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S On Machines in General,

consonances, and of Mr, Maxtvell on the system of perfect

consonancijy arc in danger of falling into utter contempt.
1 beg here to mention, respecting the new notation for

musical intei»als, which I have explained vol. xxviii. p. 140,
that the Octave, happening to contkin just 12 of the lesser

fractions f, and one of these to fall near each note of the

equal temperament ; in almost all calculations respecting

DoJizeaves, the temperaments or results, are free of f, and
two only of the three independent or prime terms, of which

every accurate notation must consist, are in general found

at last ; while the smallness of the most minute, m, it being
less than the ttj^^ P^i^t of the Schisma, 2, which is itself

but a very trifle more than -y^th part of a Comma, c,

(6r 7?T 2 + -rV I") render it allowable in most practical

cases to neglect m, and to consider the S s as elevenths of a

comma, in the results ; although I would advise the pre-
vious calculations to be always carried on strictly, in 2,
f and m, especially, as the number of f s will generally point

out, to what finger-key or number of half notes, any step
in the process answers.

I am, sir, your obedient servant,

John Faret.
12, Upper Crown-Street, Westminster,

l?€bruary I, 1808.

II. Essay upon Machines in General. By M, Carnot,
Member (f the French Institute, &c, &c.*

Preface,

AuTHOUGH tlie theory to be discussed be applicable to

every subject which concerns the communication of motion,
I have given to this work the title of Essay upon Machines

in General ;
—in the first place, because it is principally

machines I purpose to treat of, as being the most important

For a 'franslatJon of Carnot's " Reflections on the Theory of the Infini-

fpsimal Calculus," see Phil. Mag. vol. vjii. p. 222, and 335 j and vol. ix. p. 89.

' branch



On Machines in General, §

branch of mechanics ; and in the second place, because I do

not mean to treat of any machine in particular, but solely

of the properties which are common to all.

This theory is founded upon three principal definitions :

the first regards certain movements which I call geometrical,
because they may be determined by the principle of geome-
try alone, and are absolutely independent of the rules of

dynamics. I have not thought that we could easily pass
over them without leaving some obscurity in the elucidation,

of the principal propositions, as I have particularly shown
with respect to the principle of Descartes.

By the second of my definitions, I endeavour to fix the

signification of the ie,vm6force soliciting and force resisting :

we cannot, in my opinion, perspicuously compare causes

with effects in machinery without a marked distinction be-

tween these difierent forces ;
and this is the distinction

upon which I think something vague and indeterminate has

been always left.

Lastly, my third definition is that by which I give the

iiame of moment of activity of a power, to a quantity in

which a power is mentioned which is really in activity or in

movement, and where we also take account of each of the

instants employed by this force, i. e. of the time during
which it acts. Whatever it be, we cannot refuse to allow-

that this quantity, under whatever denomination we de-

signate it, is not to be continually met with in the analysis
of machines in movement.
With the assistance of these definitions, T arrive at pro-

positions which are very simple : I deduce all of them from
one same fundamental equation, which, containing a cer-

tain indeterminate quantity, to which we niay attribute dif-

ferent arbitrary values, will give successively m each par-
ticular case, all the determinate equations required for the-

solution of the problem.
This equation, which possesses the greatest simplicity,

generally extends to all imaginable cases of equilibrium and

movement, whether the movement changes hab^tiiv, or va-

j;\es by insensible degrees : it is even applied to atl bodies,
whether hard, «r endowed with a cerbin degrc^ti of elaslicilv ;

at>d
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10 On Mathines in Generate

and if T am not deceived, it is sufficient of itself, an4 inde-

pendently of every other mechanical principle, to resolve all

the pHFticular cases to be met with.

I easily draw from this equation a general principle of

equilibrium and movement in machines properly so called,

and from the latter naturally flow o>her principles more or

less general, several of which are already known and very
celebrated, but which have been hitherto eirtier inexactly or

vaguely explained, rather than rigorously demonstrated.

Without departing from general principles, I have united

in a scholium, and as clearly as possible, the most useful

remarks for practice, and which, ^om their importance^

appeared to me to merit a par:icular development. Every
person repeats, that in machines in movement, we always
lose in time or in velocity what we gain in power; but after

perusing the best elements of mechanics, which seem to be

the true place where the proofs and explanation of this prin-

ciple should be found,—Is its extent or even its true, signi-
fication easy to seize ? Has its generality, with most readers^

that irresistible evidence which should characterize mathe*
rnatical truths ? If they exhibit this striking Conviction,

ought we not to see mechanics instructed in th<jse works,

incessantly, renounce their chimerical projects ? Would they
not cease to believe, in spite of every thing that has been

taught them, that there is something of magic in niachines ?

The proofs given .them of the contrary only extend to

simple machines : now they do not think these capable of

any great effect, and they cannot be brought to believe that

it must be the same in every case imaginable; they only

speak of that where there are solely two forces in the system^
and they are contented with an analogy : this is the reason

why these mechanicians always hope that their sagacity will

make them discover some unknown resource, some ma-
chine which is not comprehended within the ordinary rules;

they think themselves so much the more certain of meeting
with it, the further they remove from every thing which

seems to have any relation with machines in use, because

ihey itnagine that the theory established with respect to the

latter, cannot be extended to constructions which do not

seem
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seem to have any connection with them. It is in vain to tell

them that every machine may be reduced to the lever ; thiii

assertion is too vague and too wire-drawn to be admitted .

without a profound examination ; they cannot persuade
theinstlvcs that machines which appear to have notliing in

common with those denominated simple ones, arc subject
to the same law, nor that we can pronounce upon the in-

utility of a secret winch has not been connriunicatcd to any

person : thence it happens that, the most absurb ideas, and

the furthest removed from the simplicity so advantageous to

machines, arc those which furnish them the most hopes.
The method of rooting out this error is,certainly to attack

it in its very source, by showing that not only in all the

machines known, but also in all possible machines, it is an.

invariable law—that we always lose in time or in velocity

what we gain in power,
—and to explain cleady what this

law signifies ;
but to thi§ effect we must raise ourselves to

the greatest generality possible, and not stop at any parti-

cular machine, or resort to any analogy^. In the last place,

there must be a general demonstration, 'deduced imme-,

dialely and geometrically from the first axioms in ifiecha-

nics : this is what I have atten^pted in this Essay. I have

strongly insisted upon this fundamental point, and I do not

know' if f have succeeded in placing it in a sufficiently clear,

light ; but on attacking error we are compelled to substitute

truth in its place;
—1 have shown what is the true end of

machinery: if it be unreasonable to expect prodigies from-

them beyond all probability, we shall still find there is

plenty of utility in them for exercising the most lively ima-

gination.
The reflexions T propose upon this law lead me to say a.

word of perpetual motion : and I have shown not only that,

every machine abandoned to itself must infallibly stop, but

I assign the- verv instant when this must happen.
There will also be found among these reflections one of

the most interesting properties of machines, which I think

has not yet been remarked ;
it is, that in order to make them

produce the greatest possible eflTect, it must necessarily

happen that there be no percussion, i.e. that the move-
ment


Movement by imperceptible degrees for greatest effect. 
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1 2 Qn Machines in General.

inent should always change by imperceptible degrees; which

occasions, among other things, some remarks upon hy-
draulic machines.

Finally, L terminate this production by some reflection!*

upon the fundamental laws of the communication of move-
ment, which, if they be not agreeable to every body, have at

least the merit of brevity.

I repeat that this Essay has merely for its object machi-

nery in general ; each machine has its peculiar properties :

here we have only to do with those which are common to

all ; these properties, although sufficiently numerous, are in

some measure all comprehended in one very simple law :

it is this law I purpose to explain, to demonstrate, and de-

velop, always regarding machines under the most general
and direct point of view.

Introduction.

I. There is no want of excellent treatises upon machi-

nery : the properties peculiar to those in frequent use, and

particularly to those called simple, have been inquired after

and expounded with all possible sagacity. In my opinion,

however, too little attention has been bestowed in the de-

velopment of those iproperties which are common to ma-

chinery in general, and which for this reason no more

belong to the cords of a machine than to the lever, the

vice, or any other machine, whether simple or com-

pound.
It is not, however, because geometricians have neglected

to ascend to the general principles of equilibrium or move-
ment ; but it is only, as it were, en passant that they have

spoken of their application to the' theory of machines pro-

perly so called : and perhaps there is none of these prin-

ciples to be found whteh unites to a rigorous demonstration

a sufficient generality, to make it answer solely and in-

dependently for the solution of the various questions which

may be proposed, as well upon the equilibrium as upon the

movement of machines, i. e. for reducing every question to

a business of geometry and calculation ;
—this is the true

object of mechanics.

II. Among


Machines in general, not particular machines. 
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TI. Among the principles more or less general which
have been hitherto proposed, we shall only mention two

very celebrated ones, and upon which we shall have some
observations to offer.

Tiic first is that which assigns for -the general law of

equilibrium in weighing machines, that the centre of gravity
of the system is then at the lowest possible point ; but al-

though this antient principle be very simple and gt-neral, it

does not seem that all the attention it deserves has been paid
to it : it is certainly, first, because it is subject to some ex*-

pressions, like all these where a maximum and iQ,inimum is

mentioned : second, because it has no relation except to a

particular species of force, which is gravity : thirdly and

lastly, because it appears difficult to give a general and rigo-
rous demonstration of it. But first, we shall show that by
a small change in the display of this principle, we may make
of it a very precise, geometrical, and true proposition,
without any exception whatever. Secondly, although it

has no relation except to giavity, yet it is easy to apply it

to all imaginable cases : for this purpose it is only re-

quisite to substitute a weight in the place of each of the

powers which are of a different genus ;
this is very easy by

means of a line passing upon a return pulley, in such a

manner that there now remains no other defect to this prin-

ciple than that of being indirect. Thirdly and lastly, al-

though we cannot demonstrate it rigorously without ascend-

ing to the first principles of mechanism, it is, however,

easy to account for it so as to remove every doubt, if we
had even no other proofs, as we shall show when we come
to the exact demonstration which we shall endeavour to give
of it in ihe course of this Essay.

Let us imagine therefore a machine to which there are no
other forces except weights applied ; I suppose it, besides, to

be of any arbitrary form, but that no movement has been

given to it; this being done, whatever be the disposition of

the bodies of the system, it is clear that if there be equili-

brium, the sum of the resistances of the fixed points or any.
obstacles, estimated in the vertical direction, contrary to the

gravity, will be equal to the total weight of the system ;

2 hi\%
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but if a movement is given^ a part oF the gravity will be

employed to produce it, and it is only with the surplus that

the fixed points will be charged ; thus, in this case the sum
of the vertical resistances of the fixed points will be less at

the first instant than the total weight of the system : thus

from these two forces combined (the gravity of the system
and the vertical charge of the fixed points) there will result

from it a single force equal to their difference, and which
will push the system from top to bottom as if it were free:

thus the centre of gravity will descend necessarily with a

velocity equal to this difference divided by the total mass of

the system. Again, if the centre of gravity of the system
docs noi descend, there will necessarily be an equilibrium.

In general therefore—For ascei'taining that several Lueights

applied to any given mackine should make a mutual equili^

Iriinn, it is sufficient to prove that
if'

we abandon this ma-
chine to itself) the centre , of gravity of the system luitlnoi

descend.

III. The immediate consequence of this principle, which
is true without exception, is, that if the centre of gravity
of the system is at the lowest possible point, there will ne-

cessarily be an equilibrium ; for, according to this proposi-

tion, it is sufficient, in order to prove it, to shov/ that the

centre of gravity will not descend : Now, how could it de-

scend, when upon this hypothesis it is at the lowest point

possible ?

IV. In order to give another application of this principle,

I suppose tbat it Ts required to find the general law of equili-

brium between two weights, A and B, applied to a given
machine : I say then, that in consequence of the preceding

principle, there will be an equilibrium between these two

weio:;hts A and B, if by supposing that one of the two has.

to bear it, and the machine has to take a small movement,
it would happen that one of these bodies would ascend while

the other descended ; and that at the same time these

weights were in the reciprocal rates of their estimated velo-

cities in the vertical direction : in fact, if we suppose that

A then descends with the vertical velocity V, while the ve-.

loclty of B, also estimated in the vertical direction would be

8 u, we

John Norton



Memoir upon living andfossil Elephants, 15

?/, we shall have' by hypothesis, A : B : : 2^ : V, or AV=

B 2/, therefore -^-TTq'
= ^' ^^^^^ ^^^"S ^^"^> *^?^^ ^^^

bodies are supposed to be in motion, the one from top to

bottom, and the other vice versa, jt is evident ihat the first

member of this equation is the vertical velocity of the centre

of gravity ot" the system : thus this centre of gravity will

not descend, and therefore by the preceding position there

must be an equilibrium.

[To be continued.]

III. Additional Memoir upon living and fossil Elephants,

By M. CuviER.

[Concluded from vol. xxix. p. 254.]

Article VII.

Comparison of the Crania of the Elephant of India and that

of Africa—External Characters taken from the Ears—
Parts of tile Cranium susceptible of Variation in one and
the same Species.

JL HAD the good fortune to be the first to remark, in 1795,
the distinctive characters presented by the crania of the two

elephants, and which are so much the more interesting, as

they may be applied to living, or entire individuals, without

being obliged to examine their jaws*. I was able to re-

cognise them at first only by the comparison of' a cranium
of each species ;

I have -now verified these observations by
inspecting seven real crania, (five of which are Indian, and
two African,) and several drawings.
When these crania are separated from their lower jaws

and placed upon the grinders, and upon the edges of the

alveoli of the tusk;5, the zygomatical arcades are nearly ho-

rizontal in both species.

If we next view them laterally^ what is very striking is,

• Plate II. was long ago engraved from my own drawings. I gave a proof

Impression of it several years ago to M. Wiedeman of Brunswick, who copied
it into his Archives de Zootomie, tome ii. cah. I. pi. I.—The Author*

that
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XXI)C. Essaf/upon M^ckinds-mghncrr'ail' Bij'M. CarnoT;
Member of the French Institute^ &C^&c,
! > . ) r ; t~ •

'

J :
' ''

[Cominued iroirt p: 1*5. J'^'
' ^ " '

'

*
'

. X HE .sepond principle upoi> vvnicn-w;e purpose making
some observations, is ilic celebrated liw oV equilibrium of

Descartes. Tt tonics to this, that two powers in equilibrium
are always in reciprocal ratio tp their velocity, es-timated in

the direction of these forces, wlicn we svippose l^hat one of

the two comes to take it from tlic other in an infiiiitely small

degree ; so that a small movement arises from it.

But although this proposition be very beautiful, andwe
generally regard it as the fundamental principle of equili-
brium in machines, it is nevertheless infinitely less general
iRa'ii that which has been quoted in the first plaqe ; becaj^se
it is applied solely to the case where tliere are only two

powers in the system : and besides, it is very easily deduced

ffeiifi-'what has been said upon the subject of the two weights
A and B, since v/e evidently approximate the one case to the

other by substituting, by means of pulleys, weights in

pface of the forces which we wish to value.

Moreover, it is to be remarked, that this principle does

not cjjpress the conditions of the eq^uilibrium between two

powers 'sb'cQihpletely as that \vhicK has teen quoted in the

first'place; 'for it only gives the accouiit of the quantities of

forccj cpmposino- equilibrium, at the place where the latter also

gtVe^, m some soh'^ ^thc account of'tjieir diVections ;
—for ex-

ample, in the case of equilibrium between two weights, the

principle of Descartes solely teaches. that the weights should

te6 'in the reciprocal ratio to their, vertical velocities j but it

tlocs not indicate, like the first, that one of these bodies

should necessarily ascend, while the other descends. In
ftrder thai an ail^e, fcir instance, to the wheeh and cylinder
of which weights ar6 suspended by cords, should reniaiu

Tit ''eiqitili
brill ni, it

i;?^not
sufficient that the weight applied

to the wheel be 16 thrii of thti cylFiider'as the radius of the

cylinder is to the radius of the wheel :—it must also hap-

pen that these weights tend to make the machine turn in

a contrary direction to each other ^ i. e, that thev are placed
io

ui|[e
rent sides with respect to the axis ^ else their efforts,

l'-'-
^ % ^ *'

being
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being mutual, will put the machine in motion. It is

therefore evident that what renders the principle of Des-
cartes incomplete is, that by determining the reference of the

powers, as to their values or intensities, he does not express
that these powers should make opposite efforts, nor in what
consists this opposition of efforts: it is clear, in fact, that

for an equilibrium one of the forces must resist while the

other solicits : now, this is not what happens in the ca^e of

the' example of the axletrce;—But what is it in general that

distinguishes soliciting from resisting forces ? This in my
opinion has not yet been determined. We shall see in this

essay that the characteristic difference of these forces consists

in the angle they form with the directions of their velocities,

so that the one form always acute angles with their velocl-^

ties, while the others form obtuse ones with theirs.

Lastly. One fault with which we may reproach the princi-

ple of Descartes, as well as all those where we are discuss-

ing the small movement which would arise in the system if

the equilibrium was disturbed, is, that they do not indicate

the method of determining this small movement. Now, if

for this purpose we must have recourse to some new me-
chanical principle, the former is not sufficient ; and if we
can determine it by pure geometry, What is the method of

doing so ? This is what the principle does not say : and let

us not say that the proportion indicated by the principle al-

ways takes place whatever the movement is, provided it is

possible, i,e. compatible with the impenetrability of bodies;
for this would be an error: and we shall by and by show
that these movements are subjected to certain conditions, int

consequence of which I think it right to give them the nami
of geometrical movements.

