bayesian 

methods. When Einstein found that his new general theory of relativity “explained” (as he put it) 

the anomalous motion of Mercury, he could claim a wonderful “confirmation” (as he wrote) of 

his theory. 

 The clue in all this is that the application of the various approaches work when we add 

factual conditions that limit the domain in which they are to be applied. The stronger the factual 

restriction, the more successful the application. The material approach simply asks us to “take 

the limit.” That is, what warrants the successful application of the particular inference is found 

entirely in the background factual conditions that delimit the domain of application. 

 This last assertion is the key idea of the material theory. It distinguishes it from all other 

approaches. They use the standard literature in deductive inference as the model for analyzing 

inductive inference. It provides them a formal model. According to it, we distinguish the good 

from the bad inferences by checking whether the candidate inference fits in its form with some 

universal template or schema. For example, take the inference 



Prolog 5 

All men are mortal. 

Therefore, some men are mortal. 

This is a valid, deductive inference since it is derived from the universally applicable schema that 

I will call “all-some”: 

All A’s are B. 

Therefore, some A’s are B. 

We are allowed to make any substitution for A and B and we are assured that what results will be 

a good inference in its form. The schema is universally applicable. Its use is not restricted, for 

example, to inferences about human mortality. 

 Since antiquity, philosophers have sought to recover similar schemas for inductive 

inference. The successes have always been partial. One of the earliest attempts was “enumerative 

induction”: 

Some A’s are B. 

Therefore, all A’s are B. 

The trouble is all too clear. It will almost never work. With obvious substitutions, we might be 

happy to infer: 

Some men are mortal. 

Therefore, all men are mortal. 

But we would be unhappy with almost every other variant of it, such as: 

Some men are Greeks. 

Therefore, all men are Greeks. 

All of the approaches sketched briefly above lie within this formal tradition. If we just focus on 

simple examples like these, it becomes quite apparent that they must fail to have universal scope. 

 The schema all-some does have universal scope since it is fully self-contained. Its 

cogency derives completely from the meanings of the words “all” and “some.” If someone 

doubts the cogency of the inferences it authorizes, we would gently inquire of them whether they 

understood the meaning of the words. 

 In contrast, enumerative induction is not self-contained. It can work, but only when we 

restrict the substitutions for A and B to terms hospitable to the induction. When A is “men,” 

successful substitutions for B include biological properties like “is mortal,” “is borne of a 

mother,” “has a blood circulation system,” and so on. That is, if we restrict the domain in which 
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the scheme is applied, it can warrant good inferences. However its success is entirely dependent 

on the restriction. The facts comprising that restriction are the ultimate source of its warrant. 

They are biological facts about people. The inference is warranted, in the last analysis, because 

that is the way people are biologically. 

 Further, the inference is a good inference only in so far as the warranting facts are true. If 

science advances so far that we can create people entirely in the test tube from synthetic DNA 

without the need for a gestating mother, these facts would cease to be true and one of the 

inferences would become an inductive fallacy. 

 It is easy to see how these conclusions about inductive inference generalize. All inductive 

inferences lead to conclusions that go beyond what is necessitated logically by their premises. It 

follows that they are only good in so far as the inferences are carried out in domains that are 

factually hospitable to the inferences. The facts that make the domain hospitable are the facts that 

warrant the inference. Here it is helpful to remember that a commonplace of deductive inference 

is that that propositions can both state factual matters and also serve as warrants for deductive 

inference. The proposition “If A then B.” is both a factual proposition and also a warrant that 

authorizes a deductive inference from A to B. The material theory asserts that, ultimately, this 

dual role for factual propositions is the only way that inductive inferences are warranted. 

 This applies even to Bayesian analysis, in so far as it has any ambitions of providing an 

account of inductive inference. It is true that the manipulations of Bayes’ theorem itself are 

deductive inferences lying within the probability calculus. We deduce a value near unity for the 

probability of Newton’s universal law of gravitation, conditioned on the motion of the sun’s 

planets and their moons. An essential background fact is that these deductions are implemented 

in a domain in which distributions of inductive support are properly represented by probabilities. 

In the second half of this book, we shall explore domains in which this presumption fails. 

