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INTRODUCTION.

Nearly seventeen years ago I translated for the Philosophical

Magazine the first of this series of Memoirs, by Professor

Clausius, on the Mechanical Theory of Heat. A short time

afterwards the Essay of Professor Helmholtz, Ueber die Erhal-

tung der Kraft, was placed in my hands : I translated it, and

had it published in the continuation of 'Taylor's Scientific

Memoirs.' It wa3 thus my fortune to introduce to the sci

entific public of England the earliest writings of two of the

most celebrated contributors to the great theory in question.

For many years subsequent to the period here referred to, I

was careful to translate, or to have translated, every paper

published by these two writers; and the fact that the fol

lowing series of these Memoirs is thought worthy of being

presented in a collected form to the English public, proves

that I did not overestimate their importance. I have been

asked by its publisher to write a line or two of introduction

to the present volume. This I could not refuse to do, though

I feel how superfluous it must be ; for the name and fame of

Professor Clausius stand as high in this country as in his own.

My Introduction therefore shall be confined to this brief

statement of my relationship to his writings. They fell into

my hands at a time when I knew but little of the Mechanical

Theory of Heat. In those days their author was my teacher ;

and in many respects I am proud to acknowledge him as

my teacher still.

John Tyndall.

London, May 1867.
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AUTHOR'S PREFACE.

It has been repeatedly represented to me (and from very dif

ferent quarters) that the memoirs on the Mechanical Theory of

Heat which, since the year 1850, 1 have published from time to

time, principally in Poggendorff's Annalen, are not easily acces

sible to all who wish to read them, the interest taken in the

Mechanical Theory of Heat having in recent times greatly

augmented in circles where physical Journals are not usually

found. Accordingly I have thought it advisable to collect and

republish those Memoirs. In so doing I have also sought to

remedy certain defects which have hitherto diminished their

utility.

My memoirs " On the Mechanical Theory of Heat " are of

different kinds. Some are devoted to the development of the

general theory and to the application thereof to those properties

of bodies which are usually treated of in the doctrine of heat.

Others have reference to the application of the mechanical

theory of heat to electricity. The latter contain many exposi

tions peculiar to the doctrine of electricity, and they form a

separate group, the study of which is not requisite for under

standing the former. Other memoirs, again, have reference to

the conceptions I have formed of the molecular motions which

we call heat. These conceptions, however, have no necessary

connexion with the general theory, the latter being based solely

on certain principles which may be accepted without adopting

any particular view as to the nature of molecular motions. I

have therefore kept the consideration of molecular motions

quite distinct from the exposition of the general theory.
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The memoirs constituting these three different groups did

not, however, appear exactly in their present order; partly

in consequence of the direction of my own studies, and partly

for other reasons, I found it desirable to pass during their

publication from one group to another. Hence has arisen the

disadvantage that a reader desirous of becoming acquainted

only with the theory, freed as much as possible from hypotheses,

cannot know in advance which memoirs are requisite, and which

are unnecessary for his purpose. This disadvantage is remedied

in the present reprint by simply separating the memoirs into

groups, as above explained.

The present collection contains the memoirs which belong to

the first group ; in them the mechanical theory of heat is deve

loped from certain simple axiomatic principles, and is applied to

a series of phenomena depending upon heat. I have also in

cluded the application of the theory to steam-engines, because

this application may be conveniently associated with the ex

positions occurring in these memoirs, and especially with those

which have reference to vapours*.

The memoirs which treat of the application to electricity, and

those which relate to my conceptions of molecular motions, I

intend subsequently to collect in like manner. The memoirs

contained in this collection, however, are quite independent

of the others, and form in themselves a complete and con

nected whole.

Another disadvantage which, as I frequently found, dimi

nished the usefulness of my memoirs, arose from the fact that

many passages therein were with difficulty understood. The

mechanical theory of heat has introduced new ideas into science,

differing from the earlier accepted views, and accordingly re

quiring special mathematical treatment. An instance of this,

especially worthy of mention, is a certain kind of differential

equations which I have used in my researches, and which differ

from the ordinary ones in one essential point : misconception

* [The ninth memoir of the present edition having been published in Ger

many subsequent to the appearance there of the First Part of the Collected

Memoirs, was not included therein. It is now published for the first time

in English ; and, at the Author's suggestion, its appropriate place in the entire

series of Memoirs is here assigned to it.—T. A. H.]
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might easily arise if this difference were not sufficiently observed.

The signification of, and the mode of treating these differential

equations have, indeed, long been known to mathematicians

through the researches of Monge ; but, from the fact that an

energetic attack on my theory originated in a misconception of

the true nature of these equations, it would appear that they have

not been sufficiently well studied. In order to avoid similar

misunderstandings in future, I gave at the time a more detailed

explanation of the subject ; as this, however, was not published

in PoggendorfPs Annalen, in which my other memoirs appeared,

but in Dingler's Polytechnic Journal (which contained that

attack), it may possibly have been seen by few of my readers.

In order, once for all, to remove any difficulty of this nature,

the present collection is preceded by a mathematical intro

duction, in which the treatment of the differential equations in

question is discussed in a manner similar to that adopted

in Dingler's Journal. I have also in many places added notes

and appendices, in order to elucidate passages in the text.

The memoirs are reprinted verbatim in their original form.

The mechanical theory of heat, to the establishment and develop

ment of which these memoirs have, as I believe, essentially con

tributed, is of so great importance that it has already frequently

given rise to discussions on priority. Under these circum

stances it appeared to me advisable to allow myself no altera

tions ; for even unimportant ones, having reference solely to

modes of expression, might possibly give rise to the thought that

I intended thereby either to take credit, ultimately, for some

thing which did not appear in the original memoirs, or to sup

press something which was there inserted*.

The notes and appendices now given for the first time are

plainly recognizable as such. In order to distinguish these

notes from those which were previously published, the former

* [It is scarcely necessary to state that in the present English edition this

rule has not been adhered to. The translations of the original memoirs,

which are here reprinted from the Philosophical Magazine, were made by

different persons ; and in order to secure the necessary uniformity in termi

nology, verbal alterations were frequently requisite. All such alterations,

however, have been made with Prof. Clausius's sanction, to whom the proofs

have all been submitted for revision.—T. A. IL]
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are enclosed in square brackets ; and to every note containing

more than a mere reference is added the date. To the appen

dices also dates have been affixed.

Should apparently superfluous repetitions be here and there

detected, it must be remembered that the memoirs were published

at different times during the course of fourteen years, and that

often, between two memoirs which directly follow each other in

this edition, I had published several others bearing upon different

subjects. It was necessary in such cases to recapitulate such

portions of the antecedent memoirs as were deemed essential to

the comprehension of the new one, or requisite for bringing the

reader into the proper train of thought.

R, Clausius.

Zurich, August 1864.
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ON THE

MECHANICAL THEORY OF HEAT.

MATHEMATICAL INTRODUCTION.

ON "rtlE TREATMENT OF DIFFERENTIAL EQUATIONS WHICH ARE

NOT DIRECTLY INTEGRABLE*.

1. A differential equation of the form

dz=<p(x,y) dx + yfr {x,y) dy (1)

being given, we may, for brevity, introduce the letters M and

N as representatives of the arbitrary functions <f> (x, y) and

yfr(x,y) of the variables x and y, and thus write that equation in

the somewhat more convenient form

dz=Mdx+ l>ldy (la)

This equation indicates by how much the magnitude z is in

creased, when x and y receive the infinitesimal increments re

presented by dx and dy ; a decrement being here, of course, con

sidered as a negative increment. The above two functions, by

which- the differentials dx and dy are multiplied, represent the

partial differential coefficients of z according to x and to y. De

noting, therefore, these partial differential coefficients by the

fractional forms ^ and we may write
dx dy'

^£=i/r(*,y)=N.

(2)

* The principal part of this introduction is contained in a note, published

by me, in Dingler-s Polytechnisches Journal, vol. cl. p. 29 (1858).
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This representation of partial differential coefficients by the

simple fractions -j-> -=- is, in a certain sense, objectionable. For

if in the equation (1) or (la) we substitute these fractions for the

functions in question, the equation

, dz , dz ,
dz=Txdx + Tydy (3)

is obtained, in which the same symbol dz appears three times

with three different meanings. On the right of the equation dz

denotes, first, the increment of z when, y remaining constant, x

alone is increased by dx ; and secondly, the increment received by

z when, without changing x, y is increased by dy ; whilst on the

left of the equation dz represents the total increment of z due to

the simultaneous reception by x and y of the increments dx and

dy, respectively. This diversity in the interpretation of one and

the same symbol, arising from the different combinations into

which it enters, vitiates the expressiveness of the equation.

In consequence of this, various changes in the notation of

partial differential coefficients have been proposed. In order to

distinguish the partial differential coefficients from others, Euler

enclosed the above simple fractions in brackets, and his method

is still frequently adopted. In this notation the equation (3) as

sumes the form

*-©*+©+ <3')

Other mathematicians give, as a suffix to the symbol d in the

numerators of the above fractions, the variable to whose varia

tion the differential coefficient is due ; in this notation the equa

tion would be written thus :

dz=d^dx+d£dy (3b)

dx dy

Others again, following the example of Jacobi, use the symbol d

in place of d in the numerator as well as in the denominator of

the fraction which represents a partial differential coefficient. In

this manner our equation acquires the form

dzJ^-dx +^dy (3°)

ox ay

Of these three notations that of (3b), wherein suffixes are em
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ployed, is perhaps the most rational ; for it is precisely the nume

rators of the representative fractions which admit of different in

terpretations, and the latter are clearly and unequivocally ex

pressed by means of these suffixes. Nevertheless the incessant

addition of a suffix constitutes an inconvenience, which, though

trivial in individual cases, becomes much graver when partial dif

ferential coefficients are frequently employed. It must also be

observed that, in the cases which most frequently occur, the ori

ginal and most convenient notation gives rise to no ambiguity.

For when* and y denote two mutually independent variables upon

whose values that of z depends, it is manifest that the dz in the

dz
numerator of the fraction —- cannot be understood to denote

dx

other than that increment of z which is due to the increment dx

of the variable x which appears in the denominator. Any altera

tion which may simultaneously take place in the value of the

other variable y must, together with the consequent variation

of z, be perfectly independent of the differential dx, so that the

dz
fraction .=- would have no definite meaning whatever were the

above variation of z included in that of which dz is here the

symbol. It is consequently of little importance whether, in the

representation of partial differential coefficients, we give prefer-

dz dz
ence to the ordinary fractional forms -j- > -j- > or, for the sake of

greater clearness, to one of the above described modified forms

of notation.

In one case only is it necessary to have recourse to a distinc

tive symbol in order to avoid misconception. It sometimes

happens, for instance, that the magnitudes x and y, upon whose

values that of z depends, are not independent of each other, but

that the value of one is affected by that of the other ; in other

words, that the former may be regarded as a function of the latter.

If y, for example, be considered as a function of x, then, in the

event of x increasing by dx, the simultaneous increment dy

of y cannot be regarded as arbitrary, but must be treated as a

magnitude whose value is also determined by the differential dx,

dix

and capable of representation by the expression -. - dx. By sub-

is 2
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stitution, the differential equation (3) would now take the form

dx ay ax

Dividing throughout by dx we obtain an equation which, if

we also denote the quotient on the left by a simple fraction,

would read thus :

dz_dz dz dy .

dx~ dx dy dx-

dz
here, however, the fraction ^- on the left has a very different

meaning from that of the like fraction on the right.

In such cases the two fractions must in some way or other be

distinguished. To do so, we may either employ, for the partial

differential coefficients on the right, one of the three notations

above described, or we may employ a different symbol for the

fraction on the left. For the last purpose, mathematical authors

dz
have proposed to write, in place of -3-,

1 , d(z) dz
either -j- dz, or —r2-, or

ax dx dx

Since cases of this kind however occur, comparatively speaking,

but seldom, it is of little importance which of these methods of

notation is adopted. In fact, whenever necessary, it will be easy

to add an explanatory remark as to the meaning to be attached

to any chosen symbol.

I have thought it necessary to enter into these details con

cerning the different systems of notation now in use, because it

is precisely in investigations where familiar ideas are departed

from, that a diversity of notation is most liable to give rise to

misconceptions .

2. Returning to the differential equation

dz=Mdx+Ndy

given in (1) and (la), let us now inquire if, and how the magni

tude z can be determined therefrom.

Differential equations of this form cannot all be regarded as

of like kind ; according to the constitution of the functions M

and N they are, on the contrary, divisible into two classes which

r
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differ from each other essentially, not only with respect to the

treatment which they require, but also with reference to the

results to which they lead. To the first class belong the cases

where the functions in question satisfy the condition

dy dx' w

and the second class embraces all cases where this equation of

condition is not satisfied by the two functions.

When the equation (4) is fulfilled, the expression on the right

of the given differential equation (1) or (la) is integrable; that

is to say, it is the complete differential of a function of x and y,

in which these two variables may be regarded as independent of

each other ; and by integration an equation can be obtained of

the form

z= F(x, y) + const (5)

When the condition expressed by the equation (4) is not ful

filled, the expression on the right of the given differential equa

tion is not integrable, whence we conclude that z cannot be ex

pressed as a function of x and y so long as these variables are

regarded as independent, one of the other. In fact, if we were to

assume

z=~P{x,y),

we should have

M * rfFjft y),

ax dx

N=<fe_rfF(ar,y).

dy dy -

whence would result

dM_d*Y{x, y)

dy dxdy -

dN (PF(x, y)

dx dy dx

But since, when the two variables of a function are indepen

dent of each other, the result of differentiating, successively, ac

cording to both is not affected by the order in which these differ

entiations are effected, we have necessarily

d*F(x,y) _eP¥(x,y) .

dxdy ~ dydx '
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so that from the two preceding equations the equation (4) follows

as a consequence, and thus contradicts the hypothesis from which

we started.

In such a case, therefore, the integration is impossible on the

assumption that the variables x and y preserve their property of

mutual independence. If, on the other hand, we assume any

determinate relation whatever to exist between the two magni

tudes, in consequence of which one may be represented as a

function of the other, the integration of the given differential

equation will be thereby rendered practicable. For if we put

f(*>y)=o, (6)

where / represents any function whatever, we can by means of

this equation express either variable in terms of the other, and

then eliminate the variable thus expressed, together with its dif

ferential, from the differential equation (1) . The general form

given in the equation (6) embraces, of course, the special case,

where one of the magnitudes x, y ceases to be variable ; for then

its differential, by becoming equal to zero, at once vanishes

from the differential equation, and the magnitude itself becomes

replaced by its constant value.

Let us now suppose one of the variables, say y, together with

its differential, eliminated from the differential equation (1) by

means of the equation (6), and the former thereby reduced to

the form

dz=<S>(x)dx ;

the equation thus modified will obviously give, by integration,

another of the form

z=F{x) + const (7)

Accordingly, the two equations (6) and (7) must together be re

garded as constituting a solution of the given differential equa

tion. Since the function f(x, y) which appears in (6) is an arbi

trary one, and to every different form of this function must

correspond, in general, a different function F (x) in (7), it is

manifest that there will be an infinite number of solutions of

the kind under consideration.

The form of the equation (7) , it is to be observed, is suscepti

ble of several modifications. If, by means of the equation (6), x

had been expressed in terms of y ; and then, together with . its
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differential, eliminated from the given differential equation, the

form in question would have been

<&=<!>, (y)rfy;

from which, by integration, an equation of the form

z=Ft(y) + const (7a)

would have been obtained. Precisely the same equation would

be arrived at by substituting for x, in the result (7) obtained

by the first method, its value in y as given by the equation (6) .

Again, x might be only partially eliminated from (7) . For in

stance, the function V(x) will in general contain x in two or

more different combinations (or rather, it may be always made

to do so, by substituting for x equivalent expressions such as

(\—a)x + ax, ——-, &c. . . .), and when this is the case the value

of x expressed in y may always be substituted in some combina

tions, whilst others are allowed to remain unaltered. The equa

tion would thereby assume the form

z= ¥i(x, y) + const., (7b)

which may be regarded as the more general one, embracing both

the other forms as special cases.

It is obvious, however, that the three equations (7) , (7a) , and

(7b), each of which only holds in combination with (6), do not

constitute different solutions, but merely different expressions of

one and the same solution.

3. In order clearly to appreciate the essential difference

between the cases when the given differential equation belongs

to the first, and when it belongs,to the second class,—that is to

say, when the condition (4) is, and when it is not fulfilled,—we

will consider an example which, partly by its relation to an

already well-known subject, and partly also by its susceptibility

of geometrical representation, is well suited to furnish a clear

conception of the matter.

Conceive a moveable point p in a fixed plane, and let its posi

tion at any stated moment be determined by rectangular coor

dinates x and y. Acting on the point, and tending to move it

in the plane, is a force whose intensity and direction are different

at different parts of the plane. Required the work done by this

force when the point moves under its influence.
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Let ds be an element of the path described by the point, S the

component of the force acting thereon which falls in the direction

of this path, and dW the element of work performed by the force

during this small motion. This last element will be determined

by the equation

dW=Sds, (8)

to which, however, another form may be given more convenient

for our present purpose. Let P be the whole force acting in the

immediate neighbourhood of the arc-element ds, and the angle

between this element and the direction of that force. Then, ob

viously,

S = cos <f> .P,

so that

<AV=cos£.P<fe (9)

Now if X and Y denote the two components of the force P in the

directions of the coordinate axes, the cosines of the angles between

these directions and that of P will be expressed by

X A Y
p and p-

Moreover, if by dx and dy we understand the increments which

bhe x and y of the point p receive when the latter describes the

arc-element ds, the cosines of the angles between the direction

of this element and those of the coordinate axes will be expressed

by

dx . dy
-r- and -f-
ds ds

Hence for the cosine of the angle <f> between the force P and the

arc-element ds we have the expression

, X dx , Y dy
C°s*=V-Ts+ tIs

which, when substituted in (9), gives the equation

dW=Xdx+ Ydy (10)

This is a differential equation of the same form as those given

in (1) and (1°), the notation alone being a little changed.

Instead of z the letter W is used, as more appropriate for the

representation of work ; and M and N, which before were abbre

viated symbols for the functions <p(x, y) and yjr(x, y), are now

replaced by X and Y, the customary representatives of the com
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ponents of the force P, and are again abbreviations for arbitrary

functions of the coordinates x and y ; for, as already remarked,

the force P varies in intensity and direction, according to some

arbitrary law, with the position which the moveable pointp, upon

which it acts, occupies in the plane.

Before proceeding, by the integration of this equation, to de

duce the work corresponding to any finite motion, the question

arises : does it satisfy the condition

dX_dY

dy ~ dx

analogous to the equation (4) ? Should it do so, we may de

duce at once an equation of the form

W=F(x,y)+ const.; (11)

but if it should not satisfy this condition, then in order to be able

to integrate, we must first assume a relation to exist between the

variables x and y ; so that finally we shall obtain a system of

equations of the form

f{x,y)=Q, \

W= F(«, y)+const.J {l*>

4. The geometrical signification of these two different results

is easily recognized.

Suppose the point p to move from a given initial position

xo> Vo to a given nnal one a?„ yv Then in the first case the

work done by the acting force during this motion may be at once

ascertained without the necessity of inquiring into the nature of

the path thereby described. This work, in fact, is expressed by

the difference

yi)-F(*o, Vo)-

Although the point, therefore, may pursue very different paths

when moving from one position to another, the quantity of work

thereby performed by the acting force, being independent of the

path, is perfectly determined so soon as the starting-point and

the terminus are given.

In the second case it is otherwise. Of the two equations (12),

which have reference thereto, the first is arbitrary, and the

second can only be determined when the first is given, since the

form of the function V(x, y) varies obviously with that which is
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given to the functionf(x, y) . The first equation is that of some

curve, so that the above relation may be expressed, geometri

cally, by saying, in the present case, the work done by the acting

force during the motion of the point p can only be determined

when the whole course- of the curve on which it moves is known.

The initial and final points of the motion being previously known,

the first of the above equations must be chosen so that the curve

thereby represented may pass through these two points ; this

curve, however, may have an infinity of different forms to which,

notwithstanding the coincidence of the extremities, will corre

spond an infinity of different quantities of work.

If, for instance, the point p be compelled to describe a closed

curve, and thus to return to its initial position, the coordinates

xv yl being respectively equal to x0, y0, the total work done, in

the first case, will be zero ; in the second, however, it need not

be so, but may have any positive or negative value whatever.

The example here borrowed from analytical mechanics shows

also veryclearlyhow a magnitude which is incapable of expression

as a function of x and y (so long as the latter are regarded as

variables independent of each other) may still have, for partial

differential coefficients according to x and y, determinate func

tions of these variables. For it is manifest that, strictly speak

ing, the components X and Y must be termed the partial differ

ential coefficients, according to x and y, of the work W ; since,

when x increases by dx, y remaining constant, the work increases

by X<fe ; and when y increases by dy, x remaining unaltered, the

work augments by Ydy. Now whether W be a magnitude ge

nerally expressible as a function of x and y, or whether it can

only be determined on knowing the path described by the point,

we may always employ the ordinary notation for the partial dif

ferential coefficients of W, and write,

5. When the functions <f> (x, y) and i/r (x, y) , or M and N, which

occur in the differential equation (1) or (la), fail to satisfy the

condition (4), it has been shown that the integration may be

dW

dx

dW

dy

(13)
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effected by assuming a relation to exist between the variables x

and y of the form

/(*,y)=o.

The same object is achieved in a more general manner, however,

by assuming the existence of an equation, not merely between x

and y, but involving all the variables x, y, z, or rather any one or

more of them, and therefore expressible in the form

f(x,y,z)=0 (14)

If by means of this equation one of the variables be eliminated

from the given differential equation, another differential equation

will be obtained which may always be integrated.

Indeed in order to exhaust all possible cases of complete dif

ferential equations of the first order in three variables, still fur

ther extensions of the above considerations would be necessary.

The differential equation (1) is itself a limited form of the kind

in question, inasmuch as functions of all three variables, in

stead of the two variables x, y, might therein present themselves.

When the differential equation has this more general form, which

may be thus written :

<f>(x,y,z)dx + ylr(x,y,z)dy + x(x,y,z)dz=0, . (15)

the condition to be satisfied in order that integration may be

possible without the assumption of any further relation between

the variables, assumes a more complicated form than that given

in (4) . It should, moreover, be observed that in the case of the

non-fulfilment ofthis condition, and the consequent impossibility

of actual integration, the relation which must be assumed, or

be involved in some imposed condition, in order to be able to inte

grate, need not have the form of a primitive, but may itself be

a differential equation. In the treatment of the equations, too,

as well as in the manner of expressing the result, many modifi

cations may present themselves.

It is not necessary, however, to enter here into all these ex

tensions, since the preceding exposition will suffice to render in

telligible the equations hereafter to be developed, as well as the

operations to which such equations will be subjected.

6. I may mention, lastly, that the preceding considerations,

relative to complete differential equations involving three varia

bles, may be extended in a similar manner to complete differen
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tial equations in four or more variables, and that amongst the

latter we are thereby led to the detection of corresponding dif

ferences. In illustration of this I will give but one simple spe

cial case, well known in mechanics, and closely related to the

example already considered.

Let p be a moveable point in space whose rectanglar coordi

nates at any particular moment are x, y, z. Conceive a force P

to act on this point with an intensity and in a direction which

may be different at different places in space. I propose to de

termine the quantity of work done by the force during any as

signed motion.

Let ds be an element of the path described by the point, and

<f> the angle at which this path is inclined to the direction of the

force. The element of work dW will be again given by the

equation

dW= cos $. Yds.

In order to give another form to this expression, we may denote

by X, Y, Z, the three components of P in the directions of the,

coordinate axes ; in which case the fractions

X Y Z

P' P' P'

will represent the cosines of the angles which the direction of the

force makes with the directions of the three coordinate axes. If,

further, dx, dy, dz be the increments of the coordinates x, y, z, due

to the description of the path-element ds, the cosines of the angle

between the element ds, and the three coordinate axes will be

expressed, respectively, by

dx dy dz

ds ds ds

Hence is deduced, for the cosine of the angle <f> between the

directions of the path and the force, the value

cosd>=^.^+X.^+?A
v P ds P ds P ds

Substituting this value in the above expression for dW, we have

the differential equation

dW=Xdx+Ydy + Zdz (16)

for the determination of the work. The magnitudes X, Y, Z
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which here present themselves are perfectly arbitrary functions

of x,y,z ; for whatever values .these three components may have

at different points in space, a force P always results therefrom.

In treating this equation the following three conditions at once

enter into consideration :

dX_dY dY_dZ dZ=dX . a?)

dy dx' dz dy- dx dz '

and the question arises whether or not the functions X, Y, Z

fulfil them.

When the three equations of condition are satisfied, the ex

pression on the right of (16) is the complete differential of a func

tion of x, y, z, wherein these three variables may be regarded as

mutually independent. The integration therefore may be at once

effected, and an equation thereby obtained of the form

W=F{x, y, z) + const (18)

If we now conceive the pointy to move from a given initial

point x0, y0, z0to a given terminal point xv yv zv the work done

- by the force during the passage will be represented by the dif

ference

F(#,,y,,*i)-5>0,y0,2r0).

This work, therefore, is completely determined by the positions

of the extreme points between which motion has occurred, and

hence it follows that the work done by the force is always the

same whatever path may have been followed in passing from the

one position to the other.

When the three conditions (17) are not fulfilled, the integra

tion cannot be performed with the same generality. The inte

gration will be rendered possible, however, so soon as the path

pursued by the moving pointy is known. If between the ex

treme points we conceive several curves to be drawn, and the

point p compelled to move thereon, we shall obtain a definite

amount of work corresponding to each curve, but these quanti

ties of work, need not, as in the previous case, be equal to one

another ; in fact they will, in general, have different values.



1 1. FIRST MKMOTR.

FIRST MEMOIR.

ON THE MOVING FORCE OF HEAT AND THE LAWS OF HEAT WHICH

MAY BE DEDUCED THEREFROM*.

The steam-engine having furnished us with a means of con

verting heat into a motive power, and our thoughts being

thereby led to regard a certain quantity of work as an equivalent

for the amount of heat expended in its production, the idea of

establishing theoretically some fixed relation between a quantity

of heat and the quantity of work which it can possibly produce,

from which relation conclusions regarding the nature of heat

itself might be deduced, naturally presents itself. Already, in

deed, have many successful efforts been made with this view ;

I believe, however, that they have not exhausted the subject,

but that, on the contrary, it merits the continued attention

of physicists ; partly because weighty objections lie in the way

of the conclusions already drawn, and partly because other con

clusions, which might render efficient aid towards establishing

and completing the theory of heat, remain either entirely unno

ticed} or have not as yet found sufficiently distinct expression.

The most important investigation in connexion with this sub

ject is that of S. Carnot f.

Later still, the ideas of this author have been represented

analytically in a very able manner by Clapeyron J.

Carnot proves that whenever work is produced by heat and a

* Communicated in the Academy of Berlin, Feb. 1850, published in Pog-

gendorfFs Annalen, March-April 1850, vol. lxxix. pp. 368, 500, and trans

lated in the Philosophical Magazine, July 1851, vol. ii. pp. 1, 102.

t Reflexiom stir la puissance motrice du feu, et sur les machines propres a de-

velopper cette puissance, par S. Carnot. Paris, 1824. I have not been able to

procure a copy of this work ; I know it solely through the writings of Clapey-

ron and Thomson, from which latter are taken the passages hereafter cited.

[At a later date I had an opportunity of studying the work itself, and of thus

confirming the views, regarding its contents, which I had previously formed

from a perusal of the writings referred to.—1864.]

\ Journal de l-Ecole Polytechnique, vol. xiv. 18.-i4 ; Pogg. Ann. vol. lix. ;

and Taylor-s Scientific Memoirs, Part III. p. 347.



MOVING FORCE OF HEAT. 15

permanent alteration of the body in action does not at the same

time take place, a certain quantity of heat passes from a warm

body to a cold one ; for example, the vapour which is generated

in the boiler of a steam-engine, and passes thence to the con

denser where it is precipitated, carries heat from the fireplace to

the condenser. This transmission Carnot regards as the change

of heat corresponding to the work produced. He says expressly,

that no heat is lost in the process, that the quantity remains un

changed ; and he adds, " This is a fact which has never been dis

puted ; it is first assumed without investigation, and then con

firmed by various calorimetric experiments. To deny it, would

be to reject the entire theory of heat, of which it forms the

principal foundation."

I am not, however, sure that the assertion, that in the pro

duction of work a loss of heat never occurs, is sufficiently esta

blished by experiment. Perhaps the contrary might be asserted

with greater justice ; that although no such loss may have been

directly proved, still other facts render it exceedingly probable

that a loss occurs. If we assume that heat, like matter, cannot

be lessened in quantity, we must also assume that it cannot be

increased ; but it is almost impossible to explain the ascension

of temperature brought about by friction otherwise than by

assuming an actual increase of heat. The careful experiments

of Joule, who developed heat in various ways by the application

of mechanical force, establish almost to a certainty, not only the

possibility of increasing the quantity of heat, but also the fact

that the newly-produced heat is proportional to the work ex

pended in its production. It may be remarked further, that

many facts have lately transpired which tend to overthrow the

hypothesis that heat is itself a body, and to prove that it con

sists in a motion of the ultimate particles of bodies. If this be

so, the general principles of mechanics may be applied to heat ;

this motion may be converted into work, the loss of vis viva in

each particular case being proportional to the quantity of work

produced.

These circumstances, of which Carnot was also well aware, and

the importance of which he expressly admitted, pressingly de -

mand a comparison between heat and work, to be undertaken

with reference to the divergent assumption that the production
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of work is not only due to an alteration in the distribution of

heat, but to an actual consumption thereof; and inversely, that

by the expenditure of work heat may be produced.

In a recent memoir by Holtzmann*, it seemed at first as if

the author intended to regard the subject from this latter point

of view. He says (p. 7) , " the effect of the heat which has been

communicated to the gas is either an increase of temperature

combined with an increase of elasticity, or a mechanical work,

or a combination of both ; a mechanical work being the equiva

lent for an increase of temperature. Heat can only be measured

by its effects ; and of the two effects mentioned, mechanical

work is peculiarly applicable here, and shall therefore be chosen

as a standard in the following investigation. I name a unit of

heat, the quantity which, on being communicated to any gas, is

able to produce the quantity of work a ; or to speak more defi

nitely, which is able to raise a kilogrammes to a height of one

metre." Afterwards, at page 12, he determines the numerical

value of the constant a, according to the method of Meyerf, and

obtains a number which exactly corresponds to that obtained in

a totally different manner by Joule. In carrying out the theory,

however, that is, in developing the equations by means of which

his conclusions are arrived at, he proceeds in a manner similar

to Clapeyron, so that the assumption that the quantity of heat is

constant is still tacitly retained.

The difference between the two ways of regarding the subject

has been seized with much greater clearness by W. Thomson,

who has applied the recent investigations of Regnault, on the

tension and latent heat of steam, to the completing of the memoir

of CarnotJ. Thomson mentions distinctly the obstacles which lie

in the way of an unconditional acceptance of Carnot's theory,

referring particularly to the investigations of Joule, and dwelling

on one principal objection to which the theory is liable. If it be

even granted that the production of work, where the body in

action remains in the same state after the production as before,

* Ueber die Wftrme und Elasticitdt der Gate und Dampfe, von C. Holtz

mann. Manheim, 1845. Also Poggendorff's Annalen, vol. lxxii. a ; and Tay

lor's Scientific Memoirs, Part XIV. p. 189

t Ann. der Chem. und Phartn., vol. xlii. p. 239.

| Transactions of the Royal Society of Edinburgh, vol. xvi.
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is in all cases accompanied by a transmission of heat from a warm

body to a cold one, it does not follow that by every such trans

mission work is produced, for the heat may be carried over by

simple conduction ; and in all such cases, if the transmission

alone were the true equivalent of the work performed, an abso

lute loss of mechanical force must take place in nature, which is

hardly conceivable. Notwithstanding this, however, he arrives

at the conclusion, that in the present state of science the prin

ciple assumed by Carnot is the most probable foundation for an

investigation on the moving force of heat. He says, " If we

forsake this principle, we stumble immediately on innumerable

pther difficulties, which, without further experimental investiga

tions, and an entirely new erection of the theory of heat, are

altogether insurmountable."

I believe, nevertheless, that we ought not to suffer ourselves

to be daunted by these difficulties ; but that, on the contrary, we

must look steadfastly into this theory which calls heat a motion,

as in this way alone can we arrive at the means of establishing

it or refuting it. Besides this, I da not imagine that the diffi

culties are so great as Thomson considers them to be; for

although a certain alteration in our way of regarding the subject

is necessary, still I find that this is in no case contradicted by

proved facts. It is not even requisite to cast the theory of

Carnot overboard ; a thing difficult to be resolved upon, inas

much as experience to a certain extent has shown a surprising

coincidence therewith.- On a nearer view of the case, we find

that the new theory is opposed, not to the real fundamental

principle of Carnot, but to the addition "no heat is lost ;" for it

is quite possible that in the production of work both may take

place at the same time ; a certain portion of heat may be con

sumed, and a further portion transmitted from a warm body to

a cold one ; and both portions may stand in a certain definite

relation to the quantity of work produced. This will be made

plainer as we proceed ; and it will be moreover shown, that the

inferences to be drawn from both assumptions may not only exist

together, but that they mutually support each other.
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I. Deductions from the principle of the equivalence of heat and

work.

We shall forbear entering at present on the nature of the mo

tion which may be supposed to exist within a body, and shall

assume generally that a motion of the particles does exist, and

that heat is the measure of their vis viva. Or yet more generally,

we shall merely lay down one maxim which is founded on the

above assumption :—

In all cases where work is produced by heat, a quantity of heat

proportional to the work done is consumed ; and inversely, by the

expenditure of a like quantity of work, the same amount of heat

may be produced.

Before passing on to the mathematical treatment of this maxim,

a few of its more immediate consequences may be noticed, which

have an influence on our entire notions as to heat, and which are

capable of being understood, without entering upon the more

definite proofs by calculation which are introduced further on.

We often hear of the total heat of bodies, and of gases and

vapours in particular, this term being meant to express the sum

of the sensible and latent heat. It is assumed that this depends

solely upon the present condition of the body under considera

tion; so that when all other physical properties thereof, its

temperature, density, &c. are known, the total quantity of heat

which the body contains may also be accurately determined*.

According to the above maxim, however, this assumption cannot

be admitted. If a body in a certain state, for instance a quan

tity of gas at the temperature t0 and volume v0, be subjected to

various alterations as regards temperature and volume, and

brought at the conclusion into its original state, the sum of its

sensible and latent heats must, according to the above assump

tion, be the same as before ; hence, if during any portion of the

process heat be communicated from without, the quantity thus

received must be given off again during some other portion of

* [The above may perhaps be more clearly expressed thus :—By total heat

was formerly meant the total quantity of heat which must be imparted to a

body in order, from any given initial condition, to bring it to any other, and

it was thereby implied that, the initial condition being known, the quan

tity of heat in question is completely determined by the present condition of

the body, no matter in what manner the body may have been brought to this

condition.—1864.]
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the process. With every alteration of volume, however, a cer

tain quantity of work is either produced or expended by the gas ;

for by its expansion an outward pressure is forced back, and on

the other hand, compression can only be effected by the advance

of an outward pressure. If, therefore, alteration of volume be

among the changes which the gas has undergone, work must be

produced and expended. It is not, however, necessary that at

the conclusion, when the original condition of the gas is again

established, the entire amount ofwork produced should be exactly

equal to the amount expended, the one thus balancing the other ;

an excess of one or the other will be present if the compression

has taken place at a lower or a higher temperature than the ex

pansion, as shall be proved more strictly further on. This excess

of produced or expended work must, according to the maxim,

correspond to a proportionate excess of expended or produced

heat, and hence the amount of heat refunded by the gas cannot

be the same as that which it has received.

There is still another way of exhibiting this divergence of our

maxim from the common assumption as to the total heat of bo

dies. When a gas at t0 and v0 is to be brought to the higher

temperature tl and the greater volume «„ the quantity of heat

necessary to effect this would, according to the usual hypothesis,

be quite independent of the manner in which it is communicated.

By the above maxim, however, this quantity would be different

according as the gas is first heated at the constant volume v0 and

then permitted to expand at the constant temperature tu or first

expanded at the temperature tQ and afterwards heated to tv or

expansion and heating alternated in any other manner, or even

effected simultaneously ; for in all these cases the work done by

the gas is different.

In like manner, when a quantity of water at the temperature

t0 is to be converted into vapour of the temperature tx and the

volume «x, it will make a difference in the amount of heat ne

cessary if the water be heated first to tt and then suffered to eva

porate, or if it be suffered to evaporate by t0 and the vapour

heated afterwards to tx and brought to the volume vx ; or finally,

if the evaporation take place at any intermediate temperature.

From this and from the immediate consideration of the

maxim, we can form a notion as to the light in which latent heat

c2
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must be regarded. Referring again to the last example, we dis

tinguish in the quantity of heat imparted to the water during

the change the sensible heat and the latent heat. Only the former

of these, however, must we regard as present in the produced

steam ; the latter is, not only as its name imports, hidden from

our perceptions, but has actually no existence ; during the alte

ration it has been converted into work.

We must introduce another distinction still as regards the

heat expended. The work produced is of a twofold nature. In

the first place, a certain quantity of work is necessary to over

come the mutual attraction of the particles, and to separate them

to the distance which they occupy in a state of vapour. Secondly,

the vapour during its development must, in order to procure

room for itself, force back an outer pressure. We shall name

the former of these interior work, and the latter exterior work,

and shall distribute the latent heat also under the same two

heads.

With regard to the interior work, it can make no difference

whether the evaporation, takes place at t0 or at tv or at any other

intermediate temperature, inasmuch as the attraction of the par

ticles must be regarded as invariable*. The exterior work, on

the contrary, is regulated by the pressure, and therefore by the

temperature also. These remarks are not restricted to the ex

ample we have given, but are of general application ; and when

it was stated above, that the. quantity of heat necessary to bring

a body from one condition into another depended, not upon the

state of the body at the beginning and the end alone, but upon

the manner in which the alterations had been carried on through

out, this statement had reference to that portion only of the la

tent heat which corresponds to the exterior work. The remainder

* It must not be objected here that the cohesion of the water at tl is less

than at t0, and hence requires a less amount of work to overcome it. The

lessening of the cohesion implies a certain work performed by the warming

of the water as water, and this must be added to that produced by evapora

tion. Hence it follows, at once, that only part of the quantity of heat which

water receives from without when heated, is to be regarded as heat in the free

state, the rest being consumed in diminishing cohesion. This view is in ac

cordance with the circumstance that water has so much higher a specific heat

than ice, and probably also than steam. [The views briefly referred to in this

note will receive full consideration in a subsequent memoir.—1864.]
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of the latent heat and the entire amount of sensible heat are in

dependent of the manner in which the alteration is effected.

When the vapour of water at and vl is reconverted into

water at t0> the reverse occurs. Work is here expended, inas

much as the particles again yield to their attraction, and the

outer pressure once more advances. In this case, therefore, heat

must be produced ; and the sensible heat which here exhibits it

self does not come from any retreat in which it was previously

concealed, but is newly produced. It is not necessary that the

heat developed by this reverse process should be equal to that

consumed by the other ; that portion which corresponds to the

exterior work may be greater or less according to circumstances.

We shall now turn to the mathematical treatment of the sub

ject, confining ourselves, however, to the consideration of per

manent gases, and of vapours at their maximum density ; as be

sides possessing the greatest interest, our superior knowledge of

these recommends them as best suited to the calculus. It will,

however, be easy to see how the maxim may be applied to other

cases also.

Let a certain quantity ofpermanent gas, say a unit of weight,

be given. To determine its present condition, three quantities

are necessary ; the pressure under which it exists, its volume,

and its temperature. These quantities stand to each other in a

relation of mutual dependence, which, by a union of the laws of

Mariotte and Gay-Lussac*, is expressed in the following equa

tion :

pv=-R(a+ t), (I)

where p, v and t express the pressure, volume and temperature

of the gas in its present state, a a constant equal for all gases, and

R also a constant, which is fully expressed thus, > wherep0,

v0, and t0 express contemporaneous values of the above three

quantities for any other condition of the gas. This last constant

is therefore different for different gases, being inversely propor

tional to the specific weight of each.

It must be remarked, that Regnault has recently proved, by a

series of very careful experiments, that this law is not in all

* This shall be expressed in future briefly thus—the law of M. and G.

and the law of Mariotte alone thus—the law of M.
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strictness correct. The deviations, however, for the permanent

gases are very small, and exhibit themselves principally in those

cases where the gas admits of condensation. From this it would

seem to follow, that the more distant, as regards pressure and

temperature, a gas is from its point of condensation, the more

correct will be the law. Whilst its accuracy, therefore, for per

manent gases in their common state is so great, that in most in

vestigations it may be regarded as perfect, for every gas a limit

may be imagined, up to which the law is also perfectly true ; and

in the following pages, where the permanent gases are treated as

such, we shall assume the existence of this ideal condition*.

The value - for atmospheric air is found by the experiments

both of Magnus and Regnault to be =0003665, the tempera

ture being expressed by the centesimal scale reckoned from the

freezing-point upwards. The gases, however, as already men

tioned, not following strictly the law of M. and G., we do not

always obtain the same value for - when the experiment is re

peated under different circumstances. The number given above

is true for the case when the air is taken at a temperature of 0°

under the pressure of one atmosphere, heated to a temperature

of 100°, and the increase of expansive force observed. If, how

ever, the pressure be allowed to remain constant, and the in-

ecrease ofvolume observed, we obtain the somewhat higher value

0-003670. Further, the values increase when the experiments

are made under a pressure exceeding that of the atmosphere, and

decrease when the pressure is less. It is clear from this that

the exact value for the ideal condition, where the differences

pointed out would of course disappear, cannot be ascertained.

It is certain, however, that the number 0-003665 is not far from

the truth, especially as it very nearly agrees with the value found

for hydrogen, which, perhaps of all gases, approaches nearest the

ideal condition. Retaining, therefore, the above value for -, we

a

have a=273.

One of the quantities in equation (I), for instance^>, may be re-

* [In my later memoirs the gases relative to which the existence of this

ideal condition is assumed are termed perfect gases.—1864.]
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garded as a function of the two others ; the latter will then be the

independent variables which determine the condition of the gas*.

We will now endeavour to ascertain in what manner the quan

tities which relate to the amount of heat depend upon v and t.

When any body whatever changes its volume, the change is

always accompanied by a mechanical work produced or expended.

In most cases, however, it is impossible to determine this with

accuracy, because an unknown interior work usually goes on at

the same time with the exterior. To avoid this difficulty, Carnot

adopted the ingenious contrivance before alluded to : he allowed

the body to undergo various changes, and finally brought it into

its primitive state ; hence if by any of the changes interior work

was produced, this'was sure to be exactly nullified by some other

change ; and it was certain that the quantity of exterior work

which remained over and above was the total quantity of work

produced. Clapeyron has made this very evident by means of a

diagram : we propose following his method with permanent gases

in the first instance, introducing, however, some slight modifi

cations rendered necessary by our maxim.

In the annexed figure let oe Fig. 1.

represent the volume, and ea the

pressure of the unit-weight of

gas when the temperature is t ;

let us suppose the gas to be con

tained in an expansible bag, with

which, however, no exchange of

heat is possible. If the gas be

permitted to expand, no new heat * / 9

* [Clapeyron in hia researches generally selected v and p for his two inde

pendent variahles—a choice which accords best with the graphic represen

tation, about to be described, wherein v and p constitute the coordinates. I

have preferred, however, to consider v and t as the independent variables, and

to regard p as a function thereof ; since in the theory of heat the temperature

t is especially important, and at the same time very suitable for determination

by direct measurements, accordingly it is ordinarily regarded as a previously

known magnitude upon which depend the several other magnitudes which

there enter into consideration. For the sake of uniformity I have everywhere

abided by this choice of independent variables ; it need scarcely be remarked,

however, that occasionally the equations thus established would assume a

somewhat simpler form, if instead of v and t, v and p or t and p were intro

duced therein as independent variables.—1864.]
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being added, the temperature will fall. To avoid this, let the

gas during the expansion be brought into contact with a body A

of the temperature t, from which it shall receive heat sufficient

to preserve it constant at the same temperature. While this ex

pansion by constant temperature proceeds, the pressure decreases

according to the law of M., and may be represented by the or

dinate of a curve a b, which is a portion of an equilateral hyper

bola. When the gas has increased in volume from oe to of let

the body A be taken away, and the expansion allowed to proceed

still further without the addition of heat ; the temperature will

now sink, and the pressure consequently grow less as before.

Let the law according to which this proceeds be represented by

the curve b c. When the volume of the gas has increased from

of to o g, and its temperature is lowered from / to t, let a pressure

be commenced to bring it back to its original condition. Were

the gas left to itself, its temperature would now rise ; this, how

ever, must be avoided by bringing it into contact with the body B

at the temperature t, to which any excess of heat will be imme

diately imparted, the gas being thus preserved constantly at t.

Let the compression continue till the volume has receded to h,

it being so arranged that the decrease of volume indicated by the

remaining portion h e shall be just sufficient to raise the gas from

t to t, if during this decrease it gives out no heat. By the first

compression the pressure increases according to the law of M.,

and may be represented by a portion c d of another equilateral

hyperbola. At the end the increase is quicker, and may be re

presented by the curve d a. This curve must terminate exactly

in a ; for as the volume and temperature at the end of the ope

ration have again attained their original values, this must also

be the case with the pressure, which is a function of both. The

gas will therefore be found in precisely the same condition as at

the commencement.

In seeking to determine the amount of work performed by

these alterations, it will be necessary, for the reasons before as

signed, to direct our attention to the exterior work alone. During

the expansion, the gas produces a work expressed by the integral

of the product of the differential of the volume into the corre

sponding pressure, which integral is represented geometrically by

the quadrilaterals e a bf, wa&fbcg. During the compression,
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I

however, work will be expended, which is represented by the qua

drilaterals g cdh and hdae. The excess of the former work

above the latter is to be regarded as the entire work produced by

the alterations, and this is represented by the quadrilateral abed.

If the foregoing process be reversed, we obtain at the conclu

sion the same quantity abed as the excess of the work expended

over that produced.

In applying the foregoing Fig- 2.

considerations analytically, we

will assume that the various

alterations which the gas has

undergone have been infinitely

small. We can then consider

the curves before mentioned to

be straight lines, as shown in

the accompanying figure. In o e h f g

determining its superficial content, the quadrilateral abedmay

be regarded as a parallelogram, for the error in this case can

only amount to a differential of the third order, while the area

itself is a differential of the second order. The latter may there

fore be expressed by the product ef. b k, where k marks the point

at which the ordinate bf cuts the lower side of the parallelogram.

The quantity b k is the increase of pressure due to raising the tem

perature of the gas, at the constant volume of, from t to t, that is

to say, due to the differential t—r=dt. This quantity can be ex

pressed in terms of v and t by means of equation (I.) , as follows :

, Hdt
dp=

v

If the increase of volume efhe denoted by dv, we obtain the

area of the quadrilateral, and with it

The work produced= (1)

We must now determine the quantity of heat consumed during

those alterations. Let the amount of heat which must be im

parted during the transition of the gas in a definite manner from

any given state to another, in which its volume is v and its tem

perature t, be called Q ; and let the changes of volume occurring

in the process above described, which are now to be regarded se
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parately, be denoted as follows : efby dv, hg by d'v, eh by Sv, and

fff by B'v. During an expansion from the volume oe—v to

of=v + dv, at the constant temperature t, the gas must receive

the quantity of heat expressed by

and in accordance with this, during an expansion from oh=v + Sv

to og=v+ 8v + d'v at the temperature t—dt, the quantity

\_dv dv\dv I dt\dv / J

In our case, however, instead of an expansion, a compression

has taken place ; hence this last expression must be introduced

with the negative sign. During the expansion from of to o g,

and the compression from oh to oe, heat has been neither re

ceived nor given away ; the amount of heat which the gas has

* [In this memoir I have for the sake of greater clearness employed Euler-s

notation for partial differential coefficients in which the fractions which re

present the latter are placed between brackets. This precaution was perhaps

unnecessary, since in most cases, as was observed in the Introduction, no mis

conception can arise even when the brackets are omitted ; nevertheless in the

present reprint of the memoir the original notation has been retained. In ac

cordance with the equation (3a) of the Introduction the complete differential

equation of Q would here be

For a given quantity of gas, and indeed for every other body whose condition

is defined by its temperature and volume, the two partial differential coeffi

cients (^), ^Ai) mU8t re?ar<^e^ 88 perfectly determinate functions of t

and v, for the quantities of heat are perfectly defined which a body must re

ceive when, from a given condition, its temperature is raised under constant

volume, or its volume is increased without any alteration of temperature, a

counter-pressure corresponding to its elastic force being thereby overcome.

Whether Q itself, however, is also a magnitude which can be represented as

a function of t and v, in which these variables are independent of each other,

or whether a further relation between these variables must be given in order to

determine Q, depends upon the circumstance mentioned in the Introduction ;

viz., whether or not the condition (4), which in the present notation is thus

written,

dvKdil dAdv)-

is satisfied ; the object of the following development is to decide this ques

tion.—1864.]
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received over and above that which it has communicated, or, in

other words, the quantity of heat consumed, will therefore be

The quantities Sv and d'v must now be eliminated ; a conside

ration of the figure furnishes us with the following equation :

dv + S'v=Sv + d'v.

During its compression from o h to o e, consequently during its

expansion under the same circumstances from o e to oh, and

during the expansion from of to off, both of which cause a de

crease of temperature dt, the gas neither receives nor communi

cates heat : from this we derive the equations

[(©+#SW*-[©+£("M--*

From these three equations and equation (2) the quantities

d'v, Sv, and S'v may be eliminated ; neglecting during the pro

cess all differentials of a higher order than the second, we obtain

The heat emended = [^)-^(^Jjdvdt*. . (3)

Turning now to our maxim, which asserts that the production

of a certain quantity of work necessitates the expenditure of a

proportionate amount of heat, we may express this in the form

of an equation, thus :

The heat expended_ . .

The work produced- '

where A denotes a constant which expresses the equivalent of heat

for the unit of workf. The expressions (1) and (3) being in

troduced into this equation, we obtain

* [With reference to the deduction of the equation (S), see also the Ap

pendix A. at the end of the present memoir.]

t [This magnitude, which will often present itself in the sequel, may, in ac

cordance with a modern custom, be briefly termed the calorific equivalent of

work—1864.]
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—A,

or

dt

R.dv dt

v

d/dQ\ d/dQ\ A.B .

cftltftJ dv\dt)~ v l '

This equation may be regarded as the analytical expression of

the above maxim applicable to the case of permanent gases*. It

shows that Q, cannot be a function of v and / as long as the two

latter are independent of each other. For otherwise, according

to the known principle of the differential calculus, that when a

function of two variables is differentiated according to both, the

order in which this takes place is a matter of indifference, the

right side of the equation must be equal 0.