We may make the same remark upon all the principles

upon v/hich we propose to consider a machine in' two
states infinitelv near each other; for, in order to detctiTirne

what arc those two states ; i. e. what movement the machine
should take in ordqr to pass frbn^ the 'one to the'odiifr,'\ve

inust either employ new mechatiical principles tonjiinctlv
with that proposed, which would render the latter insuffi-

cient ;
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eient; or else geometry is sufficient; and in this case it

is a defect in the principle, not to make known the geonij^^

trical conditions to which this movement is subjected.
VI. The two laws mentioned are confined to the case of

equilibrium. We pass easily from this case to that of the

movement by M. D'Alembert's principle in dynamics. But
we have found several others which are immediately applied
to the case of movement ] such as that of the preservation
of living powers under the shock of perfectly elastic bodies 5

which is so much the more gener^^l, as it extends even to the

case of the movement passing rapidly from one state to the

other: but it would seem that people have little dreamed of

the use that might be made of it in the theory of machines

properly so called. It is, however, evident, that this law

should have its analogy in the shock of hard bodies : and as we

generally take the latter to use it as a term of conjparison,
this principle, transferred to hard bodies with the modiii-

catipn which the difference of their nature requires, cannot

fail to be more useful than the preservation in question. We
shall show, in fact, that we may dedilce from it several

capital truths with the greatest facility, and particularly the

preservation of living powers in a system of hard bodies, the

movement of which changes by insensible degrees ; a prin-

ciple of well-known utility in the theory of machines. We
shall thereby see, at the same time, an intimate relation

between these two preservations of living powers;—we draw
from it also the principle of DeiScartes ; and even, by gene-

ralizing it, the law of equilibrium in machines with weights
above mentioned. This principle, in short, after having given
to it the extension of \vhich it is susceptible, appeared to us

to contain all the laws of equilibrium and of movement: and

>vp have not found a better for the basis of our theory.

VII. This essay will be dividc(J into two parts: In the

first we shall treat of the general principles of equilibrium

and of movement in machines; and in the second we shall

examine the properties of machines properly so caHed,

without ever stopping at any particular machine.

PART
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•PART FIRST.

General Pri?icipk'S^

When one body acts upon another, it is always imme-

diately, or by the agency of sISme intermediate body: This

intermediate body is generally what is called a machine : the

movement lost every instant by bodies applied to this ma-
chine is partly absorbed by the machitVeitseU*, and partly re-.

ceived by the other bodies in the system ; but as it may hap-

pen that the object of the question is simply to find the re-

ciprobal action of bodies applied to intermediate bodies,
without having arty occasion to know the effect of it upon
the intermediate body itself, it has been thought, in order

to simplify the question, to make an abstraction of the very
mass of this body* preserving to it on the other hand all the

other properties of matter. Hence the science of machines
has become in some measure an isolated branch of me-

chanics, in which it is required to consider the reciprocal
action of the different parts of a system of bodies ; among
which there are found things which, when deprived of the

inertness common to all parts of matter such as exists in na-

ture, have retained the name of machhies.

IX. This abstraction may simplify in certain particular

cases, where circumstances indicate those of bodies, the

mass of which it is convenient to neglect, in order more easily
to attain our object; but we conceive that the theory of ma-
chines in general has really become more complicated than

formerly : for this theory was once contained in that of the

movement of bodies, such as nature presents them to us ;

but at present we must consider at once two kinds of bodies;,

the one as they really exist, and' the other as deprived in part

of their natural properties. Now, it is clear, that the first of

these problems is a particular case of the latter; therefore the

latter is more complicated : further, although we easily suc-

ceed by similar hypotheses, in finding the laws of equili-
brium and of movement in each particular machine, such aj»

the lever, the axle, and the vice, there results an assemblacre

of facts, the connection of which is perceived with diffi-

culty, and solely by a kind of analogy ; which should ne-

cessarily
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cessarilv happen, as often as we have recourse to the particu-
lar figure of each machiiie/ in order to demonstrate a pro-

perty which is coninjon to it- with all others. These

common properties being ^hqse whiych \^e;.have,,i;x;\5icy/ in

this essay, it is clear that v^^# shall only succeed in fuidingj

ihera by the abstraction of particular forms* Let i>s begin,-

lherxifore,J^y;simplifyin;g the. state of,^he.q^^^^

ing to consider under one and the same system, bodies dij:-

fcring in. their natuiq. , Finally,, let us restore to niachines,

their visinertice, ^Jt^ ^\\\ j:)e^.ej\sy^ , ai^e^^,.^his,.^o ,|C^^

their mass in the result : we shall have the choice of doing

SQ- or not; and,in setting out, the soluli9i| of the probler^

T^ill be •

eqvially. , geni^ral, at the same ;l|i|i)e,,tlxat it will be

simpler. .^a oi
[To be continued.]

XXX, On Caloric, and the Heat evolved during Comhisiion^^

By James, Scholes, Esq,, JMctnchester.

To Mr. rilloch. '^^"^

SIR, ,1,
J- y,',

xIaving been induced to pay particular attention to co^ii-;

bustion for some time past, i have insensibly imbibed prin-

ciples diffcpent iVom the generally received theory, I very

coon began to suspect caloric as a compound substance, and

six months ago had recognised two fluids of electricity for

its component parts. The only demonstrative grounds I then

had for my ideas was the production of hght and heat, parti-

cularly the latter, and for the purpose of measuring the quanti ty

thereof I had an apparatus constructed. But when Mr.Davy's
recent experiments were noticed in your JNIagazine, 1 im-

n^ediately saw them as an additional support of my peculiar

principles, and prepared a lecture, which was delivered to a

Society in this town on the 29th of January, laying down
the whole system, as supported by facts deduced from elec-

tricity and the experiments of Mr. Davy, which I intended

to publish when more matured ; but on looking over the

monthly publications yesterday, I found a communication

in Mr. Nicholson's to a similar purport, which has induced

me
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consist, will remain unsupported ; for if the above-men-

tioned fits have no existence, the whole foundation on which

the theory of the size of such parts is placed, will be taken

away, and we shall consequently have to look out for a

more firm basis on which a similar edifice may be placed.
That there is such a one we cannot doubt, and what 1 have

already said will lead us to look for it in the modifying

power which the two surfaces, that have been proved to be

essential to the formation of rings, exert upon the rays of

light. The second part of this paper, therefore, will enter

into an examination of the various modifications that light
receives in its approach to, entrance into, or passage by,

differently disposed surfaces or bodies ; in order to discover,
if possible, which of them may be the immediate cause of

the coloured rings that are formed between glasses.

XLIII. Essay upon Machines in General, Bij M. Carnot,
Member of the French Institute, ^c. ^c,

[Continued from p. 158.]

X. J. HE science of machines in general is therefore re-

duced to the following question r

**
Being acquainted with the virtual movement of any

system of bodies {that is to say,, that movement which each

of these bodies tvaidd take if it iverefree),find the real move^
ment which will take place the instantfollowing, on account

of the reciprocal action of bodies^ by considering them suck
as they exist in naturey i.e. as endowed with all the inertness

common to all the particles of matter,**
;/ Wij) I

XI. Now, as this question evidently contains, the whole
of mechanics, we must, in order to proceed with precision,.

go back to the first laws which nature, observes in the com-
munication of movements. We may reduce them in general
to two, which are the following :

FUNDAMENTAL LAWS OF EQUILIBRIUM, AND MOTION.

First Law.—^c^iow and Reaction are always equal and

contrary.
This
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This law consists in this, that every body which changes
its state of repose or uniform and rectilinear motion,
never does sd except by the influence or action of some
other body, upon which it impresses, at the same lime, a

<}iianlity of motion eqnal and directly opposite to that

which it receives from it
; that is to say, that the velocity

it assumes the instant afterwards is the force resulting from
that which this other body impresses upon it, and from that

which it would have had without this last force. Every
body therefore resists Its change of state

;
and this resistances^

which is called vis inerticey is always equal and directly op-;

posite to the quantity of motion it receives, i, e. to the

quantity of motion which combined with that which it

had immediately before the change, produces, as the result,

the quantity of motion which it should really have im-

mediately afterw-ards. This is also expressed by saying, that

in the reciprocal action of bodies, the quantity of mo-
tion lost by the one is always gained by the others, in the

fame time and in the same ratio.

Sfxond Law.—IVhen two hard bodies act upon each

other, hy shock or pressure, i. e. in 7'irtue of their inpene-

trabiliti/, their relative velocityy immediately after the reci-

procal action, is always juilL

In fact, we constantly observe, that if I wo hard bodies

give a shock to each other, their vefocities, immediately
after the shock, estimated perpendicularly to their commoft
surface at the point of contact, are equal, in the same way
as if they were drawn by inextensihle wires, or pushed

by incompressible rods ; their velocities, estimated in the

ratio of this wire or rod, would necessarily be equal : whence'

h follows that their relative velocity, e. e, that by. which

they approach or recede from each other, is in every case

null at the hrst instant.

From these two principles it is easy to draw the laws of

the shock of hard bodies, and consequently to conclude the

two other secondary principles, the use of which is continual

in mechanics, viz.

1. That the intensity of the shock, or of the action which
18
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id exercised between two bodies which meet, does not de-'

pend upon their absolute movements, hut solely upon their^

relative movements. 2. That theforce or quantity ofmov^-^^
ment which they exercise upon each other, hy the shock, is'

always directed perpendicularly to their common surface at

the point of contact. ^>Vi3biP

XII. Of the two fundamental laws, thefirst generally

agrees with all the bodies of nature, as well as the two se-

condary laws which we have seen ; and the second solely

regards hard bodies ; but as those which are not hard have

different degrees of elasticity, we generally refer the laws of
their movement to those of the hard bodies, which we take

for a term of comparison, i. e. we regard the elastic bodies

as composed of an infinity of hard corpuscles separated by
small compressible rods, to which we attribute all the

elastic virtue of these bodies ; so that, properly speaking, we
do not consider in nature any other than bodies endowed
with different moving forces. We shall follow this method
as the simplest : we shall therefore reduce the question to

the investigation of the laws observed by hard bodies, and
shall afterwards make some applications of them to cases

in which bodies are endowed with different degrees of

elasticity.

XIII. This essay upon machines not being a treatise

upon mechanics, my object is not to explain in detail, nor
to prove the fundamental laws I have related ; these are

truths which all the world knows, as to which they are

generally agreed, and which are most strongly manifested

in all the phsenomena of nature. This is sufficient for my
object, which is merely to draw from these laws a simple
and exact method for finding the state of rest or of move-
ment which results from them in any given system of bo-

dies, i. e, to present the same laws under a form which

may facilitate their application to each particular case.

XIV. Let us suppose therefore any system of hard bo-

dies, the virtual given movement of which is changed by
their reciprocal action into another which we wish to find ;

and in order to embrace the question in all its extent, l?t us

suppose that the movement may either change suddenly, or

; Vol. 30. No. 119.^/?n7 1808. O vary
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vary by in&enslbilip degrees : finally, as fixed points or some
obstacles may be met with, let us consider them as they

really are,ii^;fi§i,9tj
that is to say, as ordinary bodies of them-

selves,^ i^ali^ing ,pfirt of the system proposed, but firmly ar-

rested iu.the spot where they are placed.
XV. In order to. attain the solution of this problem, let

u^^fi/^t,of3^eurv;e, tlxat, all the
parjti^^-oi;'

the system being sup-

posed perfectly hard, i. e. incompressible and inextensible,

we may visibly, whatever it may be, regard it as composed
ofan infinity of hard corpuscles, separated from each other

either by small incompressible rods, or by small inextensible

wjres;. for when two bodies strike, push, or tend in gcne-
rjj. to approach each- other without being able to doit, on

account of their impenetrability, we can conceive between

tl)e two a small incompressible rod, and suppose that the

njp.Vemj^pt^^ is,trau&miUed From the one to the other accord-

ing to this rod : and in the same way, if two bodies tend to

separate, we may conceive that the one is attached to the

other by a small inextensible wire, according to which the

movement is propagated : this being done, let us conjider

successively,the action of each of these small corpuscles upon
all those which are adjacent to it, i, e. let us examine two by
two all these small corpuscles separated from each other by a

small incompressible rod, or by a small inextensible wire,

and we shall sec what ought to result in the general system
of all these corpuscles. Let us name for this purpose,

77/ and m" The masses of the adjacent corpuscles.

V and V' The velocities they ought to have the follow-^

ing instant.

F' The action of m^^ upon m\ that is to say, the force or

quantity of movement which the first of these cor-

puscles imprt-sses upon the other.

F'' The reaciion of ?»' upon ni\

q[ and q' The angles formed by the directions of V and

F and by thJse of V' and F^'.

This being done, the real velocity of m' being V, this

velocity estimated in the direction of F will be \' cosine q*;

in the same manner the velocity of tt^' estimated in the

direction of V will be W^ cosine g". Therefore, since by
the
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the second fundamental law bodies should go in company*
we shall have V cosine q' + V" cosine q" = (A) : thus

by the first fundamental law, we shall also have F' V co-

sine q' + F" V" cosine q" t^ (B) : for if m' and rti!' are

both moveable, it is clear, by this law, that we have F" = F";
therefore on account of the equation (A) we shall also have

the equation (B) ',
anal if one of the two, 7n' for instance, be

fixed, or form part of an obstacle, we shall have V co-

sine ^' = o
;
therefore on account of the equation (A) we

shall also have Y" cosine^' = 0^ therefore the equation

(B) will still take place : therefore this equation (B) is

true for all the corpuscles of the system taken two by two.

Imagining therefore a similar equation for all these bodies

taken in fact two by two, and adding tT)gether all these equa-

tions, or, what comes to the same »hing, the integral equa-
tion (B), we shajl have for the whole system,

s Y' V' cosine q' -{• s ¥' V" cosine ^" = o : that is to say,
the sum of the products of the quantities of movement
which are reciprocally impressed by the corpuscles separated

by each of the small inextensible wires or incompressible

rods; from these quantities, I say, each of them multiplied

by the velocity of the corpuscle on which it is impressed,
estimated in the direction of this force, is equal to zero.

This being done, abandoning the preceding denomina-

tions, let us name
The mass of each of the cc^rpuscles of the system - m
Its virtual velocity, i. e. that which it would assume

if it were free,
------- W

Its real velocity
- - - - - - V

The velocity which it loses in such a manner that

\V is the result of V and of this velocity
- - U

The force or quantity of movement which each of the

adjacent corpuscles impresses upon tti, and by the inter-

medium of which it evidently receives all the move-
ment that' is transmitted to it from the different parts
of the systQm,

-- - - • - -F
The antvle comprehended between the directions

of W 'and> - - X
The angle comprehended betweea the directions of

WandU Y
2 Tbc
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The angle comprehended between the directions of

V and U - Z
The angle comprehended between the directions of

V and F q
We shall therefore have for the whole system 5 F V co-

sine q = Of or sV F cosine ^ = (C) : at present we
must observe that, the velocity of 7S before the reciprocal

action being \V, this velocity estimated in the direction

of V will be W cosine X ; therefore V— W cosine X is

the velocity gained by m in the direction of V: therefore m
(V — W cosine X) is the sum of the forces F which act

upon 7n, estimated each in the direction of V : therefore m
and V (V — W cosine X) is the same smn multiplied by V,

Now to each molecule a similar sum answers ;
and further,

the sum total of all these particular sums is visibly for the

whole system ^ V F cosine q ; therefore s mY (V — W
cosme X) = s FV cosine q : adding to this equation the

equation (C), there comes 5 m V (V — W cosine X) = O

(D) ; but W resulting from V and U, it is clear that we
shall have W cosine X = V 4- U cosine Z : substituting

therefore this value of W cosine X in the equation (D), it

will be reduced to 5 m V U cosine Z = (E) ; first funda^
mental equation.
XVI. Let us imagine that at the moment when the shock

is about to be given, the actual movement of the system is

at once destroyed, and that we make it take instead of it

successively two other arbitrary movements, but equal and

directly opposite to each other, i, e, let us make it set out

successively from its actual position, with two movements,
such that, in virtue of the second, each point of the system
has at the first instant a velocity equal and directly opposed
to that which it would have had in virtue of the first of these

movements: this being done, it is clear, 1st, That the

figure of the system being given, this may be done in an

infinity of different ways, and by operations purely geome-
trical ;

this is the reason why I shall call these movements

geometrical movements ; i. e. that if a system of bodies sets

outfrom a given position with an arbitrary movement^ but

7jet of such a nature that jt is possible to make it take another

?n every respect eqiial and directly opposite^ each of these

movementi.

John Norton
Geometrical movements defined

John Norton
I’m lost. Secondary literature identifies this as equivalent to conservation of mv^2.�

John Norton

John Norton

John Norton
They are reversible.

John Norton



On Machines in General, 213

movemejits will he named a geometrical movement *, 2dly, I

say that in virtue of this geometrical movement, the adja-
cent corpuscles, which may be regarded as being pushed by
a rod, or drawn by a wire, will not approach nor recede

from each othe.r at the first instant, i. e. at the first in-

stant of this geometrical movement the relative velocity
of these adjacent corpuscles will be nothing : in fact, it is

clear, in the first place, that if m be separated from an ad-

jacent corpuscle by an incompressible rod, it will not be
able to approach it ; and that if it be separated from it by
an inextensible wire, it will not be able to recede from it :

secondly, I say that if it be separated from it by an in-

compressible

In order to disdnguish by a very simple example those movements
called geometrical from those which are not so, let us imagine two globes
which push each other, but in other respects free and disengaged from ever^
obstacle : let us impress upon these globes equal velocities, and moved in the

same direction according to the line of the centres ;
—this movement is geomt'

trical, because the bodies could even be moved In a contrary direction with

the same velocity, as is evident : but let us now suppose that we impress upon
these bodies movements equal, axKl directed in the line of the centres, but

which, in place of being, as formerly, moved in the same direction, tend on
th« contrary to recede from each other ; these movements, although possible,

are not what I mean by geometrical movements ; because if we wished to make
each of these moveable powers to assume a velocity equal and contrary to

that which it receives in this first movement, we should be hindered fronj

doing so by the impenetrability of bodies.

In the same way if two bodies are attached to the extremities of an inex-

tensible wire, and if we make the system assume an arbitrary movement, but

so as that the distance of the two bodies may be constantly equal to the length
of the wire, this movement will be gcometricaly because the bodies may as-

sume a similar movement in quite a contrary direction ; but if these moveable

bodies approach to each other, the movement is not geometrical, because t]»«y

could not take a movement equal and contrary without receding from each

other; which is impossible on account of the inextensibility of the wire.