 These last considerations constitute the core of the material approach to inductive 

inference. It provides a single, unified approach that incorporates all the different approaches 

presently in the literature; or at least it incorporates them all in so far as they are sufficiently 

precisely defined to be viable in some domain. 

 Its core ideas can be encapsulated in some slogans: “All induction is local.” This slogan 

reminds us that any regularity we may find among inductive inferences is restricted to some 

domain and dependent for its warrant on the particular facts that obtain there. Another slogan is 
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“There are no universal rules for inductive inference.” It reflects the core posit that the warrant of 

an inductive inference is not traced back, ultimately, to some universal schema, but to facts that 

obtain only locally. 

 If one hears only this slogan in isolation, one might mistake it for a skeptical thesis akin 

to Feyerabend’s notorious “anything goes.” That is very far from its import. It is merely a part of 

the relocating of the warrant of inductive inferences from rules to facts. The material theory does  

not seek to undermine inductive inference. It seeks to save it. For the formal approaches that 

dominate the literature have simply failed in their most important functions. None gives us a 

successful system, applicable universally, for discerning which are the good inductive inferences. 

None gives an account of why the inferences it does authorize are appropriate. This last failure 

stands in stark contrast with standard examples of deductive inference. Inferences warranted by 

the deductive schema all-some are good inferences simply in virtue of the meaning of “all” and 

“some.” These last considerations pose two problems that the material theory solves. 

 First, inference schemas in the present literature cannot be used universally. While their 

writings are curiously silent on the question, Bayesians will concede to me in conversation that 

their system does not apply everywhere. That invites the key questions of where are the limits 

and how we identify them. The material theory answers. One must locate the facts that can 

warrant the schema, Bayesian or otherwise. The schemas can be applied only in domains in 

which those facts obtain. 

 Second, merely stating an inference schema does not automatically make it a good one. 

In familiar deductive cases, we discern that they are good because of the meaning of the 

connectives. We cannot do the same for inductive schemas. Instead, the material theory tells us 

that certain inference schemas are good since they depend on factual matters in the domain of 

application. Biological predicates, like “is mortal” and “has a blood circulation system” are facts 

common to all people and that fact of commonality authorizes the inferences sketched earlier.  

 Adopting the material approach to inductive inference leads one to approach problems in 

inductive inference differently. There is no default scheme that can be applied mechanically and 

automatically. If one wants to employ some mode of inductive inference in some context, one 

must be able to supply positive reasons for why that mode is applicable in that circumstance. 

This applies especially to probabilistic inference. One should not assume by default that it 
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always applies. If it is to be used in some domain, we have a positive obligation to provide the 

foundations for its applicability. Otherwise it cannot be used. 

 While this book is largely not concerned with beliefs (credences) as opposed to objective 

relations of inductive support, the moral carries over. There should not be a default presumption 

that credences are probabilities. If credences are to be represented as probabilities in some 

circumstance, then positive reasons must be given for why they are appropriate in that 

circumstance. 

4.	The	Chapters	
 The chapters of this book are divided into two parts. The earlier Chapters 1-9 are devoted 

to laying out the basic ideas of the material theory and applying it to what are identified above as 

the qualitative approaches to inductive inference. The later Chapters 10-16 concerns quantitative 

approaches, most notably the probabilistic approaches of Bayesianism. 

 Chapter 1 states the basic propositions of the material theory of induction. The vehicle to 

develop them is Marie Curie’s inference from the crystallographic properties of her sample of 

Radium Chloride to those of all possible samples. It is an instance of enumerative induction of 

breathtaking scope. It depends on the evidence of just a few specks of the only sample of Radium 

Chloride then known.  This chapter also shows how the material theory can warrant successful 

inferences of this form, even if of breathtaking scope, by displaying the underlying facts that 

warrant them. In this case the pertinent fact is Haüy’s principle. It lies at the core of extensive 

investigations of into the properties of crystals in the nineteenth century and solves the vexing 

problem of discerning just which of the many properties of crystals are projectable, that is, 

suitable for enumerative inductions.  