The equation can be transformed to a complete differential

equation of the first orderf and of the following form :

dQ=dU+ A.-R— dv, .... (Ila)

where U denotes an arbitrary function of v and t%. This differ-

* [The equation (II) may obviously be generalized so as to apply not only

to a gas, but to any other body whatever whose condition is determined by

its temperature and volume, and upon which the sole external forces which

act consist of pressures normal to the surface, of equal intensity at all points

of the latter, and differing so slightly from the body's force of expansion as to

admit, in calculation, of being considered equal thereto. This generalization is

effected by merely substituting for — the differential coefficient (* J ; which

latter, in the special case of gases, is equal to — The equation then becomes

dt\dv) dv\dt) \dt)'

in which form it frequently presents itself in subsequent memoirs.—1864.]

t [By an oversight the order of this equation was not stated in the ori

ginal edition.—1864.]

\ [With respect to the manner in which, by integration, the equation (II a)

may be deduced from the equation (II), see Appendix B to this Memoir.

That the differential equation (II a) of the first order actually corresponds

to the differential equation (II) of the second order may moreover be easily

shown, conversely, by differentiating (II a), and thence deducing (II). In

fact, if for dU we write the complete expression
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ential equation is of course unintegrable until we find a second

condition between the variables, by means of which / may be

expressed as a function of v. This is due, however, to the last

member alone, and this it is which corresponds to the exterior

work effected by the alteration ; for the differential of this work

is pdv, which, when p is eliminated by means of (I) , becomes

V

It follows, therefore, in the first place, from (II a), that the

entire quantity of heat, Q, absorbed by the gas during a change

of volume and temperature may be decomposed into two portions.

One of these, U, which comprises the sensible heat and the heat

necessary for interior work, if such be present, fulfils the usual

assumption, it is a function of v and t, and is therefore deter

mined by the state of the gas at the beginning and at the end of

the alteration; while the other portion, which comprises the

heat expended on exterior work, depends, not only upon the state

and similarly for dQ, the complete expression

the equation (II. a.) becomes transformed to

(S)*+(§MS)*+[(£hA-E!f>.

whence, by comparison, the following equalities may be deduced :

\dt) \dtP

\dv l \dv I v

On differentiating the first of these expressions according to v, and the second

according to t, it is to be noticed that the magnitude TJ being, by a previous

statement, a function of t and v, the condition

dv\dt) dt\dv)

is satisfied. Each of the quantities involved in the last equation, therefore,

J2TJ

may be denoted by -T-^r ; so that
dt do

d_ldQ\>Pl]

dv\ dt ) dt dv

d/dQ\ <PU +A.R

dAdvl dtdv v

But the first of these two equations being subtracted from the second, leads at

once to the equation (II).—1864.]
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of the gas at these two limits, but also upon the manner in which

the alterations have been effected throughout. It is shown above

that the same conclusion flows directly from the maxim itself.

Before attempting to render this equation suitable for the deduc

tion of further inferences, we will develope the analytical expres

sion of the maxim applicable to vapours at their maximum density.

In this case we are not at liberty to assume the correctness of

the law of M. and G., and must therefore confine ourselves to the

maxim alone. To obtain an equation from this, we will again

pursue the course indicated by Carnot, and reduced to a diagram

by Clapeyron. Let a vessel impervious to heat be partially filled

with water, leaving a space above for steam of the maximum

density corresponding to the temperature t. Let the volume of

both together be represented in the annexed figure by the

abscissa o e, and the pressure of the Fig. 3.

steam by the ordinate ea. Let the

vessel be now supposed to expand,

while both the liquid and steam

are kept in contact with a body A

of the constant temperature t. As

the space increases, more liquid is

evaporated, the necessary amount

of latent heat being supplied by

the body A ; so that the temperature, and consequently the

pressure of the steam, may remain unchanged. When the en

tire volume is increased in this manner from o e to of, an exterior

work is produced which is represented by the rectangle ea bf.

Let the body A be now taken away, and let the vessel continue to

expand without heat being either given or received. Partly by

the expansion of the steam already present, and partly by the

formation of new steam, the temperature will be lowered and the

pressure become less. Let the expansion be suffered to continue

until the temperature passes from t to t, and let o g represent the

volume at this temperature. If the decrease of pressure during

this expansion be represented by the curve b c, the exterior work

produced by it will be represented by fb eg.

Let the vessel be now pressed together so as to bring the liquid

and vapour to their original volume o e, and during a portion of

the process let the vessel be in contact with a body, B, of the
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temperature t, to which any excess of heat shall be immediately

imparted, and the temperature of the liquid and vapour kept con

stant at t. During the other portion of the process, let the body

B be withdrawn so that the temperature may rise ; let the first

compression continue till the volume has been reduced to o h, it

being so arranged that the remaining space h e shall be just suf

ficient to raise the temperature from t to t. During the first

decrease of volume the pressure remains constant at g c, and the

quantity of exterior work expended is equal to the rectangle g c

d h. During the last decrease of volume the pressure increases,

and may be represented by the curve d a, which must terminate

exactly in the point a, as the original temperature t must again

correspond to the original pressure e a. The exterior work ex

pended in this case is = h dae.

At the end of the operation both fluid and vapour are in the

same state as at the commencement, so that the excess of the

exterior work produced over the amount expended expresses the

total amount of work accomplished. This excess is represented

by the quadrilateral abed, the content of which must therefore

be compared with the heat expended at the same time.

For this purpose let it be as- Fig. 4.

»umed, as before, that the de

scribed alterations are infinitely

small, and under this view let the

process be represented by the an

nexed figure, in which the curves

a d and b c shown in fig. 3 have

passed into straight lines. With _

regard to the area of the qua- o I e h f g

drilateral a b c d, it may be again regarded as a parallelogram, the

area of which is expressed by the product ef.bk. Now if, when

the temperature is t, the pressure of the vapour at its maximum

tension be equal to p, and the difference of temperature t— r be

expressed by dt, we have

bk-dp dt*-
bK-dt '

* [In the equations corresponding to saturated vapour the differential co

efficient — is written without brackets, since the pressure is now no longer a

dt

function of the temperature and volume, but of the temperature solely.—1864.]
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ef is the increase of volume caused by the passing of a certain

quantity of liquid represented by dm into a state of vapour. Let

the volume of the unit of steam at its maximum density for the

temperature t be called s, and the volume of the same quantity

of liquid at the temperature / be called a ; then is

ef— {»_ a) dm ;

and hence the area of the rectangle, or

The work produced = (s— a) ^ dm dt. . . . (5.)

To express the amount of heat, we will introduce the following

notation :—Let the quantity of heat rendered latent by the pas

sage of a unit weight of liquid at the temperature /, and under a

corresponding pressure into a state of vapour, be called r, and

the specific heat of the liquid c ; both of these quantities, as also

the foregoing s, a, and being functions of t. Finally, let

the quantity of heat which must be communicated to a unit

weight of vapour of water to raise it from the temperature t to

t + dt (the vapour being preserved by pressure at the maximum

density due to the latter temperature without precipitation) be

called hdt, where h likewise represents a function of /. We shall

reserve the question as to whether its value is positive or nega

tive for future consideration*.

If fi be the mass of liquid originally present in the vessel,

and m the mass of the vapour ; further, dm be the mass eva

porated during the expansion from o e to of, and d'm the mass

precipitated by the compression from og to oh, we obtain in the

first case the quantity

rdni

of latent heat which has been extracted from the body A ; and

in the second case, the quantity

(r-Ttdt)d'm

* [The magnitude h here introduced is precisely the specific heat of the va

pour at its maximun density, or, in other words, the specific heat of the saturated

vapour, which may be regarded as a peculiar kind of specific heat just as well

as is the specific heat at a constant volume or the specific heat under constant

pressure.—1864. 1
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of sensible heat which has been imparted to the body B. By the

other expansion and compression heat is neither gained nor lost ;

hence at the end of the process we have

The heat expended— rdm

In this equation the differential d'm must be expressed through

dm and dt ; the conditions under which the second expansion

and the second compression have been carried out enable us to

do this. Let the mass of vapour precipitated by the compression

from oh to oe, and which therefore would develope itself by ex

pansion from oe to oh, be represented by 8m, and the mass de

veloped by the expansion from of to og by 8'm ; then, as at the

conclusion of the experiment the original mass of fluid and of

vapour must be present, we obtain in the first place the equation

dm + B'm= d'm + 8m.

Further, for the expansion from oe to oh, as the temperature

of the liquid mass fi and the mass of vapour m must thereby be

lessened, the quantity dt without heat escaping, we obtain the

equation

r$m—fj,.cdt—m.hdt=0 ;

and in like manner for the expansion from of to off, as here we

have only to set (i—dm and m+ dm in the place of fi and m, and

8'm in the place of 8m, we obtain

r8'm— (/i — dm) cdt— (m + dm)hdt=0.*

If from these three equations and equation (6.) the quantities

d'm, 8m, and 8'm be eliminated, and all differentials of a higher

* [With respect to these two equations, whose use is to determine the relation

which exists between 8m or 8m and dt, a remark may be made of a similar

kind to those contained in the Appendix A, which relate to the deduction of

the equation (3). To be strictly accurate up to differentials of the second

order, the expressions for 8m or 8-m ought to contain another term with the

factor dt2, just as do the expressions for 8n and 8-v in the equations (m) and

(re) of Appendix A. Since this term would be the same in both equations,

however, it would again disappear from the equation

d'm=dm+ 8'm— 8m,

which determines d-m, and thus be wholly without influence on our result.

Consequently it is unnecessary here to take this term into further considera

tion.—1864.]

D
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order than the second be neglected, we have

The heat expended=(^+c—hjdm dt. ... (7)

The formulae (7) and (5) must now be united, as in the case

of permanent gases, thus :

)dm dt(*+C-»>

k—<r)^r-dm dt
° 'dm

and hence we obtain, as the analytical expression of the maxim,

applicable to vapours at their maximum density, the equation

|+c-A=A<,-.)f (Ill)

If, instead of the above maxim, the assumption that the quan

tity of heat is constant be retained, then, according to (7), in

stead of equation (III) we must set

di+c-h=0* .' • • W

And this equation, although not exactly in the same form, has

been virtually used heretofore to determine the value of the quan

tity h. As long as the law of Watt is regarded as true, that the

sum of the latent and sensible heat of a quantity of steam at its

maximum density is the same for all temperatures, and conse

quently that

* [As before remarked, it would follow from this assumption that when a

body suffers a series of changes such that it thereby returns finally to its initial

state, the quantity of heat which it receives from without during one portion

of these changes must be equal to the quantity which it gives off during the

remaining changes. Now the difference between the received and imparted

quantities of heat in the previously described cycle of infinitely small changes

is, according to equation (7), represented by

(^r+c—h^dm dt ;

and this expression, equated to zero, leads at once to the equation

h = dt+C>

which is another form of the equation (8).—1864.]

t [The law of Watt mentioned in the text, and formerly accepted as true,



MOVING FORCE OF HEAT. 35

it must be inferred that for this liquid h also is equal 0 ; this, in

deed, has often been asserted, by saying that when a quantity

of vapour at its maximum density is compressed in a vessel im

pervious to heat, or suffered to expand in the same, it will remain

at its maximum density. As, however, Regnault* has corrected

the law of Watt so that we can set with tolerable accuracy

!+c=0-305,t

the equation (8) gives for h also the value 0-305. It follows

from this, that a portion of the steam in the impermeable vessel

must be precipitated by compression, and that it cannot retain .

its maximum density after it has been suffered to expand, as its

temperature does not decrease in a ratio corresponding to the

decrease of density.

Quite otherwise is it if, instead of equation (8), we make use

of equation (III). The expression on the right-hand side is

from its nature always positive, and from this follows in the first

place that h is less than 0*305. It will be afterwards shown

that the value of the said expression is so great that h becomes

even negative%. Hence we must conclude that the above quan-

asaerts that the sum of the two quantities of heat required to raise the unit of

weight of water from 0° to the temperature t, and then to convert it into va

pour at this temperature, is independent of this temperature t. Accordingly

we should have

r+/" c d<=const..
v o

an equation which, by differentiation, leads to the equation

dr , n

given in the text.—1864.]

* Mhrn, de VAcad. voL xxi., 9th and 10th Memoirs.

t [Regnault has found that the sum of free and latent heat is not constant,

as by the law of Watt it should be, but that with increasing temperature it

increases in a manner approximately expressed by the equation

r+f'c dt=606-5+ 0-305 1,
v o

from which the equation

~+c=0-305
at

follows by differentiation.—1864.]

X [In order to decide whether the equation

A=4+C-A(,-„)|,

D 2



86 FIRST MEMOIR.

tity of vapour will be partially precipitated, not by the compres

sion, but by the expansion ; when compressed, its temperature

rises in a quicker ratio than that corresponding to the increase

of density, so that it does not continue at its maximum density.

The result is indeed directly opposed to the notions generally

entertained on this subject ; I believe, however, that no experi

ment can be found which contradicts it. On the contrary, it

harmonizes with the observations of Pambour better than the

common notion. Pambour found* that the steam issuing from

a locomotive after a journey always possesses the temperature

for which the tension observed at the same time is a maximum.

From this it follows that h is either 0, as was then supposed,

because this agreed with the law of Watt, which was considered

correct at the time, or that h is negative. If h were positive, then

the temperature of the issuing steam must have been too high

in comparison with its tension, and this could not have escaped

Pambour. If, on the contrary, in agreement with the above, h

be negatiye, too low a temperature cannot occur, but a portion

of the vapour will be converted into water so as to preserve the

remainder at its proper temperature. This portion is not neces

sarily large, as a small quantity of vapour imparts a compara

tively large quantity of heat by its precipitation ; the water thus

formed is probably carried forward mechanically by the steam,

and might remain unregarded ; the more so, as, even if observed,

it might have been imagined to proceed from the boilerf.

deduced from (III), gives a positive or a negative value of h, the numerical

value of A must be known ; and since nothing has been said in the previous

part of the memoir with respect to the numerical determination of this con

stant, I have not here entered into the determination of the magnitude h, but

have referred the question to the sequel. In the second part of the memoir,

an expression for the product A(&— <r) will be given which involves known

magnitudes solely, and whose substitution in the foregoing equation leads to

another, from which, not only the sign, but also the magnitude of h, as a func

tion of the temperature, can be at once determined.—1864.]

* Traitt de» locomotives, 2nd edit., and Theorie des machines d vapeur,

2nd edit.

t [The process to which the observation of Pambour refers is too compli

cated to furnish a convenient and accurate comparison with the theoretical

results obtained above. Accordingly the observation in question is cited, not

with a view of supplying a reliable verification of those theoretical results, but
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So far the consequences have been deduced from the above

maxim alone, without any new assumption whatever being made.

Nevertheless, by availing ourselves of a very natural incidental

assumption, the equation for permanent gases (II a) may be ren

dered considerably more productive. Gases exhibit in their de

portment, particularly as regards the relations of volume, tem

perature, and pressure expressed by the laws of M. and G., so

much regularity as to lead us to the notion that the mutual

attraction of the particles which takes place in solid and liquid

bodies is in their case annulled ; so that while with solids and

hquids the heat necessary to effect an expansion has to contend

with both an interior and an exterior resistance, the latter only

is effective in the case of gases. If this be the case, then, by the

expansion of a gas, only so much heat can be rendered latent as

is necessary to exterior work. Further, there is no reason to

suppose that a gas, after it has expanded at a constant tempera

ture, contains more sensible heat than before. If this also be

admitted, we obtain the proposition, when a permanent gas ex

pands at a constant temperature, it absorbs only as much heat as

is necessary to the exterior work produced by the expansion—a

proposition which is probably true for each gas in the same de

gree as the law of M. and G is true for that gas*.

Prom this immediately follows

(£)-*.*'-?• <*>

for, as already mentioned, R dv represents the quantity of

merely to show that it accords better with the latter than with the views pre

viously entertained.—1864.]

* [Several authors before me regarded the heat which disappears during

the expansion of a gas as simply equivalent to the work done in overcoming

pressure. As far as I know, however, I was the first to enunciate the theorem

in its complete form ; according to which it is asserted that in general exterior

and interior work are both simultaneously done when a body expands, but

that in the special case of a permanent gas the law of M. and G. sanctions the

assumption of an infinitesimal amount of interior work ; further, that the de

gree of accuracy to which this assumption can lay claim, when applied to a cer

tain gas, is the same as that which would attend the application thereto of

the law of M. and G. ; and, finally, that the theorem involves the additional

assumption that the heat actually present in the gas is independent of its den

sity.—1864.]
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exterior work produced by the expansion dv. According to this,

the function U, which appears in equation (II a), cannot contain

v, and hence the equation changes to

rfQ=c<ft+AB— dv, (115)

wherein c can only be a function of t* ; and it is even probable

that the quantity c, which denotes the specific heat of the gas at

a constant volume, is itself a constant.

To apply this equatidn to particular cases, the peculiar con

ditions of each case must be brought into connexion therewith,

so as to render it infegrablef. We shall here introduce only a

few simple examples, which possess either an intrinsic interest,

or obtain an interest by comparison with other results connected

with this subject.

In the first place, if in equation (II b) we put, successively,

v= const. and^>= const., we shall obtain the specific heat of the

gas at a constant volume, and its specific heat under a constant

pressure. In the former case dv=0, and (II b) becomes

w=c (10>

* [In fact, from the equation (II a), written in the form

*H3)

it follows immediately that

\av I \dvl v

Now if, on the other hand, the equation (9), viz.

\dv } v

be true, a necessary consequence of the coexistence of it and the previous

equation is that

accordingly the function U,for perfect gases, must be independent of v. Sub

stituting the symbol c for the differential coefficient i^^) which of course

shares with U the property of being independent of v, the equation (II b) is

at once obtained.—1864.]

t [The equation (II b) belongs, in fact, to the class of equations, described

in the Introduction, which only admit of being integrated on assuming a se

cond equation to exist between the variables, whereby the sequence of the

changes becomes determined.—1864.]
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In the latter case, from the condition p= const., we obtain with

help of equation (I),

, Udt
dv= >

P

or

dv dt .

v a + t

which by substitution in <II b), the specific heat under a constant

pressure being denoted by c , gives us

^=c'=c+AR* (10 a)

Prom this it may be inferred that the difference of both specific

heatsfor each gas is a constant quantity ARf. But this quantity

also expresses a simple relation for different gases. The com

plete expression for R is where p0, v0, and t0 denote any
a -r Iq

* [It will be easily understood why the fraction in the equations (10)

and (10 a), is written without the brackets which ordinarily enclose the

fractions ^ and ~ . For when, from the commencement, a condition is in-
dt dv

troduced which implies the constancy of v or ofp, the sequence of changes

through which the gas can pass is thereby bo far fixed, that the increment of

Q is completely determined by the increment of one of the variables t. In

such cases, therefore, the fraction ^ does not represent the partial differ

ential coefficient of a magnitude whose value depends upon those of two inde

pendent variables, but corresponds to the fraction treated at page 4 of the

Introduction, which stands on the left of the differential equation wherein y

was considered as a function of x. In fact, it is obvious that, in the equations

(10) and (10 a), the symbol^ has two different meanings, arising from the

distinct conditions to which the equations have reference.—1864.]

t [The difference between the two specific heats c and c- being constant,

the conclusion above arrived at, with reference to the specific heat at a con

stant volume, also holds for the specific heat under constant pressure, so that

the latter is likewise independent of the density, and probably also of the

temperature of the gas. At the time my memoir appeared, this- conclusion

was objected to on the ground of its being at variance with some of the ob

servations of Suermann, and of De la Roche and Bdrard, which at that time

were pretty generally accepted as trustworthy ; since then, however, it has

been verified by the experiments which, in 1853, were published by Regnault.

—1864.]
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three contemporaneous values ofp, v, and t for a unit of weight

of the gas in question ; and from this it follows, as already men

tioned in establishing equation (I), that R is inversely propor

tional to the specific gravity of the gas ; the same must be true

of the difference c'-c=AR, as A is the same for all gases.

If it be desired to calculate the specific heat of the gas, not re

lative to the unit of weight, but (in accordance with the method

more in use) to the unit of volume, say at the temperature t0 and

the pressure p0, it is only necessary to divide c and d by vQ. Let

these quotients be expressed by y and 7*, and we obtain

; . • . • <»>

In this last expression nothing appears which is dependent on

the peculiar nature of the gas ; the difference of the specific heats

relative to the unit of volume is therefore the same for all gases.

This proposition has been deduced by Clapeyron from the theory

of Carnot j but the result, that the difference d—c is constant,

is there not arrived at ; the expression found for it having still

the form of a function of the temperature.

Dividing both sides of equation (11) by 7, we obtain

*-!=-• --rr> ...... (12)

wherein, for brevity, k is put in the place of —. This is equal

d
to the quotient — ; and through the theoretic labours of La

place on the transmission of sound through air, has attained a

peculiar interest in science. For different gases, therefore, the

excess of this quotient above unity is inversely proportional to

the specific heat, at constant volume, the latter being calculated

relative to the unit of volume. This proposition has been proved

experimentally by Dulong* to be so nearly correct, that its

theoretic probability induced him to assume its entire truth, and

to use it in an inverse manner in calculating the specific heats

of various gases, the value of k being first deduced from obser

vation. It must, however, be remarked, that the proposition

is theoretically safe only so far as the law of M. and Gr. holds

* Ann. de Chim. et de Phys., xli. ; and Pogg. Ann., xvi.
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good ; which, as regards the various gases examined by Dulong,

was not always the case to a sufficient degree of accuracy.

Let us suppose that the specific heat c at constant volume is

constant for every gas ; a supposition which we have already

stated to be very probable ; this will also be the case when the

pressure is constant, and hence the quotient of both specific heats

-=k must be also constant. This proposition, which Poisson, in

agreement with the experiments of Gay-Lussac and -Welter, has

assumed to be correct, and made the basis of his investigations

on the tension and heat of gases*, harmonizes very well with our

present theory, while it is not possible to reconcile it with the

theory of Carnot as heretofore treated.

In equation (116) let Q=const., we then obtain the following

equation between v and / :

c<ft +A.B—* dv=0; (13)

from which, when c is regarded as constant, we derive

AB

v • . (a + £)=const. ;

AB d
or, since according to equation (10 a), = l =k— 1,

c c

tf*-1(a + /) = const.

Let three corresponding values of v, t, and p be denoted by v0,

t0, and p0 ; we obtain from this

5%-(?r ..------(»)

By means of equation (I) let the pressure p, first for v and then

for t, be introduced here, we thus obtain

e®-£H ------- w>

These are the relations which subsist between volume, tempe

rature, and pressure when a quantity of gas is compressed, or is

* TraiU de MScaniqtie, 2nd edit. vol. ii. p. 646.
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suffered to expand in a holder impervious to heat. These equa

tions agree completely with those developed by Poisson for the

same case*, the reason being that he also regarded k as constant.

Finally, in equation (II b) let 2=const., the first member at

the right-hand side disappears, and we have remaining

dQ=AR^dv; (17)

v

from which follows

Q=AR (a + t) log v + const, ;

or when the values of v, p, t, and Q, at the commencement of

the experiment, are denoted by v0, p0, t0, and Qj,

Q-Q0=AR(a-K0)log- .... (18)
ro

From this, in the first place, we derive the proposition deve

loped also by Carnot ; when a gas, without alteration of tempera

ture, changes its volume, the quantities of heat developed or ab

sorbed are in arithmetical progression, while the volumes are in

geometrical progression.

Further, let the complete expression for R=^° ° be set in

equation (18), and we obtain

Q-Q0=AWolog^ (19)

If we apply this equation to different gases, not directing our

attention to equal weights of the same, but to such quantities as

at the beginning embrace a common volume v0, the equation

will in all its parts be independent of the peculiar nature of the

gas, and agrees with the known proposition to which Dulong,

led by the above simple relation of the quantity k— 1, has given

expression : that when equal volumes of different gases at the same

pressure and temperature are compressed or expanded an equal

fractional part of the volume, the same absolute amount of heat is

in all cases developed or absorbed. The equation (19) is, however,

much more general. It says besides this, that the quantity of

heat is independent of the temperature at which the alteration of

volume takes place, if only the quantity of gas applied be always

so determined that the original volumes v0 at the different tem

peratures shall be equal ; further, that when the original pressure

is in the different cases different, the quantities of heat are thereto

proportional.

* TraiU de Micanique, vol. ii. 647.
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II. Consequences of the principle of Carnot in combination with

the preceding.

Carnot, as already mentioned, has regarded the production of

work as the equivalent of a mere transmission of heat from a warm

body to a cold one, the quantity of heat being thereby undimi

nished.

The latter portion of this assumption, that the quantity of

heat is undiminished, contradicts our maxim, and must there

fore, if the latter be retained, be rejected. The former portion,

however, may remain substantially as it is. For although we

have |no need of a peculiar equivalent for the produced work,

after we have assumed as such an actual consumption of heat, it

is nevertheless possible that the said transmission may take place

contemporaneously with the consumption, and may likewise stand

in a certain definite relation to the produced work. It remains

therefore to be investigated whether this assumption, besides

being possible, has a sufficient degree of probability to recom

mend it.

A transmission of heat from a warm body to a cold one cer

tainly takes place in those cases where work is produced by heat,

and the condition fulfilled that the body in action is in the same

state at the end of the operation as at the commencement. In

the processes described above, and represented geometrically in

figs. 1 and 3, we have seen that the gas and the evaporating water,

while the volume was increasing, received heat from the body A,

and during the diminution of the volume yielded up heat to the

body B, a certain quantity of heat being thus transmitted from

A to B ; and this quantity was so great in comparison with that

which we assumed to be expended, that, in the infinitely small

alterations represented in figs. 2 and 4, the latter was a differ

ential of the second order, while the former was a differential of

the first order. In order, however, to bring the transmitted

heat into proper relation with the work, one limitation is still

necessary. As a transmission of heat may take place by con

duction without producing any mechanical effect when a warm

body is in contact with a cold one, if we wish to obtain the

greatest possible amount of work from the passage of heat be

tween two bodies, say of the temperatures t and t, the matter
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must be so arranged that two substances of different tempera

tures shall never come in contact with each other.

It is this maximum of work that must be compared with the

transmission of the heat ; and we hereby find that it may reason

ably be assumed, with Carnot, that the work depends solely upon

the quantity of heat transmitted, and upon the temperatures t

and t of both bodies A and B, but not upon the nature of the

substance which transmits it. This maximum has the property,

that, by its consumption, a quantity of heat may be carried from

the cold body B to the warm one A equal to that which passed

from A to B during its production. We can easily convince our

selves of this by conceiving the processes above described to be

conducted in a reverse manner ; for example, that in the first

case the gas shall be permitted to expand by itself until its tem

perature is lowered from t to t, the expansion being then con

tinued in connexion with B ; afterwards compressed by itself

until its temperature is again t, and the final compression effected

in connexion with A. The amount of work expended during the

compression will be thus greater than that produced by the ex

pansion, so that on the whole a loss of work will take place ex

actly equal to the gain which accrued from the former process.

Further, the same quantity of heat will be here taken away from

the body B as in the former case was imparted to it, and to the

body A the same amount will be imparted as by the former pro

ceeding was taken away from it ; from which we may infer, both

that the quantity of heat formerly consumed is here produced,

and also that the quantity which formerly passed from A to B

now passes from B to A.

Let us suppose that there are two substances, one of which is

able to produce more work by the transmission of a certain

amount of heat, or what is the same, that in the performance of

a certain work requires a less amount of heat to be carried from

A to B than the other ; both these substances might be applied

alternately ; by the first work might be produced according to

the process above described, and then the second might be applied

to consume this work by a reversal of the process. At the end

both bodies would be again in their original state ; further, the

work expended and the work produced would exactly annul each

other, and thus, in agreement with our maxim also, the quantity
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of heat would neither be increased nor diminished. Only with

regard to the distribution of the heat would a difference occur, as

more heat would be brought from B to A than from A to B, and

thus on the whole a transmission from B to A would take place.

Hence by repeating both these alternating processes, without

expenditure of force or other alteration whatever, any quantity

of heat might be transmitted from a cold body to a warm one ;

and this contradicts the general deportment of heat, which every

where exhibits the tendency to annul differences of temperature,

and therefore to pass from a warmer body to a colder one*.

From this it would appear that we are theoretically justified in

retaining the first and really essential portion of the assumption

of Carnot, and to apply it as a second maxim in connexion with

the former. It will be immediately seen that this procedure

receives manifold corroboration from its consequences.

This assumption being made, we may regard the maximum

work which can be effected by the transmission of a unit of heat

from the body A at the temperature t to the body B at the tem

perature t, as a function of t and t. The value of this function

must of course be so much smaller the smaller the difference

t—tIs; and must, when the latter becomes infinitely small ( = dt),

pass into the product of dt with a function of t alone. This

latter being our case at present, we may represent the work

under the form

l-dt,

wherein C denotes a function of t onlyf.

* [The principle here assumed, that -heat cannot of itselfpassfrom a colder

to a warmer body, and by means of which I have theoretically established the

relation between the work gained and the heat transmitted, is to be regarded

as a principle of the same importance as the one, in virtue of which it is as

sumed that neither work nor heat can be produced from nothing. In conse

quence of the different opinions of other authors I afterwards thought it ne

cessary to make this principle the subject of a special memoir, which will be

found in the sequel.—1864.]

t [It will perhaps be well to illustrate somewhat further what is here

stated in the text.

When any substance whatever undergoes a complete cycle of changes, heat

being thereby withdrawn from a body A of the temperature t, and when of

this heat a portion is consumed by the production of work and the remaining

portion transmitted to a body B of the temperature t, then, according to the
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To apply this result to the case of permanent gases, let us

once more turn to the process represented by fig. 2. During

the first expansion in that case the amount of heat,

(£).*

above principles, the latter portion, that is to say the quantity of heat trans

mitted from A to B, must bear to the amount of work produced (provided

the latter be the above-mentioned maximum) a certain definite ratio which

will depend upon the temperatures of the two bodies A and B, but not upon

the nature of the interposed substance or upon that of its changes. Conse

quently an equation of the following form must exist :

Work produced . . , ()

Seat transmitted Ty ' " v '

wherein (j>(t, r) denotes a generally true function of the two temperatures t and

t ; it is, in fact, the function which, as stated in the text, represents the max

imum of the produced work corresponding to the unit of transmitted heat.

Let the temperature t of the body A be now regarded as given, the tempe

rature r of the body B being at the same time susceptible of any values what

ever. It is readily seen that when the difference t—r is smaller, the work

which corresponds to the transmission of the unit of heat will also be smaller,

and that when the difference of temperature is infinitesimal, in which case it

may be represented by dt, the work will also be an infinitesimal quantity of

the same order. Imagine then t—dt to be substituted for r in the function

<j>(t, r) which represents the work, and this function to be subsequently ex

panded in a series arranged according to increasing powers of dt. No term of

this series will contain a power of dt lower than the first, so that, neglecting

terms which contain higher powers of dt, we may write

<}>(t, t-dt)=TJr(£)dt,

where the function ^r(t) is likewise a generally true one. On proceeding to

further calculations it is found that the equations assume a somewhat more

convenient form when, in place of writing the function i/KO itself, a new

symbol is introduced for its reciprocal -j-^ ; the letter C having already been

employed by Clapeyron for this purpose I have provisionally retained it. Ac

cordingly,

<P(t,t-dt)=h.dt,

the equation (a), in the case where the bodies A and B have the temperatures

t and t — dt, becomes thus transformed :

Work produced _1 ., ,-, -.

Heat transmitted 0

The function of the temperature denoted by C is frequently called Carnot's

function. An opportunity will present itself in the course of this memoir of

determining the form of this function. Its expression will then be found

sufficiently simple to admit of direct introduction into the equations, and

that done the symbol C will of course become superfluous.—1864.]
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passed from A to the gas ; and during the first compression the

following portion thereof was yielded to the body B :

or

The latter quantity is therefore the amount of heat transmitted.

As, however, we can neglect the differential of the second order

in comparison with that of the first, we retain simply

The quantity of work produced at the same time was

R dv . dt
j

v

and from this we can construct the equation

-o dv .dt
it ,

fdS)dv C

or

\ dv J v

Let us now make a corresponding application to the process

of evaporation represented by fig. 4. The quantity of heat in

that case transmitted from A to B was

or

(r-Ttdt)d'm>

rdm—(^+ c—h^dm dt ;

* [This equation may be generalized in the same way as was the equation

(II) in a previous note. In fact, replacing the fraction _ by the differential

v

coefficient (^j> which for gaseous bodies has the same value, the more ge

neral equation

@-°<t)

is obtained.—1864.]
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for which, neglecting the differentials of the second order, we

may simply put

rdm.

The quantity of work thereby produced was

(«—a) ^dmdt,

and hence is obtained the equation

{s-a) df.dm.dt

—~VdHi c • '

or

r=C. {s-a) f* (V.)

These, although not in the same form, are the two analytical

expressions of the principle of Carnot as given by Clapeyron. In

the case of vapours, the latter adheres to equation (V.), and con

tents himself with some immediate applications thereof. For

gases, on the contrary, he makes equation (IV.) the basis of a

further development ; and in this development alone does the

partial divergence of his result from ours make its appearancef.

We will now bring both these equations into connexion with

the results furnished by the first fundamental principle, com

mencing with those which have reference to permanent gases.

* [This equation also is merely a special form of the equation

for in the present case we may put

\dv) s— er-

since the heat which must be imparted to the body under consideration, con

sisting of liquid and vapour, during its increase of volume is precisely the heat

rendered latent by the production of vapour.

The differential coefficient ^ is written in the equation (V) without

brackets, for the manifest reason before alluded to.—1864.]

t [Clapeyron, in fact, when treating the equation (IV) and the more ge

neral one given in a previous note, starts from the hypothesis that the mag

nitude Q is completely determined by the state of the body at the moment

under consideration, and consequently that it can be at once represented by a

function of the two variables (p and v in his case) upon which the condition

of the body depends. In this sense he effected the integration.—1864.]



MOVING FORCE OF HEAT. 49

Confining ourselves to that deduction which has the maxim

alone for basis, that is to equation (II a), the quantity U which

stands therein as an arbitrary function of v and / may be more

fully determined by (IV) ; the equation thus becomes

rfQ=[B+ B^-A)log»]^+2^.efo, (lie)

in which B remains as an arbitrary function of / alone*.

If, on the contrary, we regard the incidental assumption also

as correct, the equation (IV) will thereby be rendered unneces

sary for the nearer determination of (II a), inasmuch as the same

object is arrived at in a much more complete manner by equa

tion (9), which flowed immediately from the combination of the

said assumption with the original maxim. The equation (IV),

however, furnishes us with a means of submitting both princi

ples to a reciprocal test. The equation (9) was thus expressed,

/dQt\_ R. A(a+t) .

\ dv / v '

* [This equation is obtained in the following manner. From the equation

(II a), that is from

dQ= dU+AR^±ldv,

v

may be deduced

\dv) \dvl v

Hence, replacing (^^) by its value given in (IV), we have

v \ dv I v

(£)-[o-a(.+0]5.

This, integrated according to v, gives

U=[C-A(a+<)] R log »+£(<),

where <f>(t) denotes an arbitrary function of t. Differentiating the last

equation completely, and putting B in place of the differential coefficient

which, like <£(<) itself, is also to be regarded as an arbitrary function of

t, we have

dU= -A )R log v+B ~J dt+ [C -A (a+tf^ dv.

But if this expression for dll be substituted in the equation (II a) the term

AR ~1 will disappear, and the equation (II c) of the text will remain.—

1864.]
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and when we compare this with equation (IV), we find that

both of them express the same thing ; with this difference only,

that one of them expresses it more definitely than the other. In

(IV.) the function of the temperature is expressed in a general

manner merely, whereas in (9) we have instead of C the more

definite expression A (a + 1) .

To this surprising coincidence the equation (V) adds its testi

mony, and confirms the result that A(a + t) is the true expres

sion for the function C. This equation is used by Clapeyron and

Thomson in determining the values of C for particular tempe

ratures. The temperatures chosen by Clapeyron were the boiling-

points of aether, of alcohol, of water, and ofoil of turpentine. He

employed the values of s and r, determined by experiment for

these liquids at their boiling-points ; and setting these values in

equation (V) , he obtained for C the numbers contained in the se

cond column of the following Table. Thomson, on the contrary,

limited himself to the vapour of water; but considered it at

various temperatures, and in this way calculated the value of

C for every single degree from 0° to 230° Cent. The observa

tions of Regnault had furnished him with a secure basis as re

gards the quantities ^ and r ; but for other temperatures than

the boiling-point, the value of s is known withmuch less certainty.

In this case, therefore, he felt compelled to make an assumption

which he himself regarded as only approximately correct, using

it merely as a preliminary help until the discovery of more exact

data. The assumption was, that the vapour of water at its

maximum density follows the law of M. and Gr. The numbers

thus found for the temperatures used by Clapeyron, as reduced

to the French standard, are exhibited in the third column of the

following table :—

Table I.

1. 2. 3.

t in Cent, degrees. C according to Clapeyron. C according to Thomson.

0
0-72835-5 0733

78-8 0828 0-814

loo 0-897 0-855

156-8 0-930 0952
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We see that the values of C found in both cases increase, like

those of A(a+t), slowly with the temperature. They bear the

same ratio to each other as the numbers of the following series :

1; 113; 1-22; 1-27;

1; 112; 117; 131;

and when the ratio of the values of A (a + t) (obtained by setting

a = 273) corresponding to the same temperatures are calculated,

we obtain

1; 114; 121; 139.

This series of relative values deviates from the former only so far

as might be expected from the insecurity of the data from which

those are derived : the same will also exhibit itself further on in

the determination of the absolute value of the constant A.

Such a coincidence of results derived from two entirely differ

ent bases cannot be accidental. Rather does it furnish an im

portant corroboration of both, and also of the additional inci

dental assumption.

Let us now turn again to the application of equations (IV)

and (V) ; the former, as regards permanent gases, has merely

served to substantiate conclusions already known. For vapours,

however, and for other substances to which we might wish to

apply the principle of Carnot, the said equation furnishes the

important advantage, that by it we are justified in substituting

everywhere for the function C the definite expression A(a + t)*.

The equation (V) changes by this into

r=A(a + t).(s-,a)ft; .... (Va)

we thus obtain for the vapour a simple relation between the

temperature at which it is formed, the pressure, the volume, and

* [In this manner we arrive at the definite and simple expression for the

function C of the temperature to which allusion was made in a previous, note

(p. 46), and which when first introduced had no determined form. Since

this function, in virtue of its signication, must have a general validity, it is

obvious that the expression for it which has been found on considering spe

cially the expansion of a perfect gas, may also be applied to all other sub

stances, and to all kinds of changes whereby these substances are able to pro1

duce work through the expenditure of heat. Whenever, therefore, by the

interposition of any variable substance, heat is transferred from a body A of

e 2
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the latent heat, and can make use of it in drawing still further

conclusions.

Were the law of M. and G. true for vapours at their maxi

mum density*, we should have

ps=R(a+ t) (20)

By means of this equation let * be eliminated from (V a) ; neg

lecting the quantity a, which, when the temperature is not very

high, disappears in comparison with s, we obtain

1 dp r

pdi~AB,(a + t)*-

If the second assumption, that r is constant, be here made, we

obtain by integration

logZ= ^-100)

'jbj AR(a + 100) (a+0

where pl denotes the tension of the vapour at 100°. Let

l-100-r, " + 100=a,andAR(/+100)=ff;

we have then

log^=^-T (21)

Pi a + T

This equation cannot of course be strictly correct, because the

two assumptions made during its development are not so. As

the temperature t to a body B of the temperature t—dt, the relation between

the transmitted heat and the maximum of the work possibly produced thereby

may be expressed by the equations

Work produced dt

Heat transmitted A(a-{-t)

In a similar manner the general equation given in the note to equation

(TV) (p. 47), can now be written thus :—

whereby the quantity of heat is completely determined which a body must

absorb when, at a constant temperature, it changes its volume under the in

fluence of an external pressure equal to its own force of expansion.—1864.]

* [The sole object of the inaccurate assumptions made, merely en passant,

in this paragraph is to elucidate further the formula for the tension of va

pours which was established by Roche, and considered, from theoretical

points of view, by Holtzmann and other authors ; and to show, on the one

hand, why the formula is approximately correct, and on the other, why it is

not strictly so.—1864.]
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however the latter approximate at least in some measure to the

truth, the formula — ' T expresses in a rough manner, so to speak,

a+r

the route of the quantity log — ; and from this it may be per-

P\

ceived how it is, when the constants a and ft are regarded as

arbitrary, instead of representing the definite values which their

meaning assigns to them, that the above may be used as an em

pirical formula for the calculation of the tension of vapours,

without however considering it, as some have done, to be com

pletely true theoretically.

Our next application of equations (V a) shall be to ascertain

how far the vapour of water, concerning which we possess the

most numerous data, diverges in its state ofmaximum densityfrom

the law of M. and G. This divergence cannot be small, as car

bonic acid and sulphurous acid gas, long before they reach their

points of condensation, exhibit considerable deviations.

The equation (V a) can be brought to the following form :

Ap(s-o) -°L-= ar - , (22)

v ' pdt

Were the law of M. and G. strictly true, the expression at the

left-hand side must be very nearly constant, as the said law

would, according to (20), immediately give

A . ps = A . Ra,

* a+ t

where instead of s we can, with a near approach to accuracy, set

the quantity s— a. By a comparison with its true values calcu

lated from the formula at the right-hand side of (22), this ex

pression becomes peculiarly suited to exhibit every divergence

from the law of M. and Gr. I have carried out this calculation

for a series of temperatures, using for r andp the numbers given

by Regnault*.

In the first place, with regard to the latent heat, the quantity

of heat \ necessary, according to Regnault f, to raise a unit of

weight of water from 0° to t°, and then to evaporate it at this

* Mem. deVAcad. de Vlnst. de France, vol. xxi. (1847).

t Ibid. M&m. IX. ; also Pogg. Ann., vol. lxxviii.
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temperature, may be represented with tolerable accuracy by the

following formula :

\=606-5 + 0-305* (23)

In accordance, however, with the meaning of \, we have

\=r+^ cdt (23 a)

For the quantity c, which is here introduced to denote the spe

cific heat of the water, Regnault* has given, in another investi

gation, the following formula :

c= 1 + 0-00004 . t + 0-0000009 . t*. . . . (23 b)

By means of these two equations we obtain from (23) the fol

lowing expression for the latent heat :

r=606-5-0-695 J-0-00002. ^-00000003. ^t- - (24)

Further, with regard to the pressure, Regnault J has had re

course to a diagram to obtain the most probable values from his

numerous experiments. He has constructed curves in which the

abscissae represent the temperature, and the ordinates the pres

sure p, taken at different intervals from —33° to 230°. From

100° to 230° he has drawn another curve, the ordinates of which

* M6m. de VAcad. de Tlnst. de France, Mem. X.

t In the greater number of his experiments Regnault has observed, not so

much the heat which becomes latent during evaporation, as that which be

comes sensible by the precipitation of the vapour. Since, therefore, it has

been shown, that if the maxim regarding the equivalence of heat and work

be correct, the heat developed by the precipitation of a quantity of vapour is

not necessarily equal to that which it had absorbed during evaporation, the

question may occur whether such differences may not have occurred in Reg-

nault-s experiments also, the given formula for r being thus rendered useless.

I believe, however, that a negative may be returned to this question ; the

matter being so arranged by Regnault, that the precipitation of the vapour

took place at the same pressure as its development, that is, nearly under the

pressure corresponding to the maximum density of the vapour at the observed

temperature ; and in this case the same quantity of heat must be produced

during condensation as was absorbed by evaporation.

[In a subsequent memoir I have proposed to employ, instead of the equa

tion (24), the following equation for the latent heat :

r=607-0-708. t.

It is more convenient for calculation, and gives very nearly the same value

for r as the equation (24) itself.—1864.]

X Ibid. Mem. VIII.
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represent, not p itself, but the logarithms of p. From this dia

gram the following values are obtained ; these ought to be re

garded as the most immediate results of his observations, while

the other and more complete tables which the memoir contains

are calculated from formula?, the choice and determination of

which depend in the first place upon these values.

Table II.

( in Cent, degrees

of the air-ther

mometer.

/in Cent, degrees

of the air-ther

mometer.

p in millimetres,

p in millimetres.
according to the

curve of the

according to the

curve of the

numbers. logarithms *.

o

0*9! no 1073-7— 20 10733

— 10 2-08 120 1489-0 14907

0 4-60 130 2029-0 2030-5

10 9-16 140 2713-0 2711-5

20 '739 150 3572-0 3578-5

30 3''55 160 4647-0 4651-6

40 54'9' 170 5960-0 5956-7

5° 9198 180 7S45-Q 7537-o

60 14879 190 9428-0 94*5'4

70 233-09 200 11660-0 11679-0

80 354-64 2IO 14308-0 14325-0

90 5*5-45 220 17390-0 17390-0

100 760-00 230 20915-0 20927-0 1

To carry out the intended calculations from these data, I have

first obtained from the Table the values of - . -4r for the tempe-p at r

ratures —15°, —5°, 5°, 15°, &c. in the following manner. As

the quantity - . -~ decreases but slowly with the increase of tem

perature, I have regarded the said decrease for intervals of 10°,

that is, from —20° to —10°, from —10° to 0°, &c. as uniform,

* This column contains, instead of the logarithms derived immediately from

the curve and given by Eegnault, the corresponding numbers, so that they

may be more readily compared with the values in the column preceding.

t [It would have been more convenient to employ the values of vapour-

tensions, calculated by Regnault, from degree to degree, by help of an empi

rical formula, and collected in his well-known larger table. On attempting

to do so, however, I found that it would be more appropriate for my present

object to return to the values here tabulated, and which were obtained with

out the aid of an empirical formula, from immediate measurements of the

curves drawn according to observations ; for these values represent with the

greatest purity the results of observations, and are consequently particularly

well adapted for comparison with theoretical results.—18(54.]
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so that the value due to 25° might be considered as a mean be

tween that of 20° and that of 30°. As - . %=d^°fP> , I was by

p at at

this means enabled to use the following formula :

A dp\ _logj93o°—log^20^

\p - dtJvfT 10

or /l dp\ Logjp3oo— Logj920o
10. M > • - (25)

wherein, by Log, is meant Briggs's logarithms, and by M, the

modulus of his system. With the assistance of these values of

. and those of r given by equation (24), as also the value

273 of a, the values assumed by the formula at the right-hand

side of (22) are calculated, and will be found in the second co

lumn of the following Table. For temperatures above 100°, the

Table III.

1.

t in Cent, degrees
4.

of the air-ther 2. 3. Differences.

mometer. According to the values
observed.

According to
equation <27).

0
30-61 30-61 O-CO-is

- 5
29-21 30-54 + I-33

s 3°-93 30-46 -o-47

'5
30-60 3038 — 0-22

25 30-40 30-30 — o-io

35
30-23 30-20 — 0-03

45
30-10 30-10 o-oo

55
29-98 30-00 -|-0-02

65 2988 29-88 o-oo

75
29-76 29-76 o-oo

85 29-65 29-63 — 0-02

95
29-49 29-48 — o-oi

105 *947 29-5° 29- 3 3 — 0-14 —0-17

"5
29-16 29-02 29-17 +o-oi +0-15

125 2889 28-93 2899 -(-o-io -j-o-o6

135 2888 2901 2880 — 0-08 — 021

145 2865 28-40 28-60 — 0-05 +0-20

155 28-16 28-25 28-38 +0-22 +0-I3

165 28-02 28-19 2814 -f-O-12 —O05

175 27-84 27-90 27-89 +0-05 —O-OI

185 27-76 27-67 27-62 —0-14 —0-05

•95 27-45 27-20 »7-33 — 0-12 +0-I3

205 2689 2694 27-02 4-0-13 4-o-o8

215 26-56 2679 2668 -j-O-12 — O-II

225 2664 26-50 26-32 —0-32 —018
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two series of numbers given above for p are made use of singly,

and the results thus obtained are placed side by side. The sig

nification of the third and fourth columns will be more particu

larly explained hereafter.

We see directly from this Table that Ap (s— a) is not con

stant, as it must be if the law of M. and G. were valid, but that

it decidedly decreases with the temperature. Between 35° and

95° this decrease is very uniform. Before 35°, particularly in

the neighbourhood of 0°, considerable irregularities take place ;

which, however, are simply explained by the fact, that here the

pressure p and its differential quotient ^ are very small, and

hence the trifling inaccuracies which might attach themselves to

the observations can become comparatively important. It may

be added, further, that the curve by means of which, as men

tioned above, the single values ofp have been obtained, was not

drawn continuously from —33° to 100°, but to save room was

broken off at 0°, so that the route of the curve at this point

cannot be so accurately determined as within the separate por

tions above and below 0°. From the manner in which the di

vergences show themselves in the above Table, it would appear

that the value assumed for p at 0° is a little too great, as this

would cause the values of Apis — a) to be too small for therv ' a + t

temperatures immediately under 0°, and too large for those above

it*. From 100° upwards the values of this expression do not

decrease with the same regularity as between 35° and 95°. They

* [It must be remembered that the values of

are calculated by the formula

ar

given in equation (22). If now the value ofp, and consequently also the value

of log p, corresponding to 0? be too great, we must assume that the values of

the differential coefficient of log p, that is to say of will be too great im-
p at

mediately under 0°, and too small immediately above 0°, in consequence of
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show, however, a general correspondence; and particularly when

a diagram is made, it is found that the curve which, within

those limits, connects almost exactly the points, as determined

from the numbers contained in the foregoing Table, may be car

ried forward to 230°, so that the points are uniformly distributed

on both sides of it.

Taking the entire Table into account, the route of this curve

may be expressed with tolerable accuracy by the equation

which the values of the above formula which contains - ^ in the denomi-
p at

nator will necessarily be incorrect in an opposite sense. With reference to tem

peratures under 0° another circumstance must also be mentioned. For tem

peratures under 0° I have, in my calculations, applied the values of the va

pour-tension p, given by Regnault-s observations, also to the case when the

vapour is in contact with liquid water, as of course it may be, since under cer

tain conditions water may remain liquid at a temperature far below 0°. Ac

cordingly I have considered the magnitude r in the numerator of the formula

to be, at all temperatures, the quantity of heat consumed in the evaporation

of liquid water. If, on the contrary, we assume that those values of p given

by observation have reference, for temperatures under 0°, to the case where

vapour is in contact with ice ; then, for these temperatures, r must be under

stood to denote the quantity of heat which is consumed in the evaporation of

ice. For the temperature 0° itself the latter quantity of heat is obtained by

simply adding to the heat consumed in the evaporation of liquid water the

latent heat of fusion, that is to say 606-5+ 79=685-6. For temperatures under

0° this method, it is true, is not quite accurate ; nevertheless it must be very

nearly so when, in applying it, the differences in the latent heat of fusion are

considered which correspond to different temperatures. The value of

Ap(*-<r)
a+t

corresponding to the temperature —5°, when calculated in this manner ac

cording to the above formula, gives the number 32-93, instead of29-21, as found

by the previous calculation. Comparing this number 32-93 with the series

of numbers which correspond to the positive temperatures 5°, 15°, &c, we

find that its deviation from the course of the latter is of an opposite kind to,

and indeed somewhat greater than, the deviation of the previously calculated

number 29-21. Regnault-s values, therefore, regarded in either of the ways,

lead to irregularities in the course of the numbers. The occurrence of such ir

regularities at low temperatures, is explained, as has already been observed, by

the fact that the vapour-tensions are then so small, that errors of observation,

though absolutely small, may become relatively great ; less weight, therefore,

must be attached to the numbers in the above Table which refer to low tem

peratures, than to those which correspond to the mean and to the higher tem

peratures.—1864.]
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in which e denotes the base of the Napierian logarithms, and m,

n, and X; are constants. When the latter are determined from

the values given by the curve for 45°, 125° and 205°, we obtain

m= 31549; n= 10486; £=0-007138; . . (26 a)

and when, for the sake of convenience, we introduce the loga

rithms of Briggs, we have

Log[31-549-Ap(*-<r) -iLj =0-0206+ 0-003100 if. (27)

From this equation the numbers contained in the third column

are calculated, and the fourth column contains the differences

between these numbers and those contained in the second.