In general it is evident, that whatever be the figiire of the system and the

number of bodies, if we can make it assume a movement so as there should

result no change in the respective position of the bodies, this movement will

be geometrical ; but it does not follow from this that there is no other me-
thod of satisfying this condition, as we shall show from several examples.
Let us imagine an axle, to the wheel and cylinder of which are attached

weights suspended by cords : if we turn the machine in such a manner that

the weight attached to the wheel should descend from a height equal to its

circumference, while that of the cylinder will ascend from a height equal to

its circumference, this movement wiU be gFometricali because it is equally
3 possible
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compressible rod, it cannot recede from it any more ;

for, if it receded, it is clear that in virtue of the equal and

directly opposite movement, which is also possible by hy-

pothesis, it would approach it
;
which could not be on ac-

count of the inconipressibility of the rod : for the same,

reason finally it is obvious, that if it he a wire which sepa-
rates m from the adjacent corpuscle, it will not approach,
because then it would be possible to remove it by an equal
and directly opposite movement : now this cannot be, on

account of the inextensibility of the wire : therefore, what-

ever may be the geometrical movement impressed upon the

possible to make the weight attached to the cylinder descend from a height

equal to its circumference, while the weight attached to the wheel would

mount from an equal height to its circumference^ but if while we cause th?

weight attached to the wheel to descend from a height equal to its circumfe-

rence, wp should cause the weight attached to the cylinder to ascend from a

height greater than its circumference, the movement would not be ^cnmctricalf

because the equal and contrary movement would be visibly impossible.

If sevjral bodies be attached to the extremities of different wires united by
the other extremities to one and the same knot, and if we make the system
assume such a movement as that each of the bodies remains constantly re-

moved from the knot of one and the same quantity at t'le length of the wire

to which it is attached, this movement will be geometrical, even when the

different bodies approach to each other; but if some of them approach the

knot, the movement would not be geometrical, because, the wires being sup-r

posed to be inextensible, the equal and contrary movement would be visibly

impossible.
If two bodies are attached to the extremities of a wire into which is intro-

duced a moveable particle, it will be sufficient, in order that the movement
be geometrical, that the sura of the distances from the moveable particle to

each of the two other bodies is constantly equal to the length of the wire ; so

that if these two bodies are fixed, the moveable particle will not depart from

an elliptical curve.

If a body be moved by a curved surface, for instance, in the concavity of

a spherical shell, the movement will be geometrical, while the body will move
in a tangent form to the surface

•,
but if it be separated the movement will

cease to be geometrical, because the equal and contrary piovempnt is visibly

impossible.
Vrom all this it is evident, that although on giving to a system a. geometrical

movement, the different bodies of this system may be brought near to each

other, yet we may say that the adjacent corpuscles, considered two by two,

do not tend at the first instant cither to approach or recede, as I shall prove
at length in the text. Bodies therefore exercise no action upon each olher in

virtue of a similar movement : these movements are therefore absolutely in-

dependent of the rules of dynamics, and it is for this reason that I have called

them geometrical.
"

system.
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system, the relative velocity of all these adjacent corpilstlfcs

which act upon each other^ taken two by two^ will be tid-

ihing at the rirst instant. This being granted, let us callow

the absolute velocity which m will have in the first rnstant,

in virtue of this geometrical movement, and z the angle coiii-

prehended between the directions of tc and U ; it is clclir

that the corpuscles m will not tend to approach or recede

from each other in virtue of the velocities 2/, if we su'ppose

them animated at the same time with these velocities u and

velocities U ; nor will they tend more to approach or recede

if animated with the mere velocities U : thcretbrc the re-

ciprocal action exercised among the different parts of the

system will be the same, whether each molecule be anima-

ted with the sino-|e velocitv U, or with the two velocities u

and U : but if each molecule was animated with the single

velocity U, it is plain that there would be equilibrium':

thus, if it was animated at once with the two velocities U
and ?/, or with a single velocity the result of both, U will

still be the velocity lost by tn
;
and u will be the real velocity

after the reciprocal action : thus, by the same reasoning by
which we had the fundamental equation (E) we shall also

have srritiU cosine z = (F) ; second fundamental equa-
tion.

It is very easy at present to resolve the problem which we

propose for the preceding equation necessarily taking place,

whatever be the value of u and its direction, provided the-

movement to which it refers be geometrical : it is clear that

by successively attributing to that indeterminate different

values and arbitrary directions, we shall obtain all the ne-

cessary equations among the unknown quantities, upon
which depends the solution of the problem and of quantities
either given or taken at pleasure.
XVII. In order to place this solution in the clearest light,

• it will be sutlicient to give an example of it.

Let us suppose therefore that tlie whole system is reduced

to an assemblage of bodies united to each other by inflexible

rods, in such a manner that all the parts of the system
should be forced always to preserve their same respective

4 positions;
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, positions; but that there is no fixed point or any obstacle;
. ,the equation (F) gives us the solution of this problem on

^attributing successively to 7i different values and directions.

|,,
1st. As the velocities 2/. are not subjected to any condi«

^lion, unless the movement of the system in virtue of which

.Ithe corpuscles m have these velocities be geometrical, it is

.jCvident that we can at first suppose all of them equal and pa-

,,Tfillel to one given line : then u being constant, or the same

ij^ith respect to all the points of the system, t]»e equation (F)
.will be reduced to s m U cosine 2: = 0; which informs us

that the sum of the forces lost by the reciprocal action of the

bodies in the aibitrary sense of u is null, and that conse-

quently that which remains is the same as if each body had
been free; this is a well-known principle,

Sdly. Let us now imagine that we make the whole system
turn round a given axis, so that each of the points will de-

scribe a circumference round this axis, and in a plane which
shall be perpendicular to it ; this movement is visibly geo-

metrical; therefore the equation (F) takes place: hut then

on calling R the distance from vi to the axis, it is clear that

we have 21 = AR'', A being the same for all the points ;

therefore the equation (F) is reduced to 5 w R U cosine

z — 0; that is to say, that the sum of the momenta of the

forces lost by the reciprocal action relatively to any axis is

null ; this is another well-known principle,

3dly. We might also attribute to u other values
; but this

would be useless, and might lead to equations already pon-

tained in the preceding; for we know that the latter are

sufficient for resolving the question, or at least fqr reducing
it to a matter cf pure geometry.

First Remark,

XVIIT. The object we propose by giving a geometrical
movement is to change the state of the system, without al-

tering however the reciprocal action of the bodies which

compose it, in order i hereby to procure relations between

these exercised and unknown forces and the arbitrary velo-

cities which bodies assume in virtue of these different geo-
metrical
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metrical movements : but it must be remarked that there \^

a case where geometrical movements are not the only ones

which can answer the same purpose, and where some other

movements may be employed in the same way, in order to

extract from the general equation (F) determinate equations:
this happens when these other movements, without being

absolutely geometrical, become so, nevertheless, merely on

suppressing some of the small wires or rods we have sup-

posed to be interposed between the adjacent particles of the

system, at the time, I say, when these rods or wires supposed
to transmit the movement from one corpuscle to another,

transmitted none at all in fact ; i. e, when the tension of

some of these wires, or- the pressure of some of these rods,

is equal to zero ; for then by suppressing these wires or

rods, the tensions or pressures of which are null, we evi-

dently change nothing at all of the reciprocal action of the

bodies, and nevertheless it is possible that we may thereby
render the system susceptible of some geometrical move-

ments,which could not otherwise take place : there is nothing
therefore to prevent us from regarding these rods and wires

as annihilated, since they have no influence upon the state of

the system ; and as we consequently employ as geometrical
the movements which, without being so effectively, become
so nevertheless by this suppression.

Further, when two bodies are contiguous to each other,

it is evidently the same thing to suppress the small rod

which we have imagined 'to be interposed between two, to

hinder them from approaching, or to suppose that these

bodies are permeable to each other^ i. e. that they may be

penetrated as easily as the empty space is penetrated by all

bodiesf; whence it evidently follows, that in general, in any
gystem of bodies acting upon each other, immediately or by
wires and rods, i. e. by the intermedium of any machine,
if there be any wire, rod, or other part of the machine
which exercises no action upon bodies applied to it, i, e,

which may be annihilated without any change resulting in

the reciprocal action of these bodies, we shall be able to

treat as geometrical all the movements which, without

being so effectively, would becopae sq by this suppression,

iu
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in the same way as those which would become so also, re-

garding as freely perTneable to each other, those of the

bodies among which no pressure is exercised, although they
Are adjacent. l>ie,iof]owing, however, shows the utility of

this observation :

If, when we undertake the solution of any piobleni, we
know beforehand that a certain part of the machine does

not exercise any actioa upon the other parts of the system,
we shall be able to suppose that this part of the machine is

totally annihilated, and ascertain the movement of the sy*

^tem according to this hypothesis, i. e. by treating as geo-
metrical all the movenw.nts which would really become so

by this supposiiion ;
and in the same way, if one of the given

conditit)ns of the problem is, that certain adjacent bodies d«

not exercise any p e^^sure upon each other, we shall express
this condition by regarc^ng these two bodies as permeable
to each other, i, e. by treating as geometrical the move-

ments which would in fact become so by this supposition.

But if it happens that we arc ignorant whether this pres-
sure be real or null, wc must ascertain the movement of

the system, by first supposing the one or the other at plea-

6ure : we shall suppose therefore, for example, that this'

pressure is real : then, if on inquiring, according to this

hypothesis, the value of this pressure, we find it real and

positive, we shall conclude that the hypothesis is legitimate,

and the exact result; or else we shall be assured that the

pressure in question is null, and that we may consequent-
Iv treat as geometrical^ motions which would become so

in fact, iF the two bodies in question were freely permeable
to each other.

Further, if there was a machine in the system, a wire for

example, and that we were ignorant if the tension of this

wire is null or real, we might make the calculation by at

first supposing that there really is tension ; then, if we find

for the value of this tension a real and positive quantity, we
shall conclude that the supposition is legitimate, and that

the result is exact; or else, we must recommence the cal-

culation, setting out from the conh-ary supposiiion, i. e,

guppGsing that the tension of the wirc is equal to zero;
. which
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xvbich will be done by supposing the wire annihilated, i. e.

by treating as geometrical the motions which would be so

effectively if the wire in question did not exist.

From this it follows, that in order to extract in each par-
ticuJar case from the general equation (F) all the determi-

nate equations which it can give, we must first make the

system assume all the geometrical movements of which it is

susceptible; secondly, to treat also as such all those which
would become so by suppressing some machine or part of a

machine, the action of which upon the rest of the system
is null, or by regarding as permeable to each other, the

bodies among which, although adjacent, no pressure is ex-

ercised. 3dly. In the last place, if we are in doubt whether
a certain wire, rod, or any part of the machine has or has

rot a real action upon the other parts of the system, or that

there was a real pressure between two adjacent bodies, we
must first clear up this doubt, by supposing the thing in

question as we have above explained it, and by treating as
•

geometrical the movements which these suppositions shall

have discovered as being capable of being taken for such.

According to this remark, it seems proper therefore to

extend the name of geometrical, to all the movements,
which, without being so effectively, become so on suppress-

ing some machine or part of a machine which has no in-

fluence upon the state of the system, and on regarding also

as perfectly permeable to each other, bodies in contact,
without any pressure being exercised among them, i. e,

without there being any ihing except a simple juxtaposi-
.tion : thus we shall presently comprehend all these move-

ments, under the title of geometrical movements, since in

tact they are equally well determined by operations purely

geometrical, and are employed in the same way for extract-

ing from the general equation (F) determinate equations,

^whilc the general and exclusive property* of these move-
ments

*
It Is evident that this property belpngs successively to the movements

-'vvhlch I here cali geometrical, and that it woyld consequeutly be a very false

idea of them to regard them as movements simply possible, i.e. compatible
with the iiDpen«trability of matter: for, suppcsi rg, lor instance, that all the

syatena
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ittents is ta change the state of the system, without altering
the reciprocal aptioii of the bodies which compose it. To
leave, however, some distinction between them, we may
Call the first ahsolute geometrical movemciitSy and the others

geoinetrkal movements hy supposition: but when I speak
simply of geometrical movements, without otherwise de-

signing them, I shall imply both indifferently.
This being done,—since we have explained how we may

determine, without the assistance of any mechanical prin-

ciple, all the geometrical movements of which a given sy-
stem is susceptible, it follows that the general problem which
we proposed is entirely reduced by the general equation (F)
to operations purely geometrical and analytical : we must,

however, observe, that it is not sufficient to attribute to the

arhitrarles u different values, but we must also attribute to

them different relations or directions; for, if we are con-

tented to attrii)ute different values to them without changing
any thing in the relations or directions, we should obtain

different equations, quite true and correct, but which would
be evidently reduced to the same on multiplying them by
different constants.

Second Remark,

XIX. As we are only speaking of hard bodies here, it is

clear that among the different values which we may attri-

bute to u, the velocity V is itself comprehended ; i, e. that

the real movement of the system is itself one of the geome-
trical movements of which it is susceptible : the first equa-
tion (E) is therefore contained in the indeterminate equa-
tion (F), and consequently we may reduce to this single

equation (F) all the laws of equilibrium and of movement
in hard bodies.

Now we have seen, that this equation is nothing else

than the first (E), to which we have succeeded in giving

system be reduced to two adjacent globes, and pushing each other, i t is clear,

that if we force these bodies to separate or to move in a direction contrary to

each other, this movement will not be impossible, but that at the same tiqie

bodies cannot assume it without ceasing to act upon each other. This move-

ment, therefore, is not proper for attaining the object proposed, which is to

(ph^inge nothing in the reciprocal action of bodies.

_ . n-iorc
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more extension by means of the geometrical movements;
tut as we shall soon see (XXIV) the analogy of this equa-
tion (E) with the principle of the preservation of the moving
powers in the shock of perfectly elastic bodies becomes

Striking by a slight transformation ; and we shall see

(XXVf), that in fact it is nothing else than this principle

itself* transferred to hard bodies, with the modification re*

quired by the diifcrcnt nature of these bodies : it is therefone

this preservation of moving powers which will serve, as we
have premised, as a basis to the whole of our theory of

machines, whether at rest or in motion.

According to these remarks we shall briefly recapitulate

the solution of the preceding problem, in order to bhow at

one glance the course of the operations indicated.

[To be contiuued.3

XLIV. Processes employed fm' finishing the Inside of the

Palaces of the Native Princes in^^^^ne Parts of the East

Indies^, A
j,v;| y^

X HE principal workman employed by colonel Clo^se in re-

pairing the palace in the Laul Bang, gave me the following
account of the processes used for finishing the inside of the

palaces at Seringapatam,
At first sight, one would imagine that much gilding is

used in the ornaments ; but, in truths not a grain of gold is

employed. The workmen use a paper covered with false

gilding. This they tut into the shape of flowers, and paste
these on the walls or columns. The interstices are filled up
with oil colours, which are all of European preparation.—
The manner of making this false gilded paper is as follows :

Take any quantity of lead, and beat it with a hammer
into leaves, as thin as possible. To twenty^four parts of

these leaves add three parts of English glue, dissolved in

water, and beat them together with a hammer, till they be

* From Buchannan'» Journey,from Madras thvovgh ike Mysore^ Canara,
'

and MalalaT,

thoroughly

John Norton



3 IP On Machines in General.

soft to the touch, and has yellow ochrey spots in it, app$»
rently proceeding from grains of altered cupreous and ter*

ruginous pyrites. M. Ansaldo informed me, that this py-
rites was formerly wrought for the sake of its sulphate of

copper, but abandoned on account of its poverty.

LIX. Essay upon Machines in General, By M. Carnot^
Member of the French Institute, &c, &€,

[Continued from p. 221.]

Problem,

XX. 1 HE virtual movetnent being known of any given

system of hard bodies^ (i. e. that ivhich it would assume if
each of the bodies were free^) tofind the real movement which

it should have ihefolloujing instant.

Solution. Let us denominate each molecule of the

system, - - - - - m
Its virtual given velocity,

- '- - W
Its real velocity sought,

- , - V
The velocity it loses, in such a manner that W is

the result of V and of this velocity,
- - U

Let us now imagine that we make the system assume

an arbitrary geometrical movement, and let the velocity

which m will then have be - - - u

The angle formed by the directions of W and V, X
The angle formed by the directions of W and U, Y
The angle formed by the directions of V and U, Z
The angle formed by the directions of W and u, x

. The angle formed by the directions of V and «, y
The angle formed by the directions of U and u^ z

This being done, we shall have the equation s m u\J
cosine x = O (F) ; by means of which we shall find in all

cases the state of the system, by attributing successively to

the indeterminates u different relations and arbitrary direct'

lions.

Definitions.

XXI. Let us imagine a system of bodies in movement \r\

any
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any given manner : let m be the mass of each of these bodies,

and V its velocity ; let us now suppose that we make the sy-
stem assume any geometrical movement, and let u be the ve-

locity which w will then have, (and what I shall call its geo-
metrical velocity,) and let y be the angle comprehended be-

tween the directions of V and u \
this being done, the quan-

tity 772 7/ V cosine y will be named the momentum of the

quantity of movement mW^ with respect to the geometrical

velocity u
;

and the smn of all these quantities, namely
s m uY cosine y, will be called the momentum of the

quantity of movement of the system with respect to the

geometrical movement which we have made it assume :

thus the momentum of the quantity of movement of a system

ef bodies, iv'ith respect to any geometrical movement, is the

sum of the products of the quantities of 7novement of the ho-

dies which compose it, multiplifd each ly the geometrical

velocity of this body, estimated in the ratio of this quantity
^

of movement. In such a manner that by preserving the de-

nominations of the problem, s m uW cosine x is the mo-
raentum of the quantity of movement of the system before the

shock
;
s muV cosine y is the momentum of the quantity of

movement of the same system after the shock ; and s m u U
cosine z is the momentum of the quantity of movement lost

in the shock (all these momentabeing referred to ihesamegco-
Jiietrical movement). Thus, from the fundamental equation

(F) we may conclude, that in the shock ofhard bodies, whether

these bodies be all moveable, or some of them fixed, or, what
comes to the same thing, whether the shock be immediate, or

made by means ofany machine without spring, the momentum

of the quantity of' movejnent lost by the general system is

equal to zero,

W being the result of V and U, it is clear that we
have W cosine x = cosine y •\- \] cosine z, or m u W co-

sine X — m uY cosine y -\' m 2l\] cosine z, or lastly,

s mu\Sl cosine x = smuY cosine y •\- s m u U cosine z :

now we have found s m 7t \] cosine 3; = .0 ; therefore

s m uW cosine x -i- s muV cosine
?/, that is to say, in

respect to any geometrical movement, the momentum of
U 4 the
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the qucnitUy of movement of the system^ immediately after

the shock, is equal to the momentum of the quantity of move-

merit immediately htfore the shock.