 Chapter 2 elaborates the argument stated briefly above in Section 3 that justifies the 

material theory of induction. The essential ideas of the justification are these. No extant formal 

scheme of inductive inference has proven to be applicable universally. The successes of all these 

schemes can be explained by the material facts within the restricted domains in which they 

succeed. Most importantly, inductive inference is by its nature ampliative. That means that its 

conclusions are logically stronger than its premises. Hence an inductive inference can only 

succeed in domains in which further background facts are hospitable to it. This chapter also 
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poses the inductive puzzle “1, 3, 5, 7. What’s next?” The puzzle is, of course, insoluble 

nontrivially without some indication of the background facts that can serve to warrant an 

inductive inference that answer “what’s next?” The chapter reports the underappreciated and 

ingenious way Galileo solved the problem. 

 Subsequent Chapters 3 to 9 address specific rules and schemes proposed in the literature 

for inductive inference. The goal of these chapters is to show that, when these rules or schemes 

work, they do so because of identifiable background facts; and that they can only work in 

domains with such hospitable facts. We also find in each case that the apparent unity of 

application of the candidate rule survives only as long as we do not look too closely at the details 

of the examples. As we consider those details more thoroughly, we find the specific background 

facts taking on the primary burden of warranting the inferences. The original rule survives only 

as a superficial similarity among the examples. 

 In writing these chapters, I have tried as much as possible to use examples of inductive 

inference from real science. This literature can suffer when commonplace, non-scientific 

examples are used to guide our inductive inferences in science. The material theory predicts the 

problem: since the background facts of ordinary life differ from those of abstruse scientific 

contexts, there is no basis for expecting the same inferential schemes to work in both contexts. 

 Chapter 3 looks at the idea of replication of experiment. It is routinely touted in the 

scientific literature as the “scientific gold standard.” We find that merely a useful, but defeasible 

rule of thumb. It has not been given a precise enough formulation, comparable to those of the 

schemas of deductive logic, that would enable its mechanical application. Through a series of 

case studies, we find that the rule is defeasible and has been overruled in every possible 

combination. Successful replications (intercessionary prayer) and failures of replication (Miller 

experiment) have both been discarded as evidentially inert. However, on a case by case basis, 

warrants for the strong inferences associated with individual replications can be found in 

particular facts in their domains. A general principle of replication is superfluous. 

 Chapter 4 investigates analogy. It is a traditionally recognized argument form whose 

history extends back to Aristotle. However, as a review of the recent literature shows, efforts to 

express the form precisely as a universal rule devolve into an explosion of divisions into special 

cases and further qualifying clauses. Each expansion produces new problems that require further 

expansions and, paradoxically, carries us farther from any final formulation. This conception of 
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analogy as an argument form is contrasted with how analogies are treated by scientists. For them, 

analogies are facts. This fits with a material analysis, for it allows analogies to be both facts and 

warrants for inductive inferences. Among these warrants, there can be no universal, formal rules. 

Efforts to adapt a candidate analogical rule to real examples will force a proliferation of 

conditions, while the rules seek a unity not present in the details of the examples. Instead, the 

inferences we label analogical are warranted by the facts of analogy identified by the scientists. 

In the examples explored in the chapter, Galileo infers analogically to mountains on the moon. 

His inferences are justified by the fact that the dark patches visible on the moon’s surface are 

formed by the same processes that produce shadows on the earth. The same factual basis for 

inference is found in two further case studies: Reynold’s analogy in transport phenomena in fluid 

engineering and the liquid drop model of the nucleus of an atom. 

 Chapter 5 takes an unflinching look at the now fashionable talk of “epistemic values” or 

“epistemic virtues.” An early twentieth century quantum physicist who prefers the logically 

inconsistent old quantum theory does so, we are to suppose, because that physicist values 

simplicity over the competing virtue of logical consistency. The latter, however, is valued more 

highly by the classical physicist who then finds a different import for the same evidence. If the 

terms “virtue” and “value” have their usual meanings, they are ends in themselves and can be 

freely chosen by us. With this understanding, the physicists’ inferences cease to be objective. 

The bearing of evidence merely reflects the physicists’ freely chosen biases and prejudices. This, 

I maintain, is not how notions of simplicity and logical consistency are used. They are not values, 

but criteria, whose use is justified by their heuristic ability to lead us to the truth. They are 

defeasible and can be discarded when they cease to serve this end. Unless we wish to endorse an 

inductive skepticism by our use of tendentious language, we should stop using the misleading 

language of virtue and value. The term “criterion” serves better. 