From the data before us we can readily deduce a formula

which will enable us more definitely to recognize the manner in

which the deportment of the vapour diverges from the law of M.

and Gr. Assuming the correctness of the law, ifps0 denote the

value ofps for 0°, we must put, in agreement with (20),

ps _a+t

ps0~ a

and we thereby obtain for the differential quotients ^ (^~t)

a constant quantity, that is to say, the known coefficient of ex

pansion i=0 003665. Instead of this we derive from (26), when

in the place of *— er we set s itself simply, the equation

ps m—n.e!ct a + t ,OQ>

—=—— . ; <6°)
ps0 m—n a

and from this follows

d / ps\ _1 m—n\\ + k{a + t)~\ekt ,^g)

dt\ps0) ~a - m—n

The differential quotient is therefore not a constant, but a func

tion which decreases with the increase of temperature; and

which, when the numbers given by (26 a) for in, n and k, are

introduced, assumes among others the following values :—
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Table IV.

t. t.
dAp»J

t.
d(p>\

o
O

0
70

0

dt\PHr

0-00342 0-00307 140 0-00244

IO 0-00338 80 0-00300 150 0-00231

20 0-003 34 90 0-00293 160 0-00217

30 0-00329 100 0-00285 170 0-00203

40 0-00325 110 0-00276 180 0-00187

50 0-003 1 9 120 000266 190 0-00168

60 0-00314 130 0-00256 200 0-00149

We see from this that the deviations from the law of M. and

Gr. are small at low temperatures ; at high temperatures, how

ever, for example at 100° and upwards, they are no longer to be

neglected.

It may, perhaps, at first sight appear strange that the values

found for ~(£?L\ are less than 0 003665, as it is known that

for those gases which deviate most from the law of M. and G.,

as carbonic acid and sulphurous acid, the coefficient of expan

sion is not smaller but greater. The differential quotients before

calculated must not however be regarded as expressing literally

the same thing as the coefficient of expansion, which latter is

obtained either by suffering the volume to expand under a con

stant pressure, or by heating a constant volume, and then obser

ving the increase of expansive force ; but we are here dealing

with a third particular case of the general differential quotient

di (~)' where the pressure increases with the temperature in

the ratio due to the vapour of water which retains its maximum

density. To establish a comparison with carbonic acid, the same

case must be taken into consideration.

At 108° steam possesses a tension of 1 metre, and at 129^° a

tension of 2 metres. We will therefore inquire how carbonic acid

acts when its temperature is raised 21|°, and at the same time the

pressure increased from 1 to 2 metres. According to Regnault*,

the coefficient of expansion for carbonic acid at a constant press

ure of760 millims. is 0*003710, and at a pressure of 2520 millims.

it is 0 003846. For a pressure of 1500 millims. (the mean be

tween 1 metre and 2 metres) we obtain, when we regard the in-

* Mem de VAcad., vol. xxi. Mem. I.
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crease of the coefficient of expansion as proportional to the in

crease of pressure, the value 0-003767. If therefore carbonic acid

were heated under this mean pressure from 0 to 21 1°, the quantity

22 would be thus increased from 1 to 1 +0 003767 x 21-5

= 1 -08099. Further, it is known from other experiments of

Regnault*, that when carbonic acid at a temperature of nearly

0°, and a pressure of 1 metre, is loaded with a pressure of

1 -98292 metre, the quantity pv decreases at the same time in

the ratio of 1 : 0*99146 ; according to which, for an increase of

pressure from 1 to 2 metres, the ratio of the decrease would be

1 : 0-99131. If now both take place at the same time, the increase

of temperature from 0 to 21£, and the increase of pressure from

1 metre to 2 metres, the quantity must thereby increase

very nearly from 1 to 1-08099 x 0-99131 = 1-071596 ; and from

this we obtain, as the mean value of the differential quotient

d/pv\

at \pv0/

0-071596=0,00333

21-5

We see, therefore, that for the case under contemplation a value

is obtained for carbonic acid also which is less than 0-003665 ;

and it is less to be wondered at if the same result should occur

with the vapour at its maximum density.

If, on the contrary, the real coefficient of expansion for the

vapour were sought, that is to say, the number which expresses

the expansion of a certain quantity of vapour taken at a definite

temperature in the state of maximum density, and then heated

under a constant pressure, we should certainly obtain a value

greater, and perhaps considerably greater, than 0-003665.

From the equation (26) the relative volumes of a unit weight

of steam at its maximum density for the different temperatures,

as referred to the volume at a fixed temperature, is readily esti

mated. To calculate from these the absolute volumes with suffi

cient exactitude, the value of the constant A must be established

with greater certainty than is at present the casef.

* Mhn. de VAcad., vol. xxi. Mem. VI.

t [At the time I wrote this Joule had not stated which value of the me-
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The question now occurs, whether a single volume may not

be accurately estimated in some other manner, so as to enable

us to infer the absolute values of the remaining volumes from their

relative values. Already, indeed, have various attempts been made

to determine the specific gravity of water vapour ; but I believe

for the case in hand, where the vapour is at its maximum den

sity, the results are not yet decisive. The numbers usually given,

particularly that found by Gay-Lussac, 06235, agree pretty well

with the theoretic value obtained from the assumption, that two

measures of hydrogen and one of oxygen give by their combina

tion two measures of vapour, that is to say, with the value

2 x 006926 + 1-10563_0.622

<t

These numbers, however, refer to observations made, not at those

temperatures where the pressure used was equal to the maximum

expansive force, but at higher ones. In this state the vapour

might nearly agree with the law of M. and G., and hence may

be explained the coincidence of experiment with the theoretic

values. To make this, however, the basis from which, by appli

cation of the above law, the condition of the vapour at its max

imum density might be inferred, would contradict the results

before obtained ; as in Table IV. it is shown that the divergence

at the temperatures to which these determinations refer are too

considerable. It is also a fact, that those experiments where the

vapour at its maximum density was observed have in most cases

given larger numbers ; and Regnault* has convinced himself,

that even at a temperature a little above 30°, when the vapour

was developed in vacuo, a satisfactory coincidence was first ob

served when the tension of the vapour was 08 of that which

corresponded to the maximum density due to the temperature

existing at the time ; with proportionately greater tension, the

chanical equivalent of heat he considered to be most in accordance with the

results of all his experiments. Taking experimental difficulties into conside

ration, the values yielded by his various methods of observation agreed suffi

ciently well with each other to leave no doubt in the mind as to the accuracy

of the theorem relative to the equivalence of heat and work, but not well

enough to enable me to deduce therefrom a value capable of being employed

with safety in the calculation of vapour-volumes.—1864]

* Ann. de Chim. et de Phys., ser. 3, vol. xv. p. 148.
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numbers were too large. The case, however, is not finally set at

rest by these experiments ; for, as remarked by Regnault, it is

doubtfulwhether the divergence is due to the too great specific gra

vity of the developed vapour, or to a quantity of water condensed

upon the sides of the glass balloon. Other experiments, wherein

the vapour was not developed in vacuo but saturated a current of

air, gave results which were tolerably free* from these irregulari

ties ; but from these experiments, however important they may

be in other respects, no safe conclusion can be drawn as to the

deportment of the vapour in vacuo.

The following considerations will perhaps serve to fill up to

some extent the gap caused by this uncertainty. The Table (IV.)

shows that the lower the temperature of the vapour at its maxiT

mum density, the more nearly it agrees with the law of M. and

Gr. ; and hence we must conclude that the specific gravity for

low temperatures approaches more nearly the theoretic value

than for high ones. If therefore, for example, the value of 0-622

for 0° be assumed to be correct, and the corresponding values d

for higher temperatures be calculated from the following equa

tion, deduced from (26),

d=°-622£^+' (30)

* Ann. de Chim. et de Phys., ser. 3, vol. xv. p. 168.

t [The magnitude d denotes the density of the vapour compared with that

of atmospheric air of the same temperature, and under the same pressure.

Now if s represent, as before, the volume of a unit of weight of the vapour,

and v the volume of an equal weight of atmospheric air of the same tempera

ture, and under the same pressure, we may put

But, according to the law of M. and G.,

r-Povo.a+t

p a '

whore p0 and v0 have reference to the temperature 0° ; and again, according

to the equation (26), a being neglected therein,

s=- X_(m—ne ).

Ap a '

Now these values of v and s being substituted in the above fraction, we have

d=
APqVq

-n**
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we shall obtain far more probable values than if we had made

use of 0-622 for all temperatures. The following Table gives

some of these.

Table V.

t. 0°. 50°. 100°. 150°. 200°.

d. 0-622 0-631 0-645 0666 0698

Strictly speaking, however, we must proceed still further. In

Table III. it is seen that the values of Ap(s-a-) as the
v a + 1

temperature decreases, approach a limit which is not attained

even by the lowest temperatures in the Table ; and not until this

limit be reached can we really admit the validity of the law of

M. and G., or assume the specific gravity to be 0-622. The

question now occurs, what is this limit ? Could we regard the

formula (26) to be true for temperatures under —15° also, it

would only be necessary to take that value to which it approaches

as an asymptote, »»=31-549, and we could then replace (30) by

the equation

(3Dd=0622 .
m—we**-

From this we should derive for 0° the specific gravity 0 643

instead of 0 622, and the other numbers of the above Table would

have to be increased proportionately. But we are not jus

tified in making so wide an application of the formula (26) , as

it has been merely derived empirically from the values contained

in Table III. ; and among these, the values belonging to the

lowest temperatures are insecure. We must therefore for the -

present regard the limit of A(s— a) 88 unknown, and con-

and hence, for the temperature 0°,

m—n

Eliminating p0v0 from these equations, we arrive at the equation

from which, on replacing d0 by its value 0-622, the equation (30) is at once

obtained.—1864.]
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tent ourselves with an approximation similar to that furnished

by the numbers in the foregoing Table ; so much however we

may conclude, that these numbers are rather too small than too

large*. - . -

By combining (Va) with the equation (III), which was de

rived from the first fundamental principle, we can eliminate

A(s— a) and thus obtain the equation

........ (32)

by means of which, the quantity h, described above as negative,

can be more nearly determined. For c and r let the expres

sions in (23 b) and (24) be substituted, and for a the number 273 ;

we then obtain

606-5-0-695i-0 00002<a-0 0000003^ . ,„„,

h=0-305 vfz+i +; - ( *

and from this we derive among others the following values for h :

Table VI.f

i. 0°. 50°. 100°. 150". . 200°.

h. — 1-916 -1-465 -1133 -0-879 — C676

* [For a comparison of the theoretical determination of the density ofvapour,

as here expounded, with more recent results of observations, see Appendix C.J

t [ When we employ the simplified formula

r=607- 0-708.<,

given in the note to equation (24), and retain the value 0-305 given by Reg-

nault for the sum ^+ cj the equation for h assumes the simpler form

607—0-708. t
h= 0-305-

which may also be written thus :

A=1013-

273+ t

800-3

273+t

This formula for A is a still more convenient one.—1864.]

% [The conclusion, that A is a negative magnitude, was also drawn by

Rankine, in a memoir published almost at the same time as my own, in the

Transactions of the Royal Society of Edinburgh (vol. xx.), wherein the mag

nitude itself is represented by Kt. The above equation (32), however, which

serves for the exact numerical calculation of h, was not established by Ran

kine, since he was not then in possession of the necessary second funda

mental theorem of the mechanical theory of heat. The equation employed by
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In ft manlier similar to that already pursued in the case of

aqueous vapour, the equation (Va) might be applied to the vapours

of other fluids, and the results thus obtained compared with each

other, as is done in Table I. with the numbers calculated by Gla-

peyron. We will not, however, enter further upon this appli

cation*.

We must now endeavour to determine, at least approximately,

the numerical value of the constant A, or, what is more usual,

the value of the fraction 7- : in other words, to determine the

A

equivalent of work for the unit of heatf.

Pursuing the Bame course as that of Meyer and Holtzmann, we

can in the first place make use of equation (10 a), developed for

permanent gases. This equation was

and when for c the equivalent expression — is introduced, we have

For atmospheric air, the number 0-267, as given by De Laroche

and Berard, is generally assumed for d ; and for k, as given by

Dulong, 1421. For the determination of R= ^°v° , we know

a + t0'

that the pressure of one atmosphere (760 millims.) on a square

metre amounts to 10333 kils. ; and the volume of 1 kil. of atmo

spheric air under the said pressure and at the temperature of the

him for the determination of this magnitude, numbered (30) in his memoir,

would agree with my equation (III), deduced from the first fundamental

theorem, had not Rankine, contrary to myself, assumed the law of M. and G.

to be true for saturated vapours.—1864.]

* [The experimental data when this was written being too incomplete and

unsafe, further pursuit of the subject appeared inappropriate. Regnault, how

ever, having now published the second series of his extremely valuable inves

tigations (Relations des Experiences, t. ii.), in which the vapour-tension,

the latent heat of evaporation, and the specific heat for a considerable

number of liquids are determined in the same manner as was done for aqueous

vapour in the first series, it would be easy to extend to vapours of other

liquids the calculations which above have reference to aqueous vapour.—

t [Now called, more briefly, the mechanical equivalent of heat.—1864.]

c'=e +AR;

1 k.IL
(34)

1864.]
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freezing-point is =0-7733 of a cubic metre. From this follows

p _ 10833.0-7783 OQ.OJ.

^ 97S273

1-421 x 2926
=370;

A 0-421x0-267

that is to say, by the expenditure of one unit of heat (the quan

tity which raises 1 kil. of water from 0° to 1°) a weight of 370

kils. can be raised to a height of 1 metre. This value, however,

on account of the uncertainty of the numbers 0-267 and 1-421,

is deserving of little confidence. Holtzmann gives as the limits

between which he is in doubt the numbers 313 and 429*.

The equation (Va) developed for vapours can be made use of

for the same purpose. If we apply it to the vapour of water,

the foregoing determinations, whose result is expressed in equa

tion (26), may be used. If, for example, the temperature 100°

be chosen, and forp the corresponding pressure of one atmo

sphere = 10333 kils. be substituted in the above equation, we

obtain

i=257. (j-er).t (35)

A.

* [The remark in the text on the uncertainty of the experimental data em

ployed in this calculation, has been recently verified by Regnault-s finding

(hat the specific heat of atmospheric air is represented by 0-2375, instead of

by the number 0-267, which was previously considered to be the most trust

worthy. By introducing the former into the above calculation the value 416,

instead of 370, is obtained for the mechanical equivalent of heat. If more

over we replace the number 1-421 by 1-410, which probably more nearly ex

presses the true proportion between the two specific heats, we obtain 424 as

the result of the calculation. I may also here remark that the number 29 26

of the text requires changing to 29-27: this, however, has no influence

upon the given result, since the latter is calculated only to three figures.—

1864.]

t [This equation may obviously be directly deduced from the equation

(V a) ; for the latter gives at once

1

dp

(,-*).

The differential coefficient here involved, has, according to Regnault, at

100°, the value 27-200, expressed in millimetres of mercury, and when this

number is reduced to the measure of pressure above employed, i. e. to kilo

F 2
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If it be now assumed with Gay-Lussac that the specific gravity

of aqueous vapour is 0 6235, we obtain s= T696, and hence

1=437.

A

Similar results are obtained from the values of C contained in

Table I., which Clapeyron and Thomson have calculated from

equation (V). If these be regarded as the values of A(a + t)

corresponding to the adjacent temperatures, a series of numbers

are obtained for all of which lie between 416 and 462.

A

It has been mentioned above, that the specific gravity of

aqueous vapour at its maximum density given by Gay-Lussac is

probably a little too small, and the same may be said of the

specific gravities of vapours generally. Hence the value of i

A.

derived from these must be considered a little too large. If the

number 0 645 given in Table V. for the vapour of water, and

from which we find *=1638, be assumed, we obtain

|=42!;

which value is perhaps still too great, though probably not

much. As this result is preferable to that obtained from the

atmospheric air, we may conclude that the equivalent of work for

the unit of heat is the raising of something over 400 kits, to a

height of 1 metre.

With this theoretic result, we can compare those obtained by

Joule from direct observation. From the heat produced by

magneto^electricity he found

i=460*.

A

From the quantity of heat absorbed by atmospheric air during

its expansion,

I=438t;

logrammes on a square metre, becomes 369-8. On substituting further, for

a+t and r, the values 373 and 536-5, corresponding to the temperature 100°,

the equation (35) is obtained.—1864.]

* Phil. Mag. vol. xxiii. p. 441. The English measure has been reduced

to the French standard. - f Ibid. vol. xxvi. p. 381.
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and as mean of a great number of experiments in which the heat

developed by the friction of water, of mercury, and of cast iron

was observed,

1=425*.

A

The coincidence of these three numbers with each other, not

withstanding the difficulty of the experiments, dispels all doubt

as to the correctness of the principle which asserts the equiva

lence of heat and work ; and the agreement of the same with the

number 421 corroborates in like manner the truth of Carnot's

principle in the form which it assumes when combined with our

first fundamental principle.

APPENDICES TO FIRST MEMOIR [1864].

APPENDIX A. (Page 27.)

COMPLETED DEDUCTION OF THE EXPRESSION FOR THE EXPENDED

HEAT GIVEN IN EQUATION (3).

In developing the expression for the expended heat given in the

equation (3) of the text, certain magnitudes have been left un-.

considered which have no influence on the result, and which in

order to simplify the calculus are usually disregarded in all si

milar cases. One disadvantage of this procedure, however, is

that to the reader doubts may thereby arise as to the accuracy of

the result. On this account I deem it desirable to supply here

a somewhat more complete deduction of the equation (3) .

• In doing so it must be remembered that the following deve

lopment, as well as that given in the text, holds not only for a

gas, but also for every other body whose condition is determined

by its temperature and its volume, and whose variations of vo

lume occur in such a manner that force and resistance differ so

little from one another as to justify, in calculation, the assump

tion of their equality. We shall assume, moreover, that the sole

* Phil. Mag. vol. xxxv. p. 534.
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exterior force which influences the changes of volume acts every

where normally and equally upon the surface, so that in general

it may be termed a pressure, inasmuch as any pull which may

possibly take place may be regarded as a negative pressure.

Let us consider the quantity of heat dQ which a body must

receive during an increase of temperature equal to dt, and an

augmentation of volume equal to dv. For a differential which

depends, as dQ does, on the differentials of two independent va

riables, it is customary to employ the equation

*-(S)*+(*)* «

which by the introduction of simple symbols for the partial dif

ferential coefficients, that is to say by putting

M,

(b)

may be thus written :

dQ=Mdt+ ~Ndv (c)

Strictly speaking, however, this equation is incomplete. The

complete expression for dQ, contains an infinity of terms, of the

successive orders one, two, three, &c, in reference to the differ

entials dt and dv. By actually introducing the terms of the se

cond order, and merely indicating the remaining ones, the equa

tion for dQ, becomes

,Q=M*+N*+I{(f>,+ [(f) + (f)>*

Now it is clear that when an expression contains terms of the

first order in the differentials, all accompanying terms of the se

cond or of higher order may be neglected. Accordingly the two

first terms on the right of the above equation are the only ones

which are usually written. When in any calculation, however,

the terms of the first order cancel each other, so that among the

terms of the final result those of the second are the lowest in

order, then from the commencement all terms of the second
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order must be taken into consideration, and it is only those of

the third and higher orders which can be neglected. This occurs

in the case under consideration, since the expression for the ex

pended heat, containing the product dv dt as a factor, is neces

sarily of the second order. The calculation, given in the text,

-was conducted, it is true, in such a manner that only those

terms of the second order were neglected which were without

influence on the final result, nevertheless for the sake of com

pleteness and rigour, these terms in the following calculation

shall also be written.

When any relation whatever is given between the variables t

and v, in virtue of which the one may be regarded as a function

of the other, the equation (d) may be written so that the terms

on the right proceed simply according to ascending powers of a

single variable. If t, for instance, be regarded as a function of

v, and the following symbols be introduced for the differential

coefficients of t according to v,

--P- — =£'- Sec

then we shall have

dt=£dv +?^+bc , ...(e)

whereby the equation (d) will become

«-w+«MCS)r+[(£)+(«)]»

<o

If, on the other hand, v be regarded as a function of t and we in

troduce the symbols

we shall have

dv d*v j „

4tmndt+i/*£+to. . . ., . . . . (g)

and accordingly

*»-<»™*{(£HO+(f)J'

+(f)'!+N',}¥+to »

These equations are to be applied to the four changes to which
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the gas or the body tinder consideration is to be subjected, and

which are to proceed according to two different laws. m

We consider first the changes of volume which occur at a

constant temperature. In this case the differential coefficients

of t according to v, that is to say, the magnitudes f, f, &c, must

be put equal to zero. Consequently in order to determine the

quantity of heat which the body must receive during an expan

sion dv from its initial state without change of temperature, we

may employ the equation (f) in a simplified form; the terms

which contain the factors f, £', &c. . . being omitted. Stopping

at terms of the second order, we thus arrive at the equation

In order to express, in a similar manner, the quantity of heat

which the body must receive when at the temperature t— dt it

expands from the volume v + Bv to the volume v + Sv + d'v, we

must replace dv in the foregoing equation by d'v, and in place

of N and ( — 1 introduce the values which these magnitudes

possess at the slightly changed temperature t—dt, and the

somewhat altered volume v + Sv. Assuming these values to be

expressed in series proceeding according to powers of dt and dp,

we need only retain terms of the first order in the case of N,

since the latter quantity is multiplied by a differential in the

above equation, and all subsequent terms in N would merely

lead, in dQ., to terms of a higher order than the second. Ac

cordingly in place of N. we have to put

"+(*MS)*

In the value of I— J, which in the above equation is multiplied

by the square of a differential, we may for the same reason omit

terms of the first order, and simply retain the original value

/ — J . Accordingly if we represent the quantity of heat re

ceived during this expansion by d'Q, we have the equation

^MMfM^dv) 2
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Subtracting this quantity of heat from the former, we obtain the

heat expended during the whole process, that is

dQ-d'Q=N«fo- [ N+ Bv- dt] d'v

/d~N\dv2-d'v*

\dv) 2 -

<i)

This expression differs only in the last term from the one num

bered (2) in the text, and this term is easily recognized to be

only apparently of the second order, for the differentials dv and

d'v can only differ from one another by a magnitude infinitely

small relative to their own proper values, so that the difference

dv2—d'va is an infinitesimal of an order higher than the

second.

We proceed now to changes of volume of another description,

—to changes produced without either communicating heat to the

body or abstracting it therefrom. In this case the temperature

must change with the volume, and one of these magnitudes being

chosen as the independent variable, we have to determine the

differential coefficients of the other. We shall consider v as a

function of t, and determine the differential coefficients 77, 17' &c.

of the former. To this end we must employ the equation (h),

and put therein dQ=0, whereby we shall have

°-™*+{(fH(f>(£)>

Since this equation must hold for any value of dt, the factor of

each power of dt must vanish. Equating to zero the factor of

the first power of dt, we have

M + Nij=0,

whence we deduce

M m

The magnitude tj is thereby determined as a function of t and v*

The next differential coefficient rf might be similarly determined

by equating to zero the factor of the second power of dt ; it is

not necessary, however, actually to perform this calculation,
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since rf may also be found by differentiating the expression for

7), already found completely, according to t ; that is to say we

may differentiate according to t and v, and regarding v as a func-

dv
tion of t, put -17 =r). The succeeding differential coefficients of

v according to /, if required, would have to be calculated in a

similar manner.

Now to determine the magnitude Sv by which the volume of

the body must increase from its initial value, in order that the

temperature may sink from / to t—dt, we must employ the

equation (g), and write therein Sv in place of dv, and — dt in

place of dt. By so doing and contenting ourselves with terms

whose order does not exceed the second, we obtain the equation

Sv=-Vdt+V'^. (m)

Similarly, to find the value of S'v, that is to say how much the

body, starting from the volume v + dv, must expand in order

that the temperature may fall from t to t—dt, we must replace

7) in the foregoing expression by its changed value V+i^W

The corresponding change of if need not be considered, since

the only terms which could arise therefrom would be of an order

higher than the second. We have therefore

^=-b+(dt)dv]dt^T- - - - w

Besides these equations for Sv and S'v, another must exist in

volving the four changes of volume which the body suffers suc

cessively, during the process. This is the equation which ex

presses the condition that the body ultimately returns to its

initial volume, and which is thus written :

dv + S'v = Sv + d'v (o)

From this it follows that

d!v=dv + S'v—Sv,

an equation which, on substituting for Sv and S'v their respective

values as already found, becomes

d'v-*-$)** W
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We now return to equation (i) , which represents the heat ex

pended during the whole process, and substitute therein the va

lues of &v and d'v as given by the equations (m) and (p) . Ne

glecting all terms of an order higher than the second, we thus

find

K3)*(S>]**, w

and if in this we replace rj by its value given in <l) , We have

*-~-[CSM&]** «>

which, by introducing in place of M and N the original symbols

for partial differential coefficients, becomes

..•<•»

This is the equation (3) given in the text, to re-establish

which, in a somewhat more rigorous manner, was the object of

the present Appendix.

APPENDIX B. (Page 28.)

INTEGRATION OP THE DIFFERENTIAL EQUATION (II).

It will perhaps be useful to elucidate somewhat more fully the

manner of obtaining the equation (II a) from the equation (II).

The equation (II), which in the text is thus written,

dt\dv) dv\dt)~ v ' . . • • <1AJ

may be called a partial differential equation of the second order,

although it differs somewhat from the ordinary equations of this

kind, since in the latter it is usual to assume, tacitly, the fulfil

ment of the condition

d fdQ,\_d /dQ\

dv\dt) dt\dv)-

In order to pass, by integration, from the equation (II) to a

differential equation of the first order, we may proceed as

follows. In the first place we take any function whatever of t

and v as a.representative of one of the two partial differential
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coefficients and For instance, M being any such

function, we put

(a)

and introduce this value into the equation (II). The substi

tuted term being then removed from the left to the right of the

equation, we have

. . dt \dv ) \dv ) v

Integrating this equation according to t, and under the hypo

thesis that v remains constant, we find

(SH(f £+♦<•), ..•<->

where c£(v) denotes an arbitrary function of v. Having thus

obtained an expression for the partial differential coefficient

(«T~}' WG nex* ^ornl tne comP^e differential equation of the

first order,

*»-(¥)*+(£)*

and substitute therein the assumed function M for ^, and

the expression just obtained for (-^r)- We thus arrive at the

equation

dQ=M.dt+ tf(^yt+ AB,i + <l>(v)~jdv. . . . (c)

The expression

which forms a constituent part of the right-hand side of this

equation, is at once seen to be the complete differential of a

function of t and v ; for the factor of dt, when differentiated ac

cording to v, gives the same result, {^-^> as does the differ

entiation, according to t, of the factor of dv. For this expres

sion, therefore,, we may. introduce the symbol dS ; and since M

represents an arbitrary function of / and v, and </> (v) an arbitrary

function of v, S itself must be regarded as a perfectly arbitrary
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function of t and v. The introduction of the symbol into the

equation (c) gives

dQ—dS+AR-dv (d)

For the further treatment of this equation it will be conve

nient to introduce, in place of the simple magnitude / in the

last term, the sum a + 1, where a is the constant denned in the

text. To do this the last equation may be written in the form

dQ=dS-AR - dv + AR ft±* dvs

v v

or rather thus :

dQ,=d(S-AKa\ogv)+ARa-+ldv, . . (e)

which latter may be simplified by putting

S-ARalog«= U, ....... (f)

where U is again an arbitrary function of t and v, since an alge

braical sum which consists of an arbitrary, and of a known func

tion of the same variables must itself be regarded as an arbi

trary function of these variables. By introducing this new

symbol U into the equation (e), we obtain the equation (II a) of

the text, that is to say,

«?Q=dU +AR— <&>. .... (Ila)

The object of the introduction of the sum a+ 1 in place of the

quantity t, is to render the last term susceptible of a simple

mechanical meaning. In fact, from the equation

pv= ~R(a+t),

which applies to permanent gases, it follows that

AR -i. dv= Apdv; (g)

and since pdv denotes the exterior work done during the expan

sion dv, the last term of the equation (Ila) obviously represents

the heat-equivalent of the exterior work.

The more general differential equation of the second order,

dt\dv) dv\dt)~ \dt)> - - - - l"J

given in the first note on p. 28, may be treated in the same man

ner, as we have just treated the equation (II) , and thereby the fol
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lowing complete differential equation of the first order obtained,

dQ=d\J + Apdv (II' a)

The function U, here introduced, ie of great importance in the

theory of heat ; it will frequently come under discussion in the

following memoirs. As stated in the text, it involves two of the

three quantities of heat which enter into consideration when a

body changes its condition ; these are the augmentation of the

so-called sensible or actually present heat, and the heat expended

in interior work.

APPENDIX C. (Page 65.)

ON THE DENSITY OF SATURATED AQUEOUS VAPOUR.

The conclusions drawn in the text, relative to the deviation

from the law of M. and G. presented by saturated vapours, and

which at that time stood isolated, inasmuch as it was the uni

versal custom to apply the law in question also to vapours, have

since been experimentally verified by Fairbairn and Tate*.

The following summary of a note communicated by me to the

Academy of Sciences at Paris f, will show how far these results

of observation agree with my formula.

Under (30), in the text, is given the equation

«f= 0-622 -^^

m—ner1

wherein d denotes the density of the saturated aqueous vapour,

in comparison with atmospheric air at the same temperature

and under the same pressure, and m, n, k are three constants

having the values

»»=31-549, n= 1-0486,, A;=0007138.

By means of this equation the values of d were calculated which

are contained in Table V. of the text (p. 64). If * be the

volume of a kilogramme of saturated vapour, and v that of a ki

logramme of atmospheric air at the same temperature and pres

to
sure, the fraction - may be put instead of d. The reciprocal

fraction, therefore, will, according to the foregoing equation, have

the value s_ m—nekt

v~ 0-622. (m-n)'

* Proceedings of the Royal Society, 1860 ; and Phil. Mag. Fourth Series,

vol. xxi. p. 230. t Comptes Rendus, vol. lii. p. 706 (April 1861).
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His equation may be written in the more convenient form

i=M-N«', (a)

where the constants M, N, « have the following values, depen

dent on the values of m, n, k previously given,

M=l-6630, N=0-05527, a=1007164.

Strictly speaking the difference s— a, where a is the volume of a

kilogramme of water, should enter into the foregoing equations

instead of the quantity s, since this difference occurs in the

equation (26), from which (30) is deduced. The volume of

water being very small, however, when compared with that of

vapour, the quantities s and s— a may, in an approximate calcu

lation, be regarded as equal to one another.

In the following Table the values of *, calculated from the above

formula for -, are placed side by side with those deduced by

Faifbairn and Tate from their observations, and with the values

formerly assumed as corresponding to the equation

8_ 1

v 0622*

Volume» of a kilogramme of saturated aqueous vapour
hi cubic metres according to

Temperature in

the former as
sumption.

the equation (a). obserration .

58-2. 8-38 8*3 8-27

6852 541 5-29 5-33

7076 4-94 4-83 491

77-18 3-84 3-74 3-72

77-49 3-79 3-69 3-71

7940 3-52 343 343
83-50 3-02 294 3-05

8683 2-68 2-60 2-62

92-66 2-18 211 215
i

117-17 0991 0-947 0-941

1 1823 0-961 0-917 0-906

118-46 0-954 09 1 1 0891

124:17 0809 0*769 0-758

1 28 -41 0-718 o-68i 0-648

130-67 0674 0639 0-634

13178 0-654 0-619 0-604

134-87 0*602 0-569 0-583

13746 0-562 0-530 0514

139-21 o-537 o-505 0-496

141-81 0-502 0472 0457

142-36 0-495 0-465 0448

144-74 0466 0-437 0-432
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From this Table it will be seen that the observed values agree

much better with those calculated from my equation than with

the formerly assumed values ; and further, that the differences

which still exist between the observed values and those of my

formula are generally of such a character that the observed

values differ from the formerly assumed ones still more than do

the values of my formula.

ON THE INFLUENCE OF PRESSURE UPON THE

FREEZING OF LIQUIDS*.

Mr. William Thomson has described an experimental inves

tigation, conducted by himself f, and originating in a theoretic

view entertained by his brother, James Thomson. The latter

had concluded, from the known principle of Carnot, that by an

increase of pressure the freezing-point of water must be lowered,

which view was completely verified by experiment.

Some time ago I published a theoretic memoir %, in which

the principal part of Carnot's law is retained, but altered in

one minor particular. This alteration rendered certain of the

conclusions heretofore deduced from the principle impossible,

while others remained valid ; the latter being those whose cor

rectness or high probability had been demonstrated by expe

riment. Now as the above conclusion regarding the freezing-

point of fluids has also been substantiated experimentally, and

thus in a scientific point of view has obtained a greater signifi

cance than one would be inclined at first sight to attribute to so

small a difference, I feel myself called upon, in behalf of my

theory, to show that my alteration of Carnot's principle is in no

way opposed to this result §. Moreover, by a simultaneous ap-

* Note published in Poggendorff-s Annalen, September 1860, vol. lxxxi.

p. 168 ; and translated in the Philosophical Magazine, S. 4. vol. ii. p. 548.

t Proceedings of the Royal Society of Edinburgh, February 1860 ; and

Phil. Mag. S. 3. vol. xxxvii. p. 123.

\ [First Memoir of this collection.]

§ I need hardly mention that I have here no thought of disputing with

Mr. J. Thomson the priority of his ingenious application of the principle of

Carnot.
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plication of the first fundamental principle which I have assumed,

a new conclusion is arrived at which, although practically unim

portant on account of the smallness of the numbers which it in

volves, nevertheless deserves expression on account of its theoretic

interest.

A lengthened analysis of the subject is not here necessary.

The considerations dwelt upon in my former paper regarding

the evaporation*, may be applied almost verbatim to the freezing

of a liquid. We have only to conceive the vessel impervious to

heat to be filled with the body partly in the solid and partly in

the liquid state, instead of, as in the former case, partly in the

liquid and partly in the vaporiform state ; and then, instead of

permitting a fresh portion of the liquid to evaporate, to allow a

portion of it to freeze, &c.

One of the two principal equations deduced therefrom was

r=A{a + t) (s-a) J; (Va)

and this holds good for the freezing also, p and t again denoting

the pressure and temperature, and a the volume of a unit of

weight of the liquid, whereas s denotes the volume of a unit of

weight of a solid body (instead of vapour, as in the former case) ,

and r the latent heat of the freezing (instead of the evaporation) .

The latter, however, must be here taken as negative, because by

freezing, heat will be liberated, and not rendered latent. We

have therefore

dt _ _A(a+ t) (s — <r)

d£~ r [)

Let the value of -i-, given by Joule in his last investigationf as

A.

the most probable result of all his experiments, that is 423 55

(772 English) , be here substituted, as also for a the number

273; further, with regard to the water, t=0, r= 79, <r=0001,

and #=0-001087 ; and, finally, \etp be expressed in atmospheres,

instead of in kilogrammes, pressing upon a square metre, we

then obtain

-0-00733,

dp

* [First Memoir, pp. 30 and 47.]

t Phil. Trans, of the Royal Society of London for the year 1850, part 1.

p. 61.

a
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which may be regarded as equal to the value calculated by

James Thomson, and corroborated by William Thomson, namely

-00075.

The other principal equation deduced from the principle of the

equivalence of heat and work was

*+,-»-A(.-.)$ am

To apply this to the case of freezing, we must regard c

and h as two quantities which differ from the specific heats

of the liquid and solid body only so far as they express, not

the heat which must be imparted to a body when it is simply

warmed, but that which is necessary when the pressure varies

with the temperature in the manner indicated by equation

(1). This difference, however, cannot be considerable, since

Regnault* has found that water, by an additional pressure

of 10 atmospheres, does not increase ^th of a degree Cent,

in temperature ; besides this, as the differences for c and h

take place both in the same sense, and hence in the difference

c—h are subtracted, we can set with a near approach to accu

racy for c—h the difference of both specific heats simply f. If

the value of ^ estimated from (1) be substituted in (III), and

at

if the sign of ^ be changed like that of r in the former case,

Cut

we have dr , , r
=c—h+—— (2)

at a+t

Prom this we must conclude, that when the freezing-point

changes, the latent heat must also change ; for water c=l, and,

according to Person}, A =0-48. Hence we have

^=0-52 +0-29 = 0-81;

at

that is to say, when the freezing-point of water is lowered by

pressure, the latent heat decreases 0-81 for every degree.

We must not confound this result with that already expressed

by Person §. From the circumstance that the specific heat of

* M6m. de VAcad. de VInst. de France, vol. xxi. Mem. VII.

t [In one of the following Memoirs a more accurate determination will be

given.—1866.]

X Comptes Rendus, vol. xxx. p. 526.

§ Ibid. vol. xxiii. p. 336, and Poggendorffs Annalen, vol. lxx. p. 302.
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ice is less than that of water, the latter concluded with great

probability, that when the freezing-point, without increasing the

pressure, is simply lowered by preserving the fluid perfectly mo

tionless, the latent heat must then be less than at 0°. This

decrease may be expressed by the equation

dr ,
di=c-h;

the above equation (2) therefore shows that, when the freezing-

point is lowered by pressure, the latent heat, besides the change

due to the last-mentioned cause, suffers a still further diminution

expressed by the quantity ; this in the case of water is = 0*29,

and it is this quantity which corresponds, as equivalent, to the

exterior work accomplished.

The recent observation of Person*, that ice does not melt

completely at a definite temperature, but becomes softer imme

diately before it reaches the melting-point, I have left unnoticed,

as its introduction would merely render the development more

difficult, without serving any important end ; for the decrease of

latent heat, which corresponds, as equivalent, to the produced

work, must be independent of the little irregularities which may

take place during the melting.

APPENDIX TO PRECEDING NOTE (1864).

ON THE DIFFERENCE BETWEEN THE LOWERING OF THE FREEZING-

POINT WHICH IS CAUSED BY CHANGE OF PRESSURE AND THAT

WHICH MAY OCCUR WITHOUT ANY SUCH CHANGE.

It will not, perhaps, be without advantage to examine some

what more closely what has been said at the end of the preceding

Note. Allusion was there made to the well-known phenomenon

of the lowering of the freezing-point of water brought about, not

by increasing the pressure, but by protecting the water from all

agitation ; and it was asserted that in this case the latent heat,

or rather the heat rendered sensible on solidification, must change

according to a law different from that which obtains when the;

* Comptes Rendm, vol. xxx. p. 526.

o2
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freezing-point is lowered by pressure. The correctness of this

assertion, and of the equation relative thereto, will be rendered

manifest by the following considerations.

It was fully demonstrated in the First Memoir that the heat

which must be imparted to (or abstracted from) a body in order

to bring it from a given initial condition to another determinate

one, may be divided into three parts ; these are the quantity of

heat which serves to increase that which is actually present in

the body (the so-called sensible heat) , the quantity expended on

interior work, and the quantity expended on exterior work. It

was stated that the two first parts are completely determined by

the initial and final conditions of the body, and that for this de

termination it is not necessary to know in what manner the

changes of the body have occurred, in other words, what path has

been pursued by the body in passing from one condition to the

other. If, therefore, we include both these quantities of heat in

one symbol U, as was done in the First Memoir, we shall thereby

obtain a magnitude which, on the supposition that the initial con

dition of the body is known, depends only upon its present condi

tion, and not at all upon the manner in which it has been brought

into this condition. The third quantity of heat, however, that

expended on exterior work, depends not only upon the initial and

final states of the body, but also upon the whole series of changes

which it has undergone. The exterior work being represented by

W, the heat expended in its production will be AW, and on adding

to the latter the other two quantities of heat, we obtain the sum

U +AW

as the representative of the total heat which must be imparted

to the body during its several changes.

Now let us conceive a unit of weight of water to be given at

the temperature 0°, and let it be required to convert it into ice at

a certain temperature below zero, the pressure remaining con

stantly equal to that of the atmosphere, and to express the quan

tity of heat which must be withdrawn from the mass in order to

do so.

The simplest way of producing this change would be to allow

the water to freeze at 0°, and then to cool the ice so formed to

the temperature tv The process, however, may be also con

ducted in another way. We will allow the water, in its liquid
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state, to be cooled to a temperature / between 0° and tl) and then

at this temperature to be solidified. When water which has been

cooled to a temperature below zero freezes, a considerable quan

tity solidifies suddenly, and the heat thereby produced or ren

dered sensible raises the whole mass to 0° again, after which the

further solidification proceeds gradually at the latter tempera

ture. Nevertheless, although not actually feasible, we will con

ceive the sensible heat to be withdrawn from the mass during

its solidification just as quickly as it is generated, so that the

whole mass may freeze at one and the same temperature t. The

ice thus produced shall then be subjected to a further cooling

down to the temperature tv

In finding an expression for the quantity of heat which must

be withdrawn from the mass during this process, we shall em

ploy the following symbols :—

r1 the heat rendered sensible during gelation,

d the specific heat of the water,

h! the specific heat of the ice,

a1 the volume of a unit of weight of water,

*' the volume of a unit of weight of ice.

The letters, it will be observed, are the same as in the foregoing

Note, they are here accented because they have now slightly dif

ferent values. In the preceding Note, in fact, they had reference

to the case where the pressure increased according to a certain law

with the diminution of temperature, whereas now the pressure is

supposed to remain constantly equal to one atmosphere.5

Accordingly the heat which serves to bring the water from the

temperature 0° to the temperature t will be represented by the

integral

Jo

Now the temperature t being, by hypothesis, lower than 0°, t is

a negative quantity, and with it the value of the integral also ;

this expresses the fact that the heat in question is not imparted

to, but withdrawn from the body. In a similar manner the

quantity of heat which serves to depress the temperature of the

ice thus formed from t to f, is expressed by the integral
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Lastly, r* represents the heat rendered sensible during solidifica

tion, and to it a negative sign must be affixed in order to indi

cate that this quantity of heat must also be withdrawn from the

body.

The algebraical sum of these three quantities constitutes the

required expression for the total heat under consideration, and

since this latter quantity is also expressible by the sum pre

viously determined, we have the equation

The exterior work W still remains to be determined. The

initial volume of the mass coincides with that of a unit of

weight of water at the temperature 0°, and its final volume is

that of a unit of weight of ice at the temperature tv These two

volumes, as special values of a1 and *', being represented by <r0'

and the increment of volume will be expressed by s^—ctq.

Since this increment of volume takes place under the constant

pressure p0 of one atmosphere, the corresponding work will be

expressed by the product p0 («/—a0') simply, and the temperature

at which freezing may have taken place is here a matter of in

difference. By substituting this expression for W in the pre

ceding equation, the latter takes the form

We will next differentiate this equation according to the in

termediate temperature t at which freezing took place. Since

now the magnitude U, in every case, depends solely upon the

initial and final conditions, and since, in the special case now

under consideration, the heat expended on exterior work is like

wise independent of the intermediate temperature t, we may, in

differentiating, consider the whole of the right-hand side of the

equation as constant. The result, therefore, will be

(a)

fl>)

or

dr^

dt
= d-ti. (c)

This is, in reality, the last equation of the preceding Note ; the
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notation alone is slightly different, inasmuch as the accents

which, for the sake of better definition, have been here intro

duced were not there employed ; it being assumed that the dif

ferent significations of the several quantities, due to the peculiar

circumstances, were self-evident, even in the absence of distin

guishing marks.

In order to render perfectly manifest the essential points of

difference between the case just considered, where the lowering

of the freezing-point is occasioned solely by protecting the water

from agitation, and the case where the freezing-point is lowered

by increasing the pressure, I will here also re-establish the equa

tion (2) of the preceding Note, and in so doing retain the same

method of reasoning which has just led to the equation (c) .

Given, once more, a unit of weight of water at 0° to be con

verted into ice of the temperature tv but in such a manner that

during the diminution of the temperature the pressure shall in

crease according to the law expressed by the equation (1) of the

preceding Note. Since, under these circumstances, the diminu

tion of the temperature t likewise represents the depression of

the freezing-point of the water, every temperature t between 0°

and tx may be assumed as that at which freezing takes place.

Conceive the water, therefore, to be cooled in the liquid condition

from 0° to /, then to be frozen at this temperature /, and finally

to be cooled, in its solid state, from t to tv The quantity of heat

which must be withdrawn from the mass during this process will,

on again calculating abstracted heat as a negative quantity im

parted to the mass, be represented by the algebraical sum

—r + \ cdt+\ ' hdt.

Jo J<

Equating this sum to the expression U + AW, which applies ge

nerally to all changes, we have, corresponding to (a) , the follow

ing equation :

-r + ('cdt + ^tlhdt=V+ AW. . . . (d)

The exterior work W must here be determined anew, and its

determination under the present assumed circumstances will not

be so simple as in the previously considered case, since the

pressure, instead of being constant, is now dependent upon the

temperature. During the cooling of the water from 0° to t the
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volume changes from er0 to a under variable pressure ; during

the process of gelation the volume changes from a to * under

constant pressure ; and as the ice finally cools from t to /, the

volume changes from * to s, again under variable pressure. The

total work therefore is

W=p(s—a) + \ pda+\ ' pds,

or, otherwise expressed,

where p is the function of the temperature which defines the

pressure.

On substituting this expression for W in equation (d), we have

-r+f'edt+y1 **=U+a[jp(«-»)+J Pjj#+ (%§ *]- (e)

We will now differentiate this equation according to t, as we

formerly did the equation (b) , and remember, in doing so, that

the quantity U is independent of the intermediate temperature t.

We thus obtain the equation

-A<.-„) f,

whence we deduce

*=e-A-A(.-«r)f (f)

Replacing therein the expression A(s— a) -K- by — , in ac-
(It t& ~j~ Z

cordance with the equation (1) of the preceding Note, we ob

tain the equation there marked (2) , namely,

di=c-h+-aTt (g)

On comparing the formation of the equation (f) or (g) with

that of the equation (c) , it will be seen that the principal differ

ence between the two cases corresponding thereto arises from

the circumstance that in the latter the exterior work is inde

pendent of the intermediate temperature at which freezing oc

curs, whereas in the former it is dependent thereon. In the
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equations (f) and (g), therefore, there occurs a term expressive

of the variability of the heat expended on exterior work, whilst

in the equation (c) this term is absent. Moreover a small dif

ference also arises from the fact that the quantities c' and h' have

not exactly the same values as c and h. In another place I shall

have occasion to return to the consideration of this difference,

and an opportunity will then present itself of determining its

numerical value.

In the last paragraph of the preceding Note allusion was made

to Person's remark, that ice near the temperature 0° is softer

than at lower temperatures, and that this circumstance must exert

an appreciable influence on the latent heat. If the cohesion of

the ice change, of course the interior work inseparable from the

act of fusion or solidification, and with it the heat corresponding

to this work, will likewise change. At the same time, however, it

must be remembered that a certain amount of interior work is

necessary in order to diminish the cohesion ofthe ice, and that the

heat expended in this work must necessarily be contained in the

specific heat of the ice. We must conclude, therefore, that when

the differential coefficient — ( or —J considerably decreases in

the vicinity of 0°, that the quantity h (or h') which occurs, with

a negative sign, on the right side of the foregoing equations in

creases just as considerably. The truth of the equations them

selves cannot at all be impaired by this internal deportment, for

these equations were established on perfectly general principles,

without predicating anything whatever relative to the internal

deportment of ice and water during changes of temperature.

It is scarcely necessary to mention, in conclusion, that the

preceding developments, which have been applied to water

merely for the sake of an example, are equally applicable to

every other liquid. With respect to the circumstances where

the difference s— a comes into consideration, a behaviour ana

logous to that of water, or opposite thereto, will present itself,

according as the substance under examination occupies a greater

or a less volume in the solid than it does in the liquid state.
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SECOND MEMOIR.

ON THE DEPORTMENT OF VAPOUR DURING ITS EXPANSION UNDER

Not long ago, Mr. Rankinef and myself % gave utterance

almost contemporaneously to the proposition,—that when the

saturated vapour of water, contained in a vessel impervious to

heat, is subjected to compression, it does not remain saturated,

but can part with a certain quantity of heat without being pre

cipitated ; and conversely, when, under the same circumstances,

the vapour is suffered to expand, to preserve it from precipita

tion a certain amount of heat must be imparted from without.

In connexion with this proposition, Mr. W. Thomson, in a

letter to Mr. Joule, refers to the fact " that the hand may be

held with impunity in a current of steam issuing from the safety-

valve of a high-pressure boiler" §. From this he concludes that

the stream of vapour carries no water along with it, and holds

that this conclusion must contradict the above proposition, if

the existence of a source of heat from which the vapour shall

receive a quantity sufficient to preserve it from precipitation

cannot be established. This source he finds in the friction which

takes place during the issue of the steam from the orifice.

Although Mr. Thomson himself observes, in the course of his

letter, that, according to the mechanical theory of heat, different

states of the vapour are induced by different methods of expan

sion, still in making the remark cited above he does not appear

to have taken this circumstance into account. He, in fact, ap

plies the proposition to a case, to which, according to its deve

* Published in Poggendorff's Annalen, Feb. 1851, vol. lxxxii. p. 263, and

translated in the Philosophical Magazine, May 1851, S. 4. vol. i. p. 398.

t Transactions of the Royal Society of Edinburgh, vol. xx. part 1. p. 147 ;

and Pogg. Ann. vol. lxxxi. p. 172 (abstract).

X Pogg. Ann. vol. lxxix. pp. 368 and 500 ; Monatsberichte der K. Frews.

Acad, der Wiss. Feb. 1850 (abstract) ; and Phil. Mag. S. 4. vol. ii. pp. 1 and

102. [First Memoir of this collection.]

§ Phil. Mag. vol. xxxvii. p. 387 ; and Pogg. Ann. vol. lxxxi. p. 477.



DEPORTMENT OF VAPOUR DURING EXPANSION. 91

lopment, it Is altogether inapplicable. For vapour escaping

from a boiler into the air the theory would give a totally different

result, which latter may be likewise easily deduced.

From the innumerable modifications to which the expansion

of the steam may be subjected, I will choose three which may

be considered the most important, and in which the essential

differences exhibit themselves with peculiar clearness.

We will consider the matter as subjected successively to the

two following conditions :—first, that the vapour during its ex

pansion has to overcome a resistance which corresponds to its

entire expansive power ; and secondly, that it escapes into the

open air, in which case the pressure of the atmosphere alone is

opposed to it. We will further consider the two cases embraced

by the last condition ; namely, that in which the vapour is sepa

rated from water and left to itself to expand, and that in which

the vessel which contains the vapour contains water also, which

by its evaporation always replaces the quantity of vapour which

escapes.

First, then, suppose a unit of weight of vapour at its maxi

mum density to be contained in a vessel separated from water*,

and let the vapour expand itself by pushing back a piston, for

instance. Let us suppose that the vapour in each stage of its

expansion exerts against the piston the entire expansive force due

to that stage. To effect this, it is only necessary that the piston

should recede so slowly, that the vapour which follows it can

always adjust its expansive force to that of the vapour in the

remaining portion of the vessel. During the expansion so much

heat is to be communicated to the vapour, or abstracted from it,

as is necessary to its preservation in the saturated gaseous state.

The question is, what quantity of heat is here necessary ?