When we decompose the velocity which a body would
assume if it were tree, into two, one of which is the velocity
it actually assumes, and the other the velocity it loses

;
and

reciprocally if we decompose the velocity it loses, into two,
one of them being that which it would have taken if it had
been free, the other will be the velocity it gains : whence it

visibly follows, that what we understand by the velocity

gained by a body, and what we understand by its velocity

lost, are two quantities equal and directly opposite :^ this

being done, the momentum of the quantity of movement
lost by 7n, with respect ^o the geometrical velocity «, being,

according to the preceding definition, m u U cosine 2, the

momentum of the quantity of movement gained by the

same body will be — w z/ U cosine z ; for there is no dif-^

ference between these two quantities, except in this, that the

angle comprehended between u and the velocity gained is the

supplement of that comprehended between u and U ; so that

one of these angles being sharp, the other will be obtuse, and
its cosine equal to the cosine of the other, taken negatively.
Hence it follows^ that the momentum of the quantity of

rnovement lost by the general system, with respect to any

geometrical movement, (which is null, as we have seen

above,) is the same thing as the difference between the mo-
mentum of the quantity of movement lost by any part of

the bodies which compose it, and the momentum of the

quantity of movement gained by the other bodies of the

same system : thus this difference is equal to zero, and thus

the one of these two quantities is equal to the other ; that is

to say, the momentum, of the quantity of movement lost in the

shock hy any part of the bodies of the system, with respect
to any geometrical mpvement, is equal to the momentum of
the quantity of movement gained by the other bodies of the

same system.
We may, therefore, from the preceding definition, col-

lect the thre^ propositions contained in the following
Theorem.
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Theorem.
XXII. In the shock of li(D-d todies, whether this shock le

immediate, or whether it he made
lij means of amj machine

jvithont spring, it is clear that in respect io>
ajiij geometrical

7novement,—
\st. The momentum of the quantity of movement lost ly

lite whole system is equal to zero,

2d, The momentum of the quantity of movement lost ly

any pait-of the bodies of the system, is equal to the momen-
turn of the quantity of movement gained by the other part,

3d. The momentum cf the quantity of real movement of
the general system, immediately after the shock, is equal (a

tlie momentum of the quantity of movement of the same sy-

stem, immediately before the shock.

it is clear, from the preceding definition, that these three

propositions are radically the same, and are nothing else

than the same fundamental equation (F) expressed in dif-

ferent ways.
We may also remark that these propositions bear a great

relation to those we extract from the consideration of the

Tuomenta relatively to different axes
;
but the latter are less

general, and are easily inferred from those established

in XVII.
There is, therefore, as we see by the third proposition of

this theorem, in every percussion or communication of

movement, whether immediate, or caused by the intermedium
of a machine, a quantity which is not altered by the shock :

this quantity is not, as Descartes thought, the sum of the

quantities of movement ; nor is it the sum of the active

forces, because the latter is only preserved in the case where

the movement changes by insensible degrees, as we shall

see lower down, and it always diminishes when there is

percussion, as will be proved in the second corollary.
When the system is free, the quantity ofmovement estimated

in any ratio, is in truth the same before and after the per-
cussion ; but this preservation does not take place if there

are obstacles, any more than that of the momenta of quan-

tity of movements referred to different axes : all these quan-
tities

John Norton

John Norton

John Norton
Momentum is conserved in inelastic collisions.

John Norton
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titles are therefore altered by the shock, or at least are only

preserved in some particular cases. But there is another

t^uantity, which neither the various obstacles opposed to the

movement, nor the machines which transmit it, nor the

intensity of the different percussions can change ; it is the

momentum of the quantity of movement of the general sy-

stem, with respect to each of the geometrical movements
of which it is susceptible ;

and this principle contains in it-

self alone all the laws of equilibrium and of movament in

hard bodies: we shall even see in corollary 1\^, that this law

equally extends to other kinds of bodies, whatever be their

nature and degree of elasticity.

If the shock destroyed all the movements, we should have

V = : therefore the equation would be reduced to s m
W u cosine x =

;
which shows us that this case hap])ens ;

namely, that all the movements are reciprocally destroyed

by the shock, in the case where, immediately before this

shock, the movientum of the quantity of movement of the

general system is null, relatively to all the geometrical move-
ments of which it is susceptible.

First Corollary.

XXTIT. Among all (he movements of ivhich any system of
hard bodies acting upon each other is susceptible, whether by
an immediate shock, or by any machines without spring, that

movement ivhich shall really take place the instant after-
wards will be the geometrical movement, which is surh that

the sum of the products of each cf the masses, by the square

of the velocity which it ivill lose, is a minimum, i. e. less

ihan the sum of the products of each of these bodies, by the

velocity it would have lost, if the system had taken any other

geometrical movem'^nt.

Here it must be remarked, that, by giving for the mini-

mum the sum of the products of each mass, by the square
of its velocity lost, I understand solely that the diffe-

rential of this sum is null ; i, e. that its diflerence from

what it would be if the system had a geometrical move-

ment infinitely little different froni the first, is equal to zero :

thus

John Norton
Resultant of inelastic collisions is that geometrically possible motion that minimizes sum mv^2, i.e. kinetic energy. 

John Norton



On Machines in General. Z\%

thus Ibis sum mav be sometimes a maximum, or even nei-

ther a maximum nor a mi?iimum ; and 1 have only to establish

d s m U* = 0.

Demonstration.—It is at first evident that the true move-
ment of the system after the shock should be geometrical ;

for geometrical movements being those which do not alter

the action which is exercised among bodies, it is clear that

the first in order is the same movement as assumed by the

system : it is therefore required to know, which, among all

possible geometrical movements, is the one that should take

place. Now, supposing that it should take another infinitely

Jittlc different from that which we are seeking, the velocity
of each molecule m would then have been V; let us decom-

pose V'' into two, one of which shall be V, i. e. the real ve-

locity, and the other V' : this being done, it is evident that if

the bodies had not other velocities than these last V, the

movement would be still geometrical, for V^^ is visibly the

riesult of V' and of a velocity equal and directly opposite to V:
now, bv hypothesis, the molecules taken two by two do not

tend, either in virtue of V, or in virtue of —V, to approach
or recede, since in these two cases the movement is geo-
metrical : thus, by. supposing that the molecules w have at

once the velocities V and — V, or their result V', they
will neither knd to approach nor to recede; and therefore

the movement will then be geometrical : thus, if we
call z' the angle comprehended between the directions of V"
and U, we shall have by means of the fundamental equation

(F) s m U V' cosine 2 = 0: on the other side, let us call

U' the velocity which m would lose if its effective velocity
were V, so that W would be the result of V and U^ it

would necessarily follow that U' would be composed of U
and of a velocity eq.ial and directly opposite to V'; whence
it evidently follows, that V'—U or d U z= — V' cosine

2"; therefore the equation s m U V' cosine z' — 0, found

above, becomes s 7?i \J d U -= or d s jn U' = 0.

Suppose, for cxaniple, tv\o globes A and 13 striking each

other obliouely, I demand their movements after tlie

phock.

Suppose
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Suppose that the velocity of A, estimated according to

the line of the centres, was before the shock g, and after the

shock V ; that the velocity of B, also estimated according
to the line of the centres, was before the shock I, and after

the shock u; that {he velocity of A, estimated perpendicu-

larly to the same line, was before the shock a, and after the

shock V ; finally, that the velocity of B, also estimated per-

pendicularly to this line of the centres, was before the shock

l\ and after the shock u' ;
this being done, by our proposi-

tion, the movement being necessarily geometrical, we must at

first have V= 7^; thus the velocity lost by A, according to the

line of the centres, will be a — w, and that lost by B, in the

same direction, will be Z' — 2^ : besides, in the direction per-

pendicular to the line of the centres, the velocity lost by A
will be a' —V', and that lost by B will be h'—u'; there-

fore i/(a — «)* + (a'
— V')* will be the absolute velocity

lost by A , and that lost by B will be // (i
— u)

^ ^ {h'
—

u') *:

therefore, according to the proposition, we should have

J [A (a
- uY + A ((?' -Vy + B {h^uy + B (^'

- w) ^]

= 0,orA(a-z/) d u •{• K (a'-V) dY' + B {h'-u)du-\-E

^I'^u") d u' = Oj an equation which should generally take

place, 2. e. whatever be the values of du, dY\ and d u' :

therefore the co -efficient of each of these differentials must

be equal to zero ;
which gives V = g', u' ~ h'^ and u—Ka

+ Bi. a.E.D. ;^^^
It is clear that this proposition contains all the laws of

the shock of hard bodies, whether this shock be immediate,
or be made by means of any machine, since it assigns the

character nnder which we recognise, among all possible

movements, that which should really take place at each in-

stant : this principle has a considerable analogy with that

found by M. Maupertuis, and by him called prindpe de la

snoindre action. See his "Essai de Cosmologie.'*

Second Corollakf.

XXIV. In the shock of hard bodies, whether some of them

,uref.xcd, or all moveable, or {ivhat comes to the same thing)
whether

John Norton
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whether the shock be immediate^ or given hj means of any
machine without spring, the sum of the active forces before

the shock is always equal to the sum of the active forces

ajter the shock, plus the sum of the activeforces which would

take place if the velocity which remains to each moveable

body were equal to that which it has lost in the shock.

That is to say, we must prove the following equation ,

5mW* = 5 Tw V* -f 5 771 U^ Now it is easily deduced from

the fundamental equation (E) ;
for W being the result of V

and U, it is clear that W V and U are proportional to the

three sides of a certain triangle : thus by trigonometry we
have W^ = V* 4- U* + 2 V U cosine z : therefore s wW*
= s mV^ + s mU^ + Q s mVlJ cosine Z : now by the

equation (E) we have s mV \J cosine Z =
; therefore

the preceding equation is reduced to s m VV^ = smV^ +
s m U*. Q. E. D.

We see, therefore, as has been said (XXT), that by thi:^

transformation the analogy of the equation (E) with the pre-

servation of the active forces becomes striking : we may also

easily demonstrate the one by the other, as we shall see in

XXVI.
The analogy of this same equation with the preservation

of the active forces in a system of hard bodies the move-
ment of which changes by insensible degrees, is still more

evident, since it then regards a case peculiar from that we
have examined ; it is in fact visibly the particular case where

U is infinitely small, and therefore U^ is infinitely small of

the second order ; this reduces the equation to s m W* =^ s 7n

V* : but this preservation will be explained more at length
in the following corollary.

Third Corollary.

XXV. When any system of hard bodies changes its move-

ment by insensible degrees ; i/', for a moment^ we call m the

Tuass of each of the bodies, V its velocity, p its vis motrix,
R the angle comprehended between the directions ofV and p,
u the velocity which m would have if we made the system take

any geometrical movement, r the angle formed by u and p,

3 ythe

John Norton
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y the cmgleformed by V and u, d t the element ofthe time ; tee

shall have these two equations:

smVpd /cosineR— s wVfl^ V=0:
smup d t cosine r— s mud (V cos y.) = 0.

Demonstration.—In the first place, pdt cos R is visibly
the velocity which the vis motrix p would have impressed

ujx)n w in the direction of V, if this body had been free .-

besides, dY \s the velocity which it would in reality receive

in the same direction ; therefore pdt cosine R — (i V is

the velocity lost by 7n in the direction of V, in virtue of the

reciprocal action of the bodies : it is therefore this quantity
that we must put for U cos. Z in the fundamental equation

(E), which becomes by this substitution s mV p d t cosine.

R ~ 3' m V dV = o', being the first of the two equations
which we had to demonstrate.

Secondly, pdt cosine r is the velocity which the vis mo-
Irix p would liave impressed upon m in the directioDj of 7/,

if this body had been free ; besides, V cosine y being the

velocity of m in the direction of ^^, d (V cosine y) is the

quantity which this velocity estimated in the same direction

auiiments : therefore pdt cosine r -^ d (V cosine y) is the

velocity lost by m in the direction of 2i, in virtue of the re-

ciprocal action of the bodies : it is therefore this quantity
which we must put for U cosine z in the second equation (F),

which becomes by this substitution s mup d t cosine r —
smu d {Si cosine y) = 0, which is the second of the twa

equations we had to demonstrate.

These equations are therefore nothing else than the fun-

damental equations (E) and (F) applied to the case where

the movement changes by insensible degrees, and therefore-

thev contain all the laws of this .movement : we may re-

mark also, that the first of th^se two equations is only a par-

ticular case of the second, for the same reason that the

equation (E), whence it is extracted, is contained in that

(F) whence the second is extracted. Bui this first equation

s mV p d t cosine \{ -- s mV dV = deserves particular

attention; because it contains the famous principle of the

preseiration of active forces in a system of hard bodies the

movement of which chanirei bv insensible degrees : thus ;

Let
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Let us first call d s ilie element of the curve described by
the corpuscle m during d t

; this being done, we shall have

V d t — d s f and therefore the preceding equation assumes

this form smpd s_ cosine R — 57?iVt?V = 0. Now let us

suppose for a moment that the curve described by m is an

inflexible line, ihat m is a. moveable grain interwoven with

this curve, that it traverses it freely, i, e. without being

pressed by the re-actions of the other parts of the system,
that it experiences at each point of this curve the same

vis motrix as that with which it was animated in the first

case; and that, finally, in this first case the initial velocity

of w is K, while in the second it will be null at the first

instant, and V'' after an indeterminate time / ; this being

done, by integrating the preceding equation, in order to

have the state of the system at the end of the time /, we
shall have for the first case s' s m p d s cosine R — 5' 5 m
V c? V = 0, s' designating the sign of integration relative

to the duration of the movement, while s is the sign of in-

tegration relative to the figure of the system : no\v_, s' s m
s mV^ .

V fi V = • therefore the equation may be placed ia
jt

this form s' s m p d s cosine R — 5 ?» V* -f C =
; C

being a constant added to con)plete the integral : in order to

determine it, we shall observe that at the first instant we
have V = K and s' s m p d s cosine R = ; therefore

smYJ-
C = —-—

5 therefore Is' s m p d s cosine R — 5 tw V*

s mYi} = : by the same reasons we have for the second

case 2 s' s m p d s cosine R — 5 ?« V' * = 0, without a con-

stant, because we suppose V' as null at the first instant:

taking away therefore this e<juation from the preceding one,

reducing and transposing, we have s m V- •= s m }L- -^ s m
V'*; that is to say, in any system of hard bodies the mtve-

ment of which changes by insensible degrees, the stnn of the

activeforces at the end of arnj given time is equal to the sum

of the initial activeforces, plus the sum of the active forces
ivhich would take place if each moveable particle hadfor its

velocity ihat which it would have acquired byfreely traversing
iJie curve it had described, and supposing bendes that it had

bun
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ieen animated at each point of (his curve, with the same vis

matrix which it there really experiences^ and that'its velocity
at thefirst instant had been null.

It is this proposition which we call the principle of the

preservation of active forces ; and whence we may conclude

that,

In a system ofhard bodies the movement of which cJmnges

ly insensible degrees ^ and which are not animated with any
vis motrix, the sum of the active forces is a constant qtian-

tity, i. e. the samefor eve^-y instant.

For in this cas-e we have by hypothesis p = 0, which

gives V = 0, and therefore 5 ?« V^ = 5 m K- ; an equation
besides which is extracted immedialely from that smpV dt
cosine R — 5mV€?V=0, found in XXIV^ which, on
account of p = 0, is reduced to s w V £? V = 0, the integral
of which completed is \ s m Y^ r=. \ s m YJ- =05 whence
follows the equation j; w V^ = ^ m K-. a. E. D.

[To be continued.]

LX. On Chemical Nomenclature, By a Correspondent.

To Mr, Tilloch.
SIR,

J. HE importance of an accurate and scientific nomenclature

being now admitted by every lover of chemistry, 1 shall

make no apology for suggesting what I consider an improve-
ment. The metalline salts are named after a plan which

is extremely defective. It proceeds upon the supposion that

no more than two oxides of any metal can combine with

the same acid. The salt whose base is the first of these

oxides is named as if there were no oxide present : thus,

the protoxide of iron and sulphuric acid form what is called

sulphate of iron. On the other hand, the salt which con-

tains the second of these oxides is known by oxy being

prefixed, as in the oxy- sulphate of iron.

This mode of nomenclature is objectionable on several

accounts.

1.3t, It is extremely deficient in tbe extent of application.

as
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The analysis leaving nothing further to be done, the con .. 

tents of this water may be stated as follows, viz. 
Contents in one Gallon. In one Pint. 

Grains. Grains. 
Muriate of soda 219'i 5 27·4G8i 5 
Sulphate of magnesia 
Sulphate of soda 80'01 IO·OOI 25 

of magnesia 40•00 5• 
lVIuriate of lime 36·00 4'5 
Carbonate of iron 7•15 '8937 5 
Sulphate of lime 85•01 10'62625 

566•17 70'77125 
Cubic inches. Cubic inches. 

Carbonic acid gas -: I 2'07 1'50875 
Oxygen gas 4•03 •503i 5 
Atmospheric air N 1'21 '15195 

17'31 2'16375 

[To be continued.) 

V. Essay upon Machines in General. By 1\[. CARNOT, 
lr1ember of the Frenclz Institute, &c. &c. 

[Concluded from vol. xxx. p. 320.] 

FouRTH CoROLLARY. 