 Chapters 6 examines the inductive criterion of simplicity in greater detail. There is no 

precise rule that tells us when to prefer simpler hypotheses. The later misattribution to William 

of Ockham, “entities must not be multiplied beyond necessity,” is vacuous without specification 

of what counts as an entity and which are the necessities. We are bluffed into allowing its vacuity 

to pass because of the faux dignity of its expression in Latin. Instead appeals to parsimony in real 

evidential situation are abbreviated appeals to specific background facts that tell us which are the 

simplest cases. In curve fitting, for example, straight lines are not necessarily the simplest 
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starting point. If we are fitting trajectories to comets, background facts tell us to start with 

parabolas, then ellipses and then hyperbolas. For tidal data, we start with an elaborate set of 

sinusoidal curves whose periods are adapted to the physical parameters of the tidal processes. 

 Chapters 7 probes the Akaike information criterion, which has been offered as a 

vindication through statistical theory of a general principle of parsimony. Closer scrutiny reveals 

that the criterion employs no presumption of parsimony in its derivation  and that it does not 

entail any such general principle. Its celebrated formula merely adds a term that corrects for the 

overfitting of data in curve fitting problems by extra variables. We, not the statistics, illicitly 

interpret this narrowly applicable term as a vindication of a broader principle of parsimony. The 

presence of the term itself depends upon strong background assumptions, most notably that the 

true curve lies within the model under test. Assumptions like these are the material facts that 

warrant inferences that use the Akaike information criterion. 

 Chapters 8 addresses the popular argument form, inference to the best explanation. The 

hope of its proponents is that there is some feature, peculiar to explanation, that can power 

inductive inferences. The analysis proves unable to find such a feature. Indeed notions of 

explanation are so varied that instances of inferences to the best explanation may bear only 

superficial similarity to one another. At this superficial level, these arguments share a 

rudimentary common form. Real examples in science commonly begin as comparative 

arguments. One hypothesis is favored over another because the first entails the evidence. The 

competing hypothesis fails the evidence. It is either refuted deductively by the evidence or must 

take on a substantial evidential debt in the form of further unsupported assumptions, if it is to 

remain compatible with the evidence. The success of the favored hypothesis does not rest on any 

peculiar explanatory prowesses, but merely on its adequacy to the evidence and, more 

importantly, the failure of the competitor. The more fraught subsequent step of the inference 

must show that the favored hypothesis prevails over not just this one explicit competitor, but 

against all. It is often left tacit in real cases in science. 

 Chapter 9 seeks to reverse a decline in the literature on inference to the best explanation. 

This literature began rich in real examples drawn from science. The most notable is Darwin’s 

self-conscious use of the argument form in his Origin of Species. Since then, proper study of 

scientific examples has been replaced gradually by imperfect mentions of them that often 

oversimplify and misinterpret them; and by prosaic illustrations drawn from everyday life. The 
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entirety of Peter Lipton’s canonical monograph, Inference to the Best Explanation, contains only 

one example from real science that is developed at length. It is Semmelweis’ identification of the 

cause of childbed fever. The example is poorly chosen since it one of few that happens to be 

treated more precisely by the simple thinking of Mill’s methods. 

 This literature is increasingly dominated by superficial examples. The best explanation 

for footprints in the snow is that someone walked past. This example is unlike those in science, 

for the human explanation of a person making distinctive marks has no serious competitors. 

Worse it encourages explanation by intelligent intervention. That would be an unwelcome 

encouragement to Darwin. He sought to overthrow intelligent creation as an explanation for 

biological features. My contribution is provide a somewhat more detailed exposition of eight 

cases in science, to which the loose pattern of inference to the best explanation can be fitted. I 

show in each case how some powerful, primitive notion of explanation plays no role. These 

examples illustrate and support the general claims made in Chapter 8 for the structure of 

inferences to the best explanation in real science. 