To this case the proposition expressed by Mr. Rankine and

myself applies. The work performed by the vapour in this in

stance, and the quantity of heat consumed in its production, are

so considerable, that, were this heat supplied from the vapour

itself, the latter would be cooled to an extent that would render

the retention of the gaseous condition impossible. It will there

fore be necessary to communicate heat to it from without.

* For the sake of brevity I will always speak of water, although the same

reasoning holds, substantially, for all other liquids.
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The quantity of heat to be communicated, which corresponds

to an alteration of temperature dt, I have expressed in my former

memoir by hdt, where A is a negative quantity ; so that the pro

duct, hdt for increasing temperatures is negative, and for de

creasing temperatures is positive. The value of A in the case of

water I have expressed as a function of the temperature / in

equation (33)*, thus :

, „„,«. 6065—0-695/—0-00002*»—0-0000003*»

A=0-805 273 + * f" .

If, therefore, the quantity of heat necessary to be communicated

to the unit-weight of vapour, when its temperature changes from

tx to ti) be called Q„ we have

h: hdt, (1)

and from this we can readily calculate the value of Q, for each

particular case. For example, let the tension of the vapour at

the beginning be five or ten atmospheres, and let the expansion be

carried on until the tension sinks to one atmosphere. According

to Regnault's determination, we must put tx = 1520-2 or = 180°3,

and ti= 100° ; on doing so we obtain the values

Q,= 521 or =749 units of heat. ... (I)

Secondly, let us again assume that a unit-weight of saturated

vapour at the temperature tv above 100°, is enclosed in a vessel

separated from water, and that an orifice is made in the vessel

through which the vapour can issue into the atmosphere. Let

us follow it at the other side of the orifice until a distance is

attained where its expansive force is exactly equal to the atmo

spheric pressure, the vapour being supposed to remain unmixed

with air, and inquire how much heat must be imparted to the

entire mass of vapour during its passage, so that it may remain

throughout gaseous and saturated.

* [See p. 66.]

t [In a note appended to this equation I remarked that by means of a sim

plified empirical formula proposed by me for the latent heat r, and which very

well represents the results of Regnault's observations, the equation for h as

sumes the form

h= 1-013-J^5,
273+<

and thereby becomes more convenient for calculation.—1864.]
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The interior work which the vapour has to execute during this

expansion is exactly the same as in the first case ; for here the

state of the vapour at the commencement and at the end is the

same as there. The exterior work, on the contrary, is much less ;

for while, in the first case, the resistance at the commencement

was equal to the tension which corresponds to the temperature

tv and decreased slowly to one atmosphere, in the present in

stance the resistance is only one atmosphere from beginning to

end. The amount of heat converted into work is therefore in

the present case less, and hence a much smaller quantity is

required from without to preserve the vapour gaseous.

That this difference in regard to the quantity of heat con

sumed actually occurs, is already established with complete di

stinctness by the experiments of Joule with atmospheric air*.

He found that by pumping air into a rigid vessel, the mode of

compression here being analogous to the first of the above two

cases, much more heat was developed than disappeared when the

compressed air was permitted to stream into a space where the

pressure of one atmosphere was exerted, the process here being

analogous to our second case. These two quantities were nearly

in the ratio of the quantities of work calculated according to the

foregoing principles.

In order to carry out the calculation in our case, we must, in

reality, besides the resistance of the atmosphere, take two other

quantities into account ; namely, the resistance due to the fric

tion of the vapour as it issues, and the work which must be ex

pended to communicate to the vapour the motion which it still

possesses at the point where its tension is equal to the pressure

of the atmosphere. To overcome the friction, a certain quantity

of heat must be consumed ; by the friction, however, heat will

be again developed ; and although a portion of this is conducted

away by the surrounding mass, still the remaining portion com

municates itself to the vapour. It is here, however, evident that

the effect of friction does not, as Mr. Thomson supposes, exhibit

itself in a gain of heat, but, on the contrary, in a loss of heat ;

the latter, however, not corresponding to the entire quantity of

work expended in overcoming the friction, but only to a portion

* "On the Changes of Temperature produced by the Rarefaction and

Condensation of Air, by J. P. Joule," Phil. Mag. S. 3. vol. xxvi. p. 369.
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thereof. We will neglect this, and also the loss arising from the

second circumstance alluded to, which is undoubtedly inconsi

derable*,—in this way the calculation is rendered very simple.

It is here necessary to subtract from the amount of heat

J^'s hdt found in the former case, the heat which corresponds to

the difference of the quantities of exterior work produced in both

cases. Let p be the tension of the vapour for the temperature t

and s the volume of the unit of weight belonging to this tempe

rature. Further, let p1 and p2 be the values of p, and sl and *2

the values of s at the commencement and at the end of the ope

ration, p2 being, according to our assumption, the pressure of

one atmosphere ; the exterior work then is

in the first case = 1 1pds,

in the second case=f 3 p2ds.

The corresponding amounts of heat are obtained by multi

plying these quantities by the heat-equivalent of the unit of

work, which equivalent I have formerly denoted by A. If Q2

* [The velocity of the current of vapour, and the vis viva corresponding

thereto are different at different distances from the orifice. In the orifice

itself the velocity is considerable ; it is due of course to the difference between

the pressure in the vessel, and that in the orifice. Beyond the orifice, in the

space where the stream of vapour spreads out, the velocity diminishes again

quickly. The cause of this diminution of velocity will be discussed in the

appendix to this memoir. Without any such special examination, however,

we may safely conclude that with the decrease of vis viva in the current is

associated an increase in the vis viva of the molecules of the vapour; in other

words, that the destruction of vis viva in the current is accompanied by the

generation of heat. Now when, as in the present case, our object is, not to

follow individually the various phenomena which present themselves during

the several phases of the vapour-s efflux, but merely to determine the total

quantity of heat which must be imparted to the vapour in order that it may,

without partial condensation, remain precisely at its maximum density, we

may from the commencement leave out of consideration both the heat ex

pended in the production of motion, and that which is generated by the de

crease of the motion ; for the two having opposite signs will in our calcula

tions cancel each other. If, moreover, we assume that at the place where

we finally examined the vapour the velocity of the current is so small as to

justify our neglecting the vis viva corresponding thereto, then we need not in

our calculations pay anv attention whatever to the velocity of the current.—

1864.]
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and

express the quantity of heat sought, or that which is required

by the unit of vapour as it issues, we must put

GLl=\tthdt—Ay3pds+ A\''pids (2)

J', J*i J*i

It is, however, evident that

I >2p^=pi(s2-<x)-p1(sl-a) -V 2 (s-a)dp

=P*(»»-a) ~Pi(si-<T) -V (*—».) J dt,

where a is an arbitrary constant*, for which we will substitute

the volume of a unit of weight of water, since the alteration ofthe

latter with the change of temperature may be so much the more

neglected, inasmuch as the entire volume of the water is scarcely

deserving of notice. This expression introduced into (2) gives

QB=j^2[A + A(*-«r)^]*+ Ap1(*1-ff)(l-&). . . (3)

The sum h + A(s—a) -£. is, according to equation (III) of my

former memoirf, =—+ c; and this sum again, according to

the determinations of Regnault, is nearly a constant quantity,

viz. 0'305. Equation (3) thus passes into

0,= -O-SOSft-y +APl(sl-a) (l-^). . . (4)

The only unknown quantity here is Apl(sl—a), and this can be

expressed as a function of the initial temperature by means of

* [In fact, if in place of ds we put the equivalent differential d(s-a-), a-

being regarded as any constant quantity whatever, we shall have, as is well

known, the equation

\pd(s— a) =p(s—a) — \(8—a)dp,

and if we here conceive the integration to be effected between the determinate

limits which correspond to the assumed extreme temperatures tl and tfa, we

shall obtain the equation given in the text.—1864.]

t [See p. 34.]
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equation (26) of my former memoir* ; so that for every initial

pressure and the corresponding initial temperature the value of

Qj may be calculated. Supposing, for example, the pressure at

the commencement, as in the former case, to be five or ten at

mospheres, we obtain

05=19-5 or =17-0 units of heat. . . . (II)

As Qj is a positive quantity, it follows that in this case also heat

must not be withdrawn, but on the contrary communicated, to

preserve the vapour from partial precipitation ; which, however,

would take place not only at the orifice, but also within the

vessel. The quantity of vapour thus precipitated would be

smaller than in the former case, inasmuch as Q2 is less than Qr

It may appear singular that the equation (II) gives for an

initial pressure of five atmospheres a greater quantity of heat

than for ten atmospheres. This is explained by the fact, that

under a pressure of five atmospheres the volume of the vapour

is already so small, and under ten atmospheres is reduced to so

small an amount, that the increase of work thus rendered ne

cessary during the issue of the vapour is more than compensated

by the excess of the sensible heat in the one state over that in the

other, the vapour being heated in one case to 180o-3, and in the

other case to 152°-2.

The second case which we have just considered, can be applied

with some degree of approximation to the case of vapour issuing,

,without expansion from the cylinder of a high-pressure engine

after the completion ofwork; provided we assume that the vapour,

as long as it remains in connexion with the boiler, is completely

gaseous and at the same time completely saturated. In engines

where the expansive principle is applied, the first case becomes

applicable from the moment when the steam is shut off and the

piston is driven by expansion alone. Strictly speaking, the case

applies to those engines only in which the expansion continues

* [See p. 59. In place of the equation (26), which constitutes an empi

rical formula adapted for numerical calculation, the principal equation (Va)

p. 51, may, of course, be employed. The latter gives at once the equation

(a+Of

in which the quantities on the right are all known from observation.—1864.]
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until the pressure within is equal to that of the atmosphere ; and

even here the correspondence would not be perfectly exact, inas

much as the heat developed by the friction of the piston must

certainly be considerable*.

We will finally apply ourselves to the

consideration of the third case, that is to

say, to the case to which the remark of

Mr. Thomson refers. Let the vessel

ABCD (see the accompanying figure)

be supposed to be filled with water to

EF, and from here upwards to be filled

with vapour. Let PQ be the orifice, con

nected with which is a neck PQKM, b|

which widens slowly, and renders the

expansion of the vapour more regular.

This is not essential, but is merely as- At

sumed to render the conception of the matter easier. By the

application of a proper source of heat, let the water be preserved

at the constant temperature t, so that the vapour which escapes

shall be continually replaced by newly developed vapour, the

state of things as regards the issue of the vapour being thus pre

served stationary.

Let GHJ represent a surface in which the vapour which passes

has, everywhere, the expansive force pv the temperature tl, and

the volume S,, which exist within the vessel, and with which the

new vapour is developed-)-. Let KLM, on the other hand, re

present a surface in which the vapour which passes has, every

where, the expansive forcepi) equal to one atmosphere, the vapour

* In connexion with the proposition which applies to the first case, I cited

in my former memoir the experiment made by Pambour with the steam pro

ceeding from a high-pressure engine after the completion of work. I deemed

it sufficient to notice the fact, that Pambour did not find a higher tempera

ture than that which corresponded to the pressure observed at the same time,

although according to the common theory he must have done so. To require

from such observations that they shall exhibit the exact quantity of water

mixed with the vapour which the theory gives, would, for the reasons given

above, and on account of many other simultaneous causes of disturbance, be

unjustifiable.

t [In the figure given in the first editions of this memoir the surface GHJ

is drawn too near the orifice. Notice was given of this in the corrigenda of

the volume of PoggendorfFs Annalen, wherein the memoir appeared.—1864.]

H
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being supposed to be unmixed with air. During the passage of

the vapour from GHJ to KLM let heat be continually with

drawn or communicated, so that the vapour may remain com

pletely gaseous and quite saturated, and hence at the surface

KLM have the temperature t9=100° exactly, and the corre

sponding volume *2. The question is, what quantity of heat

CL, must be imparted to, or withdrawn from, the issuing vapour

so that this condition shall be fulfilled.

The interior work performed by the vapour during its issue in

the present instance is exactly the same as in the other cases.

With regard to the exterior work, however, an entirely new cir

cumstance enters into the consideration, which renders this

case essentially different from the former ones.

We must here, in fact, consider the quantity of work pro

duced at both the surfaces GHJ and KLM. Through the surface

GH J the vapour is driven with the volume sl and the pressure

jo,, it therefore produces the work

Pi . *v

This work proceeds from the vapour within the vessel, and more

over only from that portion of it which, during the time of issue,

is developed anew. To obtain room for itself, this presses the

neighbouring stratum forwards, this the next, and so on. The

intervening layers thus serve merely to transmit the force from

the surface of the water to the orifice. The quantity of heat

consumed in the production of this work is contained in the

latent heat of the developed steam, and need not in the present

consideration be further taken into account.

If now in the surface KLM exactly the same work be pro

duced as in GH J, then in the interval between both surfaces no

proper work is produced, inasmuch as in this case there would

be merely a transmission of work from one surface to the other.

If, on the contrary, the work accomplished at the surface KLM

be different from that produced at GH J, the difference must be

referred to the said interval. But through KLM the unit of

weight of steam with the volume s2 and the pressure^ is driven,

and hence produces the work

The work performed in the intervening space is then

P.2 . Si~pl . Sx,
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which is a negative quantity. This shows, that, during the

passage from surface to surface, a portion of the exterior work

already completed is actually lost again*.

The quantity pt.st—pls1 must be treated as the quantity

f*>
I p2ds in the second case ; in this way we obtain the following

equation, which corresponds to equation (2) :

Q3=f 3hdt—A.\ 3pds + K{pi.si—Pi.»l). . . (5)

Subjecting this equation to the same process as that applied in

the deduction of equation (4) from equation (2), and neglecting

the terms which contain the factor a, we obtain

0,= -0-305 (*,-fa)t (6)

* [The deportment of the vapour in the space between the two surfaces

GHJ and KLM is by no means simple, inasmuch as the velocity of the stream

from the first surface to the orifice PQ is greatly accelerated, whilst that from

the orifice to the second surface is, approximately, quite as strongly retarded.

As already remarked in a previous note, however, it is not necessary, in de

termining the total quantity of heat which must be communicated to the va

pour, to take into consideration the peculiarities of this deportment ; for it

may be predicated with certainty that heat will be expended during the in

crease of the vis viva of the stream, and generated during its decrease. It will

suffice, therefore, to know what takes place at the two limiting surfaces

chosen for consideration, and the vis viva in these surfaces being small enough

to be neglected, we need only take cognizance of the mechanical work which

is performed on the passage of the vapour by the pressure which there exists,

the latter being estimated in the direction of the stream.—1864.]

t [As already remarked when transforming the equation (2), the following

equation holds :

£2 pds^h-^-p^-r)-^ (*-<r)|?<«,

and in virtue of it the equation (5) takes the form

On substituting herein the expression i.-\-c for its equal h+A(s — <r)&>
at at

and neglecting the term which contains the factor a, we have

This equation, when specially applied to water by putting, with Regnault,

!+C=0-305,

leads to the equation (6).—1864.]

H 2
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Calculating from this the numerical value of Q3 for an initial

pressure of five or ten atmospheres, we obtain

Qg= — 159 or = — 245 units of heat, respectively . (Ill)

The value of Q3 being negative, it follows that in this case

heat is not to be communicated, but, on the contrary, must be

withdrawn, the quantity being the same as that found by apply

ing the common theory of heat. If this withdrawal up to the

place under consideration be not sufficiently effected, then the

vapour at this place will have a temperature which exceeds 100° ;

and hence, if water be not mechanically carried along with the

vapour, the latter must be completely dry.

It is thus shown that the friction is not necessary to the ex

planation of the fact adduced by Mr. Thomson ; the effect of this

friction, as already mentioned, being exactly opposite to what he

supposes it to be. The loss of heat arising from this cause is

not reckoned above. In such cases as the issuing of steam from

the safety-valve of a high-pressure engine, this loss is by no

means capable of effecting the consumption of the quantity of

heat found by equation (6).

APPENDIX TO SECOND MEMOIR [1864].

ON THE VARIATIONS OF PRESSURE IN A SPREADING STREAM OF GAS.

In the preceding memoir it was stated that the velocity of the

stream diminishes considerably, from the orifice PQ to the sur

face KLM, in the gradually widening neck of the vessel drawn

on p. 97. The force which causes this diminution must be

sought for in the difference between the pressure which prevails

near the orifice, and that which exists at the surface KLM.

Such a difference of pressure

invariablyoccurswhena stream

ofgas spreads out; itsexistence

may be detected readily by

means of a well-known little

instrument. Let AB in the ad

joining figure be a narrow tube

fitted, by means of a cork, into

a wider tube CDEF ; so that
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a stream of air, driven through the narrow tube from A to B,

can spread itself out in the wider tube, before it reaches the free

atmosphere. Just below the mouth of the small tube a siphon-

shaped tube GHK is fitted to the wide tube, and partially filled

with a liquid. On blowing through the narrow tube AB, the

liquid in the branch HG of the siphon-shaped tube is seen to

rise ; thereby showing that during the blast the pressure in the

wide tube near the mouth of the small one is less than that of

the surrounding atmosphere. Hence the pressure at B in the

stream of air which flows in the wide tube from B to EF is

smaller than at the mouth of the latter, where the atmospheric

pressure exists ; it is this difference of pressure which retards

the current and causes so great a diminution in its velocity that

the same quantity of air which in a given time passes through

the small section at B, is able throughout that time to fill the

wider section EF.

The origin of this difference of pressure may be thus ex

plained :—The stream of air in the neighbourhood of the orifice

B, where it has not yet spread itself so far as to occupy, in a uni

form manner, the whole section of the wide tube, seeks to carry

with it the still air at its side, and in consequence of this effort

a portion of the circumjacent air is removed at the commence

ment of the current, and a rarefaction thereby ensues which

continues as long as the current lasts.

A deportment precisely similar to the one observed in the small

apparatus just described, must also present itself in the gradually

widening neck PQKM of the vessel previously alluded to. Here

also, in the neighbourhood of the narrow orifice P Q, the pressure

must be less than at the broader part of the neck, and the stream

of vapour must be retarded in its passage from the narrow, to

the broader parts. When the gradually widening neck is with

drawn, which separates from the exterior air the stream of va

pour during its expansion and consequent retardation, that is to

say, when the vapour passes directly, with its full velocity of

efflux, into the atmosphere, a slight difference arises from the cir

cumstance that the stream of vapour continually sets in motion

a certain quantity of the circumjacent air, the air carried with it

being continually replaced by new air streaming in from the

surrounding space. On the whole, however,, the phenomena
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under these circumstances must be similar to those previously

considered.

In the letter written by Mr. W. Thomson to Mr. Joule, and

cited in the preceding memoir, Mr. Thomson commences with

comparing the case where steam issues from the safety-valve of

a boiler, with that where vapour, contained in a vessel without

liquid, expands by overcoming a resistance corresponding to its

entire expansive force. To prevent partial condensation in the

latter case, a certain quantity of heat must be imparted to the

vapour, and Mr. Thomson holds the opinion that it is " by the

friction of the steam as it rushes through the orifice " that this

quantity ofheat, necessary to prevent partial condensation during

the efflux of the steam, is produced. I understood by the ex

pression above quoted, the friction of the vapour in the orifice

itself, that is to say against the fixed walls thereof as the vapour

rushes past them, and it is to Mr. Thomson's views thus inter

preted that reference is made in the preceding memoir. On

comparison with the words used, my interpretation of the ex

pression will be found to be a very natural one, and Mr. Thom

son himself, in his reply*, nowhere states that I have misin

terpreted that expression. In this reply, however, he has chosen

another form of expression, when alluding to his former expla

nation, and that without either stating his reasons for so doing,

or even drawing attention to the difference. He there says,

in fact, that in his former explanation he stated that the quan

tity of heat in question was generated " by the fluid friction in

the neighbourhood of the aperture." If from the beginning Mr.

Thomson had used the latter form of expression, which I cannot

consider as identical with the previous one, the difference of

opinion between us would have been to some extent, if not

wholly, avoided. It has, in fact, been already stated that the

difference of pressure, which retards the stream of vapour or

other expanding gas (with which retardation a development of

heat is associated), arises from the circumstance that the stream

of gas seeks to carry with it the surrounding gaseous particles,

and hence it is clear that the phenomenon must be referred, ul

timately, to the action of the particles of gas upon one another ;

to this action, although it is not of a very simple kind, the term

* Phil. Mag. S. 4. vol. i. p. 474.
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friction may be applied. It was not my intention to dispute, in

the least degree, the influence of this friction, occurring in the

stream of gas beyond the orifice ; I merely objected to the too

great part which, as it appeared to me, was ascribed to the fric

tion against the walls of the orifice.

It is now, indeed, of little importance whether the difference

of meaning which gave rise to the preceding memoir was an es

sential one, or whether, and to what extent, it arose merely from

the use of an inappropriate form ofexpression. The memoir itself

will scarcely be affected thereby, and quite apart from the way in

which it originated, I trust that the developments it contains,

and particularly the precise distinction which- is therein drawn

between the three cases treated, and the consideration, in the

last case, of the work done in the surface GH J (not alluded to

by Mr. Thomson), will not be without scientific interest.
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THIRD MEMOIR.

ON THE THEORETIC CONNEXION OF TWO EMPIRICAL LAWS RELA

TING TO THE TENSION AND THE LATENT HEAT OF DIFFERENT

VAPOURS*.

A superficial contemplation of the tension series, experimen

tally developed for the vapours of different liquids, suffices to

show that a certain uniformity exists therein; and hence the

various efforts which have been made to ascertain a definite law

by means of which the series which holds good for one liquid,

water for instance, might be applied to other liquids.

A very simple law of this nature was expressed by Dalton.

Calling those temperatures which belong to equal tensions cor- .

responding temperatures, the law ran thus :—In the case of any

two liquids the differences between the corresponding temperatures

are all equal.

This law agrees pretty well with experience in the case of

those hquids whose boiling-points are not far apart ; for those,

however, which possess very different degrees of volatility, it is

inexact. This is shown by a comparison of the vapour of mer

cury with that of water, according to the observations of Avo-

gradof. Still more decidedly does the divergence exhibit itself

in the investigations of Faraday J on the condensation of gases.

Iu the " Additional Remarks " to his memoir, Mr. Faraday,

after having disproved the applicability of the law of Dalton to

gases, expresses himself as follows :—" As far as observations

upon the following substances, namely, water, sulphurous acid,

* Published in PoggendorfFs Annalen, February 1851, vol. Ixxxii. p. 274 ;

and translated in the Philosophical Magazine, December 1851, S. 4. vol. ii.

p. 483.

t Abstracts in Ann. de Chim. et de Phys. xlix. p. 369 ; andPogg. Ann. vol.

xxvii. p. 60. Complete in M&m. de VAcad. de Turin, vol. xxxvi.

% Phil. Trans, of the Koy. Soc. of London for 1845, p. 155 ; and Pogg. Ann.

vol. lxxii a. p. 193.
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cyanogen, ammonia, arseniuretted hydrogen, sulphuretted hy

drogen, muriatic acid, carbonic acid, olefiant gas, &c, justify any

conclusion respecting a general law, it would appear that the

more volatile a body is, the more rapidly does the force of its va

pour increase by further addition of heat, commencing at a given

point of pressure for all ; " and further on, " there seems every

reason therefore to expect that the increasing elasticity is di

rectly as the volatility of the substance, and that by further

and more correct observation of the forces a general law may

be deduced, by the aid of which and only a single observation

of the force of any vapour in contact with its liquid, its elasticity

at any other temperature may be obtained "*.

What Faraday here expresses with evident reserve and caution,

* [By the more recent appearance of the second volume of Regnault's

Experimental Researches, in which extensive tension series are given for a

considerahle number of substances, an opportunity is afforded of testing more

accurately than it was possible to do according to previous data, the mutual

relations of the several tension series. In order to elucidate what has been

said in the text, I will here tabulate some of the numbers, given by Reg

nault's observations, which are most suitable for comparison. The first hori

zontal line contains the boiling-points of the several substances, that is to say,

those corresponding temperatures to which belongs a vapour-tension of one

atmosphere. The second line likewise contains corresponding temperatures

solely, namely, those to which a vapour-tension of five atmospheres belongs.

The lowest line, finally, contains the differences between the numbers in the

two first lines.

Sulphur

ous Acid.
Ether.

Sulphide

of Carbon.
Alcohol. Water. Mercury. Sulphur.

Boiling-points . .

o

— IO 35

o

46

0

78

0 0

loo

0

357

0

448

Temperatures for

a tension of five

atmospheres . . 33 89 106
12s 152 458 568

43 54 60 47 52 101 120

According to Dalton's law, the differences in the last horizontal line should

be equal to one another ; this, however, is manifestly not the case, the dif

ferences being, in general, greater the higher the boiling-point of the liquid.

The latter progression, it is true, is not so regular that each difference is

greater than the preceding one ; but on the whole, and particularly so far as

liquids are concerned whose boiling-points lie far asunder, it is unmistakeable.

—1864.]
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we find again in the form of an equation in a later memoir by

M. Groshans*. The equation (3) of the said memoir contains,

implicitly, the following law:—Ifall temperatures be countedfrom

—273° C (that is, from that temperature which is expressed

by the inverse value of the coefficient of expansion for atmo

spheric air), then for any two liquids the corresponding tempera

tures are proportional.

Although this carries with it a great degree of probability, at

least as an approximate law, and is undoubtedly proved by the

experimental researches ofAvogrado and Faraday to be preferable

to the law of Dalton, still the manner in which M. Groshans

deduces his equations leaves much to be desired. He bases the

deduction upon two equations which can only be regarded as

approximately correct, inasmuch as they contain the expression

of the law of Mariotte and Gay-Lussac for vapours at their

maximum density. For the further development, however, he

makes use of the following proposition :—If in the case of any

two vapours the temperatures are so chosen that the tensions

of both are equal, then, if the density of each vapour at the

temperature in question be measured by its density at the boiling-

point, these densities are equal. This proposition is introduced

by the author in the memoir alluded to without any proof what

ever. In a later memoirf, however, he says that he was led to

the above conclusion by observing that in the case of seven dif

ferent bodies composed ofpC + qH +rO the density of the va

pour at the boiling-point compared with the density of steam at

100° could be expressed by the formula

T\-P+l+l.

3 '

and immediately afterwards J he states, that " there are several

bodies to which the formula

J)=p + q + r

3

is inapplicable." From this it appears that the foundation on

which the proposition rests cannot be regarded as established.

It seems to me, that although the law mentioned above has ob-

* Pogg. Ann. vol. lxxviii. p. 112.

t Pogg. Ann. vol. lxxix. p. 290. t Ibid. p. 292.
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tained from M. Groshans a more definite form than in Faraday's

expression, its probable validity is in no way augmented thereby.

In this state of uncertainty every new. point of view from

which a more extended insight as to the deportment of liquids

during evaporation may be obtained is deserving of attention ;

and hence it will not perhaps be without interest, to establish

such a connexion between the above law as regards the tension

and another law regarding the latent heat,—the latter being also

empirically established in a manner totally independent of the

former—that the one shall appear to be a necessary consequence

of the other.

I refer to the law, that the latent heat of a unit of volume of

vapour developed at the boiling-point is the same for all liquids.

Although this has not been completely corroborated by the ex

periments hitherto made, and even if it were perfectly true, could

not be so corroborated, our knowedge of the volumes of vapours

at their maximum density being too scanty, still, an approxima

tion is observed which it is impossible to regard as accidental.

We will therefore for the present assume the law to be correct,

and thus make use of it for further deductions.

In the first place, it is clear that if the law be true for the

boiling-points of all liquids, it must also be true for every other

system of corresponding temperatures ; for the boiling-points de

pend merely upon the accidental pressure of the atmosphere, and

hence the law can be immediately extended thus : the latent heat

calculated for the unit of volume of vapour is, for all liquids, the

samefunction of the tension. Let r be the latent heat of a unit of

weight of vapour at the temperature t, the volume of the unit of

weight for the same temperature being s, the latent heat of a unit

r
of volume will then be expressed by the fraction - j let p be the

s

corresponding tension ; the law will then be expressed by the

equation

r-=f(p), (I)

in which / is the symbol of a function which is the same for all

liquids.

r
Let this function be substituted for - in the equation (Va) of
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my memoir " On the Moving Force of Heat"*, by neglecting

therein the volume a of a unit of weight of liquid as compared

with that of vapour, .we thus obtain

where A and a are two constants, the latter denoting the number

273, so that a + 1 is the temperature of the vapour reckoned from

—273°. If, for the sake of brevity, we call this quantity T,

we have

dT _ Adp

T ~f(p) '

and from this we obtain by integration

c.T=F(p),

in which F is the symbol of another function, which is likewise

the same for all liquids, and c is an arbitrary constant which must

be determined for each liquidt. Let us suppose this equation

solved for p, it will assume the form

i»=*(«.T), (H)

* [See p. 51. The equation (Va) here cited is

r=A(a+Q(i-o)*

whence

s-a- v Jdt-

in which, with great approximation, we may put - for ——.—1864.]

t [By integration, in fact, we have in the first place

where k is an arbitrary constant, and represents, for all liquids, one and the

same arbitrary initial tension; for instance, a tension of one atmosphere.

From this equation it follows that

ptk. . dp

y*pA . dp

e

Introducing here the abbreviations

pp A dp

c=e ,

the equation in the text is at once obtained.—1864.]
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where <£ is the symbol of a third function, which is the same for

all liquids.

This equation is evidently the mathematical expression of the

law of tension mentioned above ; for to apply the function which

in the case of any one liquid determines the tension from the tem

perature, to any other liquid, it is only necessary to multiply the

temperature by a different constant, which constant is easily

found when the tension for a single temperature is known.

It is thus shown, that, in so far as the validity of equation

(Va) is granted, the two laws expressed by the equations (I) and

(II) are so connected with each other that when one of them is

true, the other must necessarily be true also.

But in case both laws are only approximations to the truth,

as to me appears most probable, the equation (Va), which by

introducing T instead of t becomes

enables us at least to conclude, from the manner and degree of

divergence between two vapours with regard to their latent heat,

what divergence there is between their tension series, and vice

versd*. Thus, for instance, in comparing water with other li

quids, it is observed that, relatively to its boiling-point, the ten

sion of the vapour of the former increases more quickly with the

temperature than the tension of other vapours. There is a com

plete coincidence between this fact and that observed by An

drews f, that the vapour of water possesses a greater latent heat

than an equal volume of the vapour of any other liquid which

* [For if the fraction relative to the boiling-point, and almost iden

tical with-, has a greater value for a certain liquid than it has for others,we

must conclude that, for the former, the productT =^ is also greater, and hence

that the vapour-tension near the value of one atmosphere increases more

quickly with increasing temperature than one would anticipate from the

height of the liquid's boiling-point. In a similar manner, from the circum

stance that an exceptionally quick increase of the vapour-tension of a liquid

takes place, we should conclude that the latent heat, calculated according to

the volume of the vapour, has an unusually large value.—1864.]

t Quarterly Journal of the Chem. Soc. of London, No. 1. p. 27.
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Andrews examined, alcohol excepted. From this we perceive

that it is by no means advantageous for the application of the

above two laws to choose, as is generally done, water as the liquid

of comparison; but that, on the contrary, the comparison of

water with liquids of lower boiling-points is peculiarly calculated

to support the law of Dalton*.

* [Since, in the case of water, the fraction - is greater than for most

other liquids, the tension of aqueous vapour must, according- to the foregoing

note, increase more quickly in the neighbourhood of the boiling-point, and,

as a consequence of this, the difference between two corresponding tempera

tures must be smaller than the height of the boiling-point would lead us to

expect ; so that in this respect water approaches the liquids having lower

boiling-points. The same remark must apply still more forcibly to alcohol,

for which liquid the fraction - is still greater. This is verified, in fact, by

the small Table given in a note on p. 106 ; for on comparing the differences

between the systems of corresponding temperatures there selected for con

sideration, it will be found that these differences are smaller for water and

alcohol than for sulphide of carbon and ether, although the latter substances

have lower boiling-points than the former.—1864.]
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FOUKTH MEMOIR.

ON A MODIFIED FORM OF THE SECOND FUNDAMENTAL THEOREM IN

THE MECHANICAL THEORY OF HEAT*.

In my memoir "On the Moving Force of Heat, &c."f, I have

shown that the theorem of the equivalence of heat and work,

and Carnot's theorem, are not mutually exclusive, but that, by

a small modification of the latter, which does not affect its prin

cipal part, they can be brought into accordance. With the

exception of this indispensable change, I allowed the theorem of

Carnot to retain its original form, my chief object then being,

by the application of the two theorems to special cases, to arrive

at conclusions which, according as they involved known or un

known properties of bodies, might suitably serve as proofs of the

truth of the theorems, or as examples of their fecundity.

This form, however, although it may suffice for the deduction

of the equations which depend upon the theorem, is incomplete, 4.

because we cannot recognize therein, with sufficient clearness,

the real nature of the theorem, and its connexion with the first

fundamental theorem. The modified form in the following pages

will, I think, better fulfil this demand, and in its applications

will be found very convenient.

Before proceeding to the examination of the second theorem,

I may be allowed a few remarks on the first theorem, so far as this

is necessary for the supervision of the whole. It is true that I

might assume this as known from my former memoirs or from

those of other authors, but to refer back would be inconvenient ;

and besides this, the exposition I shall here give is preferable

to my former one, because it is at once more general and more

concise.

* Published in Poggendoff's Annalen, December 1854, vol. xciii. p. 481 ;

translated in the Journal de Mathimatiques, vol. xx. Paris, 1855, and in the

Philosophical Magazine, August 1856, S. 4. vol. xii. p. 81.

t [First Memoir of this Collection.]
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Theorem of the equivalence of Heat and Work.

Whenever a moving force generated by heat acts against an

other force, and motion in the one direction or the other ensues,

positive work is performed by the one force at the same time that

negative work is done by the other. As this work has only to

be considered as a simple quantity in calculation, it is perfectly

arbitrary, in determining its sign, which of the two forces is

chosen as the indicator. Accordingly in researches which have

a special reference to the moving force of heat, it is customary

to determine the sign by counting as positive the work done

by heat in overcoming any other force, and as negative the work

done by such other force. In this manner the theorem of the

equivalence of heat and work, which forms only a particular case

of the general relation between vis viva and mechanical work,

can be briefly enunciated thus :—

Mechanical work may be transformed into heat, and conversely

heat into work, the magnitude of the one being always proportional

to that of the other.

The forces which here enter into consideration may be divided

into two classes : those which the atoms of a body exert upon each

other, and which depend, of course, upon the nature of the body,

and those which arise from the foreign influences to which the

body may be exposed. According to these two classes of forces

which have to be overcome (of which the latter are subjected

to essentially different laws), I have divided the work done by

heat into interior and exterior work.

With respect to the interior work, it is easy to see that when

a body, departing from its initial condition, suffers a series of

modifications and ultimately returns to its original state, the

quantities of interior work thereby produced must exactly can

cel one another. For if any positive or negative quantity of

interior work had remained, it must have produced an opposite

exterior quantity of work or a change in the existing quantity

of heat ; and as the same process could be repeated any number

of times, it would be possible, according to the sign, either to

produce work or heat continually from nothing, or else to lose

work or heat continually, without obtaining any equivalent ; both

of which cases are universally allowed to be impossible. But if

at every return of the body to its initial condition the quantity
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of interior work is zero, it follows, further, that the interior work

corresponding to any given change in the condition of the body

is completely determined by the initial and final conditions of

the latter, and is independent of the path pursued in passing

from one condition to the other. Conceive a body to pass succes

sively in different ways from the first to the second condition, but

always to return in the same manner to its initial state. It is

evident that the quantities of interior work produced along the

different paths must all cancel the common quantity produced

during the return, and consequently must be equal to each other.

It is otherwise with the exterior work. With the same initial

and final conditions, this can vary just as much as the exterior

influences to which the body may be exposed can differ.

Let us now consider at once the interior and exterior work

produced during any given change of condition. If opposite in

sign they may partially cancel each other, and what remains

must then be proportional to the simultaneous change which

has occurred in the quantity of existing heat. In calculation,

however, it amounts to the same thing if we assume an alteration

in the quantity of heat equivalent to each of the two kinds of

work. Let Q, therefore, be the quantity of heat which must be

imparted to a body during its passage, in a given manner, from

one condition to another, any heat withdrawn from the body

being counted as an imparted negative quantity of heat. Then

Q. may be divided into three parts, of which the first is employed

in increasing the heat actually existing in the body, the second

in producing the interior, and the third in producing the ex

terior work. What was before stated of the second part also

applies to the first—it is independent of the path pursued in the

passage of the body from one state to another : hence both parts

together may be represented by one function U, which we know

to be completely determined by the initial and final states of the

body. The third part, however, the equivalent of exterior work,

can, like this work itself, only be determined when the precise

manner in which the changes of condition took place is known.

If W be the quantity of exterior work, and A the equivalent

of heat for the unit of work, the value of the third part will

be A . W, and the first fundamental theorem will be expressed

by the equation Q=U + A . W (I)
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When the several changes are of such a nature that through

them the body returns to its original condition, or when, as

we shall in future express it, these changes form a cyclical

process, we have

U= 0,

and the foregoing equation becomes

Q=A.W (1)

In order to give special forms to equation (I), in which it

shall express definite properties of bodies, we must make special

assumptions with respect to the foreign influences to which the

body is exposed. For instance, we will assume that the only

active exterior force, or at least the only one requiring consi

deration in the determination of work, is an exterior pressure

which (as is always the case with liquid and gaseous bodies,

when other foreign forces are absent, and might at least be the

case with solid bodies) is everywhere normal to the surface, and

equally intense at every point thereof. It will be seen that under

this condition it is not necessary, in determining the exterior

work, to consider the variations in form experienced by the

body, and its expansion or contraction in different directions,

but only the total change in its volume. We will further assume

that the pressure always changes very gradually, so that at any

moment it shall differ so little from the opposite expansive force

of the body, that both may be counted as equal. Thus the

pressure constitutes a property of the body itself, which can be

determined from its other contemporaneous properties.

In general, under the above circumstances, we may consider the

pressure as well as the whole condition of the body, so far as it is

essential to us, as determined so soon as its temperature t and

volume v are given. We shall make these two magnitudes, there

fore, our independent variables, and shall consider the pressure

p as well as the quantity U in the equation (I) as functions of

these. If, now, t and v receive the increments dt and dv, the cor

responding quantity of exterior work done can be easily ascer

tained. If any increase of temperature is not accompanied by

a change of volume, no exterior work is produced ; on the other

hand, if, with respect to the differentials, we neglect terms higher

than the first in order, then the work done during an incre
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ment of volume dv will be pdv. Hence the work done during

a simultaneous increase of t and v is

dW=pdv,

and when we apply this to the equation (I), we obtain

dQ.=dV + A.pdv (2)

On account of the term A .pdv, this equation can only be inte

grated when we have a relation given, by means of which t may

be expressed as a function of v, and therefore p 3s a function of v

alone*. It is this relation which, as above required, defines the

manner in which the changes of condition take place.

The unknown function U may be eliminated from this equa

tion. When written in the form

dQ ,. . dQ, d\J,, , /d\J , . \ , ,

we easily see that it is divisible into the two equations

dQ=dV

dt dt '

and

dGt_dV + A

dv dv

Let the first of these be differentiated according to v and the

second according to t. In doing so we may apply to U the well-

known theorem, that when a function of two independent varia-

* [In fact since dU is itself a complete differential, the magnitude A . pdv

must also be one, in order that the whole of the expression on the right

may be so ; but this can only be the case when p is expressible as a function

of v alone.—1864.]

f [In this and the following memoirs the notation for partial differential

coefficients is somewhat different from that employed in the first memoir ;

the brackets, which were there used for the sake ofclearness, are here omitted,

since, as stated in the Introduction, no misunderstanding can be thereby

produced. The same simplified notation is also retained in the present

reprint, in order to preserve unchanged the form of the memoirs. It would

certainly have been more convenient to the reader had I, on collecting into

one volume the memoirs written at various epochs, adopted one and the

same notation throughout; nevertheless every mathematician is so accus

tomed to see first one and then the other notation employed, that the transi

tion will probably be scarcely noticed ; at all events, it will not render the

memoirs themselves less intelligible, or seriously impair the facility with

which one may be compared with another.—1864.]

i 2
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K

bles is successively differentiated according to both, the order in

which this is done does not affect the result. This theorem,

however, does not apply to the magnitude Q, so that for it we

must use symbols which will show the order of differentiation.

This is done in the following equations :—

d(dQ\_ d*V

dv\ dt J dtdv

d(dQ\_d*V . dp

dt\dv) dtdv* dt'

By subtraction, we have

d/dQ\ d/dQ\_/. dp ,„.

dt\dv) dv\dt)~ dt ' ' * . ' U

an equation which no longer contains U.

The equations (2) and (3) can be still further specialized by

applying them to particular classes of bodies. In my former

memoir I have shown these special applications in two of the

most important cases, viz. permanent gases and vapours at a

maximum density. On this account I will not here pursue the

subject further, but pass on to the consideration of the second

fundamental theorem in the mechanical theory of heat.

Theorem of the equivalence of transformations.

Carnot's theorem, when brought into agreement with the first

fundamental theorem, expresses a relation between two kinds of

transformations, the transformation of heat into work, and the

passage of heat from a warmer to a colder body, which may be

regarded as the transformation of heat at a higher, into heat at a

lower temperature. The theorem, as hitherto used, may be

enunciated in some such manner as the following :—In all cases

where a quantity of heat is converted into work, and where the

body effecting this transformation ultimately returns to its original

condition, another quantity ofheat must necessarily be transferred

from a warmer to a colder body ; and the magnitude of the last

quantity of heat, in relation to the first, depends only upon the tem

peratures of the bodies between which heat passes, and not upon

the nature of the body effecting the transformation.

In deducing this theorem, however, a process is contem
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plated which is of too simple a character ; for only two bodies

losing or receiving heat are employed, and it is tacitly assumed

that one of the two bodies between which the transmission ofheat

takes place is the source ofthe heat which is converted into work.

Now by previously assuming, in this manner, a particular tem

perature for the heat converted into work, the influence which

a change of this temperature has upon the relation between the

two quantities of heat remains concealed, and therefore the

theorem in the above form is incomplete.

It is true this influence may be determined without great

difficulty by combining the theorem in the above limited form

with the first fundamental theorem, and thus completing the

former by the introduction of the results thus arrived at. But

by this indirect method the whole subject would lose much of its

clearness and facility of supervision, and on this account it

appears to me preferable to deduce the general form of the

theorem immediately from the same principle which I have

already employed in my former memoir, in order to demonstrate

the modified theorem of Carnot.

This principle, upon which the whole of the following deve

lopment rests, is as follows :—Heat can never pass from a colder

to a warmer body without some other change, connected therewith,

occurring at the same time*. Everything we know concerning

* [The principle may be more briefly expressed thus: Heat cannot by

itself passfrom a colder to a warmer body ; the words " by itself," (von selbst)

however, here require explanation. Their meaning will, it is true, be rendered

sufficiently clear by the expositions contained in the present memoir, never

theless it appears desirable to add a few words here in order to leave no

doubt as to the signification and comprehensiveness of the principle.

In the first place, the principle implies that in the immediate interchange

of heat between two bodies by conduction and radiation, the warmer body

never receives more heat from the colder one than it imparts to it. The

principle holds, however, not only for processes of this kind, but for all

others by which a transmission of heat can be brought about between two

bodies of different temperatures, amongst which processes must be particu

larly noticed those wherein the interchange of heat is produced by means of

one or more bodies which, on changing their condition, either receive heat

from a body, or impart heat to other bodies.

On considering the results of such processes more closely, we find that in

one and the same process heat may be carried from a colder to a warmer

body and another quantity of heat transferred from a warmer to a colder body

without any other permanent change occurring. In this case we have not a
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the interchange of heat between two bodies of different tempera

tures confirms this ; for heat everywhere manifests a tendency to

equalize existing differences of temperature, and therefore to

pass in a contrary direction, i. e. from warmer to colder bodies.

Without further explanation, therefore, the truth of the prin

ciple will be granted.

For the present we will again use the well-known process first

conceived by Carnot and graphically represented by Clapeyron,

with this difference, however, that, besides the two bodies be

tween which the transmission of heat takes place, we shall assume

a third, at any temperature, which shall furnish the heat con

verted into work. An example being the only thing now re

quired, we shall choose as the changing body one whose changes

are governed by the simplest possible laws, e.g. a permanent

gas*. Let, therefore, a quantity of permanent gas having the

temperature t and volume v be given. In the adjoining figure

we shall suppose the volume represented by the abscissa o h, and

the pressure exerted by the gas at this volume, and at the tem-

simple transmission of heat from a colder to a warmer body, or an Ascending

transmission of heat, as it may be called, but two connected transmissions of

opposite characters, one ascending and the other descending, which compen

sate each other. It may, moreover, happen that instead of a descending

transmission of heat accompanying, in the one and the same process, the

ascending transmission, another permanent change may occur which has

the peculiarity of not being reversible without either becoming replaced by

a new permanent change of a similar kind, or producing a descending trans

mission of heat. In this case the ascending transmission of heat may be said

to be accompanied, not immediately, but mediately, by a descending one, and

the permanent change which replaces the latter may be regarded as a com

pensation for the ascending transmission.

Now it is to these compensations that our principle refers ; and with the

aid of this conception the principle may be also expressed thus : an uncom

pensated transmission of heat from a colder to a warmer body can never occur.

The term "uncompensated " here expresses the same idea as that which was

intended to be conveyed by the words " by itself " in the previous enuncia

tion of the principle, and by the expression " without some other change,

connected therewith, occurring at the same time " in the original text.—1864.]

* [It will readily be understood that everything here said, by way of ex

ample, concerning a gas applies, essentially, to every other body whose con

dition is determined by its temperature and volume. Of course the shapes

of the curves, representing the decrease of pressure corresponding to an aug

mentation of volume, differ for different bodies ; in other words, the aspect

of the figure will depend upon the choice of the body.—1864.]



MODIFIED FORM OF SECOND FUNDAMENTAL THEOREM. 119

perature t, by the ordinate ha. This gas we subject, succes

sively, to the following operations :—

1. The temperature t of the gas is changed to tv which, for

Fig. 7.

the sake of an example, may be less than t. To do this, the

gas may be enclosed within a surface impenetrable to heat, and

allowed to expand without either receiving or losing heat. The

diminution of pressure, consequent upon the simultaneous in

crease of volume and decrease of temperature, is represented by

the curve ab; so that, when the temperature of the gas has

reached tu its volume and pressure have become o i and i b

respectively.

2. The gas is next placed in communication with a body Klf

of the temperature tv and allowed to expand still more, in such

a manner, however, that all the heat lost by expansion is again

supplied by the body. With respect to this body, we shall

assume that, owing to its magnitude or to some other cause, its

temperature does not become appreciably lower by this expen

diture of heat, and therefore that it may be considered constant.

Consequently, during expansion the gas will also preserve a

constant temperature, and the diminution of the pressure will

be represented by a portion of an equilateral hyperbola b c. The

quantity of heat furnished by Kj shall be Q,.

3. The gas is now separated from the body Kl and allowed to

expand still further, but without receiving or losing heat, until

its temperature has diminished from t1 to t2. The consequent

diminution of pressure is represented by the curve c d, which is

of the same nature as ab.

4. The gas is now put in communication with a body K2,
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having the constant temperature t2, and compressed; all the

heat thus produced in it being imparted to K2. This com

pression is continued until K2 has received the same quantity of

heat as was before furnished by Kr The pressure will in

crease according to the equilateral hyperbola d e.

5. The gas is then separated from the body K2 and com

pressed, without being permitted to receive or lose heat, until

its temperature rises from t2 to its original value t, the pressure

increasing according to the curve ef. The volume o n to which

the gas is thus reduced is smaller than its original volume o h,

for the pressure which had to be overcome in the compression

d e, and therefore the work to be spent, were less than the cor

responding magnitudes during the expansion be; so that, in

order to restore the same quantity of heat Q1, the compression

must be continued further than would have been necessary

merely to annul the expansions.

6. The gas is at length placed in communication with a body

K, of the constant temperature t, and allowed to expand to its

original volume o h, the body K replacing the heat thus lost, the

amount of which may be Q. When the gas reaches the volume

o h with the temperature t, it must exert its original pressure;

and the equilateral hyperbola, which represents the last diminu

tion of pressure, will precisely meet the point a.

These six changes together constitute a cyclical process, the

gas ultimately returning to its original condition. Of the three

bodies K, K1 and K2, which throughout the whole process are

considered merely as sources or reservoirs of heat, the two first

have lost the quantities of heat Q, and Qv and the third has

received the quantity Ctv or, as we may express it, Q1 has been

transferred from K1 to K2, and Q has disappeared. The last

quantity of heat must, according to the first theorem, have been

converted into exterior work. The pressure of the gas during

expansion being greater than during compression, and therefore

the positive amount of work greater than the negative, there has

been a gain of exterior work, which is evidently represented by

the area of the closed figure ab c def. If we call this amount

of work W, then, according to equation (1),

Q=A. W*.

* [The cyclical process here described differs from the one described at
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The whole of the above-described cyclical process may be re

versed or executed in an opposite manner by connecting the gas

with the same bodies and, under the same circumstances as be

fore, executing the reverse operations, i. e. commencing with the

compression af, after which would follow the expansions fe and

e d, and lastly the compressions dc, cb, and ba. The bodies K and

K, will now evidently receive the quantities of heat Q and Gtv

and K2 will lose the quantity Qr At the same time the nega

tive work is now greater than the positive, so that the area of

the closed figure now represents a loss of work. The result of

the reverse process, therefore, is that the quantity of heat Q, has

been transferred from K2 to Kp and the quantity of heat Q,

generated from work, given to the body K.

In order to learn the mutual dependence of the two simulta

neous transformations above described, we shall first assume that

the temperatures of the three reservoirs of heat remain the same,

but that the cyclical processes through which the transforma

tions are effected are different. This will be the case when,

instead of a gas, some other body is submitted to similar trans

formations, or when the cyclical processes are of any other kind,

subject only to the conditions that the three bodies K, K1 and

K2 are the only ones which receive or impart heat, and of the

two latter the one receives as much as the other loses. These

several processes can be either reversible, as in the foregoing

case, or not, and the law which governs the transformations will

vary accordingly. Nevertheless the modification which the law

for non-reversible processes suffers may be easily applied after

wards, so that at present we will confine ourselves to the con

sideration of reversible cyclical processes.

page 23 of the First Memoir, and there graphically represented in fig. 1, only

by the circumstance that three, instead of two bodies, serving as reservoirs of

heat, now present themselves. If we assume the temperature t of the body

K to be equal to the temperature t1 of the body K„ we may dispense with

the body K altogether, and instead thereof employ the body K, ; the result

of tbis would be that the body K, would give up, on the whole, the quantity

Q+Qi °f heat, and the body K2 would receive the quantity Q,. It would

then be said that of the total quantity of heat given up by the body K„ the

portion Q is transformed into work, and the other part Q1 is transferred to

the body K2 ; but this occurred in the previously described process, so that

the latter must be regarded as a special case of the one here described.—1864.]
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With respect to all these it may be proved from the foregoing

principle, that the quantity of heat Q„ transferred from Kt to

K2, has always the same relation to Q, the quantity of heat

transformed into work. For if there were two such processes

wherein, Q being the same, Qx was different, then the two pro

cesses could be executed successively, the one in which Qt was

smaller in a direct, the other in an opposite manner. Then the

quantity of heat Q, which by the first process was converted into

work, would be again transformed into heat by the second pro

cess and restored to the body K, and in other respects every

thing would ultimately return to its original condition ; with this

sole exception, however, that more heat would have passed from

K9 to Kx than in the opposite direction. On the whole, there

fore, a transmission of heat from a colder body K2 to a warmer

Kx has occurred, which in contradiction to the principle before

mentioned, has not been compensated in any manner.