XXVI. I HAVE proved (XIX) that the indett:rminatc 
equation (F) contains all the laws of equilibrium and of 
movement in hard bodies ; I now go further, and I say 
that this equation agrees equally with bodie3 which arc not 
so, and consequently this general law extends icdiscrimi-
natcly to all bodies in nature. In fact: \vhen several bodies, 
which are not hard, act upon each other, in any given 
manner, if we conceive the movement that each particle 
would have t'lken, if it had been free, as dccomposcu into 
two, one of which is what it would have really taken, the 
other will be destroyed; whence it evidently follows, that 
if the bodies had been hard, aud had not had other tn()VC-

merits 

John Norton

John Norton

John Norton
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ments than the latter, there would have been an equilibrium: 
these deHroyed movemel).t3 are therefore Stlbjected to the 
same laws, ha\'e the same relations to each other, and, lastly, 
may be determined in the same manner as if the bodies \Vere 
h:ud, i.e. by the general equation (F). This equation (F) 
is not confined therefore to hard bodies, it also helonge to 
all the bodies in nature, and consequently contains all the 
laws of equilibrium and of movement, not only for the first, 
but even for all the others, whatever may he their degree of 
compressibility: but tlte difrerence consists in th:H we 
may, with respect to hard bodies, suppose u = V; in such 
a manner that s m V U cosine Z = 0 becomes one of the de-
terminate equativns of the problem, whereas this does not 
take place when the bodies are of a different nature : it is 
therefore this determinate which is the same with 
the first fundamental equation (E), it is, I say, this deter-
minate equation which characterizes hard bodies, and. con-
sequently it is absolutely necessary to employ it at least im-
plicitly in all questiom concerning these bodies ; and with 
respect to any other kind of bodies, we muc;t, besides the de-
terminate equations, which , ... e may obtain by ascribing to u 
in the indeterminate equation (F) different known values-
we I say, also extract from·it one which is analogous 
to the equation (E), and which expresses in some measure 
the nature of these bodies, in the same way as the latter (E) 
expresses that of hard bodies. But as this inquiry has but a 
wry indirect relation to machines properly so called, we 
shall at present confine ourselves to examining the case 
where the degree of elasticity is the same with respect to all 
bodies, i. e. Let us suppose, tlut in virtue of elasticity 
the bodies exercise upon ea-::h other, pressures n times as 
great as if the bodies were hard, n being the same for all 
the bodies of the system; let us next suppose that the pres-
sure and the restitution are m:tcle in an indivisihlc instant, 
although in strictness would be impossi?le. This being 
done: 

The reciprocal pressures F becoming n F, will have 
among them the same relations as if the bodies were hard ; 
therefore their results m U will not have changed their di-

rections, 
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rections, bot will merely ha,·e become n times as great 
they would have been if the bodies had been hard : this 
being done. since the result of V and U, we have V 
cosine Z = \V. cosine Y- U: thus the equation (E), for 
which we are seeking one analogous, moy be put under thi:; 
form sm \V U cosine Y- s m U 9 =- 0. Now, according 
to what has been said, we must, in order to apply this equa-

tion to the case in question, place U in place of U, without 
1l 

any change upon Y: therefore in the case we are examining 
1 . "If h \V U . Y m uz t 1e equatlOll \\'1 e S m n COSme - S 1l 

2 
= 0; 01' 

by multiplying by 1t\ n s m \V U co:sine Y - s m U 2 = 0; 
or on account of \V cosine Y = V cosine Z + U, we 

shall have - 1
-
1 

- s 11l v u cosiue z = s m u:l.: thus this 
1-n 

equation will be, with respect to the bodies in question, 
what the equation (E) is with re.spect to hard bodies ; and 
even the latter is the particular case where we have n = t, 
as is evide11t. 

\Vhen n =2, it is the cast: of bodies perfectly elastic, and 
the equation becomes s m V U cosine Z + s m U 1 = o; 
but this equation relative to bodies perfectly elastic may be 
expressed in a known and more simple manner, as follows: 
Since \Vis the result of V and U, we have by trigonometry 
\V1 = V 2 + U 1 + 2 V U cosine Z; and therefore s m \V:: 
sm V 2 + s m U 2 + 2 s m V U cosine Z. Adding to this 
equation that found abo\'e, and reducing, we ha\·e s m 
= s m V 1, which is precisely the principlt> of the preserva-
tion of active forces, i. e. this pre.;ervation is, with respect 
to perfectly elastic h·,dies, what the equation (E) i:s wilh 
respect to hard uodies, as we undertook to prove. 

First Remark. 
XXVJJ. I shall not dwtll on the particular conse· 

quences which r might draw from the solution of the pre-
ceding problem ; but shall merely remark, that the velocities 
\V, V, U, being ah' ays in proportion to the three sides 

3 of 
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of a triangle, trigonometry may furnish the means of 
giving a great number of different forms to hmdamental 
equations (E) and (F) ; and I shall content myself with 
indicating one of them, which is remarkable on account of 
the method contrived by geometricians, of referri11g move-
ments to three plans perpendicular to each other; which 
givt:s a great deal of elegance and simplicity to the solutions. 

Let us imagine, therefore, at pleasme, three axes perpen-
dicular to each other; and let us conceive that the veloci· 
ties \V, V, U and u, are each of them decomposed into 
three others parallel to these axes. This being done, Jet 
us calJ 

Those which answer to vV, W' \V" \V"'. 
Those which answer to V, V' V" V 111

• 

Those which to U, U' U" U"'. 
Those which answer to u, u', 1t'', u"'. 

Now if we pay a little attention, we shall easily see that the 
first fundamental t:qu:ition (E) may be placed under this form, 
s rn V' U' + s rn V' U" + s m V111 U'" = 0; and the second 
(F) under the latter s rn u' U' + s m u'' U" + s rn u"' U"' = 0 ; 
because in general every quantity which is the product of 
two velocities A and B, by the cosines of the angle com-
prehended between them, is equal to the sum of three other 
products A' B' + A'' B'' + A'" B'''; A' A" A'", being the 
cstiu ated velocity A of these three axes, and B' B'' B"' being 
the estimated veloeitv 13 in the ratio of these S3.me axes: 
i. e. A' being the v.elocity A, and B' the velocity B, esti-
mated parallel to the first of these axes; A" and B'' the same 
velocities A and B' estimated parallel to the second axis, 
A"' and B''' the same velocities estimattd parallel to the third 
axis : this is easily proved by the elements of geometry. 

In the case of equilibrium, the first of these transformed 
equations is reduced to 0 = 0; and the second, because in 
this case \V = U, becomes s mu' \V' + s m u" \V" + s m 
1t'" \V"' = 0; wbich expresses all the conJitions of the 
equilibnum. 

\Vben the movement changes by insensible degrees, we 
ha,· c found (XXV.) that the fundamental equations become 
s m V fJ t cosine R - s m V d V = o, and s m up d L cosine 

r-smud 
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r - s m 1t d (V cosine y) = o ; therefore by decomposing p 
into three other forces parallel to the three axes, if these 
component forces are designated hy p', p", p''', the preceding 
equations will become, the first, s m V' p' d t + s m V" p'' d t 
+ s m V"' ·P''' d t = s m V' d V' + s m V'' d V'' + s m V'" 
dV'"; and the second, smu'p'd t + s m u" p'' d t + 
s m u''' fl" d l = s m u' d V' + s m u'' d V" + .s m u'" d V"': 
finally, in the case of equilibrium, the first will vanish, 
and the second will be reduced to s m 1t' p' + s m u'' p'' + 
s 1n u"' p'" = o. r 

Second Remark. 
XXVIII. Hitherto I have regarded wires, rods, levers; &c; 

as bodies making of themselves part of the system. And 
this hypothesis entirely conforms to nature; but one thiug 
indispensably necessary to obsen·e is, that, strictly speaking, 
there is probably no absolutely fixed point in the universe, 
no obstacle absolutely immoveable ; the fulcrum of a lever 
is not so, because it is supported upon the c:>arth, which 
is not fixed itself; but the mass of which is almost infinitely 
great in comparison of those the action and reaction of 
which upon each other \Vt generally coMsider in machines: 
in order to move the bypomochlion of a lever, we must 
also put in motion the globe of the earth; and it is so in 
fact, ho\vever feeble be the powers which act upon the ma-
chine*: the quantity of movement which they produce upon 
it, is equal to the resistance of the hypomochlion; but this 
finite quantity of movement distributing itself into a mass 
almost infinitely great, there results to this mass a velocity 
almost infinitely small, and this is the reason \\>hy this move-
ment is not sensible, and may be neglected in practice. 

Hence it follows, that what we call immoveable obstacles 
in mechanics, are nothing else than bodies the m:J.ss of 
'which is so considerable, and consequently the velocity so 
small, that their mo\·emcnt cannot be observed. \Ve shall 
therefore approach nearer n.?.turc, by considering the obstacles,. 

.,. l\1. Carno.t does not exhibit here his usual acC'uracy. If the power ap-
plied to the lever belongeJ to any other system thaa that of the earth, the 
earth ·would be moved; but in the case of the fact here assumed, it is not 
moved, e,·en in an ir.f:nitely small degree..-E.dit. 
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or fixed points, as moveable bodies, as well as all the others; 
of a mass infinitely large, or, what comes to the same 

thing, as bodie::: of an infinite density, and which do not 
diffef from all the other bodies of the system except in this 
point. Hence a considerable advantage will result, as we 
shall be able to make the system into which these bodies 
enter, take any given geometrical movements; for the instant 
we suppose these obstacles moveable like all other bodies,-
they will become susceptible of assuming any movements, 
and the general system must be regarded as an asr;emblage 
of bodies perfectly moveable.: consequently, the quantities 
of movements absorbed by the obstacles may be estimated 
a:> with respect to all the other parts of the system; in such 
a manner, that if we call R the of any given tixed 
point, this quantity R will be in the equation (F), with re-
spect to the point in qnestion, what m U is with respect to 
the body m: we shall therefore find by this eqnation, this 
same quantity R like all the other forces m U, which could 
not be the case by considPring the obstacles as absolutely im-
moveable, without ha\'ing rt>course to some new mechanical 
principle, which we must have made concur with the general 
equation (F), in order to attain the complete rrolution of each 
panicular problem. Thus this method of consi-dering the 
fixed points is not only the most conformable to nature, as 
we have said before, but also the simplest and the easiest. 

As ro the wires, rods, or any other portions of the system, 
thr masses of which may be supposed to be infinitely 
small, we muy neglect, i. e. suppose each of their mole-
cules m eqnal to zero, or, what comes tu the same thing,. 
regard their density as infinitely small, or as nothing: our 
equation (F) will therefore become independent of thC'se 
quantities, i. e. the same as if we had abstracted these 

from the bodies; and it is thua that we shall eas'ilv 
find the mathematical theory of each machine, i. c. by mak·-
ing the abstractions spoken of (VIII.) 

XX I X. From this remark it results, that although there 
is ouly a single kind of bodies in nature, we distinguish them 
howc\'er, for the facility of calculations, into three different 
classes, which are, 1st. Those whid1 we as what 

Vul. 31. No. 121. June 1508. C they 
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they really are, and as nature rresents them to us, i. e. 
which are of a finite density. to which we ascribe 
a density,infinilely great, and which, for this reason, must 
be regarded as sensibly fixed and immoveable. 3d. Those 
to which we ascribe a density infinitely small, or null, 
and which, consequently, by their inertne::ss, oppose no re-
sistance to their change of state. In practice we generally 
regard as such, \•vires, rods, and generally all hodies which 
do not infiuet1cc sensibly, by their proper mass, the changes 
which happen in the system; but which are solely regarded 
as means of communication between the different agents 
which compose it. 

Third Remark. 
XXX. After having treated of equilibrium and of move-

ment in general, as much as my principal object permitted, 
I shall pass to what regan.ls more particularly what we com-
monly understand by machines ; for although the theory of 
every kind of equilibrium and movement always enters into 
the preceding principles, since there are only, according to 
the first law, bodies which can destroy or modify the move-
ment of other bodies; nevertheless there arc cases where 
we make abstraction of the mass of these bodies, merely 
for the purpose of considering the efrort they make : for ex-
ample, when a man draws a body by a wire, or pushes it 
by a rod, we do not introduce in1o the calculation the mass 
of this man, nor C\'en the effort of which he is capable, but 
solely that which 

1
he exerts upon the point to which he 

plies it; i. e. the tension of the wire, if it is by drawing that 
it acts, or the pressure, if it be by pushing:; and without 
considering whether it be a man, an animal,. a weight, a 
spring, or a resistance occasioned by any obstacle, or by the 
-vis inertice of a moveable body!#' a friction,. au impulse caused 

by 

* Any body which we force to ,change its state of repose, er o£ movement, 
resists (XI.) the agent which protluces the change; and it this resistance 
which we call inertia·. In order to find the value of this force, we must 

the movement of the body into two, one of which is that 
which it will have the instant afterwards; for the other will be evidently 
that which must be dest royed, i11 order to force the body to change its state; 

- i. r. the 
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by a current of air, ·or water, \Ve tht:: 
name of power to the · efrort exerted by lhe i. e. -to 
that pressurt: or tension hy which it acts upon- the body to 
which it is applied; and we compare these; different·efforts 
without regardirig the agents which prodace them, l,>eoau;;e 
the nature of the agents cannot change the forces which 
they are obliged to exercise in order to fulfil the d1ffe.rent 
objects for which machines are destined: the machine ilseJf, 
t". e. the system of fixed points, obstacles, rods, levers, 
and other intermediate bodies, which serve to transmi.t these 
different efforts frum one agent to another; the macl}ine, 
itself, I say, is considered as a body strippea of its inertm:ss: 
its proper mass (when it is necessary to have regard to it, 
whether on account of the movement whi_ch it or 
on account of its gravity or of other motive forces with 
which it may be animated,) is regarded as a foreign power 
applied to the system; in a word, a machine properly so 
called, is an assemblage of immaterial obstacles, and of 
moveable particles incapable of reaction, or deprived of in-
ertness, i. e. (XXIX.) a system of bodies the densities. of 
which are infinite or nothing. To this system \VC imagine 
that different external agents, in the number of which we 
compreheud the mass o.f the machine, are applied, and trans-
mit their reciprocal action by the intermedium ofthis machine. 
It is the pre:>sure or othc:r effort exercised by each agent upon 
this iutermediate body, \vhich we call force or power; and 
the relation which exists between these different forces, 
forms the subject of the inquiry, which has for its object th.e 
theory of machines properly so called. Now, it is in this 
point of view that we proceed to treat of equilibrium and 
of but a force taken in this senc;e is not the less a 
quantity of movement lost by the agent which exercises it, 
whatever this agent may be in othc:r rehpel:ts, it acts 
upon the machine by drawing it by a cord or by pushing 
it by a rod; the tension of this cord, or the pres:lure of this 

i. e. the re,istance which it opposes to this change, cr its t'is i-r. ertitr; whence 
it is easy to conclude, that the t:is inertia) rif any l·ody is the result qf its arlunl 
mo-emenl, aad uf a movement eqtt.al and opprued ICJ 11.•hich it should 
J.a t•e th( instant after,t·ards. 

rod, 
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-rod, expresses both the effort which it exercises upon the rna-
thine, and the quantity or"movement which it loses itself by 
the reaction it undergoes : if, therefore, we call F that force, 
this quantity F will be the 6ame thing with that which is 
expressed by m U in our equa.tions *. Thus, if we call Z 
1 he angle com prchended between this force F, and the ve-
locity u, which the point would have where we suppose it 

if , .. ,.e make the system assume any geomdrical 
mo,·ement, the general equation (F) will become s F u co-
!-ine Z = 0 (AA). It is therefore under this form that we 
shall immediately employ this equation, by mean:; of which 
"\(,'e may apply whatever we can mention, to any imagi-
nlble kind of fofce ; and the principles exposed in this first 
p:1rt will serve us to dt,•dop tne general properties of ma-
chines properly so called, which the object of the en· 
suing di,•ision of the present work. 

[To be continued.] 

VI. On the Stratjjicalion of in Derbyshire, point-
ing out a JIJistake '!}'the late AJr. JOHN WHITEHURST, 

relative thereto j aud on the Transmutation of Lime to 
Silex. By .J.11r. JoHN FARRY, 1l1ineralogical Surveyor. 

To .11/r. Tilloch. 
SIR, 

"f HF. late l\Ir. John lVhitehu.rsi, in his "T nquiry into the 
. original State and Formation of the Earth," ha,; given sec-
tions of the strata to he found in various parts of Derbyshire, 

• It is evident that the quantity of movement lost m U, is the result of the 
movement which the bod): m would have had the instant afterwards, if it 
had been free, and of the movement equal, and directly opposed to that 
which it will reallv ;:ssmnc: now the first of these two movei11ents is its:lf 
the result of the of m, of it5 absolute motive force> 
therefore m U is the result of three forces, which. are : its absolute motive 
force, its actual quantiy of mo"ement, and the quantity of mov.ement equal 
and directly oppo"ed to that w·hirh it should have the instant after: but ac· 
eooding to the note, two last 'l}l:lntities of movement have 
for their result the vis therefore 1ii U or F ia the result of the motive 
force of maud of t•i.s inert icc; i. e the l·y any given budy, at 
ea;l, is tl:.t ofiJ.s fll•Joiult and nfits vi5 inertia:, 

which, 
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consequence to the pleasure of the gentleman, as well as t() 
the profit of the gardener. 

Old as I am, I certainly intend this' year to commence 
experiments on the myrlle and the laurel : I trust, therefore, 
it will not be thought presumptuous in mt to invite those of 
my brethren of this most useful Society, who are younger 
than I am, and who of course will see the effect of more ge-
nerations than I shall do, to take measures for bringing to 
the test of experiment the theory I have ventured to bring 
forward, I hope not without some prospect of success. 

The settlement lately made at New Holland gives a large 
scope to experiments: many plants have been brought 
from thence which endure <'Ur climate with very little pro-
tection; and some of these arrive at puberty at an early pe-
riod; we have already three from the south point of Van 
Diemen's Island, where the climate cannot be wholly with-
out frost; mimosa verticillata, eucalyptYs hirsuta, and ob-
liqua. The first of these appears to have produced flowers 
within eight years of its first introduction; but as a settle-
mt:nt is now made very near the spot where the seeds of 
these shrubs were collected, we may reasonably hope to re-
ceive further supplies, and, among them, the \V mterana 
aromatica, an inhabitant of the inhospitable shore of Terra 
del Fuego, which Mr. Brown has discovered on the south 
part of Van Diemen's Island also. 

XXVII. Essay upon 1\Iachines in General. By Jt,f. CARNOT_, 
of the French Institute, &c. &c. 

[Continued from p. 36.) 

Part II. [OJ .. Machines properly so callcdii.'.] 
DEFINITIONS. 

XXXI. AMoNG the forces applied to a machine in mo .. 
tion, some are of such a nature that each of them forms 
an acute angle with the velocity of the point at which it is 

• Vide p. 36 of the present volume. 
applied, 
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applied, while others form obtuse anglea with thdr points. 
This being granted, I shall call the former moting or soliciting 
forces; and the others resisting for(J(:s: for instance. 'if a 
person raises a weight by means of a lt:ver, a pulley, a screw, 
&c., it is ch:ar that the weight and the vt:locity ot the \Vei ght 
uecessarily form by their concurrence an obtuse angle; 
otherwise it is evident that the weight \vould descend m 
place of asceudi.ng; hut the viJ motrix and its veloci1r ,turm 
an acute angle : thus, acc<nding to our Jefinitiun, the \\Ieight 
will be the rl]sistu:gforce, anti the effort of the person \\dl 
be the soliciting force: it is evident, in sh<)rt, that the latter 
tends to favour the actual movement of the machine, while 
the other it. 