 With the Chapters 10 to 16, the narrative takes a different turn. The Bayesian approach 

presently dominates thinking about inductive inference in the philosophy of science. According 

to it, relations of inductive support are recoverable in some manner from probabilistic relations 

among proposition. I have no quarrel with the use of these probabilistic methods in domains 

where the background fact specifically authorize them. There are many such domains. Where I 

differ from the Bayesians is over their ambitions of providing a universally applicable 

understanding of inductive relations. It is not, contrary to the title of Jaynes’ Bayesian manifesto, 

“The Logic of Science.” It is only the logic of certain special cases. My arguments against those 

ambitions of universality are laid out in these chapters. 

 Chapter 10 is entitled “Why Not Bayes.” It is a statement, not a question. I illustrate how 

background conditions can lead us to non-probabilistic representations of evidential relations 

using the extreme illustration of completely neutral evidence. For this case, application of simple 

invariances lead to a highly non-additive representation of inductive support. It is quite contrary 

to the additivity of a probability measure. I argue that even the contrivances of the new literature 

in “imprecise probability” can sometimes fail to do justice to it. 

 Bayesian analysis is distinctive in that, laudably, it has taken seriously the burden of 

proving the uniqueness of its probabilistic representations. This chapter argues that all these 
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efforts must fail since they all have the same structure. Whether they are Dutch book arguments 

or employ representation theorems, they proceed from some set of assumptions and then deduce 

that the targeted beliefs or relations of inductive support must conform to the probability calculus. 

This last conclusion is a contingent proposition. It follows that it can only be deduced from 

assumptions that are at least as strong as it logically. Hence, necessarily, the assumption of 

probabilities must be hidden within the starting assumptions. The proofs are not demonstrations 

of the necessity of probabilities, but merely a restatement of a preference encoded in its premises. 

Once one realizes this, it merely becomes a mechanical exercise to identify and expose the 

hidden assumptions. I carry out the exercise for Dutch book arguments and representation 

theorems and note that all similar arguments will fail in the same way. 

 Chapter 11 contains an extended example of this last exercise. The scoring rule or 

“accuracy” based vindication of probabilism is based on a dominance theorem. If our credences 

are not probabilistic, then the theorem tells us we can always improve the accuracy of our 

credences, no matter what the true situation may be, merely by shifting our credences to a 

probability. The chapter shows that the theorem is sensitively dependent on the particular scoring 

rule used to measure the inaccuracy of credences. It develops a family of scoring rules such that 

any desired deviation from additivity in the credences can be secured merely by choosing the 

requisite rule from the family. Then a variant theorem shows the dominance of credences with 

the specified deviation from additivity. The literature in accuracy-based vindications has sought 

to parry such possibilities by seeking further reasons for why only those rules that deliver 

probabilities are admissible. These efforts cannot succeed since they still seek to derive 

probabilities deductively from further assumptions. I continue the exercise of displaying how 

these further assumptions still have hidden within them the presumption of probabilities. 

 Chapter 12 addresses a more general problem facing all efforts to devise a mathematical 

calculus for strengths inductive support. Applications of Bayes’ theorem require specification of 

prior probabilities. They make a difference to the resulting posterior probabilities. Since they 

must be determined by factors external to this application of Bayes’ theorem, it follows that this 

specific computation is not inductively self-contained. One might hope to eliminate this 

dependence on external considerations by a suitable expansion of the scope of the application of 

Bayes’ theorem. The present prior probabilities would then be recovered as posterior 

probabilities of antecedent applications of Bayes’ theorem. Continued expansion might, we hope, 



Prolog 14 

eventually eliminate the intrusion of external considerations. It is well-known that these hopes 

fail. No matter how large the scope of the application, one is never freed from the need to use 

external consideration to fix prior probabilities. 

 It turns out that this inductive incompleteness of the Bayesian system is not a failure 

unique to the Bayesian system. Rather, it is an instance of a broader incompleteness that afflicts 

all candidate calculi of inductive inference. That is, a theorem demonstrated elsewhere shows 

that this incompleteness must arise in all such calculi that conform with weak and broadly 

acceptable conditions. This chapter does not develop the theorem in all its mathematical details, 

but presents its core ideas and some illustrations of it. The theorem gives a precise instantiation 

of the more nebulous slogan, “there are no universal rules of inductive inference.” It shows that 

there are no inductively complete calculi of inductive inference. 