Of the two transformations in such a reversible process either

can replace the other, if the latter is taken in an opposite direc

tion ; so that if a transformation of the one kind has occurred,

this can be again reversed, and a transformation of the other

kind may be substituted without any other permanent change

being requisite thereto. For example, let the quantity of heat

Q, produced in any manner whatever from work, be received by

the body K; then by the foregoing cyclical process it can be again

withdrawn from K and transformed back into work, but at the

same time the quantity of heat Qx will pass from Kx to K2 ; or

if the quantity of heat Q, had previously been transferred from

Kx to K2, this can be again restored to Kx by the reversed cyclical

process whereby the transformation of work into the quantity of

heat Q of the temperature of the body K will take place.

We see, therefore, that these two transformations may be

regarded as phenomena of the same nature, and we may call two

tranformations which can thus mutually replace one another

equivalent. We have now to find the law according to which

the transformations must be expressed as mathematical magni

tudes, in order that the equivalence of two transformations may

be evident from the equality of their values. The mathematical

value of a transformation thus determined may be called its

equivalence-value (Aequivalenzwerth) .
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With respect to the direction in which each transformation is

to be considered positive, it may be chosen arbitrarily in the one,

but it will then be fixed in the other, for it is clear that the trans

formation which is equivalent to a positive transformation must

itself be positive. In future we shall consider the conversion of

work into heat and, therefore, the passage of heat from a higher

to a lower temperature as positive transformations*.

With respect to the magnitude of the equivalence-value, it is

first of all clear that the value of a transformation from work

into heat must be proportional to the quantity of heat produced ;

and besides this it can only depend upon the temperature.

Hence the equivalence-value of the transformation of work into

the quantity of heat Q., of the temperature t, may be represented

generally by

wherein f(t) is a function of the temperature, which is the same

for all cases. When Q, is negative in this formula, it will indi

cate that the quantity of heat Q. is transformed, not from work

into heat, but from heat into work. In a similar manner the

value of the passage of the quantity of heat Q., from the tem

perature tx to the temperature £2, must be proportional to the

quantity Q, and besides this, can only depend upon the two

temperatures. In general, therefore, it may be expressed by

wherein F(^, t2) is a function of both temperatures, which is

the same for all cases, and of which we at present only know

that, without changing its numerical value, it must change its

sign when the two temperatures are interchanged ; so that

.F(t2,t1) = --F(t1,t2) (4)

In order to institute a relation between these two expressions,

we have the condition, that in every reversible cyclical process

of the above kind, the two transformations which are involved

must be equal in magnitude, but opposite in sign ; so that their

algebraical sum must be zero. For instance, in the process for

* [The reason why this choice of the positive and negative senses is pre

ferable to the opposite one, will become apparent after the theorems relative

to the transformations have been enunciated.—1864.1
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a gas, so fully described above, the quantity of heat Q, at the

temperature t, was converted into work ; this gives — Q . /(/)

as its equivalence-value, and that of the quantity of heat Q1}

transferred from the temperature tl to t2, will be Q, . F(^, f2), so

that we have the equation

-O./IO+Q^F^/J-O (5)

Let us now conceive a similar process executed in an opposite

manner, so that the bodies K1 and K2, and the quantity of heat

Q, passing between them, remain the same as before ; but that

instead of the body K of the temperature t, another body K- of

the temperature t be employed ; and let us call the quantity of

heat produced by work in this case Q',—then, analogous to the

last, we shall have the equation

Q'./(0 +Q^F^O-O. . . . . (6)

Adding these two equations, and applying (4), we have

-Q./(0 + Q'./(O=O (7)

If now we regard these two cyclical processes together as one

cyclical process, which is of course allowable, then in the latter

the transmissions of heat between K1 and K2 will no longer

enter into consideration, for they precisely cancel one another,

and there remain only the quantity of heat Q, taken from K and

transformed into work, and the quantity Q! generated by work

and given to K'. These two transformations of the same kind,

however, may be so divided and combined as again to appear as

transformations of different kinds. If we hold simply to the

fact that a body K has lost the quantity of heat Q, and another

body K' has received the quantity Q', we may without hesitation

consider the part common to both quantities as transferred from

K to K', and regard only the other part, the excess of one quan

tity over the other, as a transformation from work into heat, or

vice versd. For example, let the temperature If be greater than

t, so that the above transmission, being a transmission from the

colder to the warmer body, will be negative. Then the other

transformation must be positive, that is, a transformation from

work into heat, whence it follows that the quantity of heat Q!

imparted to K' must be greater than the quantity Q lost by K.

If we divide Of into the two parts

Q and Q'— Q,
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the first will be the quantity of heat transferred from K to K',

and the second the quantity generated from work.

According to this view the double process appears as a pro

cess of the same kind as the two simple ones of which it

consists ; for the circumstance that the generated heat is not

imparted to a third body, but to one of the two between

which the transmission of heat takes place, makes no essential

difference, because the temperature of the generated heat is

arbitrary, and may therefore have the same value as the tem

perature of one of the two bodies ; in which case a third body

would be superfluous. Consequently, for the two quantities of

heat Q, and Q'—Q, an equation of the same form as (6) must

hold, i. e.

(Q'-Q)./(0+Q.F(M')=0.

Eliminating the magnitude Q' by means of (7), and dividing by

Q, this equation becomes

F(*,0-/<0-/lO, ..... (8)

so that the temperatures t and f being arbitrary, the function

of two temperatures which applies to the second kind of trans

formation is reduced, in a general manner, to the function of

one temperature which applies to the first kind.

For brevity, we will introduce a simpler symbol for the last

function, or rather for its reciprocal, inasmuch as the latter will

afterwards be shown to be the more convenient of the two.

Let us therefore make

/W=if (9)'

so that T is now the unknown function of the temperature

involved in the equivalence-values. Further, T,, T2, &c. shall

represent particular values of this function, corresponding to the

temperatures tl) tv &c.

According to this, the second fundamental theorem in the

mechanical theory of heat, which in this form might appro

priately be called the theorem of the equivalence of transforma

tions, may be thus enunciated :

If two transformations which, without necessitating any other

permanent change, can mutually replace one another, be called
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equivalent, then the generation of the quantity of heat Gt of the

temperature tfrom work, has the equivalence-value

Q

T*

and the passage of the quantity of heat Q from the temperature

t, to the temperature t2, has the equivalence-value

wherein T is a function of the temperature, independent of the

nature of the process by which the transformation is effected.

If to the last expression we give the form

Q_Q

T T '

it is evident that the passage of the quantity of heat Q, from the

temperature tl to the temperature t2, has the same equivalence-

value as a double transformation of the first kind, that is to say,

the transformation of the quantity Q, from heat at the tempera

ture tl into work, and from work into heat at the temperature t2.

A discussion of the question how far this external agreement is

based upon the nature of the process itself would be out of

place here*; but at all events, in the mathematical determina

tion of the equivalence-value, every transmission of heat, no

matter how effected, can be considered as such a combination of

two opposite transformations of the first kind.

By means of this rule, it will be easy to find a mathematical

expression for the total value of all the transformations of both

kinds, which are included in any cyclical process, however com

plicated. For instead of examining what part of a given quan

tity of heat received by a reservoir of heat, during the cyclical

process, has arisen from work, and whence the other part has

come, every such quantity received may be brought into calcu

lation as if it had been generated by work, and every quan

tity lost by a reservoir of heat, as if it had been converted into

work. Let us assume that the several bodies Kp K2, K3, &c,

serving as reservoirs of heat at the temperatures tv t2, t3, &c,

have received during the process the quantities of heat Qp Q2,

Qg, &c, whereby the loss of a quantity of heat will be counted

[* This subject is discussed in one of the subsequent memoirs.—1864.]
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as the gain of a negative quantity of heat ; then the total value

N of all the transformations will be

N=^+^ + ^+&c..=4 (10)

It is here assumed that the temperatures of the bodies Kp K2, K3,

&c. are constant, or at least so nearly constant, that their varia

tions may be neglected. When one of the bodies, however,

either by the reception of the quantity of heat Q itself, or

through some other cause, changes its temperature during the

process so considerably that the variation demands considera

tion, then for each element of heat dQ we must employ that

temperature which the body possessed at the time it received it,

whereby an integration will be necessary. For the sake of

generality, let us assume that this is the case with all the

bodies ; then the foregoing equation will assume the form

(11)

wherein the integral extends over all the quantities of heat

received by the several bodies.

If the process is reversible, then, however complicated it may

be, we can prove, as in the simple process before considered,

that the transformations which occur must exactly cancel each

other, so that their algebraical sum is zero.

For were this not the case, then we might conceive all the

transformations divided into two parts, of which the first gives

the algebraical sum zero, and the second consists entirely of

transformations having the same sign. By means of a finite or

infinite number of simple cyclical processes, the transforma

tions of the first part must admit of being cancelled*, so that

the transformations of the second part would alone remain

* [By a simple cyclical process is here to be understood one in which, as

above described, a quantity of heat is transformed into, or arises from work,

whilst a second quantity is transferred from one body to another. Now it

may be readily shown that every two transformations whose algebraical sum

is zero may be cancelled by means of one or two simple cyclical processes.

In the first place, let the two given transformations be of different kinds.

For instance, let the quantity of heat Q at the temperature t be transformed

nto work, and the quantity Q, be transferred from a body K, of the tempera
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without any other change. Were these transformations ne

gative, i. e. transformations from heat into work, and passages

of heat from lower to higher temperatures, then of the two

kinds the first could be replaced by transformations of the

ture <i to a body K, of the temperature <a, whereby we will assume, since

our intended exposition will be thereby facilitated, that Q and Q, denote the

absolute values of the quantities of heat, so that the positive or negative cha

racter of each transformation must be denoted explicitly by a prefixed + or

— sign. Suppose, moreover, that the magnitudes of the two quantities of

heat are related to one another in the manner expressed by the equation

-S+Q•(t,-t)-"-
"t"

Conceive the cyclical process above described to be performed in a contrary

manner, so that the quantity of heat Q at the temperature t arises from work,

and another quantity of heat is transferred from the body Ka to the body K,.

This latter quantity must then be precisely the quantity Q, which enters into

the above equation, and thus the given transformations are cancelled.

In the next place, let a transformation from work to heat, and another from

heat to work be given ; for instance, let the quantity of heat Q, at the tem

perature t, be generated by work, and the quantity Q-, at the temperature V,

be converted into work, and suppose the two quantities to be so related to

one another that

T T-

Conceive the above-described cyclical process to be first performed, whereby

the quantity of heat Q at the temperature t is converted into work, and

another quantity Q, transferred from a body K, to another body Kj. After

wards conceive a second cyclical process of the opposite kind to be performed,

in which the last-named quantity of heat is transported back from to

K„ and, besides this, a quantity of heat of the temperature t- is generated

from work. This conversion of work into heat must then, apart from its

sign, be equivalent to the preceding conversion of heat into work, since both

are equivalent to one and the same transmission of heat. The heat at the

temperature f, which has arisen from work, must consequently be just as

great as the quantity Q- involved in the last equation, and the given trans

formations are thus cancelled.

In the last place, let two transmissions of heat be given ; for instance,

let the quantity of heat Qt be transferred from a bodyK„ of the temperature

<„ to a body Ka of the temperature <2, and let another quantity Q-, be con

veyed from a body K-2, of the temperature t-2, to a body K'„ of the temperature

<-„ and suppose these two quantities to stand to each other in the relation

Conceive now two cyclical processes to be performed, in one of which the

quantity of heat Q, is carried from K2 to K„ and thereby the quantity Q at

the temperature t generated by work, whilst in the second the same quan
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latter kind*, and ultimately transmissions of heat from a lower

to a higher temperature would alone remain, which would be

compensated by nothing, and therefore contrary to the above

principle. Further, were those transformationspositive, it would

only be necessary to reverse the operations in order to render

them negative, and thus we should again obtain the foregoing

impossible case. Hence we conclude that the second part of

the transformations can have no existence.

Consequently the equation

j¥-o Hi)

is the analytical expression, for all reversible cyclical processes,

of the second fundamental theorem in the mechanical theory of

heat.

The application of this equation can be considerably extended

by giving to the magnitude t involved in it a somewhat different

signification. For this purpose, let us consider a cyclical pro

cess consisting of a series of changes of condition made by a

tity of heat Q is reconverted into work, and thereby another quantity trans

ferred from K'i to K'a. This other quantity must then be precisely that

which is denoted by Q,', and the two given transformations are thus cancelled.

If now, instead of two, any number of transformations were given, having

an algebraical sum equal to zero, we could always separate and combine them

so as to obtain, solely, groups consisting each of two transformations whose

algebraical sum is equal to zero ; and the two transformations of each such

group could then, as has just been shown, be cancelled by means of one or

two simple cyclical processes. If continuous changes of temperature should

present themselves in the given original process, so that the quantities of

heat given up and received would have to be divided into infinitesimal

elements, the number of the groups which would have to be formed, and

consequently also the number of simple cyclical processes, would be infinite ;

as far as the principle is concerned, however, this makes no difference.—

1864.]

* [For if the given transformation consist in the conversion into work of

the quantity of heat Q at the temperature t, we have, as already explained

in the text in reference to the opposite case, merely to conceive the above-

described cyclical process performed in a contrary manner, whereby the

quantity of heat Q at the temperature t will be generated by work ; and at

the same time another quantity Q, will be transferred from a body K,, of the

temperature t2, to a body K, of the higher temperature tv The given trans

formation from heat to work will thus be cancelled, and replaced by the

transmission of heat from K, to Kr—1864.]
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body which ultimately returns to its original state, and for sim

plicity, let us assume that all parts of the body have the same

temperature ; then in order that the process may be reversible,

the changing body when imparting or receiving heat can only

be placed in communication with such bodies as have the same

temperature as itself, for only in this case can the heat pass in

an opposite direction. Strictly speaking, this condition can

never be fulfilled if a motion of heat at all occurs ; but we may

assume it to be so nearly fulfilled, that the small differences of

temperature still existing may be neglected in the calculation.

In this case it is of course of no importance whether in the

equation (II), represents the temperature of the reservoir of

heat just employed, or the momentary temperature of the

changing body, inasmuch as both are equal. The latter signi

fication being once adopted, however, it is easy to see that any

other temperatures may be attributed to the reservoirs of heat

without producing thereby any change in the expression

which shall be prejudicial to the validity ofthe foregoing equation.

As with this signification of t the several reservoirs of heat need

no longer enter into consideration, it is customary to refer the

quantities of heat, not to them, but to the changing body itself,

by stating what quantities of heat this body successively receives

or imparts during its modifications. If hereby a quantity of

heat received be again counted as positive, and a quantity im

parted as negative, all quantities of heat will of course be affected

with a sign opposite to that which was given to them with

reference to the reservoirs of heat, for every quantity of heat

received by the changing body is imparted to it by some reser

voir of heat ; nevertheless, this circumstance can have no influ

ence upon the equation which expresses that the value of the

whole integral is zero. From what has just been said, it fol

lows, therefore, that when for every quantity of heat dQ, which

the body receives or, if negative, imparts during its changes,

the temperature of the body at the moment be taken into cal

culation, the equation (II) may be applied without further con

sidering whence the heat comes or whither it goes, provided the

process be in other respects reversible.

To the equation (II) thus interpreted we can now give a
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more special form, as was formerly done to equation (I), in

which form it shall express a particular property of the body.

We shall thus obtain an equation essentially the same as the

well-known one deduced by Clapeyron from the theorem of

Carnot*. With respect to the nature of the changes, we shall

assume the same conditions as before led to the deduction of

the equations (2) and (3) from (I), and which also suffice for

the fulfilment of equation (II) f. Hence, the condition of the

body being defined by its temperature t and volume v, we have

-n dQ,.dQ,
dQ= -jrdt +-r-dv.

dt dv

CffO

Inasmuch as by (II) l-^ must always equal zero, whenever

t and v assume their initial values, the expression under the

integral sign, which by the foregoing equation becomes

1 dQ, .. , 1 dQ ,

must be a complete differential, if t and v are independent vari

ables ; and the two terms of the expression must consequently

satisfy the following condition,

d(l dQ\d/l dQ\

dtyr' dv)~dv\f dt)'

* Journ. de VEcole Polytechnique, tome xiv.

t [These conditions were that the sole exterior force in operation is a

pressure acting everywhere with the same intensity upon, and perpendi

cularly to the surface, and that this pressure always differs so little from the

expansive force of the body that the two may be regarded as equal to one

another in all calculations. Hence it follows that the changeable body may

be again compressed under the same pressure as that under which it expands,

and consequently that its changes of volume have occurred in a reversible

manner. A certain temperature t was likewise ascribed to the entire change

able body—an assumption which implies that all parts of the latter have one

and the same temperature, or at all events, that the differences of tempera

ture which present themselves are small enough to be neglected. Hence

it follows that within the body no transmissions of heat occur from warmer

to colder places, which are of sufficient importance to be taken into calcula

tion. All the changes, therefore, of which the body is susceptible may be

regarded as reversible, and for the truth of the equation (JI) nothing more

than this is requisite.—1864.]

k2
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From this we obtain

rfT

1 <[{dQ\_dQ. dt_l d_fdQ\

f - dt\ dv) dv - fs_T - dv\ dt)

or

dQ dT

dv - dt
. . . ™

Substituting, from equation (3), the value of the expression

within the [ ], we obtain the desired equation,

which, on account of the relation

may be written thus

dp_dp dT

dt~dT - dt'

<13«>

If we compare this result with the before-mentioned equation

established by Clapeyron, we shall at once see the relation which

exists between the function T, here introduced, and that used by

Clapeyron, denoted by C, and known as Carnot's function, which

I have also used in former memoirs. This relation may be ex

pressed thus :

* [I may here remark that the equation (12) may be transformed in the

same way as the equation (13) has already been transformed. For putting

therein

dQ=dQ, dT

dt dT - dt-

dT
and dividing throughout by we have

«J/<«1\ d /rfQ\ dT

dt\dv) dT\dv) - dt'

dT
by we have

dQ= t VA /d3\ - i .

dv LdT\dv) dv\WJ'

or, otherwise written,

d(dQ\_£(dQ\_l dQ
dT\dv) dv\dT)~T"d^- (U<*)

Hereby the meaning of the equation (II) is expressed, even more simply

than in (12), in the form of a partial differential equation of the second order.

—1864.]
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dT

dt A

(14)
T~C

We proceed now to the consideration of non-reversible cyclical

processes.

In the proof of the previous theorem, that in any reversible

cyclical process, however complicated, the algebraical sum of all

the transformations must be zero, it was first shown that the sum

could not be negative, and afterwards that it could not be posi

tive, for if so it would only be necessary to reverse the process in

order to obtain a negative sum. The first part of this proof re

mains unchanged even when the process is not reversible ; the

second part, however, cannot be applied in such a case. Hence

we obtain the following theorem, which applies generally to all

cyclical processes, those that are reversible forming the limit :—

The algebraical sum ofall transformations occurring in a cyclical

process can only be positive.

A transformation which thus remains at the conclusion of

a cyclical process without another opposite one, and which

according to this theorem can only be positive, we shall, for

brevity, call an uncompensated transformation.

The different kinds of operations giving rise to uncompensated

transformations are, as far as external appearances are concerned,

rather numerous, even though they may not differ very essen

tially. One of the most frequently occurring examples is that

of the transmission of heat by mere conduction, when two bodies

of different temperatures are brought into immediate contact ;

other cases are the production of heat by friction, and by an

electric current when overcoming the resistance due to imper

fect conductibility, together with all cases where a force, in doing

mechanical work, has not to overcome an equal resistance, and

therefore produces a perceptible external motion, with more or

* [The equation established by Clapeyron, when written in the form given

to it in the notes to the equations (IV) and (V) of the First Memoir (pp. 47,

and on comparing this expression for -~-with the one which results from the

equation (13), we obtain the equation (14).—1864.]

48), is
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less velocity, the vis viva of which afterwards passes into heat.

An instance of the last kind may be seen when a vessel filled

with air is suddenly connected with an empty one ; a portion of

air is then propelled with great velocity into the empty vessel

and again comes to rest there. It is well known that in this

case just as much heat is present in the whole mass of air after

expansion as before, even if differences have arisen in the several

parts, and therefore there is no heat permanently converted into

work. On the other hand, however, the air cannot again be

compressed into its former volume without a simultaneous con

version of work into heat.

The principle according to which the equivalence-values of

the uncompensated transformations thus produced are to be

determined, is evident from what has gone before, and I will

not here enter further into the treatment of particular cases.

In conclusion, we must direct our attention to the function T,

which hitherto has been left quite undetermined ; we shall not

be able to determine it entirely without hypothesis, but by

means of a very probable hypothesis it will be possible so to do.

I refer to an accessory assumption already made in my former

memoir, to the effect that a permanent gas, when it expands at a

constant temperature, absorbs only so much heat as is consumed by

the exterior work thereby performed. This assumption has been

verified by the later experiments of Regnault, and in all proba

bility is accurate for all gases to the same degree as Mariotte

and Gay-Lussac's law, so that for an ideal gas, for which the

latter law is perfectly accurate, the above assumption will also

be perfectly accurate.

The exterior work done by a gas during an expansion dv,

provided it has to overcome a pressure equivalent to its total ex

pansive force p, is equal to pdv, and the quantity of heat absorbed

dQ
thereby is expressed by -^dv. Hence we have the equation

dCt .
Tv=A-P>

and by substituting this value of — in the equation (13) , the

latter becomes
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dT dp

?-* m

But, according to Mariotte and Gay-Lussac's law,

a + t
p= . const..

v

where a is the inverse value of the coefficient of expansion of

the permanent gases, and nearly equal to 273, if the temperature

be given in Centigrade degrees above the freezing-point. Elimi

nating p from (15) by means of this equation, we have

T-=t+t> (16)

whence, by integration,

T=(o+ 0 . const (17)

It is of no importance what value we give to this constant, be

cause by changing it we change all equivalence-values propor

tionally, so that the equivalences before existing will not be

disturbed thereby. Let us take the simplest value, therefore,

which is unity, and we obtain

T=a+ t (18)

According to this, T is nothing more than the temperature

counted from a°, or about 273° C. below the freezing-point ;

and, considering the point thus determined as the absolute zero

of temperature, T is simply the absolute temperature. For this

reason I introduced, at the commencement, the symbol T for the

reciprocal value of the function/ (t) . By this means all changes

which would otherwise have had to be introduced in the form of

equations, after the determination of the function, are rendered

unnecessary ; and now, according as we feel disposed to grant

the sufficient probability of the foregoing assumption or not, we

may consider T as the absolute temperature, or as a yet unde

termined function of the temperature. I am inclined to believe,

however, that the first may be done without hesitation.
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FIFTH MEMOIR.

ON THE APPLICATION OF THE MECHANICAL THEORY OF HEAT TO

THE STEAM-ENGINE*.

1. As our present modified views respecting the nature and

deportment of heat, which constitute the mechanical theory of

heat, had their origin in the well-known fact that heat may be

employed for producing mechanical work, we may naturally an

ticipate that the theory so originated will in its turn help to

place this application of heat in a clearer light. At all events

the more general views thus obtained must enable us to pro

nounce safely upon the efficiency of the several machines for

thus applying heat, as to whether they already perfectly fulfil

their purpose, or whether and to what extent they are capable

of being perfected.

Besides these reasons, which apply to all thermo-dynamic

machines, there are others, applicable more particularly to the

most important of them, the steam-engine, which appear to

render a new investigation of the latter, conducted according to

the principles of the mechanical theory of heat, desirable. It is

precisely with respect to vapour at a maximum density that this

new theory has led us to laws which differ essentially from those

formerly accepted as true, or at least introduced into former

calculations.

2. I may here be allowed to refer to a fact proved by Rankine

and myself, that when a quantity of vapour, at its maximum den

sity and enclosed by a surface impenetrable to heat, expands and

thereby displaces a moveable part of the enclosing surface, e. g.

a piston, with its full force of expansion, a part of the vapour

must undergo condensation; whereas in most works on the

steam-engine, amongst others in the excellent work of De

* Published in Poggendorff's Annalen, March and April 1856, vol. xcvii.

pp. 441 and 513 ; translated in the Philosophical Magazine, S. 4. vol. xii.

pp. 241, 338 and 426 ; and in Silliman's Journal, S. 2. vol. xxii. pp. 180 and

364, vol. xxiii. p. 26.
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Pambour*, Watt's theorem, that under these circumstances the

vapour remains precisely at its maximum density, is assumed as

a fundamental one.

Further, in the absence of more accurate knowledge, it was

formerly assumed, in determining the volumes of the unit of

weight of saturated vapour at different temperatures, that vapour

even at its maximum density still obeys Mariotte's and Gay-

Lussac's laws. In opposition to this, I have already shown in

my first memoirf on this subject, that the volumes in question

can be calculated from the principles of the mechanical theory

of heat under the assumption, that a permanent gas when it ex

pands at a constant temperature only absorbs so much heat as is

consumed in the external work thereby performed, and that these

calculations lead to values which, at least at high temperatures,

differ considerably from Mariotte's and Gay-Lussac's laws.

Even the physicists who had occupied themselves more espe

cially with the mechanical theory of heat, did not at that time

coincide with this view of the deportment of vapour. William

Thomson in particular opposed it. In a memoir J presented to

the Royal Society of Edinburgh a year later, in March 1851,

he only regarded this result as a proof of the improbability of

the above assumption which I had employed.

Since then, however, he and J. P. Joule have together under

taken to test experimentally the accuracy of this assumption §.

By a series of well-contrived experiments, executed on a large

scale, they have in fact shown that, with respect to the perma

nent gases, atmospheric air and hydrogen, the assumption is so

nearly true, that in most calculations the deviations from exacti

tude may be disregarded. With carbonic acid, the non-perma

nent gas they investigated, the deviations were greater. This is

in perfect accordance with the remark I made on first making the

assumption, which was that the latter would probably be found

to be accurate for each gas in the same measure as Mariotte's and

Gay-Lussac's laws were applicable thereto. In consequence of

* Thiorie des Machines a Vapeur, par le Comte F. M. G. de Pambour.

Paris, 1844.

t [First Memoir of this collection.]

\ Transactions of the Royal Society of Edinburgh, vol. xx. part 2, p. 26],

§ Phil. Trans, vol. cxliii. part 3, p. 357 ; and vol. cxliv. part 2, p 321.
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these experiments, Thomson now calculates the volumes of satu

rated vapours in the same manner as myself. There is reason

to believe, therefore, that the accuracy of this method of calcu

lation will be gradually more and more recognized by other

physicists.

3. These two examples will suffice to show that the principles

upon which our former theory of steam-engines was founded have

suffered such essential modifications through the mechanical

theory of heat, as to render a new investigation of the subject

necessary.

In the present memoir I have attempted to develope the prin

ciples of the calculation of the work of the steam-engine in

accordance with the mechanical theory of heat. I have, how

ever, limited myself to the steam-engines now in use, without at

present entering into a consideration of the more recent and cer

tainly very interesting attempts to employ vapour in a super

heated state.

In recording the results of my investigation, I shall only

assume, on the part of the reader, an acquaintance with my last

memoir, "On a modified Form of the Second Fundamental

Theorem in the Mechanical Theory of Heat"*. This will of

course necessitate the deduction, in a somewhat different man

ner, of results which are no longer new, but have already been

found by myself or others ; I believe, however, that this re

petition, by leading to greater unity and facility of comprehen

sion, will not be found superfluous. At the proper places I shall,

to the best of my ability, cite the papers wherein these results

first appeared.

4. The expression " a machine is driven by heat," is not of

course strictly accurate. By it we must understand, that, in

consequence of the changes produced by heat upon some kind

of matter in the machine, the parts of the latter are set in motion.

We shall refer to this matter as that which manifests the action

of heat.

If a continuously-acting machine is in uniform action, all

accompanying changes occur periodically, so that the condition

which at a given time prevails in the machine and all its parts

returns at equal intervals. Hence the matter which manifests

* [Fourth Memoir of this collection.]
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the action of the applied heat must at such regularly-recurring

periods be present in the machine in equal quantity, and in the

same state. This condition can be fulfilled in two different ways.

First. One and the same quantity of matter may always re

main in the machine, when the changes of condition which this

matter suffers during the action of the machine will be such, that

at the end of each period it will regain its original condition and

recommence the same cycle of changes.

Secondly. The machine may always expel the matter which

served to produce the effect during a period, and in its place

receive from an external source just as much matter of the same

kind.

5. The last method is the one usually employed in most

machines. This is the case, for instance, in machines with

heated air as at present constructed ; for after every stroke, the

air which moved the piston in the driving cylinder is expelled

into the atmosphere, and in its place an equal quantity of air

from the same source is received into the feeding cylinder. Si

milarly in steam-engines without condensers, steam is driven

from the cylinder into the atmosphere, and in its place fresh

water is pumped from a reservoir into the boiler.

Further, a similar method is at least partially adopted even in

steam-engines provided with a condenser as usually constructed.

In them the water condensed from the steam is only partially

pumped back into the boiler, for being mixed with the cooling

water, a part of the latter also reaches the boiler. The remaining

part of the condensed water, together with the remaining part

of the cooling water, has to be got rid of.

The first method has lately been employed in steam-engines

propelled by two vapours, e. g. those of water and aether. In

these machines the steam is condensed solely by contact with

metallic tubes filled with liquid aether, and the water thus pro

duced is then completely pumped back into the boiler. In the

same manner the vapour of the aether is condensed in metal tubes,

which are merely surrounded by cold water, and subsequently

it is pumped back into the first space intended for the vapori

zation of the aether. In order to maintain a uniform action,

therefore, only so much fresh water and aether is necessary as

will replace the leakage consequent upon imperfect construction.
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6. In a machine of this kind, where the same matter is con

tinually re-employed, the several changes which this matter suf

fers during a period must, as above stated, form a closed cycle,

or, according to the nomenclature in my former memoir, a cy

clical process.

On the contrary, machines in which a periodical reception and

expulsion of matter occurs are not necessarily subject to this -

condition, though they may also fulfil it by expelling the matter

in the same condition in which it was received. This is the case

| in steam-engines with condensers, where the water is ultimately

expelled from the condenser in the liquid state, and at the same

temperature as it had when introduced from the condenser into

the boiler*.

In other machines, the condition, when expelled, is different

from what it was when received. For example, heated-air ma

chines, even when provided with regenerators, expel the air at

a higher temperature than it formerly had ; and steam-engines

without condensers receive water in the liquid, and expel it in

the gaseous form. Strictly, therefore, the complete cyclical pro

cess is not fulfilled in these cases ; nevertheless we may always

conceive a second machine appended to the given one which

shall receive the matter from the first, reduce it in some manner

to its original condition, and then expel it. Both machines may

then be regarded as constituting one and the same machine,

which will fulfil the above condition. In many cases this addi

tion may be made without introducing greater complexity into

the investigation. For example, a steam-engine with a con

denser at a temperature of 100° C. may be substituted for a ma

chine without a condenser, provided we assume the latter to be

fed with water at 100° C.

Hence, if we assume that machines which do not fulfil the

above condition are theoretically completed in the above manner,

we may apply the theorems concerning cyclical processes to

all thermo-dynamic machines, and thereby arrive at conclusions

* The cooling water,- which enters the condenser at a low, and leaves it at

a high temperature, is not here taken into consideration, inasmuch as it does

not form a part of the matter manifesting the effect of the applied heat, but

merely constitutes a negative source of heat.
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which are quite independent of the nature of the processes

executed by the several machines.

7. In my former memoir I have represented the two funda-

wherein the letters have the same signification as before, viz.—

A is the thermal equivalent of the unit of work.

W represents the external work performed during the cyclical

process. **

Q, signifies the heat imparted to the changeable body during

a cyclical process, and dQ an element of the same, whereby any

heat withdrawn from the body is to be considered as an imparted

negative quantity of heat. The integral in the second equation

is extended over the whole quantity Q.

T is a function of the temperature which the changing matter

has at the moment when it receives the element of heat dQ ; or

should the temperature of different parts of the body be different,

a function of the temperature of the part which receives dQ.

With respect to the form of the function T, I have shown in my

former memoir that it is probably the temperature itselfreckoned

from a point which may be determined from the reciprocal value

of the coefficient of expansion of an ideal gas, and which must

be in the neighbourhood of —273° C. ; so that if t represents

the temperature above the freezing-point,

In the present memoir T will always have this signification, and

for brevity will be called the absolute temperature. It may be

here remarked, however, that the conclusions do not essentially

depend upon this signification, but remain true even when T is

considered as an undetermined function of the temperature.

Lastly, N denotes the equivalence-value of all the uncompen

sated transformations* involved in a cyclical process.

* One species of uncompensated transformations requires further remark.

The sources from which the changing matter derives heat must have higher

temperatures than itself; and, on the other hand, those from which it derives

T=273 + i?. (1)
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?

8. If the process is such that it can be reversed in the same

manner, then N=0. If, however, one or more changes of con-

negative quantities of heat, or which deprive it of heat, must have lower

temperatures than itself. Therefore whenever heat is interchanged between

the changing body and any source whatever, heat passes immediately from the

body at a higher to the one at a lower temperature, and thus an uncompen

sated transformation occurs which is greater the greater the difference be

tween the temperatures. In determining such uncompensated transforma

tions, not only must the changes in the condition of the variable matter be

taken into consideration, but also the temperatures of the sources ofheatwhich

are employed ; and these uncompensated transformations will be included in

N or not, according to the signification which is attached to the temperature

occurring in equation (II). If thereby the temperature of the*- source of heat

belonging to rfQ is understood, the above changes will be included in N. If,

however, agreeably to the above definition, and to our intention throughout

this memoir, the temperature of the changing matter is understood, then the

above transformations are excluded from N. One more remark must be added

concerning the minus sign prefixed to N, which did not appear in the same

equation in my former memoir. This difference arises from the different ap

plication of the terms negative and positive with respect to quantities of heat.

Before, a quantity of heat received by the changeable body was considered as

negative because it was lost by the source of heat ; now, however, it is con

sidered as positive. Hereby every element of heat embraced by the integral,

and consequently the integral itself, changes its sign ; and hence, to preserve

the correctness of the equation, the sign on the other side must be changed.

[The reason why, in different investigations, I have changed the significa

tions of positive and negative quantities of heat, is that the points of view

from which the processes in question are regarded, differ according to the na

ture of the investigations. In purely theoretical investigations on the trans

formations between heat and work, and on the other transformations con

nected therewith, it is convenient to consider heat generated by work as po

sitive, and heat converted into work as negative. Now the heat generated by

work during any cyclical process must be imparted to some body serving as a

reservoir or as a source of heat, and the heat converted into work must be

withdrawn from one of these bodies. Quantities of heat will receive appro

priate signs in theoretical investigation, therefore, when the heat gained by a

reservoir is calculated as positive, and that which it loses as negative. There

are investigations, however, in which it is not necessary to take into special

consideration the reservoirs or sources which receive the heat that is generated,

or furnish the heat that is consumed by work, the condition of the variable

body being the chief object of research. In such cases it is customary to re

gard the heat received by the changing body as positive, and the heat which

it loses as negative ; to deviate from this custom, for the sake of consistency,

would be attended with many inconveniences. Researches on the interior

processes in a steam-engine are of the latter kind, and accordingly I have

deemed it advisable to adopt the customary choice of signs.—1864]
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dition occur in a cyclical process which are not reversible, then

uncompensated transformations necessarily arise, and the mag

nitude N has consequently a determinable and necessarily posi

tive value.

Amongst the operations to which the last remark is applicable,

is one which in the following will be often mentioned. When

a quantity of gas or vapour expands, and thereby overcomes a

pressure equivalent to its total expansive force, it may be again

compressed into its former volume by employing the same power,

when all the phenomena which accompanied the expansion will

take place in an inverse manner. This is not the case, however,

when the gas or vapour does not, during its expansion, encounter

all the resistance it is capable of overcoming ; when, for instance,

it issues from a vessel in which the pressure is greater than in

the one into which it enters. In this case a compression, under

circumstances similar to those accompanying expansion, is im

possible.

By equation (II) we can determine the sum of all the uncom

pensated transformations in a cyclical process. As, however, a

cyclical process may consist of several changes of condition in the

given matter, of which some have occurred in a reversible, and

others in an irreversible manner, it is often interesting to know

how much of the whole sum of uncompensated transformations

has resulted from changes of each kind. For this purpose let

us conceive the matter, after the changes of condition which has

to be examined in this manner, reduced to its original condition by

any reversible operation. We shall thereby obtain a small cyclical

process, to which the equation (II) will be just as applicable as

to the whole. Consequently, if we know the quantities of heat

which the matter has received during the process, and the tem

peratures which correspond thereto, the negative integral —

will give the uncompensated transformation involved therein.

But as the uncompensated transformation involved in the given

change of condition could not have been increased by the above

reduction, which was executed in a reversible manner, it will be

fully represented by the above expression*.

* [Let us suppose the changeable body to be a quantity of gas, and that

one of the changes which this gas has suffered consists of an expansion, with-
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Having thus investigated all the parts of the whole cyclical

process which are not reversible, and found the values N„ N2,

&c, which must all be positive, their sum will give the magni-

out change of temperature, from the volume i>, to the volume vr As already-

stated in the text, this expansion may occur in several ways. The gas may

so expand that at every moment the pressure which it has to overcome cor

responds to its expansive force at that moment ; or it may be allowed to ex

pand without overcoming any resistance whatever, by suddenly placing an

empty vessel in connexion with the one in which it occupied the volume v, ;

or lastly, it may, during its expansion, have to overcome a resistance less than

that which corresponds to its own expansive force. If we wish to know the

magnitude of the uncompensated transformation involved in this change of

volume, we have merely to conceive the gas to be again compressed, at a con

stant temperature, from the volume v2 to the volume vv and to determine the

quantities of heat received and withdrawn during the cyclical process thus

completed.

If during its expansion the gas has the full resistance to overcome, it must

receive just as much heat as it afterwards gives off during compression, so

that we obtain for the cyclical process the equation

-j?=o.

If the gas has no resistance to overcome during expansion, and if we more

over assume it to be a perfect gas, it need not receive any heat during expan

sion. During compression, however, it must give off a quantity of heat equal

to that which is generated by the exterior work necessary for compression.

For each element of the change of volume this will be represented by A.pdv,

where p denotes the pressure, and the positive or negative sense is already

expressed in the formula itself, since a quantity of heat to be received is po

sitive, and one to be given off is negative. We must put then

-JHl

Now, according to the law of M. and G.,

RT

where R is an already known constant, so that

This, therefore, is the value of the uncompensated transformation when a per

fect gas has expanded from the volume W1 to the volume v3 without having

had to overcome any exterior resistance.

If, lastly, the gas, on expanding, has to overcome some, but not the full re

sistance, it will on so doing receive some heat, but not so much as it will give

off on compression. -We should now obtain, for the uncompensated trans

formation corresponding to the expansion, a value between zero and the one

last calculated.—18G4.]
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tude N corresponding to the whole cyclical process, without its

being necessary to take into consideration those parts which are

known to be reversible.

9. If we now apply the equations (I) and (II) to the cyclical

process which occurs during a period in a thermo-dynamic

machine, it will be at once evident that, the whole quantity of

heat communicated during this period to the matter in the

machine being given, the corresponding amount of work can be

immediately determined from the first equation without its being

necessary to know the nature of the operations constituting the

cyclical process.

In an equally general manner the work may be determined

from other data by a combination of both equations.

We will assume that the quantities of heat successively im

parted to the changing material, as well as the temperatures at

the times of reception, are given, and that only one temperature,

T0, remains at which a certain as yet unknown quantity of heat

was imparted or, if negative, abstracted. The sum of all the

known quantities of heat shall be represented by Qv and the

unknown quantity of heat by Q0.

We will divide the integral in equation (II) into two parts, of

which the one shall extend over the known quantity of heat Q,,

and the other over the unknown quantity Q,. In the latter part,

T having a constant value T0, the integration may be immediately

effected, and as result we have

Qo.

T0

The equation (II) thus becomes

whence results

Further, seeing that in our case

Q=Q1 + Q0.

we have from equation (I),

W=i(Q1 + Q0).
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Substituting the above-found value of in this equation, it

becomes

w=I(q-t0(oQi^-t0.n). ... (2)

If, as a special case, the whole cyclical process is reversible,

then

N=0,

and the above equation becomes

w-'(qHvjf*> .... (s,

This expression differs from the preceding one only in the absence

of the term —-2 N. Now as N can only be positive, this term

A.

must necessarily be negative ; and thus we see that, under the

above conditions with respect to the communication of heat, the

greatest possible amount of work is obtained when the whole

process is reversible ; and that every circumstance which renders

one of the operations in the cyclical process not reversible, dimi

nishes the amount of work,—a conclusion which results easily

from a direct consideration of the .subject.

The equation (2) leads to the value of the amount of work in a

manner opposite to that usually followed. The amounts of work

done in the several operations are not separately determined

and then added together, but, instead of this, the maximum of

work is first found, and the losses occasioned by the several

imperfections of the process are subsequently deducted from it.

If, with respect to the communication of heat, we introduce a

still more limited condition, and assume that the whole quantity

of heat Qj is also imparted to the body at a constant tempera

ture T„ then the integration which embraces this quantity of

heat may also be executed, and gives

%

T,

whereby the equation (3) for the maximum of work assumes the

form

W=A -^FT W

In this special form the equation has already been deduced by

William Thomson and Rankine from a combination of Carnot's
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theorem, as modified by me, and the theorem of the equivalence

of heat and work*.

10. Before we proceed, from these considerations which apply

to all thermo-dynamic engines, to treat of the steam-engine,

we must first premise something concerning the deportment of

vapours at a maximum density.

In a memoir of mine, published as early as 1850, " On the

Moving Force of Heat/' &c. f, I have already established the

equations which show the application of the two fundamental

theorems of the mechanical theory of heat to vapours at a maxi

mum density, and I have there employed these equations in de

ducing several consequences. But as in my last memoir, " On

a modified Form of the Second Fundamental Theorem of the

Mechanical Theory of Heat J," I proposed a somewhat different

mode of treating the whole subject, it appears preferable to me

to assume the last memoir only as known. I shall therefore

deduce those equations once more, in a different manner, by

means of the results established in my last memoir.

It was there assumed, in order to apply the general equations

which were first established to a somewhat more special case,

that the only foreign force, acting upon the changing material,

which required consideration in determining the external work,

was an external pressure equally intense at all points of the sur

face, and directed everywhere at right angles to the same ; and

further, that this pressure always changed so slowly, and con

sequently at each moment differed so little from the opposite

expansive force of the body, that in calculation the two might be

considered equal. Let then p be the pressure, v the volume,

and T the absolute temperature of the body. We introduce the

last instead of t, the temperature counted from the freezing-

point, because thereby the formulae assume a simpler form. The

equations already established in this case are

d ldQ\ d(dQ\ . dp ,TTT,

^=A T^S (IV)

* Phil. Mag. July 1851.

t [First Memoir of this Collection.]

X [Fourth Memoir of this Collection.]

§ [Instead of this equation (IV), which is identical with (13 a) of the Fourth

l 2
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These equations shall next be applied to the still more special

case of vapours at their maximum density.

11. Let M be the mass of the matter whose vapour is to be

considered, and which is placed in a perfectly closed expansible

vessel. Let the part m be in a vaporous, and the rest, M—m, in

a liquid state. This mixed mass shall be the changing body to

which the foregoing equations are to be referred.

The condition of the mass, as far as it here enters into con

sideration, is perfectly determined as soon as its temperature

T and its volume v, i. e. the volume of the vessel, are given.

For, according to hypothesis, the vapour is always in contact

with the liquid, and therefore remains at its maximum density ;

so that its condition, as well as that of the liquid, depends only

upon the temperature T. It only remains to be seen, therefore,

whether the magnitude of each of the parts in different conditions

is perfectly determined, from the condition that both parts

together exactly fill the space enclosed by the vessel. Let s

represent the volume of the unit of weight of vapour at its maxi

mum density where the temperature is T, and a that of the unit

of weight of liquid, then

v=m s+ (M— m)<7

= m{s—a) + M<r.

The magnitude s never occurs hereafter except in the combina

tion s—a, so that we will introduce another letter for this dif

ference, and make

u=s—<t, (5)

Memoir (p. 132), the equation (12) of that memoir may be written, which

latter at once assumes the form (12 a), there given in a note, on regarding T

as the absolute temperature, and introducing it into the differential coefficients

instead of the temperature estimated from the freezing-point. For the sake

of reference I will here write all three equations, and that in the following

order :

d(dQ\_ dtdQ\_A dp ,

±(dQ\_ 1 dQ

dT\dv) dvXdT/ T- dv' w

S=A-T»- <c>

Of these equations (a) expresses the first fundamental theorem, and (b) the

second fundamental theorem employed in its modified form. The equation (c)

is obtained by combining both these theorems.—1864.]
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in consequence of which the foregoing equation becomes

v=mu+ Ma, (6)

and we have

v—Ma ._.
ms= (7)

u

By this equation m is expressed as a function of T and v, be

cause u and o- are functions of T.

12. In order to be able to apply equations (III) and (IV) to

our case, we must next determine the magnitudes -3— and -=,'

0 dv aT

If the volume of the vessel increases by dv, then the quantity

of heat which must be imparted to the mass in order to maintain

a constant temperature will be generally expressed by

dQ, ,
-j- dv.

dv

But this quantity of heat is expended solely in the vaporization

which takes place during the expansion ; so that if r represents

the heat required to vaporize the unit of mass, the above quan

tity of heat may also be represented by

and we have

But according to (7) ,

hence

dv u * '

Let us next assume that, whilst the volume of the vessel

remains constant, the temperature of the mass increases by dT ;

then the general expression for the requisite quantity of heat

will be

d®dT
dTaL-

This quantity of heat consists of three parts :—

(1) The liquid part M—m of the whole mass suffers an incre

ment of temperature dT, for which, c being the specific heat of

dm

dv
dv,

dQ_ dm

dvdv

dm _ 1

dv V
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the liquid, the quantity of heat

(M-m)crfT

is necessary.

(2) The vaporous part m will also undergo an increment of

temperature dT, but it will be thereby compressed so as still to

remain at its maximum density for the increased temperature

T + dT. For an increment of temperature dT, we will represent

by h . dT the quantity of heat which must be imparted to the

unit of mass of vapour during its contraction, in order that at

every density it may have precisely that temperature for which

this density is a maximum. The value and even the sign of the

magnitude h is at present unknown. The quantity of heat ne

cessary in our case will therefore be

mhdT.

(3) During the elevation of temperature, a small quantity of

liquid, represented generally by

—dT

becomes vaporized, for which the quantity of heat

is necessary. Herein, according to equation (7),

dm v—Ma du _M da

d~T~ «* ' dT u'dT

m du _M da

u'dT ~u'dT'

so that by substitution the last expression becomes

_ (m du.M da\dT

\u 'dT u - dT) '

Equating the sum of these three quantities of heat and the

former expression -~ dT, we obtain the equation

dQ.

dT-»(-i-£M*--5-»> - - <<»

13. As indicated by equation (III), the above expression for

-— must be differentiated according to T, and the expression for

dv
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— according to v. The magnitude M is constant, the magni-

tudes u, a, r, c and h are all functions of T alone, and only the

magnitude m is a function of T and v, so that

d fdQ\_ 1 dr_r du

dT\d^)~u"dT u*"dT' .... (10)

d fdQ\ _ / , _r du\dm

dv\dT)\ u ' dTjlfo ''

or, substituting for —r- its value -,

d /'dQ,\_h — c_ r du ,, ,,

SJWf/ ~u~ u*"dT [ '

By substituting the expressions given in (10), (11), and (8)

in (III) and (IV) , we obtain the required equations, which re

present the two principal theorems of the mechanical theory of

heat as applied to vapours at their maximum density. These are

^+c-h=A.u^, ....... (V)

r=A.T«||; (VI)

and from a combination of both we have

± + c-h=r-* (12)

dT T v '

14. By means of these equations we will now treat a case,

which in the following will so frequently occur, as to render it

desirable at once to establish the results which have reference

thereto.

* [These equations, written in the following order,

£+c"*=r <b>

r=A.TMJ, (c)

correspond to the three equations (a), (b), (c) of the last note (p. 148). The first,

containing the quantity h, is therefore a consequence of the first fundamental

theorem, and the second follows from the modified form of the second funda

mental theorem ; the third equation, which does not contain A, arises from a

combination of both these fundamental theorems.—1864.]
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Let us suppose that the vessel before considered, containing

the liquid and vaporous parts of the mass, changes its volume

without heat being imparted to, or withdrawn from, the mass.

Then, simultaneously with the volume, the temperature and

magnitude of the vaporous part of the mass will change ; and

besides this—seeing that during the change of volume the

pressure of the enclosed vapour is active, which pressure during

expansion overcomes, and during contraction is overcome by an

external force—a positive or negative amount of external work

will be done by the heat which produces the pressure.

Under these circumstances, the magnitude of the vaporous part

m, the volume v, and the work W shall be determined as functions

of the temperature T.

15. It has already been shown that, in order that the volume

and temperature may suffer any infinitely small increments dv

and dT, a quantity of heat expressed by the sum

r ^ dv+ ^pi—m)c+mh+r^jdT

must be imparted to the mass. In consequence of the present

condition, according to which heat is neither imparted to, nor

abstracted from the mass, this sum must be set equal to zero.

Accordingly, writing dm in place of

dm , dm

we obtain the equation

rdm +m(h-c)dT + M.cdT=0 (13)

But by (12),

, _dr r
h C~dT T;

dr
so that by again writing dr in the place of ^ dT, r being a func

tion of T alone, we have

rdm+mdr-~ dT+ McdT=0,

or

d(mr) -™ dT+McdT=0* (14)

* [It is manifest that the expressions in the left of the equations (13) and

(14), which are respectively equal to zero when heat is neither imparted to
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This equation, divided by T, becomes

or

<f)+Mcf=0 (15)

Inasmuch as the specific heat of a liquid changes only very

slowly with its temperature, we will in future always consider

the magnitude c as constant. In this case the above equation

can be immediately integrated, and gives

^+Mc log T= const.;

or if Tj, r„ and ml be the initial values of T, r, and m,

^=^J-MclogT* (VII)

If r may be considered as a known function of the tempera

ture, as through Regnault's experiments it may be in the case of

steam, then by means of this equation m is also expressed as a

function of the temperature.

In order to give some idea of the deportment of this function,

I have, for one particular case, collected together a few calculated

values in the following Table. For instance, it is assumed that

the mass nor abstracted from it, must in general be equated to rfQ. For every

change of volume and temperature, therefore, whereby the quantity of the va

porous part likewise changes in a corresponding manner, we have the equa

tions

dQ=rdm+m(h-e)dT+McdT

=d(mr)-,^dT+McdT,

the frequent applicability of which is obvious.—1864.]