We shall observe that the soliciting forces may be di-
rected in the same ratio with their velocities, since then the 
angle formed by their concurrence is null, <md consequently 
acute, and the resisting forces may act in the direction pre-
cisely opposite to that of their velocities, since then the 
angle formed by their concurrence is 180::>, alld consequently 
obtUSf:', 

It is tQ be remarked, that any force wh\ch is soli-
citing might become resisting if the movement should 
change; that any force which i;; resisting at a certain in-
stant, may become soliciting at another instant; and last-
ly, in ordt!r to judge ot it at each instant, we must 
the angle which it makes with the velocity of the point 
where we suppose it appliecl: if this be acute, the 
force will be and 1f it be it will be resist-
ing, until the angle in qncstion changes. \Ve see from this, 
that if we make any system .1f powlT assume a gcotlletrical 
movtment, each of them \\ dl lJc:· sohcitlllg or resisting m 
re.;pect of this geotlletrical movement, accordingly a:-; the 
angle formed by this force and by geometrical veloctty 
shall he acute or obtuse. 

XXXI[. Jf a forcl' P be moved with the vclocitv u, and 
the angle formed by the concurrence of u and P be z, the 
quantity P cosine z u d I, in '' l11ch d t t:xprcs:-.t·:: tht' t:lett!t'llt 
of "til be uamed rnomt'nlum activity, comumed 
by the force P during d t j i. e. the momentum ot act ;vtty 

cunsumed 

John Norton

John Norton

John Norton
Moment of activity = work done by force P on body moving at velocity u in time dt.

John Norton

John Norton
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consumed by a force P, in a time infinitely short, 
produce of this force estimated in the ratio of its velocity, 
by the path described in this infinitely short time by the 
point to which it is applied. 

I shali cail the momentum if activity, consumed by 
thi& force, in a given time, the sum of the momenta of ac-
tivity consumed by it at each illstant, in such a mantler 
that s P cosine z u d t is the momentum of activity, con-
sumed by it in an indeterminate time: . for instance, if 
P be a weight, the momentum qf activity consumed in 
an inrleterminate time t will be P sud t cosine z j let us 
suppose, therefore, that after the time t, the weight P has 
descended from the quantity H, we shall clearly have 
d H = u d t cosine z; therefore the momentum if activity 
consumed during d l will be P s d H = PH. 

XXXIII. \Vhcn we are speaking of a system of forces 
applied to a machine in movement, I shall call momentmn 
if activity, consumed by all the forces of the system, 
the sum of the momenta of activity consumed at the 
same time by each of the forces which compose it: thus, 
the momentum of activity consumed by the soliciting 
forces, will be the sum of the momenta of activity con-
sumed at the same time by each of them : and the mo-
mentum of activity consumed by the resisting forces 
will be the sum of the momenta of activity consumed 
by each of the:;e and as each resisting force makes 
an obtuse angle with the direction of its velocity, the co-
sine of this angle is negative; the momentum of acti,·ity -
consumed by the resisting force::; is therefore also a nega-
ti\'e quantity; and therefore the momentum qf activity con-
sumed by all the forces of the system, i,; the same thing 
as the difference between the momentum of activity consum· 
ed by the soliciting forces, and the momentum qf activity 
consumed at the same time by the resisting forces consider-
ed as a positive quantity. 

A force estimated in a sense directly opposite to that of 
its velocity, an1 multiplied by the path described in an in-
finitely short time by the point where it is applied, will be 
called the momentum r!f activity produced by this force in 

this 
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this infinitely short time: in such a manner tlzal the mo· 
•mentum of actwity consumed, and the momentum of ac-
tivity produced, are two equal quantities, but of contrarr 
signs; and there is a difference between them analogous to 

which \\'e find (XXI) between the momenta if tlze 
quantity qf movement gained and lost, by a body, in respect 
of any geometrical movement. 

I shall also give the name of momentum of activity exer-
cised by a to what I have called its momentum of 
activity CQnsumed, if it be soliciting, and to what I have 
called its momentum rif activity produced, if it be resisting: 
thus, the momentum of activity exercised by any given force 
in an infinitely short time is in gent·ral the produce of thi! 
force, by the path which it describes in this infinitely short 
time, and by the cosine of the smallest of the two angles 
formed by the directiom of this force and of its velocity; 
whence it clearly follows, that this momentum qf acciuity ex-
ucised is always a positive quantity. 

We shall make, with respect to the quantities which we 
call momenta of activity produced and momenta of activity 
exercil·ed, the same remarks with those we have made abo\'e, 
llpon the subject of momentum of activity consumed by a 
force or system of powers in a given time. 

These definitions being adnmted, I shall proceed to the 
general principle of equilibrium and of movement, in ma-
chines properly so called ; and the inquiry into which has 
been the principal object of this essa}·. 

FuNDAMENTAL THEOREM. 

General Principle of Equilibrium and of Jfovement in ]!,[a-
chines. 

XXXIV. JV/wtever is the state of repose or of movement in 
which any 7.iven system of applit:d to a mac/line exL,ts, 
if we make it all at once assume any given geumetricol move-
ment, without changi11g these forces in any rejpecl, the sum 
of the products qf each rif' them, by the velocity which t!te 
point at which it is applied will have in thefirst instant, es-
timated in the dire,tion of this fvrct·, will be equal to zero. 

That 
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That is to say, by calling F each of these forces*, 1t the 
velocity which the point where it is applied will have at 
the first instant, if we make the machine assume a geome-
trical and z the angle comprehended between 
the directions of F and of u, it must prove that wt: 
.shall have for the whole system sF lt co1;ine z = 0. Now 
this equation is precisely the equation (AA), found (XXX), 
\vhich is nothing elst! in the end but the same fundamental 
equation {F), presented under another form. 

It is easy to percei\·e that this general principle is, properly 
speaking, nothing than that of Descartes, to which 
a sufficient extcmion is to he given, in order that it may con-
tain not only all the conditions of the equilibrium between 

* It will not perhaps be useless to anticipate an objection whirh might 
occur to those who have not pa:d sufficient attention to what has been 
s1id (XXX) upon the true meaning we ought to attach to the word force: 
Let us imagine, fur instance, they will say, a wheel and axle to the cylin-
der of "hich weight& are suspended by means of cords; if there be equili-
brium, or if the movement be uniform, the weight attached to the wheel will 
be to that of the cylinder as the radius of the cylinder is to the radius of the 
wheel; which is conformable to the proposition. But the case is not the same 
when the machine assumes an accelerated or a rl'tardeJ movement: it seems, 
therefore, that here the forces are not in reciprocal ratio of their velocities es· 
t imated in the direction of these for'ces, as would follow from the proposition. 
The answer to that i,, that in the case where this movemE'nt is not uniform, 
the weights in question are not the only forces exercised in the system; for 
the movement of each body changing continually, it also opposes at each 
instant, by its l'is inertia:, a resistance to this change of state: we must, 
therefore, keep an account of this resistance. We have already said (XXX. 
see the note,) how this; force should be estimated, and we shall see further 
on (XLI), how we should make it enter into the calculation. In the mean time 
it is sufficient to remark, that the forces applied to the machine in question 
are not the weights, but the quantities of movement lost by these weights 
(XXX), which should be estimated by the tensions of the cords to which 
they are suspended: now whether the machine be at rest or in motion, 
whether this motion be uniform or not, the tension of the cord attached to 
the wheel is to that of the cord attached to the cylinder, as the radius of the 
cylinder is to the radius of the wheel, i. e. these tensions are always in reci-
procal ratio of the velocities of the \veights they support : this agrees with 
the proposition. But these tensions are not equal to the weights; they are 
(XXX. see the note) the results of these weights and of their vis inerlia', 
which are themselves (XXX. see the 11ote) the results of the actual move-
ments of these bodies, and of the mov.ements equal and directly opposC'd to 
those which tlley will really as5ume the instant afterwards. 

FIRST 
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two forces, but also all those of equilibrium and of move-
ment, in a system composed of any number of powers: "thus 
the first consequence of this theorem will be the prim:iple of 
Descartes, rendered complete by the conditions which we 
have seen were wanting in it (V). 

FmsT Corwtr.AnY. 
General Principle cf Equilibrium between two Powers. 
XXXV. !Vhen any tu.Jo agents opplied to a machine 

form a mutuul equilibrium; if we make this machine assume 
any aTuitrary guJ1netricalmovement: 1st, The forces exer· 
cised by the agents will be in a 1·eciprocal ratio to thei7· ve· 
locities estimated in the din:ction of these forces: 2d, One 
of these powers zeill 1nake an (IC1Lle angle with the direc· 
tion of its velocity, and the other an obtuse angle with its 
velocity. 

For if the forces exercised by the agents are named F 
and F'; their velocities u and u', the angles formed by 
power" and thtir v<:locitics z and z', we shall have by the 
preceding theorem, F u cosine z + F' cosine z' = 0: there-
fore F: F':: - u' cosine z'; 2t cosine z, which is the pro-
portion announced by the first part of this corollary, and by 
which we see at the s:1me time that the rtlation of cosine z 
to cosine z' is negative ; whence it follows that one of these 
angles is necessarily acute, and the other obtuse. 

SEcOND CoLOLLARY. 

General Principle of Equilibrium in lVeighing Machines. 
XXX?I. lVhen. several weights applied to any given ma· 

chine mutually form an if we 1nake this ma-
chine assume any geometrical movement, the velocity f!f the 
centre of gravity of the estimated in the vertical di-
rect ion, will bP. null at the first instant. 

For if we call M the total masg of the system, m that of 
each of the bod1es which compose it, u the absolute n:locity 
of m, V' the vt·l'1city of tht' centre of gra\·ity estimated in 
the vcrticll ratio, g the gravity, z the angle formed by u 
ami hy th\: direction nf the weight, we shall ha,•e, accordiug 
to the theorem, smgu cnsine z = 0; but by the geometri-
cal properties of the centre of gravity we have s mud t co-

sme 
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sine z:::: M V d t, or s m gtt z = M V g; therefore,. 
since the first member of this equation is equal to zero, the 
second is so also : therefore V = o. Q. E. D. 

In order to have all the conditions of the equilibrium in a 
,,·eighing machine, it i;) only necessary to make the machine 
successively different geometrical movements, and 
to equal iu each of these cases the vertical velocity of the 
centre of gravity at zero. 

THIRD CoROLLARY. 

General Principle of Equilibrium betweetz two 1Veights. 
XXXV IT. lVIzen two weights form a mutual equilibrium, 

if we rnake the machine any geometrical movement: 
lst, The vtlocities c:f these l·odies, estimated in the vertical 
·ratio, will Z.e in a reciprocal Talio lo thei;· weights: 2d, One 
of these bodies will necessarily ascend, while the other wilt 
descend. 

This proposition is a manifest consequence of the pre .. 
ceding cnrollary, and is still more evidently deduced from 
the first corollar)r. 

\Ve may remark by the way, how ,essential it is for the 
precision of all these propositions, that the movements im-
pressed upon the machine should be geornctrka1_, and not 
simply possible; for the slightest attention will show by 
some particular example, that without this condition all these 
propositions would be absurd. 

Remark. 
XXXVIII. vVe generally take the principle .of equili .. 

brium in weighing machines when the of gravity of 
the system is at the lowest possible point ; but we know 
that this principle is not generally true; for that this 
point would be in certain cases at highest point, there 
is an infinity of others where it is neither at the highest nor 
at the lowest point : for instance, if the whole system be 
reduced to a weighing body, and this article be 
pl::tced upon a curve which has a poiut of inflexion, the tan-
trent of which is horizontal, it will remain visibly in equili-
brium, if we ·place it .upon this point of inflexion, which 

nevertheless 
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nevertheless is not the lowest weight, nor the highest point 
possible. 

We may also take for the principle of equilibrium in a 
weighing machine the proposition which we have already 
gi\·en (I[), and which we shall repeat, in order to give a 
rigorous demonstration of it. 

In order to ascertain that several ·weights applied to any 
given machine should mutually form a1l equifil,rium, it is 
suJficicnt to prove, that if we abandon this machine to itself, 
the centre cif gravity if the system will not descend. 

In onler to prove it, let us name M the total mass of the 
system, m that of each of the weights wbi'ch it, 
g the gravity; and l:>Uppose that if the machine ditl not 
remain in equilibrium, a;; I asst>rt that it should, the velo-
city of m afler the timet would be V, the height from which 
the centre of gravity would have descended at the end of the 
same time H, and that from which the body would have 
descended mh; we shall then ha\'e (XXIV) smgdlz- sm 
V d V = o: therefore by integraling M g H = { s m y1.; 
but by hypothesis H = o, therefore s m V2 = 0; besides, V" 
is necessarily positive, as is evident: therefore the .equation 
s m = o cannot take place, unless we have V = o, i.e. 
unless there be equilibrium. Q. E. D. 

Hence it follows, as we have said that tbere is 
necessarily equilibrium in a system of weights, the centre 
of gravity of which is at the lowest possible point; but we 
have seen (XXXV III) that the inverse is not always true, 
i.e. that every time there is equilibrium in a system of 
weight, it does not always follow that the centre of gravity 
is al the lowrst point possible. 

Four..Tn ConoLLARY. 
Particular Laws qf Equilibrium in 1\Jachincs. 

XXXIX. if there l•e equilibrium betu•cen several powu.t: 
applied /() a machine, and having decompo,ed all the forces 
of the system, as lt'ell those which are applied to the ma· 
£hine as those which arc exercised l•y the obstacles or fi:rcd 
points u·hiclt form part r!.f it ; if U'e daompos:! them., I say, 

cac 1z 
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each into three others parallel to any three axes pe1pendicular 
to each otlze1· : 

I st. The sum of the component forces, which are parallel 
to one and the samf' axis, and conspiring towards one and 
the same side, is equal to the sum of those which, veing pa-
ralLel to this same axis, conspire towards the opposite side: 

2d. The sum of the momenta cif the component forces 
which tend to turn around one and the same axis, and which 
conspire in one and the same 1·atio, is equal to the sum of the 
momenta of those which tend to turn around the same CIXis, 
but in a contrary direction. 

In order to demonstrate this proposition, Jet us Legin by 
imagining, that in place of each of the forces exercised by 
the resistance of obstacles, we substitute an active force equal 
to this resistance, and directed in the same ratio: this change 
does not alter the state of equilibrium, and makes of the 
machine a system of po,Hrs perfectly free, i. e. freed from 
every obstacle. This being grautcd, if we make this system 
assume any geometrical movement, we shall h:we by tile 
fundamental theorem sF n cm.ine :t = o, by calling F each 
of these force..s, u its velocity, anJ z the angle comprehend-
eel between F and u: thus, 

1st. If we suppose t!':!at u is the same with respect to all 
the point:; of tbe system, and parallel to any one of the axes, 
the will be geometrical, and the equation, on ac-
count of u constant, will he reduced to sF cosine z = o : 
i. e. the sm11 of the forces of the system estimated in the ratio 
of the velocity u, impressed parallel to this axis, will be null; 
\vhich evidently reverts to the first part of the proposition. 

2d. If we make the whole system turn round any one of 
the axes, withont changing in any respect the respective 
position of the parts which compose it, this movement will 
still be geometrical ; u will be proportional to the distance 
of each power from the axis; and therefore might be ex· 
pressed by A R, R expressing this distance, and A a con-
stant: thus the eqnation will be reduced to sF R cosine z=O; 
which, as may easily be seen, reverts to the second part of 
the proposition: 

[To be continued. J 
XXVIII. Re· 



220 ] 

XL. Essay upon ]}[achines in General. By 1\f. CARNOT, 
JI,Jem'ber of French Institute, &c. &c. "" 

[Continued from p. 144.] 

FIFTH CoROLLARY. 

Particular Law conceming jl>facltine), the cif 
which changes by insensihle Degrees. 

XL. lx a machine, the movement of which changes by 
insensible degrees, the momentum of activity consumed 
in a given time l•y the soliciting forces, is equal to the mo-
11lentum of activity exercised at tile same time /;y tlte resist-
ing forces. · 

That is to say (XXXIII) that the momentum of. activity 
consumed hy all the forces of the system, during the 
time given, is equal to zero: this will be clear (XXXII) if 
we prove that tl1e momentum cif activity consumed at 
each instant by these forces is null: now F expressing each 
of these forces, V its velocity, Z the angle comprehended 
between F and V, and d t the element of time, the momen-
tum if activity consumed by all the forces ohhe system 
during d t, (XXXIII) sF V cosine Z d t; we must there-
fore prove that we have s F V cosine Z d t = 0; or s F V 
cosine z = 0: now this is clear by the funrlamental the-
orem : ergo &c. 

The particular law here in question is certainly the most 
important of the whole theory of the movement of machines 
properly so called: we shall give some peculiar applications 
when we enter upon the detail of the subject, in the scho-
lium which will succeed to the following corollary, and 
which will conclude this essay. 

XLI. Let us suppose, therefore, for instance, that the 
powers applied to the machine are weights : let us call in 
the mass of eaeh of these bodies, m the total mass of the 
system, g the gravity, V the actual velocity of the body m, 
Kits initial velocity, t the time which has gone since 
the commencement of the movement, H the height from 
which the centre of gravity of the system has descended 

during 
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(Juring the timet, and lastly, vV the velocity due to the 
height H. 

This being done, we must consider that there are two 
sorts of forces applied to the machine, viz. those which 
proceed from the gravity of the bodies, and those which 

from their vis inertice, or from the resistance which 
they oppose to their change of state (note to XXX) : now· 
(XXXII) the momentum of activity consumed during the 
time t by the first of these forces, is, with respect to the 
whole system, M g H, or f M W z. Let us now see \vhat is 
the momentum of activity consumed by the vis inertice: 
the velocity of rn being V, and becomiug the iu;;tant after-
wards V + d V, it is clear (note to XXX) that its vis ineTtice 

estimated in the din:ction of V, is rn d V, or rather m d V. 
d t ' 

therefore (XXX) the momentum of activity, by 

this force during d t, ism dVVdt,ormVdV: therefore the 
dt 

I'nomentu111 of activity, consumed by this vis inertice du-
ring the time t, is s m V d V, or, Ly integrating and com-
pleting the integral, t m V'l - t m K!: therefore the momen-
tum of afiivity, consumed at the same time Ly the vis 
im:1·tir& of all the bodies of the system, will be f s rn V 2 

- f 
s m K•: now this vis inertice is a resisting force, since it is 
by it that bodies resist their change of state: and the weight 
is here a soliciting force, since the centre of gravity is 
supposed to descend : thus, by the proposition of this co-
rollary, we should ha\'e M W 2 = s 1ll \TL - s m K 1

, or s m 
V• = :,. m K 2 + l\1 \V:; i. e. 