 The remaining Chapters 13 to 16 display further situations in which the background facts 

warrant formal treatments of inductive support that are not probabilistic. They illustrate the 

locality of inductive inference. In each case, we must first find the facts prevailing in some 

domain and then read from those facts the particular logic that would apply to it.  

 Chapter 13 considers an infinite lottery machine that chooses without favor among a 

countable infinity of outcomes, labeled 1, 2, 3, 4, …. The condition that the lottery machine 

chooses without favor is expressed as an invariance, “label independent.” According to it, the 

support accrued to any individual outcome, or set of outcomes, remains the same no matter how 

we may permute the labels. This independence exercises a profound restriction on the formal 

behavior of strengths of support. For example, all infinite sets of outcomes whose complements 

are also infinite must accrue the same support. This sector of the logic is highly non-additive. A 

corollary is that the relative frequency of even numbered outcomes does not stabilize towards 

one half in many, repeated drawings. Rather, all relative frequencies continue to accrue equal 

support. The factual conditions characteristic of the infinite lottery machine turn out to arise in a 

particular problem in recent inflationary cosmology. The infinite lottery machine logic is the 

applicable logic. 

 Chapter 14 undertakes the same exercise for an uncountably infinite outcome set, such as 

the continuum-sized set of outcomes formed by the real numbers between zero and one. One 

might think that choosing without favor among outcomes in this set is easily achieved 

probabilistically by a uniform probability distribution. That is a misleading impression since, by 
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foundational design, such a probability distribution neglects to assign probabilities to very many 

subsets of outcomes of the space. If we require a representation that covers all subsets, we arrive 

at a logic similar to that of the infinite lottery machine logic, but with more sectors. The chapter 

then considers successive restrictions that would move the logic towards a probabilistic logic. 

With each restriction we find a variant of the non-probabilistic inductive logic warranted. One 

application of these intermediate logics is the continuous creation of matter in the steady state 

cosmology of Bondi, Gold and Hoyle. The most interesting cases technically arise with 

paradoxical decompositions of measure spaces. They show the existence of outcome sets not 

measurable by additive measures such as a probability measure. To make their character more 

concrete, the chapter develops nonmeasurable sets derived from coin tosses. It turns out that a 

variant, but weak inductive logic—an “ultrafilter logic”—applies to these sets. 

 Chapter 15 investigates the inductive logic warranted in two sorts of indeterministic 

physical systems. The first are those whose temporal behavior is indeterministic. They are 

quiescent for an arbitrary time and then, without any specific triggering event, spontaneously 

move. The chapter develops the especially simple example of the infinite domino cascade, which 

is new in the literature. The second type of indeterministic system is those in which specification 

of one part of the system fails to fix the remainder. Fixing the mass distribution in Newtonian 

cosmology fails to fix the gravitational potential. It is then shown that no probability measure can 

represent the indeterminacy. The infinite dimensionality of the space of Newtonian potentials 

presents especially intractable problems for additive measures. Instead, it is shown that the 

background facts of the systems realize the invariance that led to the completely neutral support 

elaborated in Chapter 10. This is the logic applicable to these indeterministic systems. 

 The alternative inductive logics explored so far all tend to be simpler in their structures 

than the additive measures of probability theory. Chapter 16 shows that this need not be so. The 

system considered is the spin of electrons in quantum theory. While probabilities arise in the 

process of quantum measurement, they turn out not to be the structure representing inductive 

support that is warranted by the physical facts of quantum theory. Rather that structure is the 

density operator that also represents states in quantum theory. The chapter explains what these 

operators are, how they come about and how they represent inductive support. The development 

is written at a level that presumes no special knowledge of quantum theory, but assumes a little 

comfort with abstract mathematics. We learn from the example that background facts in some 
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domains can warrant an inductive logic of some complexity that is quite different in its structure 

from a probabilistic logic. 

5.	“A”	or	“The”?	
 Finally a note on terminology: is it a material theory of induction or the material theory 

of induction? I use both expressions. The first refers to the general idea of finding the warrants 

for inductive inferences in background facts. There is no presumption in this usage of a particular 

way of proceeding beyond just the general idea. The second expression—the material theory of 

induction—refers to the particular instantiation of the general idea found in this book and my 

relevant papers. 
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