* [If the constancy of e be not assumed, the integral of the equation (15)

will be

mr

—TT JTx T'

wherein the integration indicated in the last term may be effected as soon as

c is given as a function of the temperature. All those equations in the sequel,

which contain an integral in whose development c was regarded as a constant,

are susceptible of a similar modification. I have not thought it necessary ac

tually to write the equations in this form, since the modification in question

is a self-evident one.—1864.]
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at the commencement the vessel contains no water in a liquid

state, but is exactly filled with vapour at a maximum density, so

that »», =M ; and that an expansion of the vessel now takes

place. If the vessel has to be compressed, then the assumption

that at the commencement it contained no liquid could not be

made, because in such a case the vapour would not remain at a

maximum density, but would become over-heated by the heat

generated through compression. During expansion, however,

not only does the vapour remain at a maximum density, but a

part of it is actually condensed ; and it is the diminution of m

consequent thereon which is exhibited in the Table. The initial

TYi<

temperature is supposed to be 150° C, and the values of ^ are

given which correspond to the periods when, by expansion, the

temperature is reduced to 125°, 100°, &c As before, in

order to distinguish it from the absolute temperature T, the tem

perature counted from the freezing-point is represented by t.

t.
1500

"S° IOO° 75° So* *5°

m

M

1 0-956 0-9 1 1 0866 0-821 0776

16. In order to express the relation which exists between the

volume v and the temperature, we must employ the equation

(6) , according to which

v=mu +M.a.

The magnitude a herein involved, which represents the volume

of a unit of weight of liquid, changes very little with the tempe

rature; and these small changes may be the more safely neglected,

because the whole value of a is very small in comparison to u ;

we shall consequently consider <r, as well as the product Mo-, as

constant. The product mu therefore alone remains to be deter

mined. For this purpose we have only to substitute the value

of r, as given in equation (VI), in equation (VII), and we obtain

mu
dp fdp\ Mc, T __„

dp
The differential coefficient J^ which here appears, is to be con
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sidered as known, p itself being given as a function of the tem

perature. Hence the product mu is determined by this equation,

and by the addition of Mo- the required value of v will also result

from it.

The same suppositions being made as before, the following

Table shows a series of values of the fraction — calculated from

this equation. For the sake of comparison the values of —

are also appendedwhich would be obtained if the two assumptions

formerly made in the theory of the steam-engine were correct ;

that is to say, (1) that the vapour during expansion remains

without partial condensation at a maximum density ; (2) that it

follows Mariotte's and Gay-Lussac's laws. According to these

hypotheses, we should have

£=& I

», P T,-

t. i5°° ix5° IOO° 75° 50° 25°

i 1-88 9-13 257 887

P -T,
i i-93 416 10-21 297 107-1

17. We have still to determine the work done during the

change of volume. In order to do so, we have the general

equation

W=p pdv (16)

But, considering a constant, we have from equation (6),

dv= d(mu) ;

therefore

pdv=pd(mu),

for which we may also write

pdv=d(mup) —mu ^ dT (17)

In the place of mu we might here substitute the expression

oT

given in (VIII) , and then integrate ; but the result is at once



156 FIFTH MEMOIR.

obtained in a rather more convenient form by the following sub

stitution. According to (VI),

dp _ 1 mr ,_,

aud through the application of equation (14) , this becomes

mu^ <*T=£ \d(mr) + McdT] .

By means of this (17) becomes

pdv=d(mup) —f- \d(mr) +McrfT]*;

and integrating this equation, we have

W=mup— »»i«Kp, + -r- [m,r,—ror +Mc(T,—T)], (IX)

whence, the magnitudes mr and mu being already known from

former equations, W may be calculated.

- I have also made this calculation for the above special case,

W
and given the values of — , *. e. of the work done during expan-

M

sion by the unit of mass, in the following Table. A kilogramme is

chosen as unit of mass, and a kilogramme-metre as unit of work.

For —, the value 423-55, as found by Joule, is employedf.

A.

For the sake of comparison with the numbers in the Table, it

may be well to state that when 1 kilogramme of water is eva

porated at the temperature of 150°, and under the corresponding

pressure, the quantity of work done by the vapour during its

formation in overcoming the external counter-pressure has the

value 18700.

* [If instead of assuming <r to be constant, it be thought desirable to obtain

an accurate expression for pdv, it will be necessary merely to supply the ex

pression in the text with the additional term Mprfo-.—1864.]

t -r- is the equivalent of work for the unit of heat ; and the above number

denotes, therefore, that the quantity of heat which can raise a kilogramme

of water from 0° to 1° C, when converted into mechanical work, gives an

amount equal to 423-55 kilogramme-metres.
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/.
1500

.25° 100° 75° 5°° 25°

w
0 1 1 300 23200 35900 49300 63700*

M

18. We proceed now to the consideration of the steam-engine

itself.

In the adjoining fig. 8, Fig. 8.

which is intended merely

to facilitate our oversight

of the whole series of

operations involved in the

working of a common

steam-engine, A repre

sents the boiler whose

contents are maintained

by the source of heat at a

constant temperature Tr

A part of the steam passes

from the boiler to the cy

linder B and raises the

piston a certain height. The cylinder and boiler are next dis

connected, and the vapour contained in the former raises the

piston still higher by its own expansion. After this the cylinder

is put in communication with the space C, which shall represent

the condenser. We shall suppose the latter to be kept cold by

external cooling, and not by injected water, which, as before re

marked, causes no essential difference in the results, and yet sim

plifies our problem. The constant temperature of the condenser

shall be T0. During the connexion of the cylinder with the con

denser the piston retraces the whole of its former path, and thus

all the vapour which did not immediately pass by itself into the

condenser is driven into it, and there becomes condensed. In

order to complete the cycle of operations, it is now necessary to

convey the liquid produced by condensation back again into the

boiler. This is done by means of the small pump D, whose ac

tion is so regulated, that at every ascent ofthe piston just as much

* [With respect to certain formulae of approximation, which have heen em

ployed by Zeuner in order more easily to calculate the results given above

and in the Second Memoir, see the Appendix to the present memoir.]
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liquid is withdrawn from the condenser as entered it by the above

condensation ; and during the descent of the piston this same

quantity of liquid is forced back into the boiler. As soon as this

liquid is again raised in the boiler to the temperature T„ every

thing is once more in its initial condition, and the same series of

operations can commence again. Here, therefore, we have a

complete cyclical process.

In ordinary steam-engines the steam enters the cylinder not

only at one end, but alternately at both. But the only differ

ence produced thereby is, that during an ascent and descent of

the piston, two circular processes take place instead of one ; and

in this case even the determination of the work for one of the

processes is sufficient, because from it the total amount of work

done during any time can be deduced*.

19. In making this determination, we shall, as is indeed usual

in such cases, consider the cylinder as impenetrable to heat, so

that we may neglect the interchange of heat which takes place

during a stroke between the walls of the cylinder and the vapour.

The mass in the cylinder can only consist of vapour at a

maximum density, together with some admixed liquid. For it is

evident from the foregoing that, during its expansion in the

cylinder, after the latter is cut off from the boiler, the vapour

cannot pass into the over-heated condition, but must, on the

contrary, be partially condensed, provided no heat reaches it

from an external source. In other operations hereafter to be

mentioned, where this over-heated state might certainly occur,

it will be prevented by the small amount of liquid which the

vapour always carries with it into the cylinder, and with which

it remains in contact.

The quantity of liquid thus mixed with the vapour is incon

siderable ; and as it is for the most part distributed throughout

the vapour in small drops, so that it can readily participate in

any changes of temperature which the vapour may suffer during

expansion, we shall incur no great inaccuracy if, in calculation,

we consider the temperature at any moment as the same through

out the whole of the mass in the cylinder.

Further, in order to avoid complicating our formulas too much,

* The space on one side of the piston is a little diminished by the piston-

rod, but an allowance can easily be made for this small difference.
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we will for the present determine the total amount of work done

by the vapour pressure, without taking into consideration how

much of this work is useful, and how much is again consumed

by the machine itself in overcoming friction, and in working

any pumps, which, besides the one in the figure, may be neces

sary to the efficiency of the machine. This part of the work may

be afterwards determined and deducted, as will subsequently be

shown.

With respect to the friction of the piston in the cylinder, how

ever, we may remark, the work consumed in overcoming it can

not be considered as totally lost. For heat is generated by this

friction, and consequently the interior of the cylinder kept warmer

than it would otherwise be, and thus the force of the vapour

increased.

Lastly, inasmuch as it is advisable first to study the actions

of the most perfect machines before examining the influence of

the several imperfections which practically are always unavoid

able, we will add to these preliminary considerations two more

suppositions, which shall afterwards be again relinquished. First,

the canal from the boiler to the cylinder, and that from the

cylinder to the condenser, or to the atmosphere, shall be so wide,

or the speed of the machine shall be so slow, that the pressure

in the part of the cylinder in connexion with the boiler shall be

equal to that in the boiler itself, and similarly the pressure on the

other side of the piston shall be equal to the pressure in the

condenser or to the atmospheric pressure ; and secondly, no

vicious space shall be present.

20. Under these circumstances, the quantities of work done

during a cycHcal process can be written down, without further

calculation, by help of the results above attained ; and for their

sum they give a simple expression.

Let M be the whole mass which passes from the boiler into

the cylinder during the ascent of the piston, and of it let be

the vaporous, and M—ml the liquid part. The space occupied

by this mass is

to1m1 + M<r ;

where w, is the value of u corresponding to Tj. The piston is

raised therefore until this space is left free under it ; and as this

takes place under the action of the pressure pu corresponding to
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Ti, the work performed during this first operation is

W,=mlulpl + Mcrpl (18)

The expansion which now follows is continued until the tem

perature of the mass enclosed in the cylinder sinks from Tl to a

second given value T9. The work thus done, which shall be W2,

is given immediately by equation (IX), if Ta be taken therein as

the final temperature, and for the other magnitudes involved in

the equation the corresponding values be substituted, thus

Wi=mtu2pi—mlulp1 +^ [mlrl—mtri + Mc(Tl—T^~\. . (19)

-A.

By the descent of the piston, which now commences, the mass,

which at the close of the expansion occupied the volume

is driven from the cylinder into the condenser, and has to over

come the constant pressurep0. The negative work hereby done

by this pressure is

W3= —wijM2^o— M<rp0 (20)

Whilst the piston of the small pump now ascends, so as to

leave the free space Mo- under it, the pressure p0 in the con

denser acts favourably and does the work,

W4=May0 (21)

Lastly, during the descent of this piston, the pressure pl in

the boiler must be overcome, and therefore it does the negative

work,

Ws= -M<rPl (22)

By adding these five magnitudes together we obtain the fol

lowing expression for the work done by the vapour pressure, or,

as we may say, by heat, during a cyclical process :

W'=-i [m^-m^+Mc^-T,)] +m^(p2-p0). (X)

With respect to the magnitude mi) which must be eliminated

from this equation, it will be observed that, if for m2 we substi

tute the value

as given in (VI), it only occurs in the combination wy-2, and for
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this product wc have from equation (VII) the expression

T T
»i*r9 = OT,r, jjS - McT, log ^.

By employing this expression, therefore, we obtain an equation

the right-hand side of which contains only known quantities ;

for the masses »», and M, and the temperatures T„ T2, and T„

are assumed to be immediately given, and the magnitudes r, p,

and ^p- are supposed to be known functions of the temperature.

21. If in the equation (X) we set T2= T„ we find the amount

of work, for the case that the machine works without expansion,

to be

W^m^(p-pJ (23)

If, on the contrary, we suppose the expansion to be continued

until the vapour sinks from the temperature of the boiler to that of

the condenser,—which case cannot of course be strictly realized,

but rather forms a limit which it is desirable to approach as much

as possible,—we have only to set T9=T0, when we obtain

W-Ifor.-iVo+McC^-To)]. . . . (24)

Eliminating m0r0 by means of the equation before given, in

which we must also set T2 = T0, we have

W'=l[w.r. ^^e+MC(T1-T0+T0log5e)]*. (XI)

* The above equations, representing the amount of work under the two

simplifying conditions introduced at the close ofArt. 19, were developed by me

some time ago, and publicly communicated in my lectures at the Berlin Uni

versity as early as the summer of 1854. Afterwards, on the appearance, in

1855, of the Philosophical Transactions for the year 1854, I found therein a

memoir of Rankine-s, " On the Geometrical Representation of the Expansive

Action of Heat, and the Theory of Thermo-dynamic Engines," and was sur

prised to learn that at about the same date Rankine, quite independently, and

in a different manner, -arrived at equations which almost entirely agreed with

mine, not only in their essential contents, but even in their forms ; Rankine,

however, did not take the circumstance into consideration, that, when enter

ing the cylinder, a quantity of liquid is mixed with the vapour. By the earlier

publication of this memoir I lost, of course, all claim to priority with respect to

this part of my investigations ; nevertheless the agreement was so far satisfac

tory as to furnish me with a guarantee for the accuracy of the method I had

employed.

M
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22. If to the foregoing equation we give the form

W'= m.r.- -^TT+ Mc(T -To) -l(1+T^folo45' * (25)

then the two products Mc (T, —T0) and which appear therein

together represent the quantity of heat furnished by the source

of heat during a cyclical process. For the first is the quantity

of heat which is necessary to raise the temperature of the liquid

mass M, coming from the condenser, from T0 to T\ ; and the

latter is the quantity consumed in vaporizing the part m1 at the

temperature T,. As m1 is but little smaller than M, the last

quantity of heat is far greater than the first.

In order more conveniently to compare the two factors with

which these two quantities ofheat are multiplied in equation (25) ,

we will alter the form of the one which multiplies Mc(T,—T0).

If, for brevity, we make

then

and

so that we have

T —T

*=%A (26)

T0 _1~*

T-T0

T, 1 '

z

z(z Z* Z3 , o \

~I72+2T3+37i+&C

Hence the equation (25) or (XI) becomes

W^^.-J+Mc^-T^.^+^+ ^+fec....). (27)

It is easy to see that the value of the infinite series, which

distinguishes the factor of the quantity of heat Mc(T1— T0) from

that of the quantity of heat mlrv varies from | to 1, as z increases

from 0 to 1.

23. In the case last considered, where the vapour by expan

sion cools down to the temperature of the condenser, we can
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easily obtain the expression for the work done in another man

ner, without considering the several operations which constitute

the cyclical process.

For in this case every part of the cyclical process is reversible.

We can imagine that the vaporization takes place in the con

denser at the temperature T0, and that the mass M, of which m0

is vaporous and M—m0 liquid, enters the cylinder and raises the

piston ; further, that by the descent of the piston the vapour is

first compressed until its temperature is raised to T„ and then

that it is forced into the boiler ; and lastly, that by means of the

small pump the mass M is again conveyed in the liquid form

from the boiler to the condenser, and allowed to cool there to

the original temperature T0. The matter here passes through

the same conditions as before, but in an opposite order. All

communications and abstractions of heat take place in opposite

order, but in the same quantity and at the same temperature of

the mass ; all quantities of work have opposite signs, but the

same numerical value.

Hence it follows that in this case no uncompensated trans

formation is involved in the cyclical process, and we must con

sequently set N=0 in equation (2), by which we obtain the fol

lowing equation,—already given in (3), with the exception that

W is here put in the place of W,—

In our present case, Ql denotes the quantity of heat imparted to

the mass M in the boiler, that is,

0I=»Ir1+MefP1-Tfl).

In determining the integral I the two quantities ofheat

Jo ^

Mc(T1—T0) and mlrl contained in Ql must be separately con

sidered. In order to execute the integration extending over the

first quantity, we have but to give to the element of heat dQ the

form McrfT, and this part of the integral is at once expressed by

During the communication of the latter quantity of heat, the

"m 2
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temperature is constant and equal to T\, and consequently the

part of the integral referring to this quantity is simply

^T7

By substituting these values, the foregoing expression for W

becomes

and this is the same expression as that contained in equation (XI),

which was before obtained by the successive determination of the

several quantities of work done during the cyclical process.

24. From this it follows that, if the temperatures at which the

matter manifesting the action of heat receives heat from the source

of heat, or imparts heat to some external object, are considered as

previously given, then the steam-engine, under the conditions

made in deducing the equation (XI) , is a perfect machine ; that

is to say, for a certain amount of imparted heat it furnishes as

much work as, according to the mechanical theory of heat, is

possible at those temperatures.

It is otherwise, however, when those temperatures, instead of

being given, are also considered as a variable element, to be taken

into consideration in judging the machine.

One uncompensated transformation not included in N, which,

with respect to the economy of heat, causes a great loss,

arises from the fact that the liquid, during the processes ofheating

and evaporation, has far lower temperatures than the fire, and

consequently the heat which is imparted to it must pass from a

higher to a lower temperature. The amount of work which can

be produced by the steam-engine from the quantity of heat

mjr1 + Mc(Tl—T0) = Q,v is, as may be seen from equation (27),

somewhat smaller than

If, on the contrary, we could impart the same quantity of heat

Ql to a changeable body at the temperature of the fire, which

may be T', whilst the temperature during the abstraction of heat

^[m^ + Mc(T-T0) -T0(^ +Mc log ^)]

^*+Mc(T -T0+ T0log?9)] ;

A - T,

9i Ti-To.
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remained T0, as before, then by equation (4) the greatest possible

amount of work to be gained in such a case would be

Q, T'-T0.

A - T'

In order to compare the values of these expressions in a few

examples, let the temperature t0 of the condenser be fixed at

50° C, and for the boiler let us assume the temperatures 110°,

150°, and 180° C, of which the two first correspond approxi

mately to the low- and the ordinary high-pressure machines

respectively, and the last may be considered as the limit of the

temperatures hitherto employed in steam-engines. In these

cases the fraction dependent upon the temperatures has the fol

lowing values

t, no° 15o°
1800

T,-T„
0-157 0-236 0-287

whereas the corresponding value for the temperature of the fire

f', assuming the latter to be only 1000° C, is 0-746.

25. We may here easily discern, what has already been ex

pressed by S. Carnot and several other authors, that in order to

render machines driven by heat more efficient, attention must be

particularly directed towards the enlargement of the interval of

temperature between T1 and T0.

For instance, machines driven by heated air will only attain a

decided advantage over steam-engines when a method is found

of allowing them to work at a far higher temperature than steam-

engines, in consequence of the danger of explosions, can bear.

The same advantage, however, could be attained with over-heated

vapour ; for as soon as the vapour is separated from the liquid,

it is just as safe to heat it further as to heat a permanent gas.

Machines employing vapour in this condition may possess many

of the advantages of the steam-engine besides those of air-ma

chines, so that a practical improvement may sooner be expected

from these than from air-machines.

In the machines above mentioned, where, besides water, a

second more vaporizable substance was employed, the interval

T,—T0 is increased by lowering T0. It has already been sug
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gested that this interval might be increased in a similar manner

on the upper side, by the addition of a third liquid less vapor-

izable than water. In such a case the fire would be immediately

applied to the evaporation of the least vaporizable of the three

substances, the condensation of this to the evaporation of the

second, and the condensation of the second to the evaporation of

the third. Theoretically, there is no doubt that such a combi

nation would be advantageous; the practical difficulties, how

ever, which would have to be overcome in realizing such a scheme

cannot of course be predicted.

26. Besides the above-mentioned defect, arising out of the

very nature of our ordinary steam-engines, these machines suffer

from many other imperfections, which may be ascribed more

immediately to defective construction.

One of these has already been considered in the foregoing

development, and allowed for in equation (X), that is to say, the

expansion cannot be continued nearly far enough to allow the

vapour in the cylinder to reach the temperature of the condenser.

If, for example, we assume the temperature of the boiler to be

150°, and that of the condenser to be 50°, then the Table in

Art. 16 shows that, for the above purpose, the expansion must be

prolonged to twenty-six times the original volume ; whereas in

practice, owing to many inconveniences, attending great expan

sions, three or four, and at most ten times the original volume

is attained.

Two other imperfections, however, are expressly excluded in

the foregoing : these are, first, that the pressure of the vapour in

one part of the cylinder is smaller than in the boiler, and in the

other part greater than in the condenser ; and secondly, the pre

sence of vicious space.

We must consequently extend our former considerations so as

to include these imperfections.

27. The influence exercised by the difference of pressure in

the boiler and cylinder upon the work performed, has hitherto

been most completely treated of by Pambour in his work on the

Theorie des Machines a Vapeur. Before entering upon the sub

ject myself, therefore, I may be allowed to state the most essen

tial parts of his treatment, altering only the notation, and neg

lecting the magnitudes which have reference to friction. By
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this means it will be easier, on the one hand, to judge how far

this treatment is no longer in accordance with our more recent

knowledge of heat, and, on the other, to add to it the new me

thod of treatment which, in my opinion, must be substituted for

the former one.

28. The two laws which, as was before mentioned, were for

merly very generally applied to steam, form the basis of Pam-

bour's theory. The first of these is Watt's law, according to

which the sum of the latent and sensible heat is constant.

From this law it was concluded that when a quantity of steam

at its maximum density is enclosed within a surface impenetrable

to heat, and the volume of the enclosing space is either increased

or diminished, the steam will neither become over-heated nor

partially condensed, but will remain precisely at its maximum

density ; and it was further assumed that this would take place

quite independently of the manner in which the change of vo

lume occurred, whether thereby the steam had, or had not, to

overcome a pressure corresponding to its own expansive force.

Pambour supposed that the steam in the cylinder of a steam-

engine deported itself thus j and at the same time he did not

assume that the particles of water, which in this case are mixed

with the steam, could exert any appreciable influence.

Further, in order to establish a more accurate relation between

the volume and the temperature, or the volume and the pressure

of steam at a maximum density, Pambour applied, secondly,

Mariotte's and Gay-Lussac's laws. If, with Gay-Lussac, we

assume the volume of a kilogramme of steam at 100° C, and

at its maximum density, to be P696 cubic metres, under a pres

sure of one atmosphere, which latter amounts to 10,333 kilo

grammes on every square metre, then from the above law we

obtain the equation

.-M06.1gggg. 2™+t , (28)

p 273 + 100' 1 '

where, with reference to the same units, v and p represent the

volume and the pressure corresponding to any other tempera

ture t. Herein it is only necessary to substitute in place of p

the values given in the tension series in order to have, according

to the above assumption, the proper volume for each temperature.
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29. In order, however, to be able conveniently to calculate

the value of the integral

s>pdv,
which plays an important part in the formula for the work done

by a steam-engine, it was necessary to find the simplest possible

formula between v and p alone.

If, by means of the ordinary empirical formulae for p, the

temperature t were eliminated from the above equation, the

results would prove to be too complicated; hence Pambour

preferred forming a special empirical formula for this purpose,

to which, according to the proposal of Navier, he gave the fol

lowing general form :—

v=~, (29)

o+p

wherein B and b are constants. He then sought to determine

these constants, so that the volumes calculated from this for

mula might agree as nearly as possible with those calculated

from the foregoing one. As this could not be done with suffi

cient accuracy, however, for all the pressures which occur in

steam-engines, he established two different formulae for machines

with and without condenser.

The first of these was

20000 ,on v

-Hoo+7 ....... (29«)

which agrees best with the above formula (28) between § and 3£

atmospheres, but is also applicable for a somewhat wider in

terval, from about ^ to 5 atmospheres.

The second, for machines without condensers, is

*= 30204^ (29b)

which is most correct between 2 and 5 atmospheres, though the

range of its applicability extends from about lg to 10 atmo

spheres.

30. The magnitudes which depend upon the dimensions of

the steam-engine, and enter into the determination of the work,

shall be here, somewhat differently from Pambour's method,
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represented in the following manner. Let v- be the whole space

left free to the vapour during a stroke in the piston, the vicious

space being also included. Let the vicious space form a frac

tional part e of the whole space, so that this space itself will

be represented by ev', and that described by the surface of the

piston by (1— e) v'. Further, let the part of the whole space

left free to the vapour up to the moment of disconnecting the

cylinder and boiler (also inclusive of vicious space) be repre

sented by ev'. Consequently the space described by the surface

of the piston during the entrance of the vapour will be expressed

by (e— e)v', and that described by it during expansion will be

(1-e) v'.

In order to determine, in the next place, the amount of work

done during the entrance of the vapour, the pressure acting in

the cylinder during this time must be known. This is at any

rate smaller than the pressure in the boiler, otherwise no influx

of vapour could occur; but the magnitude of the difference

cannot in general be stated ; for it depends not only upon the

construction of the engine, but also upon the engine-driver,

how far he has opened the valve in the tube leading from the

boiler, and with what velocity he drives the machine. These

things being changed, the above difference may vary between

wide limits. Further, the pressure in the cylinder need not be

constant during the whole time of influx, because the velocity

of the piston may vary, as well as the magnitude of the influx

orifice left free by the valve or the slide.

With respect to the last circumstance, Pambour assumes that

the mean pressure to be brought into calculation in determining

the work may, with sufficient accuracy, be set equal to that

which exists in the cylinder at the end of the influx, and at the

moment of disconnexion from the boiler. Although I do not

think it advisable to introduce such an assumption—which is

only adopted for numerical calculation in the absence of more

certain data—at once into the general formulae, yet here, whilst

explaining his theory, I must adopt his method.

Pambour determines the pressure existing in the cylinder at

the moment of disconnexion by means of the relation, esta

blished by him, between volume and pressure ; assuming at the

same time that the quantity of steam which passes from the
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boiler into the cylinder in a unit of time, and therefore the

quantity which passes during a stroke of the piston, is known

from special observations. As before, we will represent by M

the whole mass which enters the cylinder during a stroke, and

by m the vaporous part of the same. As this mass, of which

Pambour only considers the vaporous part, fills the space erf at

the moment of disconnexion, we have, according to (29), the

equation

m . B
ed-.

b+p2'

where p2 represents the pressure at the same moment. From

this equation we deduce

Multiplying this magnitude by (e— e)vf, the space described

by the surface of the piston up to the same moment, we obtain

the following expression for the first part of the work :—

W1= ot . B . e^Zl-v'(e-e)b. . . . (31)

The law according to which the pressure changes during the

expansion which now follows, is also given by equation (29).

If at any moment v represents the variable volume, and p the

corresponding pressure, then

m . B ,
p= —o.

v

This expression must be substituted in the integral

[pdv,

and the integration effected between the limits v= ev' and v= v' ;

whence, as the second part of the work, we obtain

W2=mB.logi-«'(l-e)6. . . . (32)

In order to determine the negative work done by the reacting

pressure during the descent of the piston, this reaction must

itself be known. Without at present inquiring into the relation

which exists between the reaction and the pressure in the con
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denser, we will represent the mean reaction by p0, so that the

work done by it will be expressed by

W3=-t/(l-e)p0 (33)

There yet remains the work necessary to convey the quantity

M of liquid back again into the boiler. Pambour has not sepa

rately considered this work, but has included it in the friction

of the machine. As I have included it in my formulae, however,

in order to have the cycle of operations complete, I will also

here add it for the sake of easier comparison. As shown by

equations (21) and (22), established in a former example, this

work will on the* whole be expressed by

W4=-M<7(^-p0), (34)

where pl and p0 respectively represent the pressures in the boiler

and condenser. This expression, it is true, is not quite correct

for our present case, because by p0 we do not understand the

pressure in the condenser itself, but in the parts of the cylinder

in communication with the condenser. Nevertheless we will

retain the expression in its present form, for owing to the small-

ness ot <7, the whole expression has a value scarcely worth con

sideration ; and the inaccuracy, being again small in comparison

to the value of the expression itself, may with still greater im

punity be disregarded.

By adding these four separate amounts of work together, we

find the whole work done during the cyclical process to be

W=mB(^+logl)-v'(l-e)(b+p0)-Ma{pl-p0). . (35)

31. If, lastly, we wish to refer the work to the unit of weight

of vapour instead of to a single stroke, during which the quan

tity m of vapour acts, we have only to divide the foregoing value

M
by m. We will put I in place of the fraction — , which expresses

the relation which the whole mass entering the cylinder bears to

the vaporous part of the same, and whose value is consequently

a little greater than unity ; V in place of the fraction —, or the

-whole space offered to the unit of weight of vapour in the cylin-

W
der : and W in place of the fraction —, or the work correspond
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ing to the unit of weight of vapour. We thus obtain

W=B(^+\oS^-Y(l-e)(b+pQ)-l*(Pl-p0). . (XII)

Only one term of this equation depends upon V, and it con

tains V as factor. As this term is negative, it follows that the

work which we can obtain from the unit of weight of vapour is,

all other circumstances being the same, greatest when the vo

lume offered to the vapour in the cylinder is smallest. The

least value of this volume, which we may approach more and

more although we may never quite reach, is that which is found

by assuming that the machine goes so slowly, or that the influx

canal is so wide, that the same pressure pt exists in the cylinder

as in the boiler. This case therefore gives the maximum of

work. If with equal influx of vapour the velocity of motion is

greater, or with equal velocity of motion the influx of vapour is

smaller, we obtain from the same quantity of vapour a less

quantity of work.

32. Before we now proceed to consider connectedly the same

series of processes according to the mechanical theory of heat,

it will be best to submit one of the same, which requires especial

investigation, to a separate treatment in order at once to esta

blish the results which have reference thereto. I refer to the

entrance of vapour into the vicious space and into the cylinder,

when it has there to overcome a smaller pressure than that with

which it was forced out of the boiler. In this investigation I

can proceed according to the same principles as those which

I have employed in a former memoir* when treating similar -

cases.

* " Ueber das Verhalten des Dampfea bei der Ausdehnung unter verschie-

deneri Umstanden " [Second Memoir of this Collection]. With reference to

this memoir, and to a notice connected therewith, which appeared in the

Philosophical Magazine, Helmholtz, in his report published in the Fort-

schritte der Physik, by the Physical Society of Berlin (years 1850 and 1851,

p. 582), is of opinion that the principle is in many points incorrect. I have

not, however, been able to understand the reasons he adduces in support of

this opinion. Views are ascribed to me which I never held, and, on the

other hand, theorems enunciated which I never disputed, and which, indeed,

partially constitute the basis upon which my own researches in the mecha

nical theory of heat are founded ; at the same time so great a generality is

maintained throughout, that I found it impossible to recognize how far those
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The vapour from the boiler first enters the vicious space, here

compresses the vapour of small density which still remains from

the former stroke, fills up the space thus becoming free, and

then presses against the piston, which, in consequence of its

assumed comparatively small charge, recedes so quickly that the

vapour cannot follow it quickly enough to reach the same den

sity in the cylinder as it had in the boiler.

If saturated vapour alone issued from the boiler, it must under

such circumstances become over-heated in the cylinder, for the

vis viva of the entering mass is here converted into heat ; as the

vapour, however, carries with it some finely divided drops of

water, a part of the latter will be evaporated by the surplus heat,

and thus the remaining vapour will be maintained in its satu

rated condition.

We must now consider the following problem :—Given, first,

the initial condition of the whole mass under consideration, viz.

that which was previously in the vicious space, as well as that

more recently arrived from the boiler ; secondly, the magnitude

of the work done by the pressure acting upon the piston during

the entrance of the vapour ; and thirdly, the pressure in the

cylinder at the moment of cutting off the same from the boiler :

to determine how much of the mass in the cylinder at this moment

is vaporous.

33. Let fi be the whole mass in the vicious space before the

entrance of the fresh vapour, and, for the sake of generality, let

us suppose that the part fi0 of it is vaporous and the rest liquid.

For the present let p0 and T0 represent respectively the pressure

of this vapour and its corresponding absolute temperature, with

out implying, however, that these are exactly the same values as

those which refer to the condenser. As before, pl and Tt shall

be the pressure and temperature in the boiler, M the mass

issuing from the boiler into the cylinder, and ml the vaporous

views ought to follow from my words, and these theorems contradict my con

clusions. I do not therefore feel myself called upon to defend my former

researches against this censure. As the following development, however,

rests precisely upon the same views which before served me, Helmholtz will

probably again find the same inaccuracy of principle. In such a case I shall

look forward to his objections, and request him merely to enter somewhat

more specially into the subject.
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part of the latter. As we have already remarked, the pressure

upon the piston during the entrance of the vapour need not be

constant. The mean pressure may be defined as that by

which the space described by the surface of the piston, during

the entrance of the vapour, must be multiphed in order to obtain

the same work as is actually done with the variable pressure.

Further, let p2 and T2 be the pressure and corresponding tem

perature in the cylinder at the moment of cutting it off from

the boiler ; and lastly, m2 the magnitude to be determined, that

is to say, the vaporous part of the whole mass M + fj. now in the

cylinder.

To determine this magnitude, let us conceive the mass M+ //,

reduced in any manner to its original condition. For instance,

thus : let the vaporous part mi be condensed in the cylinder by

depressing the piston, whereby we shall suppose that the latter

can also enter the vicious space. At the same time let heat be

constantly withdrawn from the mass in such a manner that the

temperature T2 may remain constant. Then of the whole liquid

mass, let the part M be forced back into the boiler, where it may

assume its original temperature Tr By this means the condi

tion of the mass within the boiler is the same as it originally

was, for of course it is of no importance whether precisely the

same mass mv which was before vaporous, is again so now, or

whether another equally great mass has taken its place*. With

* [In fact at the end of the operation there is in the boiler just as much

liquid water and just as much steam, both at the temperature T„ as there

was at the beginning ; so that the original condition, so far as is necessary

for our consideration, is reestablished ; for we are concerned solely with

the magnitudes of the vaporous and of the liquid portions of the whole mass,

and have not to inquire which of the several molecules there present

belong to the vaporous, and which to the liquid portion. If it were re

quired that exactly the same molecules should constitute the vaporous por

tion at the end, as at the beginning of the operation, it would merely be

necessary to assume, first, that the water forced back into the boiler is not

only equal in quantity to that which originally quitted it, but that this water

consists of the same molecules ; and secondly, that of this water, after it has

attained the temperature T„ the formerly vaporous portion m, again va

porizes, an exactly equal quantity of that already present being precipitated.

For this purpose, of course, no heat need be imparted to, or withdrawn from

the total mass in the boiler ; since the heat consumed in evaporation, and

that generated by precipitation, would compensate each other.—1864.]
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respect to the remaining part fi, let it be at first cooled in the

liquid state from T2 to T0, and at this temperature let the part

fiQ become vaporous, to do which the piston must recede so that

this vapour can again occupy its original volume.

34. In this manner the mass M +fi has gone through a com

plete cyclical process, to which we may apply the theorem, that

the sum of all the quantities of heat received by the mass during

a cyclical process must be equivalent to the whole amount of

external work thereby performed.

The following quantities of heat have been successively con

sumed :—

(1) To raise the temperature of the mass M in the boiler from

T2 to T1, and at the latter temperature to evaporate the part mv

ffl^ + McfT.-T9).

(2) To condense the part m2 at the temperature T8,

-»w

(3) To cool the part fi from T2 to T0>

-Mc(T2-T0).

(4) To evaporate the part n0 at the temperature T0,

Hence the total quantity of heat is

Q=»«17-1-m/3-l-Mc(T1-Tii) + Wo-/iC(T2-T0). . (36)

The quantities of work may be found as follows :—

(1) In order to find the space described by the surface of the

piston during the entrance of the vapour, we know that at the

end of that time the whole mass M+ fi occupies the space

OT2«2+ (M+/i)cT.

From this we must deduct the vicious space. As at the com

mencement, this was filled by the mass /*, of which fi0 was vapo

rous, at the temperature T„, its volume is

p0u0 + fio:

Deducting this from the foregoing magnitude, and multiplying

the difference by the mean pressure pfy we have for the first

amount of work,

{mj*i + Ma-li0v0)p'l.
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(2) The work expended in condensing the mass m2 is

—m2u2p2.

(3) The work expended in forcing back the mass M into the

boiler is

—Mapv

(4) The work expended in evaporating the part ft,0 is

By adding these four magnitudes, we obtain for the whole work

W the following expression :—

Vr=maua(p'1-pJ-Ma(pl-p'l)-fi0u0(pl'-pQ). . (37)

If in the equation (I), which was

Q=A . W,

we substitute the values of Q and W thus found, and then bring

the terms involving m2 to one side of the equation, we have

m2[r2 + Au2(p\-p2)-\ =miri + Mc(T-T2) +/v0-/iC(T2-T0)

+ Afi0u0(p'1-p0)+AMa(pl-p\) (XIII)

By means of this equation the magnitude m2 is expressed in

terms of other magnitudes, all of which are supposed to be

given.

35. If the mean pressure p\ were considerably greater than

the final pressure pv it might happen that the value of m2 would

be less than ml+fi0, which would denote that a part of the vapour

originally present had become condensed. This would be the

case, for instance, if we were to suppose that, during the time

the vapour was entering the cylinder, the pressure there was

nearly equal to that in the boiler, and that by the expansion of

this vapour already in the cylinder, the pressure ultimately sunk

to the smaller value p2. On the contrary, ifp\ were but a little

greater, or indeed smaller than p2, then for m2 we should find a

value greater than mt+fi0. The latter ought to be considered

as the rule in steam-engines, and amongst others it holds for the

special case ofp\=p2 assumed by Pambour.

We have thus arrived at results which differ essentially from

Pambour's views. Whilst he assumes that the two different

kinds of expansion which successively take place in the steam-

engine are governed by one and the same law, according to which
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the original quantityofvapour is neither increased nordiminished,

but always remains exactly at its maximum density,we have found

two different equations which point to different deportments. By

the equation (XIII), fresh vapour must be produced by the first

expansion during the entrance of the steam ; and according to

the equation (VII), a part of the then existing vapour must

become condensed when the further expansion takes place, after

disconnecting the cylinder and boiler, during which time the

work done by the vapour corresponds to its full expansive

force.

As these two opposite actions, consisting of an increase and a

diminution of vapour, which must also exercise opposite influ

ences on the work performed by the machine, partially cancel

one another,the ultimate result may, under certain circumstances,

be approximately the same as that to which Pambour's simpler

assumption leads. We must not, however, on this account neg

lect to consider this difference when once established, especially

if we wish to ascertain in what manner a change in the construc

tion or driving of the steam-engine will affect the magnitude of

its work.

36. According to what was said in Art. 8, we can easily deter

mine the uncompensated transformation which occurs in the ex

pansion by referring the integral contained in the equation

to the several quantities of heat expressed in Art. 34.

The quantities of heat mfv—mjr2, and fi0r0 are imparted at

the constant temperatures TL, T2, and T0, so that these parts of

the integral are, respectively,

X ' T7' and T0 •

The parts of the integral arising from the quantities of heat

Mc(T1—T2) and—/*c(T2— T0), are found, by the method adopted

in Art. 23, to be

T T
Mc log ^ and -fie log ^.

By putting the sum of these magnitudes in place of the above

N
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integral, we obtain for the uncompensated transformation the

value

N=-^+^-Mclog^-^+/aclog|. . (38)

37. We can now return to the complete cyclical process which

occurs in an acting steam-engine, and consider the several parts

thereof in the same manner as before.

The mass M, of which the part ml is vaporous and the rest

liquid, issues from the boiler, where the pressure is supposed to

he into the cylinder. As before, the mean pressure acting

in the cylinder during this time shall be^'1, and the final pres

sure p2.

The vapour now expands until its pressure sinks from p2 to a

given value p3, and consequently its temperature from T2 to T3.

After this the cylinder is put in communication with the con

denser, where the pressure is p0, and the piston returns through

the whole of the space it has just described. When the motion

is somewhat quick, the reaction which it now experiences will

be somewhat greater than p0 ; to distinguish it from the latter

value, we will represent the mean reaction by p'0.

Similarly, the pressure of the vapour which remains in the

vicious space after the piston's motion is completed will not ne

cessarily be equal either- to p0 or to p'0, and must consequently

be represented by another symbol p"0. It may be greater or less

than p-0, according as the communication with the condenser is

cut off somewhat before, or somewhat after the conclusion of the

piston's motion ; for in the first case the vapour would be a little

further compressed, whereas in the latter case it would have

time to expand a little more by partially passing into the con

denser. . .

Lastly, the mass M is conveyed back from the condenser into

the boiler, when, as before, the pressure p0 acts favourably, and

the pressure p1 has to be overcome.

38. The expressions for the amounts of work done in these

processes will be quite similar to those in the simpler case before

considered, except that a few simple changes in the indices of

the letters will have to be made, and the magnitudes which refer

to the vicious space will have to be added. In this manner we

obtain the following equations.
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During the time vapour is passing into the cylinder, we have,

according to Art. 34,

W^K^+Mo—/y«"o)/p - . - - (39)

where u"0 is simply substituted for u0.

By putting M +fi in place of M, we have, from equation (IX),

during the expansion from the pressure p2 to the pressure ft,

-W2=m3u3p3-m2u2p2 + ^[m2r2-msr3+ (M+/t)c(T2-T3)]. (40)

During the return of the piston, when its surface is traversing

the whole space occupied by the mass M+ /a at the pressure ft,

diminished by the vicious space fi0u"0 + per, we have

W3=-(m3w3+Mo—fi0u"0)p'0. - . - (41)

Lastly, during the conveyance of the mass M back into the

boiler, we have

W4=-M<r(ft-ft) (42)

Consequently the whole work done is

W=^[miri-m3rs + (M+/*)c(Ta-T8)] +m^(p\ -ft) 1

+ m3u3 (p8 -p'0) -Mff^-y, +p'0 -p0) -fi0u"0 (p'l -p'0) J

. The masses m2 and m3 which are here involved, are given by

the equations (XIII) and (VII), provided in the former we put

p"0 in the place ofp0, and change the magnitudes T0, r0, and u0 in a

similar manner, and in the latter we substitute M. + /J. for M.

Nevertheless, although it is possible to eliminate m2 and m3 by

means of these equations, I will here merely replace m2 by its

value ; it being more convenient in calculation to consider the

equation which thus results in connexion with the equations

(XIII) and (VII) before obtained. The following, therefore,

is the most general form of the system of equations which serve

to determine the work done by the steam-engine :—

W'=I[OTlr1-m3r3+Mc(T1-T3)+Mor»0-^(T3-T''0)]

+ m3u3(p3-p'0) +fi0u"0(p'0-p"0) -Ma(p'0-p0),

m% [r2 + Aw2[p\ -ft) ] = mxrx + Me (Tx -T2) + /v"0

-/*c(T2-T''0) + Kp,y0(p\ -p\) + AMv(Pl -/,) ,

^=^+(M+^)clog|.

f(XIV)

N 2
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39. Before endeavouring to render these equations more con

venient for application, it may not be without interest to show

how, for an imperfect steam-engine, the same expressions may

be arrived at by a method before alluded to, and opposite to the

one just applied. In order to avoid prolixity in this digression,

however, we will consider two only of the imperfections provided

for in the above equations, viz. the presence of vicious space, and

the existence of a smaller pressure in the cylinder than in the

boiler during the time that the vapour is passing into the former.

On the other hand, we shall assume the expansion to be com

plete, therefore T3=T0, and the magnitudes Tq, T'0, and T"0 to

be equal.

In this determination we shall have to employ the equation

(2), to which we will give the following form :—

The first term on the right-hand side of this equation denotes

the work which could be obtained from the employed quantity

ofheatQ„whichinour case is represented byw^+Mc^—T0),

did not the two imperfections exist. This term has been already

calculated in Art. 23, and found to be

Ifm^ + Mc(T1- To) -T0(^ +Mc log ^)] .

The second term denotes the loss of work caused by those two

imperfections. The magnitude N contained therein has been

calculated in Art. 36, and is represented by the expression in

equation (38).

Substituting these two expressions in the foregoing equation,

we have

W'=£[m^-?S mar9 + MefP,- T0) - (M +^)cT0 log |j+ Mor0 ] . (44)

That this equation actually agrees with the equations (XIV),

may be easily seen by using the third equation in (XIV) in

order to eUminate m% from the first, and then setting T3=T0

=T'0=T%.

In the same manner we might make allowance for the loss of
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work occasioned by incomplete expansion. To do so it would

only be necessary to calculate tbe uncompensated transformation

which occurs during the passage of the vapour from the cylinder

to the condenser, and to include it in N. By this calculation,

which need not here be executed, we obtain precisely the expres

sion for the work which is given in (XIV) .

40. In order next to be able to use the equations (XIV) in

a numerical calculation, it will be necessary first to determine the

magnitudes p\, p!0, and p"0 more precisely.

With respect to the manner in which the pressure in the

cylinder varies during the entrance of the steam, no general law

can be instituted, because the entrance canal is opened and closed

in such a variety of ways in different machines. Hence no defi

nite general value can be found for the relation between the

mean pressure p\, and the final pressure p2, as long as the latter

is strictly interpreted. Nevertheless this will be possible if the

signification ofp2 be slightly changed.

The cylinder and boiler cannot of course be instantaneously

disconnected ; more or less time is always required to move the

necessary valves or slides, and during this interval the vapour in

the cylinder expands a little, because the orifice being diminished,

less steam enters than that which corresponds to the velocity

of the piston. In general, therefore, we may assume that at the

end of this time the pressure is already somewhat smaller than

the mean pressure p\.

But if, in calculation, instead of restricting ourselves to the

end of the time necessary for closing the entrance canal, we allow

ourselves a little freedom in fixing the time of disconnexion, we

shall be able to obtain other values for py We can imagine the

point of time so chosen, that if, previously thereto, the whole

mass M had entered, the pressure at that moment would have

been precisely equal to the mean pressure calculated up to the

same time. By substituting this instantaneous disconnexion

in place of the actual gradual one, we incur but an insignificant

error, as far as the amount of work is concerned. We may

therefore, with this modification, adopt Pambour's assumption,

that p',=p2, reserving, however, for special consideration in

each particular case the proper determination, according to the

existing circumstances, of the moment of disconnexion.
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41 . With respect to the reaction p'0 at the return of the piston,

it is evident that, other circumstances being the same, the dif

ference p'0—p0 will be smaller the smaller p0 is. In machines

with a condenser, therefore, it will be smaller than in machines

without a condenser, where p0 is equal to one atmosphere. In

locomotives, the most important machines without condensers,

there is usually a particular circumstance tending to magnify

this difference. The steam, instead of being allowed to pass off

into the atmosphere through a tube as short and wide as pos

sible, is conducted into the chimney and there made to issue

through a somewhat contracted blowpipe in order to create an

artificial draft.

In this case an exact determination of the difference is essen

tial to the accuracy of the result. In doing so, regard must be

had to the fact, that in one and the same machine the difference

is not constant, but dependent upon the velocity with which it

works; and the law which governs this dependence must be

ascertained. Into these considerations, and into the investiga

tions which have already been made upon the subject, I will not

here enter, however, because they do not concern the present ap

plication of the mechanical theory of heat.

In machines where the vapour from the cylinder is not thus

employed, and particularly in machines with a condenser, p'0 dif

fers so little from p0, and therefore can change so little with the

working velocity, that it is sufficient for most investigations to

assume a mean value for p'0.

Seeing, further, that the magnitude p0 occurs only in one term

of the equations (XIV), which term involves the factor a-, it can

have but a very small influence on the amount of work ; so that

without hesitation we may put, in place ofp0, the most probable

value ofp'0.

As already mentioned, the pressure p"0 in the vicious space

may vary very much, according as the cylinder is cut off from

the condenser before or after the end of the piston's motion. But

here, again, this pressure, and the magnitudes dependent thereon,

occur only in terms of the equations (XIV), which involve

the small factors /t and /i0 ; so that we may dispense with an ac

curate determination of this pressure, and rest satisfied with an

approximate evaluation. In cases where no particular circum
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stances are present to cause p"0 to differ essentially from

p'0, their difference, like the difference between p-0 and p0,

may be neglected, and the most probable value of the mean re

action in the cylinder may be assumed as the common value of

all the magnitudes. This value may be represented simply

hYPo-

By introducing these simplifications, the equations (XIV)

become

W [w.r, -m3r3 + Mc(T, -T3) + /v0-Mc(T3-T0)]

+m3u3{p3—p0),

m2ri=mlr1 + Mc(T, -T2) + ^-^(Tg-T,,) +A^p,-p0) ± (XV)

+ AMa(Pl-p2),

^=^+(M+/.)clog|

42. In these equations it is assumed that the four pressures,

Pv P2, Ps> ail(i Po> or what amounts to the same, the four tem

peratures T1, T2, T3, and T0 are given, as well as the masses

M, mv fj, and fi0, of which the first two must be known from

direct observation, and the last two may be approximately deter

mined from the magnitude of the vicious space. In practice,

however, this condition is only partially fulfilled, so that in

calculation we must have recourse to other data.

Of the four pressures, only two, pl and p0, can be assumed as

known. The first is given immediately by the manometer on

the boiler, and the second may at least be approximately deduced

from the indications of the manometer attached to the condenser.

The two others, p2 and p3, are not given ; but in their place we

know the dimensions of the cylinder, and at what position of the

piston the cylinder is cut off from the boiler. From these we

may deduce the volumes occupied by the steam at the moment

of disconnexion and at the end of the expansion, and these two

volumes will then serve as data in place of the pressures p2

and p3.

We must now bring the equations into such a form that the

calculation may be made by means of these data.

43. Let v-, as in the explanation of Pambour's theory, again

be the whole space, including vicious space, set free during one
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stroke in the cylinder ; ev- the space set free up to the time of

disconnexion from the boiler ; and ev- the vicious space. Then,

according to what was before said, we have the following equa

tions :—

mtu2 + (M + fj.)a=ei/,

m3u3+ (M + /*)<?= v',

W+F =evf-

The magnitudes /* and a are both so small that we may at once

neglect their product, so that the above become

»i2u2 =ev-— M<r, ->

V'7Ma' . . • • (45)

Further, according to equation (VI),

r=ATu§r,

where, on account of its subsequent frequent occurrence, a single

letter g is introduced in place of the differential coefficient -Jf^.

Accordingly, in the above system of equations we may express

ra and r3 in terms of u2 and «3 ; and then, as the masses ms and

ms will only occur in the products m2u2 and msus, we may sub

stitute the values of the latter as given in the first two of

equations (45).

Similarly, by means of the last of these equations, we may

eliminate the mass fi0 ; and as to the other mass fi, although it

may be a little greater than fi0, yet the terms which contain it

as a factor are altogether so unimportant, that we may without

hesitation give it the same value as we have found for fi0 ; in

other words, for the numerical calculation we may give up the

assumption, made for the sake of generality, that the mass

in the vicious space is partially liquid and partially vapo

rous, and suppose that the mass in question consists entirely of

vapour.

The substitutions here mentioned may be made in the general

equations (XIV), as well as in the simplified equations (XV).

As they present no difficulties, however, we will here limit our

selves to the last, in order to obtain the equations in a form

convenient for numerical calculation.



THEORY OF THE STEAM-ENGINE. 185

After this change the equations become

+Mo-(ft -/>,),

(r'-M<7)£r3= («/_M«r)^+ (M+^)Jlog Jj.

44. In order to refer these equations, which now express the

work done in a stroke or by the quantity m1 of vapour, to the

unit of weight of vapour, we have to proceed in the same manner

as when the equations (35) were changed into (XII) ; that is to

say, we divide each of the three equations by w„ and set

Mr/ W
—=/, —=V, and —=W.

Hereby the equations become

=rl+fc(T,-T8) _{y_y) {^_Pi+Po) +eV r°~c^~To),

-la)ff3= {eV-hr)ffi+(l+ log^.

45. These equations may be appUed in the following manner

to the calculation of the work. From the intensity of evapora

tion, supposed to be known, and from the velocity with which

the machine is at the same time driven, we determine the volume

V which corresponds to the unit of weight of vapour. By means

of this value we calculate the temperature Ta from the second

equation, afterwards the temperature T3 from the third, and

lastly, we employ the temperature T3 to determine the work

from the first equation.

In doing so, however, we encounter a peculiar difficulty. In

order to calculate T2 and T3 from the two last equations, they

ought in reality to be solved according to these temperatures.