In a machine with weights, the movement if u·hich changes 
by insensiz.le degrees, tlze sum qf the active fm·ces qf the sy-
stem is, after any give11 time, equal to the sum r.ij' the ini-
tial act ire forces, plw the sum of active force which would 
take place if all the bodies of the system were a11imatr-d wit It 
a common velocity, equal to that whhh is owing to the height 
from which the centre if gravity qf the system has descended. 

XLlJ. If tht- movement of the tllachinc be uniform, we 
shall continually have V = K, and therefore \V! = o, or 
II = o: this l<:aches us that 

In 
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In a u ·eight macltine, the movement rif ·which is unlfo1"rn, 
the cent-re ry'gmvity if the system remains constantly at the 
same height. 

XLI I I. Since -&- l\1 \Vz or 1\-f g H is (XXXII) the mo-
mentum of activity produced by a weight .M g, which we 
make to ascend to the height H, it follows evidently 
that 

JVhntever method U'e lane to raise a certain weight to a 
given height, theforces employed to produce this con-
sume a momentum of at"tiz•ity eq11al to the produce of this 
weight' z,y the height to which we slwuld mise it. 

XLIV. In the same manner since (XLT) the momen-
tum of acti\·ity produced in a given time by the 1•is ine?·tire 
of any body is equal to the half of the Cjllantity by which 
its active force augments during this time, we may con-
clude also, that 

In order to make an!J given movement arise by insensible 
degrees in a system qj' bodies, m· to change that which has 
arisen, it must j'oll01.v that the powers destined to this effect 
do consume a momwtum of actit•ity equal to the half of 
the quantity by which the sum if the active forces of the sy-
stem u.•ill have f.een augmented by this change. 

XLV. It follows evidently from these two last proposi-
tions, that in order to elevate a weight M g to a height H, 
and make it assume at the same time a velocity V, it must 
happen, supposing this body in repose [Lt the fir.,t instant, 
that the forces employed to produce efFect consume 
of themselves a momentum of activity equal toM g H + 
tMVz. 

XLVJ. \Ve have supposed in all that has been said, as 
the title of this corollary announces, that the movement 
changes by insensible degrees; but if, when proceeding, any 
sudden shock or change happens in the system, what we 
have mentioned would not take place. Let us suppose, for 
instance, that at the momer"!t of this shock the centre of 

of the system has descended from the height h; that 
at this same instant the sum of the active forces is X im-
me(liatcly before the shock, and Y immediately after the 
shock: kt us call Q the momentum of activity, which 

the 
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the moving forces will have to consume during the whole 
time of the mo\·emcnt, anrl g that which they will have to 
consunre from the to the epoch of the 
percussion : let us suppose finally, the sake of more 
simpliciry, that the system is at rest at the first instant, and 
at the Ja-;t, it is clear (XLV) that we shall have q = M g h. 
+ t X; and that, by the same ratio, the momentum of ac-
tivity to consnme by the forces moving after the shock, 
i.e. Q- q, will be M g (H- h) - Y; therefore Q = 
1\Ig H ++X--} Y: now (XXIii), it is clear that X> Y:. 
thus the momentum of activity to consume in order to 
raise in this t:ase .M to tne height H, is necessarily greater 
than if there had been no shock, since in this we should 
have simply had Q = Mg H (XLIII). 

Hence it follows, that without consuming a greater 
11l')mentum ofactivity, the moving forces may, by avoiding 
all shock, raise the same weight to a greater height H, for 

then we shall have (XLV) 0 = l\1 g II, or H = _Q_, 
"' Mg 

0 -.!..{X- Y) while in the present case we have H = <'-' oz : 
Mg 

whence we see, that X being greater than Y, we must neccs-
h:lVe also H' > II. 

SixTH ConoLLAnY. 
OJ Hydraulic llfachines. 

XLVII. \Vc may regard a fluid a<; an a3semblage of aa 
infinity of svlid corpuscles detached from each other; we 
may therefore apply to hydraulic machines all that we have 

of other machines: thus, for example-, from the first 
corollary (XXXV) we may conclude, that if a fluid ma->s 
without gravity, be enclosed comph:.tely in a \'Csscl, and, 
that, having mauC' two equal apertures in this \·csscl, \Ve ap-
ply pistons to it; the forces which will act upon the. tluicl 

on these pistons must be cqnal, if they mu-
tually form equilibrium ; i. e. that in a fluid mass !l,c 
pressure spreads equally in direction : this is the fun-
damcnt:tl principle of the equilibrittm of Ouid:;, which we 
generally as a truth purdy nperilllL'lltal. \Ve shall 

C\'Cll 
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even prove (XXV), that the conservation of the active forcer 
takes place in incompressible fluids, the movement of which 

by insensible degrees; and in short, generally every 
thing \vhich we have proved of a system of hard bodies is 
equally true with to a mass of incompressible fluid. 

ScHOLIUM. 

XLVIIL This scholium is destined for the development 
of the principle laid down in the fifth corollary: this propo-
sition, in fact, contains the principal part of the theory of 
machines in a state of motiou, because most of them are 
moved by agents which can only exercise dead forces, or 
those of pressure: of this description are all animals, springs, 
weights, &c., which is the cause why the machine gene-
rally changes its state by insensible degrees. It also most 
frequently happens, that this ll)acbine passe.s very quickly 
to uniformity of motion, for the following reason : 

The agents which move this machine being at first a 1ittle 
above the resisting . forces, give rise to a small movement 
which is after\\'ards gradualiy accelerated ; but, whether as 
a necessary conscqncnce of this acceleration, the soliciting 
force diminishes, whether the resistance increases, or, lastly, 
if there happens auy variation in the directions, it almost al-
ways happens that the relation of the two forces is brought 
nearer and nearer to that in virtue of which they could mu-
tually form equilib1·ium: these t\vo forces are then destroyed, 
and the machine is no longer moved, except in virtue of the 
acquired movement, which, on acc.:ollnt of the inertness of 
the matter, generally remains uniform. 

XLIX. Ll order to understand still better how this hap-
pens, it is only necessary to attend to the motion of a ship 
,vhich has the wind directly on her poop: this is a kind of 
machine animated by two contrary forc"cs, which are the im-
pnlsc of the wind, and the resistance of the fiuid upon which 
it swims: if the first of these two forces, which may be 
garded as soliciting, is greatest, the movement of the ship 
will be accelerated: but this acceleration necessarily has 
limits, for two rC"asons; because, the uwre the movement of 
the vessel is accelerated, 1st, the more is it subtracted from 

the 
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the impulse of the wind; £d, on the other hand, the resist-
ance of the water increJses : consequently these two forces 
tend to equa1ity: when they have attained this point they 
will be mutually dcstroyerl; and theref<>re the vessel \vill be 
moved as a free body_. i. e. its \'elocity will be con!'tant. 
If the wind fell, the resistance of the water wou]J surpass 
the soliciting force ; the movement of the vessel would 
::lacken; but, as a necessary comequence of this slackening, 
the wind would act more efficaciously upon the sails; and 
the resistance of the water would at the same time diminish: 
these two forces would still tend therefore to equality, and 
the machine would at the same time attain an uniformity of 
movement. 

L. The same thing happens when the moving forces are 
men, animals, or other agents of this kind : at first the 
mo..-cr is a little above the resistance; thence arises a 
movement, \vhich is gradually accelerated by the repeated 
efforts of the moving power; but the itself is obliged 
to assume an accelerated movement, in ' order to remain 
attached to the body upon which it impresses motion. 
This acceleration, which it procures for itself, consumes a 
part of itg effort, in such a manner that it acts less effica-
ciously upon the machine; and the movement of the latter, 
accelerating less and less, finishes by soon becoming uniform. 
For instance : a man who could make certain effort in the. 
case of equilibrium, would make a much less one if the 
body he applies his strengtli to should yield, and if he was 
obliged to follow it in to act upon it : it is not because 
the ab:wlute labour of this man is less; but it i;; because his 
effort is divided into two, one of \vhich is employed in put-
ting the man himself in motiou, and the other is transmitted 
to the machine. Now it is frqm thrs alone that the 
effect is manifested in the object proposed. 

I shall nevertheless continue to consider machines under 
3 more general point of view : thus, I shall place in this 
s<.:holium several reflections applicable to the varied move-
m<:nt. I shall only suppose that this variation takes place 
by insensible degrees; and I shall prove that this should in 

Vol. 3 i. No. 1 Aug. 1608. P fact 
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fact be the case, when we wish to them in the most 
advantageous manner possible. 

LI. Let us therefore designate by Q, the momentum of 
activity consumed by the soliciting forces in a giV(!n timlt-' 
3.1Hl hy q, the momentum of activity exercised at the same 
time lw the res1stin!T forces; this heintT done, \\hatever be 
the mc;vemcnt of machine, \\'C always have, by 
the filth corollary, Q = q; in snch a manner, for example, 
that if each F of the soliciting forces be constant, it:; \'do-
city V urnform, and the angle Z formed by the directions 
ofF J.nJ V always null, we shall have at the end of the time 
t s F \' L = q; and if all the soliciting forces are reduced to 
a single o11e, we l>hall have F V t = q (XXXH 
<Jnd XXXl II). 

LII. \Ve rnay in general regard the motf)entum of ac-
tivity q, exerc:sed by the resisting forces, as the effect 
ducet.l by the soliciting forces:· for instance, when it is 

to raise a wcigbt P to a given height H, it is very 
easy tn rl.'ganl the effect produced by the moving force as 
being in a compound ratio of the weight, and the height to 
which \\.·e ha,·e to raise it; so that PH is we then na-
turally nnderstancl by the effect productd. Now, on the other 
hand, tbis quantity PH is precisely what we ha\·e called the 
\110l11en\um of acti\·ity exercised by tbe resisting force P; 
therefore this momentum of activity, or q, is what we na-
turally tmdersland in this case by the effect produced. 

Nnw, in the other cases, it is evident that q is always a 
<JUantity to that just mentioned: this is the reasori 
why l shall frequently, in the course of my subsequent ob-
servatinm, call ti1is quantity q the r:flrct tn-oduced: thus, by 
the terms e_fff-ct produced, I shall mean the momentum of 
activity exercised by the resi:>ting forces; in such a manner 
that, in virtue of the equation = q, we C:stablish as a 
general rule, that tfze rjfert produced in a [!il'en time [,y auy 
system f!f mol 1ing.f'r.Yrces, is equal to the mmm·ntum of actiz•ity 

at the same time by all tlzescfo1·cr.1·. 
LIIL We see by the equation F V t = q, fonnd in the 

preceding article:, that it is of no 11se to be :1cqtninted with 
the 
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the figure of a machine, in order to know what effect any 
;>ower applied to it can produce, when we are acfluainted 
with that which it would produce without the marhine: let 
us suppose, for example, that a 'man is capable of c;;:ercising 
a contmual effort of 25tt, by moving hiii own body conti-
nually with a velocity of three feet in the second: 1his being 
granted, when we apply it to a machine, the mori1entum of 
activity F V t, which this man will exercise, wili be (XXX I I) 
25tt 3 .pi (3 feet) t, i. e. wt shall have FVt = 5?5tt 3 pi t, 
t expressing the numbr>r of seconds : therefore, on account 
ofF Vt = q, .we shall have q = 251t 3 pi whatever be the 
machine: therefore the effect q is aLs·)lutely independent of 
the figure of th1s machine, aud can never wrpass that which 
the power is in a state to produce naturally, and without a 

Thus, for example, if this man \\>ith his effort of 25tt, and 
hi3 vclocitv of three feet in the second, is in a state with a 
given or withri>ll't a mach:ne, to raise, in a gi\'en 
time, a weight p to a height H, we cannot invent any ma-
chine by which it is possible, with the lahour, (i.e. the 
same force, and the same velocity m the first case,) to 
raise, in the giv-en time, the same \\eight to a greater height, 
or a greater weight to the same height, or, finally, the same 
weight to the same height, in a shorter time : this is evi-
dent : since then q being (XXXII) equal to PH, we have, 
by the preceding article, P II = 25tr 3 pi t. 

LlV. The advantages rest.IIting from machines do nol 
consist in producing great effects from small causes, 

but in affording the means of choosing, among difft.:rent llle-
which lll:.lY be called equal, that which is most con-

venient in the existing circumstances. In order to a 
w<:ight P to ascend to any height proposed, a spring 10 close 
together in a given quantity, a body to assume any giq:n 
movemeut by insensible degrees, or, finally, any other giveu 
agent to produce any given momentum of activity, the 
moving for6:C& employed must of themselves consume a 

momentuil1 of activity equal to the first: no macl,ine can 
dispense with it: but as this momentum results from Sl'veral 
terms or factors, we may vary them at pleasure, by dimi-

p 2 nisbing 
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nishing the force at the expense of the time, or the velocity 
at the expense of the force; or rather by employing two N 

more forces instead of vne: this gi,•es an infinity of resonrces 
for producing the momentum of acti,·ity necessary: but, 
whatever we do, thest: means must always be equal, i. e. 
the momentum of acti,·ity consumed by the soliciting forces, 
is equal to the effect or momentum exercised at the same 
time by the resisting forces. 

(To be continuer!.] 

XLI. On tlze Planet By S. Esq. 
To l\<Ir. Tilloch. 

SlR, 

'I'nE discovery of the planet Vesta, on the 29th of March 
1807, having been communicated to this. conn try by Dr .. 
Olbers; on the 26th of April I found its place, and obsen·ed 
the same on the meridian. I obtained a series of observa 4 

tions to the 2ath of May; after which, from the increase of 
daylight, it was no lo:nger visible on the meridian. The 
observations which were afterwards made were with equa-
torial instruments; and tht:se cannot be depended on, for 
sufficient accuracy in calculating the elements. I have,. 
however, used some of thtse, from the of March to-
the 22d of June, to determine the eccentrieity; those which 
were made on the meridian producing nearly the same ra-
dius. I thence discovered, that the planet was decreasing 
in radius, and therefore conjecture that it was in aphelia 
about the time it was first seen. \Vhen the planet was di3-
covered by Dr. Olbers on the 29th of }.larch, it appears to 
have been about seven days past the opposition; and it is 
well known, not having that point of the orbit for a datum, 
the difficulty of calcnhtion is increased. I was therefore 
anxious to observe the planet before the ensuing opposition,. 
to obtain sufficient materials for ascertaining all the elements. 
For this purpose, I assnmed a mean radius of the extreme 
observations; which, if I was right in my conjecture of the 
aphelium, would prove too great; and therefore the planet 
should be further auvanced in the ecliptic;. On the 3oth of 
July, the evening being clear, and the moon not risen, I 
observed the ditfcrence of right ascension of several stars of 

the 
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I now proceed, in conformity with suggestion, 

to make a brief recapitulation of the most material parts of 
this paper, and to endeavour to enumerate, and to place in 
one point of view, those articles recommended above, which 
appear to me to be best calculated to answer the desired 
purpose: 

" Caustic potash, train oil, waste salt, mixture of salt 
and oil, urine, oil of hartshorn, linseed oil, sea water, as-
s.afretida, chaff and refuse oil. 

"Any of these, in my opinion, might be .employed with 
perfect safety to the revenue. 

" I have the honour to be, gentlemen, 
" your faithful and obeuient humble servant, 

H SAMUEL PARKES." 

}.III. Essay upon 11fachines in General. By llf. CARNOT, 
llfember of tile French Institute, &c. &c. 

(Continued from p. 228.) 

LV. THESE reflections should seem sufficient for unde-
ceiving those who think that with machines charged with 
levers arranged mysteriously, we may put an agent, though 
ne\'er so feeble, in a condition to produce the greatest effects : 
the error proceeds frvm persuading ourselves, that it is pos-
sible to apply to machines in mo\'ement what is not true 
except with respect to the case . of equilibrium: from the 
circumstance of a small power holding a very great weight 
in equilibrium, many persons think that it could in the same 
way raise this weight as quickly as they please: now this is a 
very striking mistake, because, in order to succeed, the agent 
must procure for itself a velocity beyond its faculties, or 
which would at least make it lose so much the greater part 
of its dforl upon the machine as it would be obliged to 
move itself more quickly. In the first case the agent has no 
other object to attain than to make an effort capable of 
counterbalancing the weight; in the second case, besides 
this effort, there must be also another to overcome the iner-
tia, both of the body on whi-ch it impresses the moremcnt 
"-nd of its O\Yll proper mass: the total \\hich in the 

T -a 
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first ctl.se woulp be employed entirely in conque\'ing the 
weight of body, is here divided into two, the first of 
which continues to make an equilibrium in the weight, and 
tht> other produces the movement. \Ve therefore cannot aug· 
mentone of these efforts except at the expense of the other; 
and this is the reason why the effect of machines in motion 
is so limited that it can never surpass the momentum 
of acutnty exercised by the agent which produces it. 

It is, without doubt, for want of paying sufficient atten-
tion to these different effects of one and the same machine, 
considered sometimes in a state of repose and sometimes in 
movement, that some perso'l13 not unacquainted with sound 
theory frequently abandon thcmselve, to the most chimerical 
ideas, while we see :;imple workmen turning to a(kantage, 
as it were by instinct, the real prQperties of machines, and 
judging very accurately of their effects. Archimedes only 
wanteJ a lever and a fixed point, in order to move the globe 
of the earth; how did it happen then, it may be said, that 
so great a man as Archimedes could not, e\Tn \\'hen fur-
nished with the best machine in the world, raise a weight of 
one hundred pounds in one hour to a small given height? 
It is because the effect of a machine at rest and of one in 
1novement are two very different things, and somewhat he-
terogeneous: in the first case it is requisite to destroy and 
to hinder the movement; in the second, the object is to pro-
duce it and to keep it up; now it is clear that this last case 
requires more consideration than the first: viz. the real ve-
]ocity of each point of the system ;-but we shall better per· 
ceive the reason of this differe11ce by the following remark. 