But they contain these temperatures not only explicitly, but
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implicitly, p and g being functions of the same. If, in order to

eliminate these magnitudes, we were to replace p by one of the

ordinary empirical formulae which express the pressure ofa vapour

as a function of its temperature, and g by the differential co

efficient ofp, the equations would become too complicated for

further treatment. We might, it is true, like Pambour did,

help ourselves by instituting new empirical formulae more con

venient for our purpose, which, if not true for all temperatures,

would be correct enough between certain limits. Instead of here

making any such attempt, however, I will draw attention to

another method, by which, although the calculation is some

what tedious, the several parts thereof are capable of easy execu

tion.

46. When the tension series for the vapour of any liquid is

known with sufficient accuracy, the values of the magnitudes

g and Tg for the several temperatures can be calculated from it,

and arranged in tables in the same manner as is usually done

with the values ofp.

In the case of steam, hitherto almost solely used in ma

chines, and for the interval of temperature extending from 40°

to 200° C, between which the application takes place, I have,

with the help of Regnault's tension series, made such a calcu

lation.

Strictly, I ought to have differentiated according to t the for

mulae which Regnault used in calculating the several values of

p below and above 100° C, and then to have calculated g by

means of the new formulae thus obtained. But as it appeared

to me that those formula did not fulfil their purpose perfectly

enough to justify so large an amount of labour, and as the cal

culation and institution of another suitable formula would have

been still more tedious, I contented myself with using the num

bers already calculated for the pressure in order approximately

to determine the differential coefficient of the pressure. For

example, plAS andpm being the pressures for the temperatures

146° and 148°, I have assumed that the magnitude

Pmb~~Pu6

2

represents with sufficient accuracy the value of the differential

coefficient for the mean temperature 147°.



THEORY OF THE STEAM-ENGINE. 187

In doing this, I have, for temperatures above 100°, used the

numbers given by Regnault himself*. With respect to the

values below 100°, Moritzf has lately drawn attention to the

fact that the formula employed by Regnault between 0° and 100°

was, especially in the vicinity of 100°, somewhat incorrect in

consequence of his having used logarithms of seven places in

calculating the constants. In consequence of this, Moritz has

calculated those constants with logarithms of ten places, basing

his calculations on the same observed values ; and he has pub

lished the values of p (as far as they differ from Regnault's,

which only occurs above 40°) thus deduced from the corrected

formulie. I have used these values.

As soon as g is calculated for the several temperatures, the

calculation of T . g also is attended with no further difficulty,

because T is determined from the simple equation

T=273 + i?.

I have given the values of g and T . g thus found in a Table

at the end of this memoir. For the sake of completeness, I have

also added the corresponding values of p; those above 100°

being calculated by Regnault, and those below by Moritz. To

each of these three series of numbers are attached the differ

ences between every two successive numbers ; so that from

the Table the values of the three magnitudes can be found for

every temperature ; and conversely, for any given value of one

of the three magnitudes the corresponding temperature can be

seen.

After what was before said of the calculation of g, it need

scarcely be mentioned that the numbers of this Table are not to

be considered as quite exact ; they are only communicated in the

absence of better ones. As, however, the calculations with refer

ence to steam-engines are always based upon rather uncertain

data, the numbers can without hesitation be used for this pur

pose, there being no fear that the uncertainty of the result will

be much increased thereby J.

* Mim, de VAcad. des Sciences, vol. xxi. p. 625.

t Bulletin de la Classe Physico-mathematique de TAcad, de St. Piters-

bourg, vol. xxi. p. 41.

X [Since the differential coefficient ^ frequently presents itself in calcu-
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As to the method of application, however, another remark is

still necessary. In the equations (XVII), it is assumed that the

pressure p and its differential coefficient g are expressed in kilo

grammes to a square metre ; whereas in the Table the same unit

of pressure, a millimetre of mercury, is retained as that referred

to in Regnault's tension series. In order, notwithstanding this,

to be able to apply the Table, it is only necessary to divide every

lations connected with vapour, it is of interest to know how far the con

venient method of determining it, employed by me, is trustworthy. I will

therefore here collect a few numbers for the sake of comparison.

In calculating the values of the vapour-tensions for temperatures above

100°, contained in his Tables, Regnault employed the formula

Log p= a— bet*— cj3*,

wherein Log refers to common or Briggs-s logarithms, x denotes the tempera

ture calculated from —20°, so that je=<+20, and the five constants are

given by the equations

a=6-2640348,

Log 6=0-1397743,

Log c=0-6924351,

Log a=l-994049292,

Log /3= 1-998343862.

On deducing an equation for ^ from this formula toip, we have

p at

wherein a. and j3 have the same values as before, and the new constants A

and B are given by the equations

Log A=2-5197602,

Log B=2-6028403.

On calculating from the above equation the value of the differential co

efficient j£ mentioned, by way of example, in the text and having refer

ence to the temperature 147°, we find

ff) =90-115.
\dt) 147

By the above approximate method of determination we have, according to

Regnault-s Tables,* the tensions

^148=3392-98,

jp146=3212-74,
and thence

I'us-Pue_180-24_<VV1 a
2- 2 ov

This approximate value, as is at once seen, agrees so well with the more accu



THEORY OF THE STEAM-ENGINE. 189

term in those equations, which does not contain either p or g as

factor, by the number 13-596. This number, which is nothing

more than the specific gravity of mercury at 0° C, compared

with water at its maximum density, will for the sake of brevity

be represented by k*.

This change of the formulae, however, scarcely increases the

calculation, inasmuch as it is equivalent to substituting every

where, in place of the constant factor -r-,—which, according to

rate one calculated from the above equation, that it may without hesitation be

employed in calculations connected with the steam-engine.

With respect to temperatures between 0° and 100°, Regnault employed the

following formula for calculating the vapour-tensions :—

L,Ogp=a+ba*— c/3*.

The constants, according to the improved calculations of Moritz, have the

following values :—

a=4-7393707,

Log 6=2-1319907112,

Log e=0-6117407675,

Log <*=0-006864937152,

Log 0 = 1-996725536850.

From this formula an equation for -£. may be again deduced, of the form

i.f=A«<+B0<,

wherein the constants a, |3 have the values above indicated, and A and B are

given by the formulae

Log A=4-6930586,

Log B=2-8513123.

On calculating from this equation the value of -£. corresponding, for in

stance, to a temperature of 70°, we find

\dtI7

=10-1112,

and by the approximate method of determination we have

z

a number which again agrees satisfactorily with the one calculated from

the more accurate equation.—1864.]

* [To express a pressure of p millimetres of mercury, in kilogrammes per

square metre, the number p must be multiplied by the weight of a column of

mercury, having a height of one millimetre and a base equal to one square
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Joule, has the value 423 55 already mentioned,—the other con

stant,

1 423 55

Ak 13-596
= 31-1525; (46)

W
when, instead of the work W, the magnitude -jr will be found

in the first instance, and will subsequently merely have to be

multiplied by k.

47. Let us now return to the equations (XVII) , and consider

first the second of them.

This equation may be written in the following form :—

T^^C +a^-g-^^-^), . . . (47)

wherein the magnitudes C, a, and b are independent of Z2, and

have the following values :—

b=

M{e\-la)'

eV-Zcr

eV-Zo-

(47 a)

Of the three terms on the right-hand side of (47), the first

far exceeds the others ; hence it will be possible, by successive

approximation, to determine the product T2g2, and thence also

the temperature Z2.

In order to obtain the first approximate value of the product,

which we will call Tg', let us on the right side of (47) set Z1 in

the place of Z2, and corresponding thereto p1 in place ofp2, then

Tg-=C (48)

metre. The volume of such a column is the ^^th part of a cubic metre,

in other words a cubic decimetre. Now a cubic decimetre of water at the

maximum density weighs 1 kilogramme, and consequently a cubic decimetre

of mercury at 0° weighs 13-596 kilogrammes. This is the factor, therefore,

with which the number p must be multiplied in the case under consideration.

In our equations, however, it will of course amount to the same thing if,

instead of multiplying the terms which contain the factor p, or the differen

tial coefficient of p by 13-596, we divide the remaining terms by the same

number.—1864.]
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The temperature t', corresponding to this value of the product,

can be sought in the Table. In order to find a second ap

proximate value of the product, the value of t' just found, and

the corresponding value of the pressure p', are introduced into

(47) in the places of /2 and p2, whereby, having regard to the

former equation, we have

V'ff»=T'g' + a(t1-t')-b(p1-p'). . . . (48 a)

As before, the temperature t", corresponding to this value of

the product, is given by the Table. If this does not with suffi

cient exactitude represent the required temperature t2) the same

method must be repeated. The newly-found values t" and p"

must be substituted in (47) in place of t2 and p2, whereby with

the assistance of the two last equations, we have

T"V"= TV'+ a(t- 1") -b(p' -p") , . . . (48 b)

and in the table we can find the new temperature t'".

We might proceed in this manner for any length of time,

though we shall find that the third approximation is already

within -i-jy-jjdth, and the fourth within T^gdth of a degree of the

true value of the temperature t2.

48. The treatment of the third of the equations (XVII) is

precisely similar. Ifwe divide by V—la, and for facility of cal

culation introduce Briggs's logarithms (Log) in place of natural

logarithms (log) by dividing by M the modulus of this system,

the equation will take the form

<73=C + aLog^, (49)

wherein C and a are independent of T3, and have the following

values :—

n_eV— la

eV\ > . . . (49 a)

a"~ M.AA(V-Jo-)- J

Again, in equation (49) the first term on the right is greatest,

so that we can apply the method of successive approximation.



192 FIFTH MEMOIR.

In the first place, Ta is put in the place of T3, and we obtain the

first approximate value of g„ viz.

ff' = C, (50)

from which we can find the corresponding temperature V in the

Tables, and thence the absolute temperature T'. This is now

substituted for T, in (49), and gives

/=^+aLog^, (50fl)

whence T" is found. Similarly we obtain

+ « Log (50 A)

and so forth.

49. Before proceeding to the numerical application of the

equations (XVII), the magnitudes c and r alone remain to be

determined.

The magnitude c, which is the specific heat of the liquid, has

hitherto been treated as constant in our development. Of course

this is not quite correct, for the specific heat increases a little

with increasing temperature. If, however, we select as a common

value the one which is correct for about the middle of the inter

val over which the temperatures involved in the investigation

extend, the deviations cannot be important ones. In machines

driven by steam, this mean temperature may be taken at 100° C. ;

this being, in ordinary high-pressure engines, about equally

distant from the temperature of the boiler and that of the con

denser. In the case of water, therefore, we will employ the

number which, according to Regnault, expresses its specific

heat at 100°, and thus set

c=10130 (51)

In the determination of r we shall start from the equation

\=606-5 + 0-305. t,

given by Regnault as expressing the whole quantity of heat

necessary to raise the unit of weight of water from 0° to the

temperature t, and afterwards to evaporate it at that tempera

ture. According to this definition, however,
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so that

r=6065+0-305. t -Vcdt.

In order to obtain precisely Regnault's vahie of r, we onght

to substitute for c in the above integral, the function of the tem

perature which Regnault determined. For our present purpose,

however, I think it will suffice to give to c the constant value

above selected, bv means of which

f: cdt= 1013. f,

and the two terms in the above equation involving t combine to

form the single one —0-708 . t.

At the same time we must alter the constant term of the equa

tion a little, and determine it so that the formula will correctly

express that observed value of r which in all probability is most

accurate. As a mean of thirty-eight observations, Regnault

found the value of \ at 100° to be 636-67. Deducting the

quantity of heat necessary to raise the unit of weight of water

from 0° to 100°, which, according to Regnault, amounts to 100-5

units of heat, and contenting ourselves with one decimal, there

remains

r100=536-2*.

Employing this value, we obtain the following formula :—

r=607-0-708.* (52)

The following comparison of a few values calculated here

from, with the corresponding ones given by Regnault in his

tablesf, will show that this simplified formula agrees suffi

ciently well with the more accurate method of calculation above

alluded to :—

t. 0°. 50°. - IOO°. 150°. 200°.

r according to equation (51)

r according to Regnault . . .

607-0

606-5

571-6

571-6

5362

536-5

5008

500-7

4654

4643

* In his tables Regnault gives, instead of this, the number 536-5 ; the

reason is, however, that instead of the above value 636-6" for X at 100°, he

used the round number 637 in his calculations.

t Mem. de VAcad. des Sciences, vol. xxi. p. 748.
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50. In order to be able to distinguish between the effects of

the two different kinds of expansions to which the two last of I

the equations (XVII) refer, it will perhaps be best to consider ,

in the first place a steam-engine in which only one of them takes

place. We will commence, therefore, with one of the machines

which are said to work without expansion.

In this case, e, which expresses the relation of the volumes

before and after expansion, equals 1, and at the same time

T3=TS; so that the equations (XVII) assume a simpler form.

The last of these equations becomes an identity, and therefore j

vanishes. Further, many terms of the first will admit of elimi

nation, because they now become like the corresponding terms

of the second, from which they before differed only by contain

ing T3 instead of T2. . Introducing the above-mentioned quantity

k at the same time, we now obtain

W 1
-k=V(l-e)(p*-p0)-l<T(p-p0), I

+ kr(p1-pi)*. j |

The first of these two equations is exactly the same as the one

which we also obtain by Pambour's theory, if in (XII) we make

e=l, and introduce V instead of B. The second equation,

however, differs from and replaces the simple relation between

volume and pressure assumed by Pambour.

51. To the quantity e, which occurs in these equations and

represents the vicious space as a fractional part of the whole

space set free to the vapour, we will give the value 005. The

quantity of liquid which the vapour carries with it on entering

* [If in the two first equations in (XVII) we make e=l, Ta=Ta, and intro

duce the quantity k, the second equation at once reduces itself to the second

equation in (XVIII). The first equation, however, assumes at first the form

W_r,+fe(T1-T,) _ . . .,y,-tCr,-TJ
t—~a& (y-i°-XT&-p,+Po)+'v—as;—

But if in place of (V—Itr) T2pr2 we here substitute the value given by the

second equation, a xerms disappear which contain Ak as divisor, and the

remaining terms have merely to be arranged according to the factors V and Ur,

in order to obtain the first equation in (XVIII).—1864.]
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the cylinder varies in different machines. Pambour states that

it amounts on the average to 0-25 in locomotives, but in sta

tionary engines to much less, probably only to 005 of the whole

mass entering the cylinder. In our example we will make use

of the latter number, according to which the ratio of the whole

mass entering the cylinder is to the vaporous part of the same

as 1 : 0-95. Further, let the pressure in the boiler be five atmo

spheres, to which the temperature 152°-22 belongs, and let us

suppose that the machine has no condenser, or,- in other words,

let it have a condenser with the pressure of one atmosphere.

The mean reaction in the cylinder is accordingly greater than

one atmosphere. As before mentioned, the difference in loco

motives may be considerable, but in stationary engines it is

smaller. With respect to stationary engines, Pambour lias

altogether neglected this difference ; and as our only object at

present is to compare the new formulae with those of Pambour,

we will also disregard the difference, and let p0 equal one atmo

sphere.

In this example, therefore, the following values will have to

be made use of in equations (XVIII) :—

7^ = 3800,

p0= 760. j

To these must be added the values

k= 13596,

<r=0001,

which are the same for all cases ; and then in the first of the

equations (XVIII), besides the required value of W, the magni

tudes V and pi alone will remain undetermined.

52. We must now examine, in the first place, the least possible

value of V.

This value corresponds to the case where the pressure in the

cylinder is the same as that in the boiler, so that we have merely

to put pl in the place of p^ in the last of equations (XVIII) in

order to obtain

e=005,

(53)

o 2
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V M+h^' . . . m

In order at once to give an example of the influence of the

vicious space, I have calculated two values of this expression,

corresponding respectively to the cases where no vicious space

exists (e=0), and where, according to supposition, e=0-05.

These values, expressed as fractions of a cubic metre to one kilo

gramme of vapour from the boiler, are

0-3637 and 0-3690.

The latter value is greater than the former, because, first, the

vapour entering the vicious space with great velocity, the vis

viva of its motion is converted into heat, which in its turn

causes the evaporation of a part of the accompanying liquid ;

and secondly, because the vapour before present in the vicious

space, contributes to the increase of the ultimate quantity of

vapour.

Substituting both the above values of V in the first of equa

tions (XVIII), and in the one case again making e=0, whilst

in-the other 6=005, we have as the corresponding quantities of

work expressed in kilogramme-metres, the numbers

14990 and 14450.

According to Pambour's theory, it makes no difference whether

a part of the volume is vicious space or not ; in both cases this

volume is determined from the equation (29 b) by giving to p the

particular value/?,. By so doing we obtain

0-3883.

This value is greater than the one (0-3637) before found for

the same quantity of vapour, because hitherto the volume of

vapour at its maximum density was esteemed greater than, ac

cording to the mechanical theory of heat, it can be, and this

former estimate also finds expression in equation (29 b) .

If, by means of this volume, we determine the work under

the two suppositions 6=0 and 6= 0 05, we have

16000 and 15200.
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As might have been concluded immediately from the greater

volume, these quantities of work are both greater than those

before found, but not in the same ratio ; for, according to our

equations, the loss of work occasioned by vicious space is less

than it would be according to Pambour's theory.

53. In a machine of the kind here considered, which Pambour

actually examined, the velocity which the machine actually pos

sessed, compared with the minimum velocity calculated, accord

ing to his theory, for the same intensity of evaporation and the

same pressure in the boiler, gave the ratio 1-275 : 1 in one ex

periment, and in another, where the charge was less, 1-70:1.

These velocities would in our case correspond to the volumes

0-495 and O660. As an example of the determination of work,

we will now choose a velocity between these two, and set simply,

V= 0-6.

In order next to find the temperature t2 corresponding to this

value of V, we employ the equation (47) under the following

special form :—

^=26577 + 56-42 . (t1-t2) -0-0483 . (p,-p2). (55)

Effecting, by means of this equation, the successive determina

tions of t^ described in Art. 47, we obtain the following series of

approximate values :—

t' =133-01,

/" =134-43,

*"' = 134-32,

t""= 134-33.

Further approximate values would only differ from each other in

higher decimal places ; so that, contenting ourselves with two

decimal places, the last number may be considered as the true

value of t2. The corresponding pressure is

j»a= 2308-30.

Applying these values of V and p2, as well as those given in

Art. 51, to the first of the equations (XVIII), we obtain

W= 11960.

Pambour's equation (XII) gives for the same volume 06, the

work

W= 12520.
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In order to show more clearly the dependence of the work

upon the volume, and at the same time the difference which

exists between Pambour-s and my own theory in this respect, I

have made a calculation, similar to the last, for a series of other

volumes increasing uniformly. The results are comprised in the

following Table. The first horizontal row of numbers, separated

from the rest by a line, contains the values found for a machine

without vicious space. In other respects the arrangement of the

Table will be easily understood.

V. W.

According to Fambour.

V. W.

0-3637 1 52*22
0

14990 0-3883 16000

0*3690 I52-22 14450 03883 15200

0-4 149*12 141 00 04 15050

0-5 I4083 13020 0-5 13780

06 i34-33 1 1960 06 12520

0-7 12903 1 0910 0-7 1 1250

08 "4-55 9880 o-8 9980

09 120-72 8860 09 8710

1 1 17-36 7840 1 744°

We see that the quantities of work calculated according to

Pambour's theory diminish more quickly with increasing volume

than those calculated from our equations ; for at first the former

are considerably greater than the latter, afterwards they approach

thereto, and finally they are actually less than the latter. -The

reason is, that according to Pambour's theory, the same mass,

as at first, always remains vaporous during expansion; whilst,

according to our theory, a part of the liquid accompanying the

vaporous mass afterwards evaporates, and the more so the

greater the expansion.

55. In a similar manner we will now consider a machine

which works with expansion, and we will further select one with

a condenser.

With reference to the magnitude of the expansion, we will

suppose that the cylinder is cut off from the boiler when the

piston has completed one-third of its journey. Then for the

determination of e we have the equation
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e-e=*(l-e);

whence, retaining the former value, 0-05, of e,

e= ill= 0-3666. . . .

o

As before, let the pressure in the boiler be five atmospheres.

By good arrangement the pressure in the condenser may be

kept below one-tenth of an atmosphere. As it is not always so

small, however, and as the reacting pressure in the cylinder

always exceeds it a little, we will assume the mean reaction to

be one-fifth of an atmosphere (or 152 millims.), to which the

temperature /0=60o-46 corresponds. Retaining the former

assumed value of I, therefore, the quantities requiring applica

tion in this example are

e =0-36667,

e =0 05,

/ =1-053, )- (56)

^= 3800,

#,=152.

In order to calculate the work, we now only require the value

of V to be given. To guide our choice, we must first know the

least possible value of V, which we can find, as before, from the

second of the equations (XVII.) by putting pl in the place of

j»2, and changing the other quantities dependent on p accord

ingly. In this manner we find for the present case the value

1010.

Starting from this, we will assume, as a first example, that the

actual velocity of the machine's motion- has to this minimum a

ratio of 3 : 2 nearly ; so that setting

V=l-5,

we will determine the work for this velocity.

56. The temperatures t2 and ta must now be determined by

setting this value of V in the two last of equations (XVII). For

the machine without a condenser, the determination of t2 has

been sufficiently explained ; and as the present case differs from
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that one only by a different value for e, which was there equal

to 1, it will be sufficient to state here that the final result is

*3 = 137°-43.

The equation (49) , which serves to determine t3, now takes

the form

03=26-604+51-515 LogS, .... (57)

and from it we obtain the following approximate values :—

/' = 99-24,

*" =101-93,

t'" =101-74,

*"" = 101-76.

We may consider the last of these values, from which the fol

lowing ones would only differ in higher places of decimals, as

the proper value of tt ; and we may use it, together with the

known values of /, and t0, in the first of the equations (XVII) .

By so doing we find

W= 31080.

When, assuming the same value of V, we calculate the work

according to Pambour's equation (XII),—whereby, however, the

values of B and b are not taken from equation (296), as in the

machine without condenser, but from equation (29 a) intended

for machines with condensers,—we find

W=32640.

57. In a manner similar to the foregoing I have also calcu

lated the work for the volumes 1-2, 1*8, and 2*1. Besides this,

in order to illustrate by an example the influence which the

several imperfections have upon the work, I have added the fol

lowing cases :—

(1) The case of a machine having no vicious space, and where

at the same time the pressure in the cylinder during the en

trance of the vapour is equal to that in the boiler, and the ex

pansion is carried so far that the pressure diminishes from its

original value px to p0. If we further suppose that pQ is exactly

the pressure in the condenser, this case will be the one to which

equation (XI) refers, and which for a given quantity of heat—
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the temperatures at which the heat is received and imparted

being also considered as given—furnishes the greatest possible

quantity of work.

(2) The case of a machine, again, having no vicious space,

and when the pressure in the cylinder is again equal to that in

the boiler, but where the expansion is not, as before, complete,

but only continued until the ratio e : 1 is obtained. This is the

case to which equation (X) refers ; only in order to determine

the amount of expansion, the change caused by the same in the

temperature of the vapour was before supposed to be known,

whilst here the expansion is determined according to the volume,

and the change of temperature must be afterwards calculated

therefrom.

(3) The case of a machine with vicious space and incomplete

expansion, and where, of the former favourable conditions, the

only one which remains is, that during the entrance of the vapour

the pressure in the cylinder is the same as in the boiler, so that

the volume has its smallest possible value.

To these cases may be added the one already mentioned, where

the last favourable condition is relinquished, and the volume has

a greater than its minimum value.

For the sake of comparison, all these cases, with the exception

of the first, are also calculated according to Pambour's theory.

The reason of the exception is, that the equations (29 a) and

(29 b) do not here suffice ; for even the one which is intended

for small pressures cannot be applied below one-half, or at most

one-third of an atmosphere, whereas here the pressure ought to

decrease to one-fifth of an atmosphere.

The following are the numbers given by our equations in the

first of the above cases :—

Volume before

expansion.

Volume after

expansion.
W.

0-3637 6-345 50460

For all the rest of the above cases the results are given in the

following Table, where the numbers referring to a machine

without vicious space, are again separated from the rest by a

horizontal line. The volumes after expansion are alone given,
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because the corresponding ones before expansion, being in all

cases smaller in the proportion of e : ] , may be easily found :—

According to Pambour.

V. tr h- W.

V. w.

0-992

0

I 52*22 11371 34300 1*032 36650

1 -010

it

I52'2X

I4563

11368

108-38

101*76

32430

31870

31080

30280

29490

1-032

It

34090

33570

i-5

i-8

137-43

131*02

12579

1'S
32640

3171096-55

92-30

18

2-1 2-1 30780

58. The quantities of work in this Table, as well as those in

the former Table for machines without condensers, refer to a

kilogramme of vapour coming from the boiler. It is easy,

however, to refer the work to a unit of heat furnished by the

source of heat; for every kilogramme of vapour requires as

much heat as is necessary, first to raise the mass I (somewhat

more than one kilogramme) from the temperature it had when

entering the boiler up to the general temperature of the same,

and then at that temperature to convert a kilogramme of it into

vapour. This quantity of heat can be calculated from former

data.

59. In conclusion, I will add a few remarks on friction, re

stricting myself, however, to a justification of my having hitherto

disregarded friction in the developed equations, by showing that

instead of introducing the same at once into the first general

expressions for the work, as Pambour has done, it may also, ac

cording to the same principles, and according to the manner of

other authors, be afterwards brought into calculation.

The forces which the machine has to overcome during its

action may be thus distinguished :—(1) The resistance exter

nally opposed to it, and in overcoming which it performs the

required useful work. Pambour calls this resistance the charge

of the machine. (2) The resistances which have their source in

the machine itself, so that the work expended in overcoming

them is not externally of use. All these resistances are in

cluded in the term friction; although, besides friction in its



THEORY OF THE STEAM-ENGINE. 203

more limited sense, they comprise other forces, particularly the

resistances caused by pumps belonging to the machine, exclu

sive of the one which feeds the boiler, and which has already

been considered.

Pambour brings both these kinds of resistances into calcula

tion as forces opposing the motion of the piston ; and in order

conveniently to combine them with the pressures of the vapour

on both sides of the piston, he also adopts a notation similar to

the one ordinarily used for vapour pressures ; that is to say, the

symbol denotes, not the whole force, but that part of it which

corresponds to a unit of surface of the piston. In this sense let

the letter R represent the charge.

A further distinction must still be made in the case of friction,

for it has not a constant value in each machine, but increases

with the charge. Accordingly Pambour divides it into two

parts : that which is already present when the machine moves

without charge, and that which the charge itself occasions.

With respect to the last, he assumes that it is proportional to

the charge. Accordingly, the friction referred to the unit of

surface is expressed by

/+8.R,

where / and 8 are magnitudes which, although dependent upon

the construction and dimensions of the machine, are, according

to Pambour, to be considered as constant in any given machine.

We can now refer the work of the machine to these resisting

forces instead of, as before, to the driving force of steam ; for the

negative work done by the former must be equal to the positive

work done by the latter, otherwise an acceleration or retardation

of motion would ensue, which would be contradictory to the

hypothesis of uniform motion hitherto made. During the time

that a unit of weight of vapour enters the cylinder, the surface

of the piston describes the space (1 — e) V, hence for the workW

we obtain the expression

W=(l-e)V[(l + S).R+/].

On the other hand, the useful part of this work, which for

distinction from the whole work shall be symbolized by (W),

is expressed thus,

(W)=(l-e)V.R.
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Eliminating R from this equation by means of the former, we

have the equation

{W)==W-(l-eW.f> (5g)

by means of which, V being known, the useful work (W) can be

deduced from the whole work W as soon as the quantities /

and 8 are given.

I will not here enter into Pambour's method of finding the

latter quantities, as this determination still rests upon a too in

secure basis, and as friction is altogether foreign to the subject

of this memoir.

Table containing the values, for steam, of p, its differ

ential COEFFICIENT ^-=g, AND THE PRODUCT T .ff EXPRESSED

IN MILLIMETRES OF MERCURY.

t

in Cen
tigrade
degrees.

P- A. 9- A. l.g. A.

o
54-906

57-909

61-054

*-935
3-074

3-218

3-367

3-522

3-683

40
3-003 0-139

0-144

0-149

O'55

0-161

0-167

0-173

0-180

0-185

0-193

919

965

1014

1064

1116

1171

1228

1287

1349

1413

1480

46
41

3-'45
3291

49

5°

5*

55

57

59
62

42

43

44

45
46

64-345

67789

71-390

75-156

79-091

83-203

87-497

91-980

96659

101-541

106-633

1 1 1-942

117-475

123-241

129-247

3 -444
3-601

3-766
3-850

47
48

49

5°

5'
52

53

54

55
56

57
58

3-935 4-023

4-203

4-388

4-581

4-780

4- 1 12

4-294 64

67

69

72

74
78

80

4-483

4679

4882

0199

0-207

0-213

0-221

0228

0-237

0244

0-252

0-260

0-269

0-278

0286

0-296

0305

6-314

'549
1621

1695

1773

1853

1936

2023

2112

2205

2301

2401

2504

2611

2722

2836

4-987
5-092

5-309

5-533

5-200

5421

5-649
5-766

6 006

6254

5-886
83

87

89

I960

i35-5oi

142-011

148-786

6-510

6775

6- 130

6-382

6-642 93
96

100

103

107

in

114

61 '55-834

163-164

170785

178-707

186938

7-048

7-330

7-621

6-911

7- 189

62 7-475

7-771

8076

8390

63

64
7-922

65
8- 231
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Table (continued).

in Cen

tigrade

degrees.

65

66

67

68

69

70

7i

72

73

74

75

76

77

78

79

80

81

82

S3

84

85

86

87

88

89

90

91

92

93

94

96

98

99

100

101

102

103

104

105

106

107

108

109

no

III

l.g.

118

123

126

131

'35

139

144

149

153

'59

163

168

174

i79

185

190

197

202

208

214

220

227

23+

240

248

254

262

269

276

285

292

300

309

3'7

320

328

343

35°

356

367

378

388

397

407

414

424

112

II3

"4

'J5

186-938

195-488

204-368

213-586

223-154

233-082

243-380

254-060

265-132

276-608

288-500

300-820

313-579

326-789

340464

354616

369258

384-404

400-068

416-262

433-002

450-301

468175

486638

505-705

5*5-39*

545'7i5

566-690

588-333

610-661

633692

657-443

681-931

707-174

733-191

760-00

78759

81601

845-28

875-41

906-41

938-31

971-14

1004-91

1039-65

1075-37

11 12-09

114983

1 188-61

1228-47

1269-41

8-55°

8880

9218

9568

9928

10298

io-68o

11-072

11-476

11-892

12-320

12759

13-210

13675

14152

14-642

15-146

15-664

16-194

16-740

17-299

17-874

18-463

19067

19687

20-323

20-975

21-643

22-328

23031

23-751

24488

25-243

26-017

26-809

*7-59

28-42

29-27

30-13

31-00

31-90

3283

3377

3474

3572

36172

3774

3878

3986

40-94

8-390

8715

9049

9393

9-748

10-113

10-489

10-876

11-274

11-684

12-106

"-539

12-984

13-442

13-913

14397

14894

15-405

15929

16-467

17-019

17586

18-168

18765

'9377

20-005

20-649

21309

21985

22-679

23-391

24-119

24-865

25-630

26-413

27-200

28-005

28-845

29-700

30-565

31-450

32-365

33-300

34*55

35-230

36-220

37-230

38-260

39320

40-400

41-500

0-325

0-334

0-344

°-355

0-365

0-376

0-387

0-398

0-410

0-422

0-433

0-445

0-458

0-471

0-484

0-497

0-511

0524

0-538

o-552

o-577

0-582

0-597

0-612

0-628

0*644

0-660

0676

0-694

0-712

0-728

0747

0765

0783

0-787

0-805

0-840

0-855

0-865

0-885

0-915

0-935

o-955

0-975

0-990

i-oio

1-030

1-060

1 080

i- 100

2836

2954

3077

3203

3334

3469

3608

3752

3901

4054

4213

4376

4544

4718

4897

5082

5272

5469

5671

5879

6093

6313

6540

6774

7014

7262

7516

7778

8047

8323

8608

8900

9200

9509

9826

10146

10474

10817

1 1 167

1 1523

11888

12266

12654

1 305 1

13458

13872

14296

14730

i5'78

15635

16102

434

448

457

467



206 FIFTH MEMOIR.

Table (continued).

in Cen

tigrade

degrees.

"5

116

117

11S

119

120

121

122

i*3

124

125

126

127

128

129

130

131

132

133

'34

'35

136

137

•38

139

14.0

'4>

142

'43

'44

'45

146

'47

148

149

150

'51

152

'53

'54

156

'57

.58

4I.5OO

42625

43-775

T.j,.

'59

160

161

162

163

164

165

1269*41

1311-47

135466

139902

'444-55

149 1 -2 8

'539-*5

1588-47

163896

169076

1743-88

1798-35

185420

1911-47

1970-15

2030-28

2091-90

2155-03

2219-69

228592

235373

2423-16

249423

2567-00

2641-44

2717-63

*795'57

2875-30

2956-86

3040-26

3"5'55

3212-74

3301-87

3392-98

3486-09

3581-23

3678-43

377774

3879-18

3982-77

4088-56

4196-59

4306-88

4419-45

4534-36

4651-62

4771-28

4893-36

5017-91

5 '44-97

5*74-54

42-06

43-'9

44-36

45'53

46-73

47-97

49-22

50-49

5 1 80

5312

54-47

55-85

57-27

58-68

60-13

61-62

63-13

64-66

66-23

67-81

69-43

71-07

7*77

74-44

76-19

77-94

7973

81-56

83-40

8529

87-19

89-13

91-11

93-11

95-14

97-20

99-31

101-44

103-59

10579

10803

110-29

112-57

114-91

117-26

119-66

I22'o8

124-55

I2706

I29-57

44'945

46-130

47-35°

48595

49855

5''45

52-460

53795

55160

56-560

57-975

59'4°5

60875

62-375

63-895

65445

67-020

68-620

70-250

71-920

73-605

75-3I5

77-065

78-835

80-645

82480

84-345

86240

88-160

90-120

92-110

94-125

96-170

98255

100-375

102-515

104-690

106-910

109-160

111-430

1 1 3740

116-085

118-460

120-870

123-315

125-805

128-315

130-860

1125

1150

1170

r.85

I'220

'245

I 260

I-290

1-3'S

''335

1-365

1-400

1-415

1-430

1-470

1-500

1-520

1-550

'-575

1-600

1-630

1-670

1-685

1-710

1750

1-770

i-8io

1-835

1865

1-895

1-920

1-960

1-990

2-015

2-045

2-085

2'120

2-I40

2-175

2-220

2-250

2-270

2-310

*-345

2-375

2-410

2-445

2-490

2-510

2-545

16102

165S1

17072

'7574

18083

18609

19146

19693

20253

20827

21410

22009

22624

23248

23881

24533

25199

25877

26571

27277

27997

28732

29487

30252

31030

31828

32638

33468

34312

35172

36048

36939

37850

38778

39721

40680

41660

42659

43671

44703

45757

46830

479' 5

49022

50149

51293

52458

53642

54851

56073

57317

479

491

502

5°9

526

537

547

560

574

583

599

615

624

633

652

666

678

694

706

720

735

765

778

798

810

830

844

860

876

891

911

92?

943

959

980

999

1012

1032

1054

1073

1085

1 107

1127

"44

1 1 65

1 184

1209

1222

1244
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Table (continued).

i

in Cen

tigrade

degrees.

J 65

166

167

168

169

170

171

172

'73

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

196

197

198

199

200

5174*54

5406-69

554I-43

567882

5818-90

5961*66

6107-19

6255-48

6406-60

6560-55

6717-43

6877-22

7039-97

7205-72

7374'5*

7546-39

7721-37

7899-52

8080-84

8265-40

8453-23

8644-35

883882

9036-68

9237-95

9442-70

965093

9862-71

10078-04

10297-01

10519-63

i°745-95

10976-00

11209-82

1 1447-46

11688-96

132-15

'3474

i37-39

140-08

142-76

I45-53

148-29

151-12

'5395

15688

'5979

16275

16575

168-80

171-87

174-98

178-15

181-32

18456

187-83

191-12

'94-47

197-86

201-27

204-75

208-23

211-78

2'5-33

21897

222-62

226-32

230-05

233-82

237-64

241-50

130-860

133*445

136065

138-735

141 '420

144-145

146-910

149-705

"52*535

1 55-4i 5

I58-335

161-270

164-250

167-275

170-335

173-425

176-565

'79*735

182-940

186-195

189425

192-795

196-165

'99-565

203-010

206-490

210-005

-"3-555

217-150

220-795

224-470

228-185

231-935

235-730

239-570

243-455

2-585

2-620

2-670

2685

2725

2765

2-795

2-830

2-880

2920

2-935

2-980

3-025

3-o6o

3-090

3-140

3-170

3-205

3-255

3-280

3-320

3*37°

3-400

3-445

3-480

3-550

3-595

3-645

3-675

3-715

3-750

3-795

3-840

3-885

57317

58582

59868

61182

62508

63856

65228

66618

68030

69470

70934

72410

73912

75441

76991

78561

80160

81779

83421

85091

86779

88493

90236

91999

93791

956o5

97442

99303

101192

103111

105052

107018

109009

1 1 1029

113077

"5'54

1265

1286

1314

1326

1348

1372

1390

1412

1440

1464

1476

1502

1529

i55o

1570

'599

1619

1642

1670

1688

1714

'743

1763

1792

1814

1837

1861

1889

1919

194 1

1966

1991

2020

2048

2077
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APPENDIX TO FIFTH MEMOIR [1864].

ON SOME APPROXIMATE FORMULA EMPLOYED TO FACILITATE

CALCULATIONS.

With a view of elucidating the mechanical theory of heat

and its applications to the phenomena which present themselves

in the steam-engine, Zeuner, in his work on the subject*, has

treated a series of problems having, for the most part, reference

to the same cases which have been treated by me in the imme

diately preceding (p. 151 to 157), and in the Second Memoir.

In doing so, Zeuner enters into somewhat greater detail than I

have done, and he seeks to facilitate the calculations by intro

ducing approximate formulae ; of some of the latter, however,

I cannot approve.

Zeuner thus enunciates the Problem I :—" A cylinder con

tains mx kilogrammes of vapour, and (M—m,) kilogrammes of

water. Suppose the mass to expand slowly, so that the pres

sure on the piston which has to be overcome by the vapour

is at each moment equal to the tension of the latter ; the tem

perature of the mass falls from tx to tv and the tension from px to

p2. What work does the vapour perform, and how much heat must

be received or given off in order that the quantity ofvapour m, may

remain constant, and consequently that neither condensation of

vapour nor evaporation of water may take place during ex

pansion P"

The quantity of heat which must be imparted to the mass

within the cylinder during its expansion and consequent change

of temperature in order to prevent both condensation and eva

poration, may be at once expressed by means of the specific heat

of water, say c, and the specific heat of saturated vapour, for

which latter I have already used the symbol h. For an infini

tesimal change of temperature dt we have

dQ.= (M—ml)cdt + m1hdt, .... (a)

and for a finite change, say from t, to t2,

Q=(M-m1)(cdt+m\hdt (b)

* Grundzuge der mechanischen Wdrmetheorie, von G. Zeuner. Freiberg,

1860.
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The first term on the right, which has reference to the liquid

water, is self-intelligible, since the specific heat of water is a

magnitude given immediately by observation ; we may conse

quently leave this term out of consideration. The quantity h

which appears in the second term has been determined by the

equation

. dr r . .

which is numbered (32) in my First Memoir (p. 65) . In it we

have merely, as is there done, to put, for c and r, the values given

by Regnault's experiments, in order to have h expressed as a

function of the temperature. It will be readily seen that we

have here to do with the case which I have already treated as the

first case in the Second Memoir (p. 91 et seq.), and where, by

way of example, I actually calculated the integral for two expan

sions ; that is to say, for expansions whereby the pressure dimi

nishes from five and from ten atmospheres, respectively, down to

one atmosphere, and consequently the temperature falls from

152°-2 and from 180°3, respectively, down to 100°.

Zeuner, on the other hand, by introducing various simplifica

tions in order to facilitate his calculations, arrives at the follow

ing equation, numbered (122) in his work :—

Q=(2-0433m1-r0224M)(*1-g (d)

He remarks that this equation only holds, immediately, for

those temperatures which are more fully defined in § 30 of his

work. Now in this paragraph he states that a certain approx

imate formula there given holds perfectly between the tempera

tures 100° and 150°, and that beyond these limits even, from

about 60° to 180°, the deviations are small. After referring to

this paragraph he adds, "I believe that our present experi

mental knowledge of the deportment of vapour is so uncertain

and fluctuating, particularly beyond the limits of temperature

stated in § 30, that, provisionally, the above expression, de

duced by methods of approximation, may without hesitation be

generally applied."

I propose, by a numerical example, to compare Zeuner's ap

proximate formula with my expression. To do so we will take

the case where precisely the whole mass in the cylinder is

p
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vaporous. In this case we have m1 =M, and Zeuner's equa

tion (d) becomes

Q= 1-0209 M(<,-fa), (e)

whilst the preceding equation (b) becomes

Q=M('*hdt (f)

Suppose now the initial temperature to be 180°, and that the

vapour expands so that its temperature falls successively to 170°,

160°, 150°, and so on to 60°. During this expansion heat must

be imparted to the vapour in order to prevent its partial precipi

tation ; let us calculate how much must be imparted during the

successive falls of ten degrees on the assumption that M= 1 .

For each of these intervals Zeuner's equation gives the value

10-209 ;

my equation, on the other hand, gives the following series of

values :—

7-73; 8-14; 8-57; 901; 949; 998;

10-50; 11-04; 11-62; 1222; 1287; 1355.

From this it will be seen that in the interval from 180° to 60°,

within which according to Zeuner the deviations should be small,

the true values, instead of being constant and equal to 10-209,

vary between 7-73 and 13-55. Even in the small interval be

tween 150° and 100°, within which Zeuner considers his for

mula to be perfectly true, the true values vary between 9-01

and 11-04.

Although I quite admit that to render the mechanical theory

of heat useful to practical mechanicians it is necessary to sim

plify its use by the calculation of tables, and the establish

ment of the simplest possible approximate formulae, and con

sequently that Zeuner's efforts to that end must be very wel

come to them, still I cannot think that they will be satisfied

with formulae which correspond so little with the actual state

of things as does that here adduced.

The questions discussed in Zeuner's Problem II. are those to

which the equations (VII) and (IX) of the preceding memoir

refer. The same expansion as in Problem I. is assumed to
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take place, but with this difference, that no heat is thereby im

parted to, or abstracted from the mass in the cylinder, and under

these circumstances it is required to determine in what manner

the quantity of vapour present is changed through expansion,

and what work is performed.

After giving my equations (VII) and (IX) (the latter in a

somewhat modified form), Zeuner again proceeds to simpli

fications, and arrives at two approximate formulae, one for the

quantity of vapour fi which is newly developed or, if nega

tive, precipitated during the expansion, and the other for the

heat L consumed by exterior work. If in the first of these for

mula? we substitute for a quantity p which therein occurs, Zeu-

ner's own expression for that quantity, in exactly the same

manner as he himself has done in the second formula, the two

become

M=(M-2m^^, .(g)

L=[Mc-(M-m1)/3](/1-g, . . . . (h)

wherein a, /3, c are three constants having the respective values

«= 575-03,1

/3 =0-7882, [ (i)

c= 1-0224. J

In order to compare the results of these formulas with those

which follow from my own equations, we will suppose that at

the commencement of the expansion precisely the whole mass

in the cylinder is vaporous, so that m^M; and we will fur

ther introduce into the equation (h), in place of the heat L con

sumed by work, the work W itself in accordance with the rela

tion W=^. The two equations then are

>— <H

w=x('-^ w

Assuming 150° to be the initial, and 125°, 100°, 75°, succes

sively, the final temperatures, we may, for the purpose of com

parison, employ the numerical values already calculated from

p 2
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my equations, and collected in the small tables on pp. 154 & 157.

If m denote the quantity of vapour present at the end of the

expansion, we have, in fact, to put M, and hence

^ =^— 1 ; and in this equation we may substitute the values

of jjj given in the first Table. The Tables in question extend

beyond the interval now under consideration, in fact reach down

to 25°, but in this comparison we will only employ the numbers

down to a temperature of 75°, in order not to overstep the

Hmits for which Zeuner has determined his formulae. By so

doing the following corresponding numbers are obtained :—

Final temperature. 126°. 100°. 75°.

JLl

M

according to equation (VII)

according to equation (k)

—0044 — 0089 -0-134

—0-115—0041 —0079

W i

Ml

~ according to equation (IX)

t according to equation (1)

1 1300

10800

Z3ZOO

21700

35900

32500

Here, therefore, within the small interval from 150° to 75°,

not inconsiderable deviations already manifest themselves.

Zeuner expresses the opinion that it is on the equations, repre

senting work, which he has established, that a new theory of the

steam-engine may be based ; and that their simplicity and con

venient form, as well as the circumstance that the results which

they furnish agree quite satisfactorily with those which follow

from my own equations, certainly recommend them as suitable

for this object. I must confess, however, that in the preceding

numbers I find no agreement sufficiently satisfactory to con

vince me that the equations in question would form a suitable

foundation for the new theory of the steam-engine.

In his Problem III. Zeuner considers the case where a quan

tity of vapour and water contained in a vessel is suddenly ex

posed to a pressure different from that which exists in that vessel ;

this occurs, for instance, when a vessel in which the pressure

exceeds one atmosphere is suddenly put in communication with

the atmosphere so that the vapour can issue therefrom. The

question now is how much heat must be imparted to the mass
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during its change of volume, and the associated change of tem

perature, in order that neither precipitation of vapour nor eva

poration of water may take place, but that exactly the original

quantity of vapour may preserve its state of vapour at the max

imum density.

This case allies itself to those which I have treated in the

Second Memoir as second and third cases. I have there distin

guished the two cases where the vessel contains vapour solely,

and where (like the boiler of a steam-engine) it contains not

only vapour, but likewise water, which during the efflux of the

former further evaporates, and thus replaces the vapour lost.

Zeuner thinks he is able to represent these two cases in a very

simple manner, by one equation.

In fact, the equation (144) of his book contains an expression

for the heat to be imparted to the mass which essentially agrees

with the one developed by me for the second case, and given in

equation (3) of my memoir (p. 95), although its form is some

what different in consequence of the modified notation therein

adopted. To this quantity of heat, however, is added that which

must be imparted to the water in order to change its temperature

from tx to ti} and in this manner is formed the expression for

the total quantity of heat, which must be imparted to the mass

consisting of vapour and water. By the addition of this term,

having reference to the water, Zeuner imagines he has rendered

the equation, developed by me for the second case, also applicable

to the third case. I cannot, however, agree with him.

The equation formed by Zeuner implies that the water con

tained in the vessel changes its temperature in the same manner

as the vapour. If we consider a boiler, however, from which

steam issues through an aperture, for instance, through the

safety valve, the issuing vapour will suffer on expanding a very

quick and considerable diminution of temperature, in which

diminution the mass in the boiler takes no part. The issuing

vapour, therefore, must be considered separately on deciding

whether, when no heat is communicated to it or withdrawn

from it, it is overheated or partially precipitated, and on deter

mining how much heat must be imparted to, or withdrawn from

it in order to maintain it exactly at its maximum density.

For this purpose I hold that the procedure adopted by me is
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quite appropriate ; namely that of considering the issuing

vapour between two surfaces, in the first of which exists the

pressure prevailing in the interior of the vessel, whilst in the

second the pressure is equal to that of the atmosphere, and the

velocity of efilux has already so far diminished that the vis

viva corresponding to the motion of the stream of vapour may

be neglected.
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SIXTH MEMOIR.

ON THE APPLICATION OF THE THEOREM OF THE EQUIVALENCE OF

TRANSFORMATIONS TO INTERIOR WORK*.

In a memoir published in the year 1854t, wherein I sought to

simplify to some extent the form of the developments I had pre

viously published, I deduced, from my fundamental proposition

that heat cannot, by itself, passfrom a colder into a warmer body,

a theorem which is closely allied to, but does not entirely coin

cide with, the one first deduced by S. Carnot from considera

tions of a different kind, based upon the older views of the na

ture of heat. It has reference to the circumstances under which

work can be transformed into heat, and conversely, heat con

verted into work ; and I have called it the Theorem of the Equi

valence of Transformations. I did not, however, there commu

nicate the entire theorem in the general- form in which I had

deduced it, but confined myself on that occasion to the publica

tion of a part which can be treated separately from the rest, and

is capable of more strict proof.

In general, when a body changes its state, work is performed

externally and internally at the same time,—the exterior work

having reference to the forces which extraneous bodies exert

upon the body under consideration, and the interior work to the

forces exerted by the constituent molecules of the body in ques

tion upon each other. The interior work is for the most part

so little known, and connected with another equally unknown

quantity J in such a way, that in treating of it we are obliged in

* Communicated to the Naturforschende Gesellschaft of Zurich, Jan. 27th,

1862 ; published in the Vierteljahrschrift of this Society, vol. vii. p. 48 ; in

PoggendorfFs Amialen, May 1862, vol. cxvi. p. 73 ; in the Philosophical

Magazine, S. 4. vol. xxiv. pp. 81, 201 ; and in the Journal des MatMmatiques

of Paris, S. 2. vol. vii. p. 209.

t " On a modified form of the second Fundamental Theorem in the Me

chanical Theory of heat." [Fourth Memoir of this collection, p. 116.]

| [In fact -with the increase of the heat actually present in the body.—1864.]
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some measure to trust to probabilities ; whereas the exterior

work is immediately accessible to observation and measurement,

and thus admits of more strict treatment. Accordingly, since,

in my former paper, I wished to avoid everything that was hy

pothetical, I entirely excluded the interior work, which I was

able to do by confining myself to the consideration of cyclical

processes—that is to say, operations in which the modifications

which the body undergoes are so arranged that the body finally

returns to its original condition. In such operations the inte

rior work which is performed during the several modifications,

partly in a positive sense and partly in a negative sense, neu

tralizes itself, so that nothing but exterior work remains, for

which the theorem in question can then be demonstrated with

mathematical strictness, starting from the above-mentioned fun

damental proposition.

I have delayed till now the publication of the remainder of

my theorem, because it leads to a consequence which is con

siderably at variance with the ideas hitherto generally entertained

of the heat contained in bodies, and I therefore thought it desi

rable to make still further trial of it. But as I have become

more and more convinced in the course of years that we must

not attach too great weight to such ideas, which in part are

founded more upon usage than upon a scientific basis, I feel that

I ought to hesitate no longer, but to submit to the scientific

public the theorem of the equivalence of transformations in its

complete form, with the theorems which attach themselves to it.

I venture to hope that the importance which these theorems,

supposing them to be true, possess in connexion with the theory

of heat will be thought to justify their publication in their

present hypothetical form.

I will, however, at once distinctly observe that, whatever

hesitation may be felt in admitting the truth of the following

theorems, the conclusions arrived at in my former paper, in re

ference to cyclical processes, are not at all impaired.

1. I will begin by briefly stating the theorem of the equivalence

of transformations, as I have already developed it, in order to

be able to connect with it the following considerations.

-When a body goes through a cyclical process, a certain amount

of exterior work may be produced, in which case a certain quantity
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of heat must be simultaneously expended ; or, conversely, work

may be expended and a corresponding quantity of heat may be

gained. This may be expressed by saying :—Heat can be trans

formed into work, or work into heat, by a cyclical process.