Any given fi.xed points or obstacles are forces purely 
passive, which may absorb a movement however great it may 
be, but whichca'n never produce one, let it be never !'O small, 
in a body at rest: now it is very that in the case 
of equilibrium we say of a small power, that it destroys a 
grtat one: it is not by the small power that the great one is 
destroyed ; it is by the resistance of the fixed points: the 
small po,ver in reality destroys but a small part of the great, 
and the obstacles do the rest. If Archimedes had possessed 
what he wished for, it would not have been he who would 

have 
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· ha,·e supported the globe, it would have been his fixed 
point: all his art wou)J ha\'C consisted not in redoubling 
his efforts to contend against the mass of the globe, but to 
put in oppo3ition two great forces, the 011e acti\·t:, and the 
other passive, which ht' would have had at his if, 
on the contrary, it had been requisite to produce an effecti\'e 
mo,·e!llent, in this case Archimede:> ''ould ha\·e been obliged 
to draw it entirely from his O\\n proper person; and yet it 
would ha\'e been very small, even after se,·erJ.] years: let us 
not attribute therefore to active forces, what is owing to the 
re5istance of obstacles only, and the effect will not appear 
more di-sproportioned to the caust: in lllachines at rest thaa 
in machines in motion. 

LVI. \Vhat is the true object therefore of machines in 
mot•on ? \Ve ha,·e a] ready said, that it is to procure the 
faculty of ,·arying at ple::1sme the terms of the quantity Q, 
or the momentum of activitv which should be exercised bv 
the moving forces. If time be precious, if the effect mu;t 
be produced in a very short time, and if Wt.> ha,·e only a 
power capable of very little velocity, but of a great effort, we 
may find a machine capable of supplying the velocity neces-
sary for the force: if, on the ccntrary, we must raise a very 
considerable weight, and we have but a weak power, al-
though capable of gre.1t Yelocity, we may contri\'e a rna-
chine with "hich the agent \Yill be in a condition to com-

its velocity the force of which it is deficit:nt. 
Lastly, if the power is neither capable of a great effort nor 
of a great velocity, we may still, with a proper machine, 
make it produce the effect but then it will require 
much time; · and herein consists the well-known principle, 
that in machines in movement, u·e alu·ays lose in time or in 
t•elocity u. hat 1t.:e gain in Jorce • 

.l\Iachines are therefore very useful, not by augmentinz 
the effect of \\ hich powers are n.1tnrally capable, bi.tt by 
modifying this effect: it is true we shall ne,·er :::ncceed by 
means of them in diminishing the expense or momentmn of 
activity neccss:.ry for producing an effect proposed; but they 
will assist u:; in making a proper di\•ision of this quantity 
for attaining the design in view : it is by their assistance 

that 
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that we shall succeed in determining, if not the abwlute 
movement of each part of the system, at least in establishing 
among these different particular movements the relations 
which are 'most proper: it is by tl.em, lastly, that we shall 
give to the moving forces the most convenient situations 
and directions, the least fatiguing, and the most proper fM 
employing their fac11lties in the most advantageous manner. 

LVfi. This naturally leads us to the following interesting 
question-\Vhich is the hest method of employing any 
given powers, the natural effect of which is known, on 
applying them to machines in motion ? In other words, 
\Vhat is the method of making them produce the greatest 
possible eft'ect? 

The solution of this problem depends upon particular 
cumstances; but we may hereupon make some general oh-
servatio!ls applicable to all The following are among 
the most es-,cntial. 

The effect produced being the same thing (LII.) w.ith 
the momentum of activity exerciseJ by the re:sisting forces, 
the general is, that g is a maximum: now g never 
being able to surpass Q, I st, The quantity Q must itself 
be the greatest possible; 2dly, All this momentum Q must 
be solely employed in prod1.1cing the effect proposecl. 

In order to make Q a ma.r:imum, we must consider 
that it depends upon four things, viz.: upon the quantity of 
force exercised by the agent which should produce the effect 
q, upon its velocity, .upon its direction, and llpon the time 
during which it acts. Now, Ist, As to what regards the di-
rection of the force, it is evident that this power be 
in e\·ery thing, besides being equal, directed in the same ratio 
with its velocity, for the momentum of which 
ring d t a power F exercises, the velocity of which is V, anc.l 
the angle comprehended between F and V, Z, being 
(XXXII ) F V d t cosine x, it is clear that this produce 
will ne\·er be greater than when z will be equal to 
the total sinus, i. e. when the force and its velocity shall be 
directed in the same ratio: As to what regards the.! in-

of the force exercised, its velocity, and the time du-
ring which it is exercised; we should not determine these 

things 
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things in an absolute manner, but solely place them in 
the relations in which txperiencc has shown they will be of 
most advantage: for instance, .I shall suppose that a mau 
attached or eight hours in a day to a winch of one foot ra-
dius, . ight make continually an effort of 25 tons by making 
one turn every two seconds, which nearly amounts to the 
velocity of three feet per second; but if we forced this m:m 
to go guicker, thiuking thereby to hasten the business, we 
should retard it, because he would not be in a condition to 
make an effort of 25 tons, or could no Iunger work at the 
rate of eight hours a day. If, on the contrary, we diminish-
ed the velocity, the force would augment, but in a less de-
gree, and the momentum of activity would also diminish: 
thus, according to experience, in order that this momentum 
should be a maximum, we must proportion the machine S() • 

as to preserve to the power the velocity of three feet per se-
cond, and not let it work more than eight hours a flay. 
It is well known that each kiu<l of agent has, in respect of 
its physical nature or constitution, a maximum analogous to 
that of which we have spoken, and that this maximum can 
in general ,1nly be found by experience. 

LVIII. This first conditiou being fulfilled, nothing re-
mains to be done, to prociuce with any given machine the 
grlate:;t effect possible, but to manacre matters so as that the 
whole qnantity Q is emplo;/ed in producing this effect; 
for if this he done, we sk\11 have q = Q; and this is all we 
can expect, since Q can never be less tha11 g. 

Now in order to fulfil this conJition, I say, in the first 
place, that we should a\·oid every shock or sudden change 
wb:\lever; for it is easy to apply to all imaginable cases the 
reasoning which has been laid down (XLVll.) as to ma-
chines with weights; whence it fo1lows, that e\'ery time there 
is a shock, there is at the same time a of momentum of 
activity on the part of the soliciting forces; a loss so real 
that the effect of it is necessarily diminished, as we ha\'e 
shown with re:-:pect to machines with weights in the abo\'C 
article: it is therefore with reason tktt we aJv:mceJ 
(LI.), that in orJcr to make machines produce the greatest 
effect possibl<.>, they mu.:t of nccc!:i sity ucvct' change their 
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movcmenl, except by insensible degrees ;-we mmt solely 
except those \vhich by their very nature are subject to un-
dergo different percussions, like most kinds of mills; bnt 
even in this case, it is clear that we should avoid every sud-
den change which is not essential to the constitution of the 
machine. 

LIX. \Ve may conclude from this, for example, that the-
method of producing the greatest possible effect in a hy-
draulic machine moved by a current of water, is not to 
adapt_ a wheel to it, the wing5 of which receive the shock 
of the fluid. ln fact, t\YO good reasons prevent us from pro-
,]ucing in this way the greatest effects: the first is, as we 
have already said, because it is essential to avoid every kind 
of percnc;sion whaterer; the second is, because after the 
shock of the fluid there is still a velocity which remains to 
it as a pure loss, since we should be able to employ this 
remainder in stiiJ producing a new effect to be added to the 
:first. In order to make the most perfect hydraulic machine, 
i. e. capable of producing the greatest possible effect, the 
true difficulty lies, Ist, In managing so as that the flllid may 
lose aboolutely all its muvemcm by ita action upon the mr.-
chine, or at least that only remain precisely the 
quantity necessary for csnping after its action; 2<1, Another 

occnrs in so far as it loses all this movement by 
insensible degrees, and witho11t there being any percussion, 
either on the part of the fluid, or on the part of the sol1d 
parts among the form of the ma(;hine \vould be 
nf little consequence; for a hyJraulic machine which will 
fulfil these two conditions will alwlys produce the greatest 
possible effect: but thi:; prublt-m is \·ery difficult to rcsoh•e 
1u general, not to say im 11r)ssible; it may even happen that 
in tht' physical state of things, and in respect of rbeir sim-
plicity, there can be nothing ht.tt:•r than wheels mo\·ed by 
shocks: and in this case as it i.• impossible to fulfil at once 
the t" o conditions most the more ,\·c wish to 

the fluid lose of its mo\'ement in order to attain the 
first condition, the stronger wiH be the shock; the more, on 
the contrary, we wish to moderate the shock in order to ap-
proach the second, the les-5 \Vill the fluirl lose of its 

ment. 
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rnent. ·\Vc perceive that there is a medium, by means of 
which we shall determine, if not in an absolute manner, at 
least, having regat·d to the nature of the machine, that me-
thod which will be capable of the greatest effects. 

LX. Another general which is not less impor-
tant when we wish that machines should produce the greatest 
possible effect, is, to contrive tl1e soliciting forces should 
gh'e ri:;e to Lo movement inapplical>le to the object in view. 
If my object, for example, is to rais e to a gin:n height the 
greatest quantity of water possible, whether with a pump or 
otherwise, I should contrive that the \Vater on flowing into 
the upper rec;crvoir should only Inn·c precisely as much ve-
locity as was necessary and no more, for all beyond this 
quantity would usele:;sly consume the efrort of the motive 
power. It is clear in faC[ (XLV.), that in this case this 
power would have to consum e an useles., momentt)m of ac-
tivity, and which would be equal to the half of the real 
force with \vhich the water \VOt!lcJ ha\'e arrived in the re-
servotr. 

It is not less evident, that in order to give the machines 
the gre:ttest effect possible, we should avoid or diminish, 
at least as much as possiLlc, the powers, such as 
friction, rubbing of cords, the of the air, which 
are always, in whatever (.lirectiou the machine moves, among 
the number of the forces I have called resir,ting-1(;. 

It woulcl be easy to extend these particnlar remarks, but ' 
my ohject is not to enter at present into any larger detail. 

LXf. It may be concluded, from what has been said on 
the subject of t'riction and other passive bodits, that pcr-
petualmotio!l is a thing ah:;oll1tely impossible, by only em-
ploying in order to produce it bodies which would not Lc 
solicited by any m.otri x force, and e \'Cn hcary bodies; for 

• \Ve often hear of pasri\'e forces ; l!ut where is th e di:Terence between an 
act ive and a passive force? 1 think this question h:1s never yet been an. 
swered. Now it appc:1rs to me that the of passive forces 
consists io this, that they ne\·er can become solicit forcPs, w!:atev('r may 
he the movement of the m;Jchinl', while active ca:1 act sometiml:'s in 
the quality of soliciting and so:nc:imes as forces. In this view, 
ohstaclcs and fixed poiuts arc I'Vidcndy pas5ive forces, they cau neither 

as soliciting 11ur a• r.::,is:iug forces (XXXI). 
these 
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these passi\'e forces from which nothtng can be subtracted 
be'ing always resisting, it is evident that the movement mnst 
contindally slacken: and from ''bat we have said (XLV.), 
we see that if bodies are not solicited by any matrix force, 
the amount of the active forces will be reuucetl to nothing; 
i. e. the machine wiiiiH: reduced to a state of when 
the momentum of activity, produced by the friction since 
the commencement of the motion, will have become equal 
to half the amount of the initial active fot-ccs : and it the 
bodies are heavy, the lll(ltion will finish \vhen the ntomen-
tum produced by the frictions shall be equal to half the 
amount of the initial active forces, pills the half of the ac-
tive force which would take place if all the points of the 
system had one common velocity, equal to that is 
owing to the height of the point where the centre ot gravity 
was at tl!e first instant of the motion, abo,'e the lowest point 
to which it can descend: this is evident from (XUI). 

It is easy to apply the same reasoning to the case of springs, 
and in general to all cases in which the friction being sub-
tracted, the soliciting forces are obliged, in orcler to make 
the machine pass from one position to an·nther, to exercise 
a momentum of activity as great as that which is produced 
by the resisting forces when the machine returns from 
last position to tlte former. 

The motion would end much sooner if some percu::;sion 
took place, sinc·e the Stlln of the active forces is always di-
minished in such ca'>es (XXI II). 

Jt is therefore evident, that we ought entirely to despair 
of producing wh;tl is called a perpetual motion, if it be true 
that all the moving powers which exist in are no-
thing else than attrac\ions, and that this force, as it should 
sco1l, has a general property, th:1t of being always the sallle 
at equal distances between given bodi es, i. e. of being a 
fuuction which only varies in cases where the di.,tance of 

bodies itself varies. 
LXII. One general observation resulting from all that has 

hecn <;aid, is, that the kind of quantity to\\ hich I have given 
the name of momentum qf actiz·ity, performs a \Try conspi-
cuous part in the theory of machines in a state of motion; 

for 
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for it is in generai this quantity which we must reconomize 
as much as possible-, in order to draw all the effect we can 
from one aQent. 

If it be to raise a weight, water for example, to 
a given height; yot'L \viii be able to raise more in a givett 
time, not from having exhausted a greater qnantity of power, 
but in proportion as you have exercised a greater momentum 
of activity (XLIV). 

If it be required to t11rn a mill, either by water, or wind, 
or animals, it is not necessary that the shock of the water, 
the wind, or the effort of the animal be greater; but these 
agents should be made to consume the greatest momentum 
of activity possible. 

If we wish to make a vacuum in the air in any way what-
ever, we must, in order. to succeed, consume a momentum rif 
activity as great as that which would be necessary for raising 
to the height of 30 feet a volume of water equal to the 
vacuum which we wish to produce. 

If it be a vacuum in an indefinite mass of water like the 
sea, we must consume the same momentum rif activity as if 
the sea were a vacuum; as if the vacuum which we wish to 
make were a volume of sea water, ari'd as if we must ratse 
this volume to the height of the level of the sea. 

If it be required to produce a vacuum in 3. vessel of a 
gi\·cn figure, it is evident that we cannot succeed without 
causing to ascend the centre of gravity of the total mass of 
the fluid in a quantity determined by the figure of the vessel; 
we must therefore consqme a momentum of activity cqtnl to 
that which would be necessary to raise all the water in the 
vessel in a quantity equal to that from which the centre of 
gravity of the fluid must ascend. 

In a machine at rest, where there is no other force to 
overcome except the vis ine1·tia> of the bodies, if\\ c wish 
produce any by insensible degrees, the momentum 
oJ activity which we have to coasume will be equal to half 
the amount of the active forces we wish to produce ; and if 
it be merely r('qnired to cha11gc the nHl\·ement it has already, 
tbe momentum of acth·ity to be produced will only be the 
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quantity in \vhich this half amount will be inrreased by the 
change (XLV). 

Finally, supposing we have any system of bodies, that 
these bodies attract each other, on account of any func- , 
tion of their distances; even if we ple3se, that 
this law is not the same with respect to all the parts of the 
system, i. e. that this attraction follows any law we please, 
{providing that, between two given bodies, it only varies 
when the distance or these bodies in itself varies,) and it be 
required to make the system pass from any given position 
to another: this being done, w)1atc\'er be the path that 
wish each of the bodies to take, in urder to attain this ob-
ject, whether we put all these b0dies in motion at once, or 
the nne after the other, whether we conduct them from one 
-place to another by a rectilinear or curvilinear motion, and 
varied in any manner (providing no shock nor rapid change 
occur); lastly, whether we employ any ·kind of machines 
whatever, even by a spring, providing that in this case we 
1.1ltimately the springs in the same state of tension 
in which they were at the first moment, the momentum of 
activity which they will have to consume, in order to pro-
duce this effect, the external agents employed to move this 
system, will always he 1hc same, supposing the system to be 
at rest at the first instant of the and at the last 
also. 

And if, besicles all this, it be necessary to produce in the 
system any given movement, or if it be already in motion at 
the first moment; and if it be requisite to modify or change 
this mo,·ement, the momentum of which the exter-
nal agents will have to consume will be equal to that which 
it would be necessary to consume if it were merely requisite 
to change the position of the system, without impressing 
any motion npon it (i. e. considered as at re.:;t at the first 
and last instants,) plus the half of the quantity by which 
we must augment the sum of the active forces. 

It is of very little import:mce therefore, as to the expen-
diture or momentum cif activity to be consumed, that the 
forces employed arc great or small, that they employ such 
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such or that they act simultaneously or not : 
this momentum of activity is always equal to the! produce of 
a certain force, by a \'elocity, and by a time, or the sum of 
several products of this nature; and this sum should always 
be the same, in whatever way we take it: the agents there-
fore. will gain nothing on the one hand, which they do not_: 
lose on the other. 

To conchide, let us suppo3e that in general we have any; 
system of animated bud.ies, of any motrix forces, and that 
)'jeveral external agents, such as men or animals, are em-
ployed to move this system in \'arious and different ways, 
either by themselves ur by machines:-This being granted, 

/Vhatever be the clzange occasioned in the system, the mo-
mentum of activity C07l::fUIJu:d during any by the ex-
tt:rnal powers, will be alll'ays equal to ihe half uf the quan-
tity by wlzic!L the sum of the active forces wilt lwve augment-
ed during this time, in tlze system of bodies to wlliclz they are 
applied: minus the ludf of the quantity by which this same 
sum of active forces would have augmented, if each if the 
bodies n·erefree.ly movedupon the curviJ it has described, sup 
posing that it lzad tlzen undergone at each point of this cun•e 
the same matrix force as tlzat which it 1·eally undergoes: 
providing always that the motion changes by .insensible de-
grees, and that if we employ machines with springs, we 
leave these springs in the same state of tensi<;>n in which we 
found them. . (To continued.) 

LIV. l'llemoirs of the late Er.AsMus DARWIN, JJ{. Jj, 
[Continued from vol. xxx. p. 115,] 
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AVIl'G laboured under -a severe illness, the author of this 
memoir must apologize for so long delaying the continuation 
of the remarkable medical opinion:i of the great Dr. Darwin, 
whose power'> of mind, fully bent upon one import.aut s':lb-
ject, n:tmely he1lth, and the causes of disease, aJld the re• 
medies to be appiied, with the rationale of -:ach;·cannot fail 
to int.erest the philosophic world. 
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