There may also be another effect of a cyclical process : heat

may be transferred from one body to another, by the body which

is undergoing modification absorbing heat from the one body

and giving it out again to the other. In this case the bodies

between which the transfer of heat takes place are to be viewed

merely as heat reservoirs, of which we are not concerned to

know anything except the temperatures. If the temperatures

of the two bodies differ, heat passes, either from a warmer to a

colder body, or from a colder to a warmer body, according to

the direction in which the transference of heat takes place.

Such a transfer of heat may also be designated, for the sake of

uniformity, a transformation, inasmuch as it may be said that

heat of one temperature is transformed into heat of another tem

perature.

The two kinds of transformations that have been mentioned

are related in such a way that one presupposes the other, and

that they can mutually replace each other. If we call transfor

mations which can replace each other equivalent, and seek the

mathematical expressions which determine the amount of the

transformations in such a manner that equivalent transforma

tions become equal in magnitude, we arrive at the following ex

pression :—If the quantity of heat Q of the temperature t is pro

ducedfrom work, the equivalence-value of this transformation is

and if the quantity of heat Q. passes from a body whose tempera

ture is t, into another whose temperature is t2, the equivalence-value

of this transformation is

where T is a function of the temperature which is independent

of the kind of process by means of which the transformation is

effected, and Tj and T2 denote the values of this function which

correspond to the temperatures f, and tv I have shown by sepa-

f }
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rate considerations that T is in all probability nothing more than

the absolute temperature.

These two expressions further enable us to recognize the posi

tive or negative sense of the transformations. In the first, Q is

taken as positive when work is transformed into heat, and as

negative when heat is transformed into work. In the second,

we may always take Q as positive, since the opposite senses of

the transformations are indicated by the possibility of the differ

ence — being either positive or negative. It will thus be

seen that the passage of heat from a higher to a lower tempera

ture is to be looked upon as a positive transformation, and its

passage from a lower to a higher temperature as a negative

transformation.

If we represent the transformations which occur in a cyclical

process by these expressions, the relation existing between them

can be stated in a simple and definite manner. If the cyclical

process is reversible, the transformations which occur therein

must be partly positive and partly negative, and the equivalence-

values of the positive transformations must be together equal to

those of the negative transformations, so that the algebraic sum

of all the equivalence-values becomes =0. If the cyclical process

is not reversible, the equivalence-values of the positive and nega

tive transformations are not necessarily equal, but they can only

differ in such a way that the positive transformations predomi

nate. The theorem respecting the equivalence-values of the

transformations may accordingly be stated thus :—The algebraic

sum of all the transformations occurring in a cyclical process can

only be positive, or, as an extreme case, equal to nothing.

The mathematical expression for this theorem is as follows.

Let dQl be an element of the heat given up by the body to any

reservoir of heat during its own changes (heat which it may

absorb from a reservoir being here reckoned as negative), and T

the absolute temperature of the body at the moment of giving

up this heat, then the equation

must be true for every reversible cyclical process, and the relation

(I)
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j^o <I.)

must hold good for every cyclical process which is in any way

possible.

2. Although the necessity of this theorem admits of strict ma

thematical proof if we start from the fundamental proposition

above quoted, it thereby nevertheless retains an abstract form,

in which it is with difficulty embraced by the mind, and we feel

compelled to seek for the precise physical cause, of which this

theorem is a consequence. Moreover, since there is no essen

tial difference between interior and exterior work, we may

assume almost with certainty that a theorem which is so ge

nerally applicable to exterior work cannot be restricted to this

alone, but that, where exterior work is combined with interior

work, it must be capable of application to the latter also.

Considerations of this nature led me, in my first investigations

on the mechanical theory of heat, to assume a general law re

specting the dependence of the active force of heat on tempera

ture, among the immediate consequences of which is the theorem

of the equivalence of transformations in it3 more complete

form, and which at the same time leads to other important con

clusions. This law I will at once quote, and will endeavour to

make its meaning clear by the addition of a few comments. As

for the reasons for supposing it to be true, such as do not at

once appear from its internal probability will gradually become

apparent in the course of this paper. It is as follows :—

In all cases in which the heat contained in a body does mecha

nical work by overcoming resistances, the magnitude of the resist

ances which it is capable of overcoming is proportional to the ab

solute temperature.

In order to understand the significance of this law, we require

to consider more closely the processes by which heat can perform

mechanical work. These processes always admit of being re

duced to the alteration in some way or another of the arrange

ment of the constituent parts of a body. For instance, bodies

are expanded by heat, their molecules being thus separated

from each other : in this case the mutual attractions of the

molecules on the one hand, and external opposing forces on the

other, in so far as any such are in operation, have to be over
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come. Again, the state of aggregation of bodies is altered by

heat, solid bodies being rendered liquid, and both solid and

liquid bodies being rendered aeriform : here likewise internal

forces, and in general external forces also, have to be overcome.

Another case which I will also mention, because it differs so

widely from the foregoing, and therefore shows how various are

the modes of action which have here to be considered, is the

transfer of electricity from one body to the other, constituting

the thermo-electric current, which takes place by the action of

heat on two heterogeneous bodies in contact.

In the cases first mentioned, the arrangement of the molecules

is altered. Since, even while a body remains in the same state

of aggregation, its molecules do not retain fixed unvarying po

sitions, but are constantly in a state of more or less extended

motion, we may, when speaking of the arrangement of the mole

cules at any particular time, understand either the arrangement

which would result from the molecules being fixed in the actual

positions they occupy at the instant in question, or we may sup

pose such an arrangement that each molecule occupies its mean

position. Now the effect of heat always tends to loosen the

connexion between the molecules, and so to increase their mean

distances from one another. In order to be able to represent this

mathematically, we will express the degree in which the molecules

of a body are separated from each other, by introducing a new

magnitude, which we will call the disgregation of the body, and by

help of which we can define the effect of heat as simply tending to

increase the disgregation. The way in which a definite measure of

this magnitude can be arrived at will appear from the sequel.

In the case last mentioned, an alteration in the arrangement

of the electricity takes place, an alteration which can be repre

sented and taken into calculation in a way corresponding to the

alteration of the position of the molecules, and which, when it

occurs, we will consider as always included in the general expres

sion change of arrangement, or change of disgregation.

It is evident that each of the changes that have been named

may also take place in the reverse sense, if the effect of the

opposing forces is greater than that of the heat. We will

assume as likewise self-evident that, for the production of work,

a corresponding quantity of heat must always be expended, and
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conversely, that, by the expenditure of work, an equivalent quan

tity of heat must be produced.

3. If we now consider more closely the various cases which

occur in relation to the forces which are operative in each of

them, the case of the expansion of a permanent gas presents

itself as particularly simple. We may conclude from certain pro

perties of the gases that the mutual attraction of their molecules

at their mean distances is very small, and therefore that only a

very slight resistance is offered to the expansion of a gas, so that

the resistance of the sides of the containing vessel must main

tain equilibrium with almost the whole effect of the heat. Ac

cordingly the externally sensible pressure of a gas forms an

approximate measure of the separative force of the heat con

tained in the gas ; and hence, according to the foregoing law,

this pressure must be nearly proportional to the absolute

temperature. The internal probability of the truth of this re

sult is indeed so great, that many physicists since Gay-Lussac

and Dalton have without hesitation presupposed this propor

tionality, and have employed it for calculating the absolute tem

perature.

In the above-mentioned case of thermo-electric action, the

force which exerts an action contrary to that of the heat is like

wise simple and easily determined. For at the point of contact

of two heterogeneous substances, such a quantity of electricity

is driven from the one to the other by the action of the heat,

that the opposing force resulting from the electric tension suffices

to hold the force exerted by the heat in equilibrium. Now in

a former memoir " On the application of the Mechanical Theory

of Heat to the Phenomena of Thermal Electricity"*, I have

shown that, in so far as changes in the arrangement of the mole

cules are not produced at the same time by the changes of

temperature, the difference of tension produced by heat must be

proportional to the absolute temperature, as is required by the

foregoing law.

In the other cases that are quoted, as well as in most others,

the relations are less simple, because in them an essential part is

played by the forces exerted by the molecules upon one another,

forces which, as yet, are quite unknown. It results, however,

* Poggendorft's Annalen, vol. xc. p. 513.
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from the mere consideration of the external resistances which

heat is capable of overcoming, that in general its force increases

with the temperature. If we wish, for instance, to prevent the

expansion of a body by means of external pressure, we are obliged

to employ a greater pressure the more the body is heated ; hence

we may conclude, without having a knowledge of the interior

forces, that the total amount of the resistances which can be over

come in expansion, increases with the temperature. We cannot,

however, directly ascertain whether it increases exactly in the

proportion required by the foregoing law, without knowing the

interior forces. On the other hand, if this law be regarded as

proved on other grounds, we may reverse the process, and

employ it for the determination of the interior forces exerted

by the molecules.

The forces exerted upon one another by the molecules are not

of so simple a kind that each molecule can be replaced by a

mere point ; for many cases occur in which it can be easily seen

that we have not merely to consider the distances of the mole

cules, but also their relative positions. If we take, for example,

the melting of ice, there is no doubt that interior forces,

exerted by the molecules upon each other, are overcome, and ac

cordingly increase of disgregation takes place ; nevertheless the

centres of gravity of the molecules are on the average not so

far removed from each other in the liquid water as they were in

the ice, for the water is the more dense of the two. Again, the

peculiar behaviour of water in contracting when heated above

0° C, and only beginning to expand when its temperature

exceeds 4°, shows that likewise in liquid water, in the neigh

bourhood of its melting-point, increase of disgregation is not

accompanied by increase of the mean distances of its molecules.

In the case of the interior forces, it would accordingly be

difficult—even if we did not want to measure them, but only to

represent them mathematically—to find a fitting expression for

them which would admit of a simple determination of magni

tude. This difficulty, however, disappears if we take into calcu

lation, not the forces themselves, but the mechanical work

which, in any change of arrangement, is required to overcome

them. The expressions for the quantities of work are simpler

than those for the corresponding forces ; for the quantities of
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work can be all expressed, without further secondary statements,

by numbers which, having reference to the same unit, can be

added together, or subtracted from one another, however various

the forces may be to which they refer.

It is therefore convenient to alter the form of the above law

by introducing, instead of the forces themselves, the work done

in overcoming them. In this form it reads as follows :—

The mechanical work which can be done by heat during any

change of the arrangement of a body is proportional to the abso

lute temperature at which this change occurs.

4. The law does not speak of the work which the heat does,

but of the work which it can do ; and similarly, in the first form

of the law, it is not of the resistances which the heat overcomes,

but of those which it can overcome that mention is made. This

distinction is necessary for the following reasons :—

Since the exterior forces which act upon a body while it is

undergoing a change of arrangement may vary very greatly,

it may happen that the heat, while causing a change of ar

rangement, has not to overcome the whole resistance which

it would be possible for it to overcome. A well-known and

often-quoted example of this is afforded by a gas which expands

under such conditions that it has not to overcome an oppo

sing pressure equal to its own expansive force, as, for in

stance, when the space filled by the gas is made to communi

cate with another which is empty, or contains a gas of lower

pressure. In order in such cases to determine the force of the

heat, we must evidently not consider the resistance which actu

ally is overcome, but that which can be overcome.

Also in changes of arrangement of the opposite kind, that

is, where the action of heat is overcome by the opposing forces, a

similar distinction may require to be made, but in this case only

as far as this—that the total amount of the forces by which the

action of the heat is overcome may be greater than the active

force of the heat, but not smaller.

Cases in which these differences occur may be thus charac

terized. When a change of arrangement takes place so that

the force and counterforce are equal, the change can likewise

take place in the reverse direction under the influence of the same

forces. But if it occurs so that the overcoming force is greater
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than that which is overcome, the change cannot take place in the

opposite direction under the influence of the same forces. We

may say that the change has occurred in the first case in a rever

sible manner, and in the second case in an irreversible manner.

Strictly speaking, the overcoming force must always be more

powerful than the force which it overcomes ; but as the excess

of force does not require to have any assignable value, we may

think of it as becoming continually smaller and smaller, so that

its value may approach to nought as nearly as we please. Hence

it may be seen that the case in which the changes take

.JK place reversibly is a limit which in reality is never quite reached,

f but to which we can approach as nearly as we please. We may

1 therefore, in theoretical discussions, still speak of this case as one

which really exists ; indeed, as a limiting case it possesses special

theoretical importance.

I will take this opportunity of mentioning another process in

which this distinction is likewise to be observed. In order for

one body to impart heat to another by conduction or radiation

(in the case of radiation, wherein mutual communication of heat

takes place, it is to be understood that we speak here of a body

which gives out more heat than it receives) , the body which

parts with heat must be warmer than the body which takes up

heat ; and hence the passage of heat between two bodies of dif

ferent temperature can take place in one direction only, and not

in the contrary direction. The only case in which the passage

of heat can occur equally in both directions is when it takes

place between bodies of equal temperature. Strictly speaking,

however, the communication of heat from one body to another of

the same temperature is not possible ; but since the difference of

temperature may be as small as we please, the case in which it

is equal to nothing, and the passage of heat accordingly rever

sible, is a limiting case which may be regarded as theoretically

possible.

5. We will now deduce the mathematical expression for the

above law, treating in the first place the case in which the

change of condition undergone by the body under consideration

takes place reversibly. The result at which we shall arrive for

this case will easily admit of subsequent generalization, so as to

include also the cases in which a change occurs irreversibly.
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Let the body be supposed to undergo an infinitely small

change of condition, whereby the quantity of heat contained in

it, and also the arrangement of its constituent particles, may be

altered. Let the quantity of heat contained in it be expressed

by H, and the change of this quantity by </H. Further, let

the work, both interior and exterior together, performed by the

heat in the change of arrangement be denoted by dL, a magni

tude which may be either positive or negative according as the

active force of the heat overcomes the forces acting in the con

trary direction, or is overcome by tbem. We obtain the heat

expended to produce this quantity of work by multiplying the

work by the thenrfal-equivalent of a unit of work which we

may call A ; hence it is ArfL.

The sum tfH+ArfL is the quantity of heat which the body

must receive from without, and must accordingly withdraw from

another body during the change of condition. We have, how

ever, already represented by dQ, the infinitely small quantity of

heat imparted to another body by the one which is undergoing

modification, hence we must represent in a corresponding man

ner, by —dQ, the heat which it withdraws from another body.

We thus obtain the equation

-<?Q=rfH + ArfL,

or

dQ + dR + AdL=0* (1)

In order now to be able to introduce the disgregation also into

the formulae, we must first settle how we are to determine it as a

mathematical quantity.

By disgregation is represented, as stated in Art. 2, the degree

* In my previous memoirs I have separated from one another the interior

and the exterior work performed by the heat during the change of condition

of the body. If the former be denoted by dL, and the latter by dW, the

above equation becomes

dQ+da+AdL+AdW= 0 (a)

Since, however, the increase in the quantity of heat actually contained in a

body, and the heat consumed by interior work during a change of condi

tion, are magnitudes of which we commonly do not know the individual

values, but only the sum of those values, and which resemble each other in

being fully determined as soon as we know the initial and final conditions

of the body, without our requiring to know how it has passed from the one

to the other, I have thought it advisable to introduce a function which shall

Q
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of dispersion of the body. Thus, for example, the disgregation

of a body is greater in the liquid state than in the solid, and

greater in the aeriform than in the liquid state. Further, if part

of a given quantity of matter is solid and the rest liquid, the

disgregation is greater the greater the proportion of the whole

mass that is liquid ; and similarly, if one part is liquid and the

remainder aeriform, the disgregation is greater the larger the

aeriform portion. The disgregation of a body is fully deter

mined when the arrangement of its constituent particles is

given; but, on the other hand, we cannot say conversely that

the arrangement of the constituent particles is determined when

the magnitude of the disgregation is knoVn. It might, for

example, happen that the disgregation of a given quantity of

matter should be the same when one part was solid and one part

aeriform, as when the whole mass was liquid.

We will now suppose that, with the aid of heat, the body

changes its condition, and we will provisionally confine ourselves

to such changes of condition as can occur in a continuous and

represent the sum of these two magnitudes, and which I have denoted by U.

Accordingly

dU=<ffl+AdI, (6)

and hence the foregoing equation becomes

dQ,+dJJ+AdW=0; (e)

and if we suppose the last equation integrated for any finite alteration of

condition, we have

Q+U+AW=0 (d)

These are the equations which I have used in my memoirs published in

1850 and in 1854-, partly in the particular form which they assume for the

permanent gases, and partly in the general form in which they are here

given, with no other difference than that I there took the positive and ne

gative quantities of heat in the opposite sense to what I have done here, in

order to attain greater correspondence with the equation (I) given in Art. 1.

The function U which I introduced is capable of manifold application in

the theory of heat, and, since its introduction, has been the subject of very

interesting mathematical developments by W. Thomson and by Kirchhoff

(see Philosophical Magazine, S. 4. vol. ix. p. 523, and Poggendorff's An-

nalen, vol. ciii. p. 177). Thomson has called it "the mechanical energy of

a body in a given state," and Kirchhoff" Wirkungsfunction." Although I

consider my original definition of it as representing the sum of the heat added

to the quantity already present and of that expended in interior work, starting

from any given initial state (pp. 29 and 113), as perfectly exact, I can still have

no objection to make against an abbreviated mode of expression. [See the

Appendix A. On Terminology at the end of this memoir]
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reversible manner, and we will also assume that the body has a

uniform temperature throughout. Since the increase of disgre-

gation is the action by means of which heat performs work, it

follows that the quantity of work must bear a definite ratio to

the quantity by which the disgregation is increased; we will

therefore fix the still arbitrary determination of the magnitude

of disgregation so that, at any given temperature, the increase

of disgregation shall be proportional to the work which the heat

can thereby perform. The influence of the temperature is de

termined by the foregoing law. For if the same change of dis

gregation takes place at different temperatures, the correspond

ing work must be proportional to the absolute temperature.

Accordingly, let Z be the disgregation of the body, and dZ an

infinitely small change of it, and let dli be the corresponding

infinitely small quantity of work, we can then put

dL=KTdZ,

or

where K is a constant dependent on the unit, hitherto left

undetermined, according to which Z is to be measured. We

will choose this unit of measure so that K=-r> and the equation

becomes ,„ AdL . .

If we suppose this expression integrated, from any initial con

dition in which Z has the value Z0, we get

Z=Z0+AJ^ (3)

The magnitude Z is thus determined, with the exception of a

constant dependent upon the initial condition that is chosen.

If the temperature of the body is not everywhere the same,

we can regard it as divided into any number we choose of

separate parts, refer the elements dZ and dh in equation (2)

to any one of them, and at once substitute for T the value

of the absolute temperature of that part. If we then unite by

summation the infinitely small changes of disgregation of the

separate parts, or by integration, if there is an infinite number

of them, we obtain the similarly infinitely small change of

Q2
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disgregatiou of the entire body, aud from this we can obtain,

likewise by integration, any desired finite change of disgregation.

We will now return to equation (1), and by help of equation

(2) we will eliminate from it the element of work rfL. Thus

we get

dQ, + dE. + TdZ=0; (4)

or, dividing by T,

d®p* + dZ= 0 (5)

If we suppose this equation integrated for a finite change of

condition, we have

j,«+<5+j«-o (,i)

Supposing the body not to be of uniform temperature through

out, we may imagine it broken up again into separate parts,

make the elements dCi, dH, and dZ in equation (5) refer, in

the first instance, to one part only, and for T put the absolute

temperature of this part. The symbols of integration in (II)

are then to be understood as embracing the changes of all the

parts. We must here remark that cases in which one conti

nuous body is of different temperatures at different parts, so that

a passage of heat immediately takes place by conduction from the

warmer to the colder parts, must be for the present disregarded,

because such a passage of heat is not reversible, and we have

provisionally confined ourselves to the consideration of reversible

changes.

Equation (II) is the required mathematical expression of the

above law, for all reversible changes of condition of a body ; and

it is clearly evident that it also remains applicable, if a series of

successive changes of condition be considered instead of a single

one.

6. The differential equation (4), whence equation (II) is

derived, is connected with a differential equation which results

from the already known principles of the mechanical theory of

heat, and which transforms itself directly into (4) for the parti

cular case in which the body under consideration is a perfect gas.

We will suppose that there is given any body of variable

volume, upon which the only active external force is the pressure

exerted on the surface. Let the volume which it assumes under
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this pressure p, at the temperature T (reckoned from the abso

lute zero) be v, and let us suppose that the condition of the

body is fully determined by the magnitudes T and v. If we now

denote by -jfodv *ne quantity of heat which the body must take

up in order to expand to the extent of dv, without change of

temperature (for the sake of conformity with the mode in

which the signs are used in the other equations occurring in this

section, the positive sense of the quantity of heat is here taken

differently from what it is in equation (4) , in which heat given

up by the body, and not heat communicated to it, is reckoned

positive), the following well-known equation, from the mecha

nical theory of heat, will hold good :—

dv ~ dT-

Let us now suppose that the temperature of the body is changed

by dT, and its volume by dv, and let us call the quantity of heat

which it then takes up dQ ; we may then write

dQjrr. dQ,,
dQ=dTdT+dv-dv-

For the magnitude here denoted by which represents the

specific heat under constant volume*, we can put the letter c,

and for ^? the expression already given. Then we have

dQ=cdT+AT^-dv (6).

«T

The only external force which the body has to overcome on

expanding, being p, the work which it performs in so doing is

pdv, and the magnitude—^ indicates the increase of this work

with the temperature.

If we now apply this equation to a perfect gas, the specific

heat under constant volume is in this case to be regarded as the

real specific heat [capacity for heat] f, which gives the increase

* [Provided the weight of the body under consideration be regarded as a

unit of weight.—1864.]

t [I must here say a few words relative to the expressions real specific heat

and real capacity for heat.

According to the mechanical theory of heat, it is not necessary that the
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in the quantity of heat actually present in the gas ; for here no

heat is consumed in work, since exterior work is only performed

heat imparted to a body should afterwards be actually present in the form

of heat in that body ; a portion of the heat, in fact, may be consumed on interior

or exterior work. Accordingly it is necessary to consider, not only the dif

ferent specific heats of bodies, which indicate how much heat must be im

parted to a body for the purpose of heating it under different circumstances

(e. g. the specific heat of a solid or liquid body at the ordinary atmospheric

pressure, the specific heat of a gas at constant volume or under constant

pressure, and the specific heat of a vapour at its maximum density), but also

another magnitude indicating by how much the heat actually present in a

unit-weight of the substance in question—in other words, the vis viva of its

molecular motions—is increased by an elevation of one degree in temperature.

Hitherto I have, in accordance with Rankine's custom, called this magni

tude the real specific heat ; I must confess, however, that to me the expres

sion does not appear to be quite appropriate. It implies, in fact, that the

other magnitudes above named—for instance the specific heat of a gas under

constant pressure—have improperly received the name specific heat. But in

the words specific heat there is nothing whatever on which to found the ob

jection that the quantity of heat which must be imparted to a unit-weight of

gas, under constant pressure, in order to raise its temperature one degree

ought not to be termed the specific heat under constant pressure. It is

otherwise, however, with the expression capacity for heat. These words

clearly indicate that the heat in question is that which the body can contain.

Accordingly the expression is a very appropriate one for denoting by how much

the heat actually present in the body is increased by the elevation of tem

perature ; whilst, strictly speaking, it is not applicable to the total quantity of

heat which must be imparted to a body during its elevation of temperature,

of which quantity a portion is transformed into work, and the remaining por

tion alone remains as heat in the body.

I should deem it advantageous, therefore, to distinguish the two expressions

specific heat and capacityfor heat, which have hitherto been employed synony

mously in physical treatises ; to give the name specific heat to the total quan

tity of heat which must be imparted to the body to elevate its temperature,

so that there will be different kinds of specific heat according to the different

conditions under which this elevation occurs, and to reserve the name capa

city for heat for the heat actually present in a body. Since this distinction,

however, has not yet been made, the term real may provisionally be added,

and the expression real capacityfor heat used to denote the magnitude which

indicates by how much the heat actually present in a unit-weight of the

substance is increased by an elevation of one degree in temperature.

In order to introduce this terminology, I have in the text employed the

words real capacity for heat wherever the expression real specific heat appears

in the original. This is of course a merely verbal alteration and has no effect

on the meaning, since, hitherto, physicists have drawn no distinction what

ever between specific heat and capacity for heat ; to indicate the alteration,

however, the latter of these expressions, whenever it is substituted for the

former, is placed between square brackets.—1864.]
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when increase of volume occurs, and interior work has no

existence in the case of perfect gases. We may therefore re

gard cdT as identical with dH. We have further, for the per

fect gases, the equation

/w=RT,

where R is a constant, and hence we get

~.dv= — =Rd . log v.dT v b

Equation (6) is thus transformed into

</Q=dH+ARTd.logt>*. .... (f)

This equation agrees, disregarding the difference in the sign of

dQ. (which is caused only by the different way in which we have

chosen to employ the signs + and — in this case), with equa

tion (4), and the function there represented by the general sym

bol Z has, in this particular case, the form AR log v.

Rankine, who has written several interesting memoirs on the

transformation of heat into workf, has proposed a transforma

tion of equation (6), for all other bodies, similar to that above

given for perfect gases onlyf. To this end he writes, only with

slightly different letters,

dQ,=kdT + ATdF, (8)

where k denotes the real [capacity for heat] of the body, and F is

a magnitude to the determination of which Rankine appears to

have been led chiefly by the circumstance mentioned above, that

the quantity Jji<&> which occurs in equation (6) represents the

increase of exterior work done during the infinitely small

change ofvolume which accompanies an increase of temperature.

Rankine defines the magnitude F as " the rate of variation of

* [If we retain for dH the product cdT, and for d log v the expression

the equation (7) will have the form

dQ=cdT+AR-dv,
v

and become the same as the equation (II 6) which presented itself in the

First Memoir, at p. 38.—1864.]

t Philosophical Magazine, S. 4, vol. v. p. 106 ; Edinburgh New Philo

sophical Journal, New Series, vol. ii. p. 120 ; Manual of the Steam-engine.

% Manual of the Steam-engine, p. 310.
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performed effective work with temperature;" and denoting the

exterior work which the body can do in passing, at a given tem

perature, from a given former condition into its present one,

by U, he puts

F=S ®

In the discussion which immediately follows, of the case in

which the exterior work consists only in overcoming an external

pressure, he gives the equation

XJ = \pdv,

whence follows

F=J^ (10)

The integals which here occur are to be taken from a given

initial volume to the actually existing volume, the temperature

being supposed constant. Introducing this value of F into

equation (8), he writes it in the following form :—

dQ=(* + ATp^<fe)rfT + AT^«to. . . (11)

His reason for taking an infinitely large volume as the initial

volume is not stated, although the choice of the initial volume

is evidently not a matter of indifference.

It is easy to see that this manner of modifying equation (6)

is very different from my development ; the results are also dis

cordant; for the quantity F is not identical with the corresponding

quantity -v-Z in my equations, but only coincides with it in that

part which could be deduced from data already known ; that is

to say, the last term of equation (6) gives the differential coeffi

cient, according to v, of the magnitude which has to be intro

duced, since, to secure the coincidence of this term and the last

in the modified equation, we must in any case put

Rankine has, however, as may be seen from equation (10),

* [Conceive a function of T and v to be introduced ; it may be denoted at
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formed the magnitude F by simply integrating, according to v,

this expression for the differential coefficient of F according to

v. In order to see in what way the magnitude -r- Z diners from

this, we will modify somewhat the expression for Z given in the

preceding Art.

According to equation (2),

A

«?L denotes here the interior and exterior Work, taken together,

which is performed when the body undergoes an infinitely slight

change of condition. We will denote the interior work by dl ;

and since when the condition of the body is determined by its

temperature T and its volume v, I must be a function of these

two quantities, we may write

dl=^dT+~dv.
dT dv

The exterior work, assuming it to consist merely in overcoming

an external pressure, is represented by pdv. Hence, if we fur

ther decompose the differential dZ into its two parts, we may

write the above equation thus :—

T dl _ , T dZ , dl _ , (dl , \ ,
A 5TrfT + A dtdv=dTdT+{Tv+?)dv>

pleasure by either F or by -j-Z, but in either case let it have the property of

satisfying the equation

dQ=/WT+AT<*F,

or

dQ,=kdT+TdZ.

These equations may then be written in the form

iQ=(A+ATg)dT+ATf^,

or

and on supposing them to exist simultaneously with (6), and remembering

that the factors of dv must be the same in all three equations, we at once

conclude that the magnitudes F and -rZ must satisfy the condition expressed

in (12).—1864.]
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whence we have

T dZ_ dl

AdT~dT-

• 1dZ=dl

A dv~ dv

(13)

Differentiating the first of these equations according to v, and

the second according to T, we get

T d*Z _ (PI

A dTdv~dTdv'

ldZ T d*L _ d*L dp

A dv +A dTdv d'idv + dT-

The first of these equations subtracted from the second, gives

1 dZ_ dp

A dv ~dT

The differential coefficient of Z according to v consequently

fulfils the condition given in (12) ; the first of the equations

(13) gives at the same time the differential coefficient accord

ing to T ; and putting these two together, we obtain the complete

differential equation

• • - (i4>

To obtain the quantity -^Z, we must integrate this equation.

It is easy to see that this integral will in general differ by a

function of T from that which would be obtained by integrating

only the last term*. It is only when that the two

integrals may at once be regarded as equal, and then, in order

that the foregoing equation may be integrable, it follows that

^p=0; this case occurs in perfect gases.

I believe that what I can claim as new in my equation (II)

* [In order to integrate the equation (14), we will assume an initial con

dition in which the temperature and volume have the values T0 and v0, and

denote by Z0 the corresponding value of Z. Let us suppose then that the

temperature first changes from T0 to any given value T, and that, subse

quently, the volume changes, without further alteration of temperature, from
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is just this, that the magnitude Z which there occurs has

acquired, through my developments, a definite physical mean

ing, whence it follows that it is fully determined by the arrange

ment of the constituent particles of the body which exist at any

given instant. Thus only does it become possible to deduce from

this equation the important conclusion which follows.

7. We will now investigate the manner in which, from equa

tion (II), it is possible to arrive at the equation (I) previously

given in Art. 1, which equation must hold, according to the

fundamental theorem that I have already enunciated, for every

reversible cyclical process.

When the successive changes of condition constitute a cyclical

process, the disgregation of the body is the .same at the end of

the operation as it was at the beginning, and hence the follow

ing equation must hold good :—

pZ=0 (15)

Equation (II) is hereby transformed into

J^S=0. <16)

In order that this equation may accord with equation (I),

namely,

the following equation must hold for every reversible cyclical

process :—

j^=0 (HI)

It is this equation which leads to the consequence referred to

v0 to v. By pursuing this course of changes we obtain by integration the

following equation

It is manifest that the integral

To 1 ' o=I>o

which here presents itself is the function of T, mentioned in the text, as that

by which the magnitude -iz differs from the magnitude F, as defined by the

equation (10).—1866.]
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in the introductory Art.* as at variance with commonly received

views. It can, in fact, be proved that, in order that this equa

tion may be true, it is at once necessary and sufficient to assume

the following theorem :—

The quantity of heat actually present in a body depends only

on its temperature, and not on the arrangement of its constituent

particles.

It is at once evident that the assumption of this theorem suf

fices for equation (III) ; for if H is a function of the temperature

only, the differential expression -=- takes the form/(T)«TF, in

which /(T) is obviously a real function which can have but one

value for each value of T, and the integral of this expression

must obviously vanish if the initial and final values of T are the

same.

The necessity of this theorem may be demonstrated thus.

In order to be able to refer the changes of condition to

changes of certain magnitudes, we will assume that the manner

in which the body changes its condition is not altogether arbi

trary, but is such that the condition of the body is deter

mined by its temperature, and by any second magnitude

which is independent of the temperature. This second mag

nitude must plainly be connected with the arrangement of

the constituent particles : we may, for example, consider the

disgregation of the body as such a magnitude; it may, how

ever, be any other magnitude dependent on the arrangement of

the constituent particles. A case which often occurs, and one

which has been frequently discussed, is that in which the volume

of the body is the second magnitude, which can be altered in

dependently of the temperature, and which, together with the

temperature, determines the condition of the body. We will

take X as a general expression for the second magnitude, so

that the two magnitudes T and X together determine the con

dition of the body.

Since, however, the quantity of heat H, present in the body,

is a magnitude which in any case is completely determined by

the condition of the body at any instant, it must here, where

the condition of the body is determined by the magnitudes T

* [See p. 216.]
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and X, be a function of these two magnitudes. Accordingly,

we may write the differential dH in the following form,

dH=MdT+ ~NdX, (17)

where M and N are functions of T and X, which must satisfy

the well-known equation of condition to which the differential

coefficients of a function of two independent variables are sub

ject ; that is, the equation

dM rfN

dX = dT (18)

CdYL
Again, if the integral j-^r is to become equal to nothing each

time that the magnitudes T and X return to the same values as

dH
they had at the beginning, must also be the complete dif

ferential of a function of T and X. And since we may write,

as a consequence of (17),

dH. M _ , N ,Y nQ,
-^-=-^dT + ^dX, (19)

we obtain, for the differential coefficients which here occur, the

equation of condition

^(t^^Ct)' (20)

which exactly corresponds to equation (18).

By effecting the differentiations, this equation becomes

!rfM_lrfN N . .

TdX~TrfT T,J ( '

and, by applying equation (18) to this, we get

N=0 (22)

According to (17), N is the differential coefficient of H accord

ing to X ; and if this differential coefficient is to be generally

equal to nothing, H itself must be independent of X ; and since

we may understand by X any magnitude whatever which is in

dependent of T, and together with T determines the condition

of the body, it follows that H can only be a function of T.

8. This last conclusion appears, according to commonly re

ceived opinions, to be opposed to well-known facts.
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I will choose as an illustrative example, in the first place, a

case which is very familiar, and in which the discrepancy is

particularly great, namely, water in its various states. We may

have water in the liquid state, and in the solid state in the form

of ice, at the same temperature ; and the above theorem asserts

that the quantity of heat contained in it is in both cases the

same. This appears to be contradicted by experience. The

specific heat of ice is only about half as great as that of liquid

water, and this appears to furnish grounds for the following

conclusion. If at any given temperature a unit-weight of ice

and a unit-weight of water in reality contained the same quantity

of heat, we must, in order to heat or cool them both, impart to

or withdraw from the water more heat than we impart to or

withdraw from the ice, so that the equality in the quantity of

heat could not be maintained at any other temperatures. A

similar difference to that existing between water and ice also

exists between water and steam, inasmuch as the specific heat of

steam is much smaller than that of water.

To explain this difference, I must recall the fact that only

part of the heat which a body takes up when heated goes to

increase the quantity of heat actually present in it, the remainder

being consumed as work. Now, I bebeve that the differences in

the specific heat of water in its three states of aggregation are

caused by great differences in the proportion which is consumed

as work, and that this proportion is considerably greater in the

liquid state than in the other two states*. We must, accord

ingly, here distinguish between the observed specific heat and

* I have already enunciated this view in my first memoir on the Mecha

nical Theory of Heat, having, in fact, inserted the following in a note [p. 20],

which has reference to the diminution of the cohesion of water with increase

of temperature :—" Hence it follows, at once, that only part of the quantity

of heat which water receives from without when heated, is to be regarded as

heat in the free state, the rest being consumed in diminishing cohesion. This

view is in accordance with the circumstance that water has so much higher

a specific heat than ice, and probably also than steam." At that time the

experiments of Regnault on the specific heat of gases were not yet published,

and we still found in the text-books the number 0-847, obtained by De la Roche

and Berard, for the specific heat of steam. I had, however, already con

cluded, on the theoretical grounds which are the subject of the present dis

cussion, that this number must be much too high ; and it is to this conclusion

that the concluding words " and probably also than steam " refer.
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the real [capacity for heat] with which the change of tempera

ture dT must be multiplied, in order that we may obtain the

corresponding increase of the quantity of heat actually present ;

and, in accordance with the above theorem, I believe we must

admit that the real [capacity for heat] of water is the same in

all three states of aggregation ; and the same considerations

which apply to water must naturally also apply in like manner

to other substances. In order to determine experimentally

the real [capacity for heat] of a substance, it must be taken in

the form of strongly overheated vapour, in such a state ofexpan

sion, in fact, that the vapour may, without sensible error, be

regarded as a perfect gas; and its specific heat must then be

determined under constant volume*.

Rankine is not of my opinion in relation to the real [capacity

for heat] ofbodies in different states of aggregation. At page 307

of his ' Manual of the Steam-Engine,' he says, " The real specific

heat of each substance is constant at all densities, so long as the

substance retains the same condition, solid, liquid, or gaseous ;

but a change of real specific heat, sometimes considerable, often

accompanies the change between any two of these conditions."

In the case of water in particular, he says, on the same page,

that the real specific heat of liquid water is " sensibly equal " to

the apparent specific heat; whereas, according to the view above

put forth by myself, it must amount to less than half the

apparent specific heat.

If Rankine admits that the real [capacity for heat] may be

different in different states of aggregation, I do not see what

reason there is for supposing it to remain constant within the

same state of aggregation. Within one and the same state

of aggregation, e.g. within the solid state, alterations in the

arrangement of the molecules occur, which, though without

doubt less considerable, are still essentially of the same kind as

the alterations which accompany the passage from one state of

aggregation to another ; and it therefore seems to me that there

is something arbitrary in denying for the smaller changes what

* [In the Appendix B. to this memoir will be found a Table containing the

specific heats at constant volume, calculated according to the principles of

the mechanical theory of heat, for those gases and vapours whose specific

heats under constant pressure have been observed by Regnault.—1864.]
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is admitted in respect to the greater. On this point I cannot

agree with the way in which the talented English mathematician

treats the subject; relying simply on the law established by

myself in relation to the working force of heat, it appears to

me that but one of the following cases can be possible. Either

the above law is correct, in which case the real [capacity for

heat] remains the same, not only for the same state of aggre

gation, but for the different states of aggregation, or the law is

not correct, and in this case we have no definite knowledge

whatever concerning the real [capacity for heat], and it may

equally well be variable within the same state of aggregation as

in different states of aggregation.

9. I believe, indeed, that we must extend the application of

this law, supposing it to be correct, still further, and especially

to chemical combinations and decompositions.

The separation of chemically combined substances is likewise

an increase of the disgregation, and the chemical combination of

previously isolated substances is a diminution of their disgrega

tion ; and consequently these processes may be brought under

considerations of the same class as the formation or precipitation

of vapour. That in this case also the effect of heat is to increase

the disgregation, results from many well-known phenomena,

many compounds being decomposable by heat into their consti

tuents—as, for example, mercuric oxide, and, at very high

temperatures, even water. To this it might perhaps be objected

that, in other cases, the effect of increased temperature is to

favour the union of two substances—that, for instance, hydrogen

and oxygen do not combine at low temperatures, but do so

easily at higher temperatures. I believe, however, that the heat

exerts here only a secondary influence, contributing to bring

the atoms into such relative positions that their inherent forces,

by virtue of which they strive to unite, are able to come into

operation. Heat itself can never, in my opinion, tend to pro

duce combination, but only, and in every case, decomposition.

Another circumstance which renders the consideration of this

case more difficult is this, that the conclusions we have been

accustomed to draw always imply that the alterations in question

can take place in a continuous and reversible manner; this,

however, is not usually the case under the circumstances which
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accompany our chemical operations. Nevertheless cases do

occur in which this condition is fulfilled, especially in the

chemical changes brought about by the action of elective force.

The galvanic current affords us a simple means of causing com

bination or decomposition ; and in this case the cell in which the

chemical change takes place itself forms a galvanic element, the

electromotive force of which either contributes to intensify the

current, or has to be overcome by other electromotive forces ; so

that in the one case there is a production, and in the other a

consumption of work.

Similarly, I believe that we could in all cases, by producing

or expending work, cause the combination or separation of sub

stances at pleasure, provided we possessed the means of acting

at will on the individual atoms, and of bringing them into what

ever position we pleased. At the same time I am of opinion

that heat, leaving out of view its secondary effects, tends in a

definite manner, in all cases of chemical change, to render the

combination of atoms more difficult, and to facilitate their sepa

ration, and that the energy of its action is likewise regulated by

the general law above given.

Supposing this to be the case, the theorem which we have

deduced from this law must also be applicable here, and a che

mical compound must contain exactly the same quantity of heat

as its constituents would contain at the same temperature in the

uncombined state. Hence it follows that the real [capacity for

heat] of every compound must admit of being simply calculated

from the real [capacities] of the simple bodies*. If, further,

the well-known relation between the specific heats of the simple

bodies and their atomic weights be taken into consideration (a

relation which I believe not only to be approximately, but, in the

case of real [capacities for heat], absolutely exact), it will be

apparent what enormous simplifications the law which we have

established is capable, supposing it to be true, of introducing

into the doctrine of heat.

* [The Appendix B, already referred to, also contains the principal portions

of a Note, published by me in the Annalen der Chemie und Pharmacie,

which offers an opportunity of testing how far the specific heats, at constant

volume, of a series of gases (calculated according to Eegnault-s observations)

correspond to the theorem, deduced in the text, relative to the true capacities

for heat.—1864.]

K
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10. After these expositions, I can now state the more extended

form of the theorem of the equivalence of transformations.

In Art. 1 I have mentioned two kinds of transformations :

first, the transformation of work into heat, and vice versd ; and

secondly, the passage of heat between bodies of different tem

peratures. In addition to these, we will now take, as a third

kind of transformation, the change in the disgregation of a

body, assuming the increase of disgregation to be a positive,

and the diminution of it to be a negative transformation.

We will now, in the first place, bring the first and last trans

formations into relation with each other; and here the same

circumstances have to be taken into consideration as have

already been discussed in Art. 5. If a body changes its disgre

gation in a reversible manner, the change is accompanied by a

transformation of heat into work, or of work into heat, and we

can determine the equivalent values of the two kinds of trans

formations by comparing together the transformations which

take place simultaneously.

Let us first assume that the same change of arrangement

takes place at different temperatures ; thp quantity of heat which

is thereby converted into work, or is produced from work, will

then vary ; in fact, according to the above law, it will be pro

portional to the absolute temperature. If, now, we regard as

equivalent the transformations which correspond to one and the

same change of arrangement, it results that, for the determi

nation of the equivalence-values of these transformations, we

must divide the several quantities of heat by the absolute tem

peratures respectively corresponding to them. The production

of the quantity of heat Q from work must, therefore, if it takes

place at the temperature T, have the equivalence-value

jp const. ;

and if we here take the constant, which can be assumed at will,

as equal to unity, we obtain the expression given in Art. 1.

We will assume, in the second place, that different changes

of arrangement take place at one and the same temperature, these

changes being accompanied by increase of disgregation ; and if

we adopt as a principle that increments of disgregation wherein

the same quantity of heat is converted into work shall be re
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garded as equivalent to each other, and that their equivalence-

value shall be equal, when taken absolutely, to that of the

simultaneously occurring transformation from heat into work,

but that they shall have the opposite sign, we thus acquire a

starting-point for the determination of the equivalence-values of

changes of disgregation.

By combining these two rules, we can determine also the

equivalence-value of a change of disgregation occurring at

various temperatures, and we thus obtain the expression given

in Art. 5. Let, for instance, dh be an element of the work

performed during a change of disgregation, in effecting which

the quantity of heat Adh is consumed, and let the equivalence-

value of the change of disgregation be denoted by Z—Z0,

we then have

Z-Z0=Apf.

Finally, as to the process cited above as the second kind of

transformation—namely, the passage of heat between bodies of

different temperatures,—in the case of reversible changes of

condition it can be brought about only by heat being converted

into work at the one temperature, and work back again into

heat at the other ; it is therefore already comprised among the

transformations of the first kind. And, as I have mentioned in

my previous memoir, we may in all cases regard a transforma

tion of the second kind as a combination of two transformations

of the first kind.

We will now return to equation (II), namely,

dK is here the increment of the quantity of heat present in the

body corresponding to an infinitely small change of condition,

and dQ. is the quantity of heat simultaneously given up to external

bodies. The sum dQ+ dR is therefore the new quantity of heat

which, supposing it to be positive, must be produced from work,

or if it is negative, must be converted into work. Accordingly,

the first integral in the above equation is the equivalence-value

of all the transformations which have occurred of the first kind ;

k 2
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the second integral represents the transformations of the third

kind ; and the sum of all these transformations must be, as is

expressed by the equation, equal to nothing.

Hence, in so far as reversible alterations of condition are con

cerned, the theorem may be expressed in the following form :—

If the equivalence-value ~ be assumedfor the production of the

quantity of heat Qfrom work at the temperature T, a magnitude

admits of being introduced, as a second transformation corre

sponding thereto, which has relation to changes in the arrange

ment of the particles of the body, is completely determined by the

initial and final conditions of the body, andfulfils the condition

that in every reversible change of condition the algebraic sum of

the transformations is equal to nothing.

11. We must now examine the manner in which the fore

going theorem is modified when we give up the condition that

all changes of condition are to take place revcrsibly.

From what has been said in Art. 4 concerning non-reversible

changes of condition, it is easy to perceive that the following

must be a general property of all three kinds of transforma

tions. A negative transformation can never occur without a

simultaneous positive transformation whose equivalence-value is

at least as great ; on the other hand, positive transformations are

not necessarily accompanied by negative transformations of equal

value, but may take place in conjunction with smaller negative

transformations, or even without any at all.

If heat is to be transformed into work, which is a negative

transformation, a positive change of disgregation must take

place at the same time, which cannot be smaller in amount than

that determinate magnitude which we regard as equivalent. In

the positive transformation of work into heat, on the other hand,

the state of things is different. If the force of heat is overcome

by opposing forces, so that a negative change of disgregation is

brought about, we know that in this case the overcoming forces

may be greater than is required to produce the particular result.

The excess of force may then give rise to motions of considerable

velocity in the parts of the body under consideration, and

these motions may subsequently be changed into the molecular

motions which we call heat, so that in the end more work comes
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to be transformed into heat than corresponds to the negative

change of disgregation brought about. In many operations,

especially in friction, the transformation of work into heat may

take place even quite independently of any simultaneous negative

transformation.

The relation in which the third kind of transformation,

namely change of disgregation, stands to considerations of this

nature, is implied in what has been already said. The positive

change of disgregation may indeed be greater, but cannot be

smaller, than the accompanying transformation of heat into

work ; and the negative change of disgregation may be smaller,

but cannot be greater, than the transformation of work into

heat.

Finally, in so far as regards the second kind of transformation,

or the passage of heat between bodies of different temperatures,

I have thought myself justified in assuming as a fundamental

proposition what, according to all that we know of heat, must be

regarded as well-established, namely, that the passage from a

lower to a higher temperature, which counts as a negative trans

formation, cannot take place of itself—that is, without a simulta

neous positive transformation. On the other hand, the passage of

heat in the contrary direction, from a higher to a lower tempera

ture, may very well take place without a simultaneous negative

transformation.

Taking these circumstances into consideration, we will now

return once more to the consideration of the development by

means of whichwe arrived at equation (II) in Art. 5. Equation (2),

which occurs in the same Article, expresses the relation in which

an infinitely small change of disgregation must stand to the

work simultaneously performed by the heat, under the condition

that the change takes place in a reversible manner. In case

this last condition need not be fulfilled, the change of disgre

gation may be greater, provided it is positive, than the value

calculated from the work; and if negative, it may be, when

taken absolutely, smaller than that value, but in this case also it

would algebraically have to be stated as greater. Instead of

equation (2), we must therefore write

,„ Adh ,„ ,
dZ^-y- (2«)
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Applying this to equation (1), we obtain, instead of equation (5),

^S+rfEfcO (5«)

The further question now arises, what influence would it have

on the formulae, if a direct passage of heat took place between

parts of different temperature within the body in question.

In case the body is not of uniform temperature throughout,

the differential expression occurring in equation (5 a) must not

be referred to the entire body, but only to a portion whose tem

perature may be considered as the same throughout ; so that if

the temperature of the body varies continuously, the number of

parts must be assumed as infinite. In integrating, the ex

pressions which apply to the separate parts may be united again

to a single expression for the whole body, by extending the in

tegral, not only to the changes of one part, but to the changes

of all the parts. In forming this integral, we must now have

regard to the passage of heat taking place between the dif

ferent parts.

It must here be remarked that dQ is an element of the heat

which the body under consideration gives up to, or absorbs from,

an external body which serves only as a reservoir of heat, and

that this element does not come into question now that we are

discussing the passage of heat between the different parts of the

body itself. This transfer of heat is mathematically expressed

by a decrease in the quantity of heat H in one part, and an

equivalent increase in another part ; and accordingly we require

to direct our attention only to the term in the differential

expression (5 a) . If we now suppose that the infinitely small

quantity of heat dH. leaves one part of the body whose tempera

ture is T1, and passes into another part whose temperature is T2,

there result the two following infinitely small terms,

dK , dll
-Tp-and +-=-,

which must be contained in the integral ; and since T1 must be

greater than T2, it follows that the positive term must in any

case be greater than the negative term, and that consequently

the algebraic sum of both is positive. The same thing applies
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equally to every other element of heat transferred from one part

to another; and the change which the integral of the whole

differential expression occurring in (5 a) undergoes, on account

of this transfer of heat, can therefore only consist in the addition

of a positive quantity to the value which would else have been

obtained. But since, as results from equation (5 a) , the last

value which would be obtained, without taking this direct

transfer of heat into consideration, cannot be less than nothing,

this can still less be the case when it has been increased by

another positive quantity.

We may therefore write as a general expression, including all

the circumstances which occur in non-reversible changes, the

following, instead of equation (II) :—

(II a)

The theorem which in Art. 1 was enunciated in reference to cycli

cal processes only, and was represented by the expression (la),

has thus assumed a more general form, and may be enun

ciated thus :—

The algebraic sum of all the transformations occurring during

any change of condition whatever can only be positive, or, as an

extreme case, equal to nothing.

In my previous paper I have spoken of two transformations

with opposite signs, which neutralize each other in the algebraic

sum, as compensating transformations. The foregoing theorem

may therefore be enunciated still more briefly as follows :—

Uncompensated transformations can only be positive*.

12. In conclusion, we will submit the integral

CdH.

J T '

which has been frequently used above, to a somewhat closer con

sideration. We will call this integral, when it is taken from any

* [I -will here say a word as to the manner in which I have defined

positive and negative transformations, since, without anticipating matters, I

could not on first making choice of these signs, in the Fourth Memoir,

p. 123, state the reasons which determined my choice.

If transfers of heat between bodies of different temperatures were alone the

subject of contemplation, it might perhaps be thought more appropriate to

call the transfer of heat from a colder to a warmer body a positive, and the
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given initial condition to the condition actually existing, the trans

formation-value of the heat actually present in the body when

calculatedfrom the given initial condition. That is, when in any

way whatever work is transformed into heat, or heat into work,

and the quantity of heat present in the body is thereby altered,

the increment or decrement ofthis integral gives the equivalence-

value of the transformations which have taken place. Further,

if transfers of heat take place between parts of different tempe

rature within the body itself, or within a system of bodies,

the equivalence-value of these transfers of heat is likewise ex

pressed by the increment or decrement of this integral, if it is

extended to the whole system of bodies under consideration.

In order to be able actually to perform the integration which

has been indicated, we must know the relation between the

quantity of heat H and the temperature T. If we call the mass

of the body m, and its real [capacity for heat] c, we have, for

a change of temperature throughout amounting to dT, the

equation

dH=mcdT . . (23)

According to what has been said above, the real [capacity for

heat] of a body is independent of the arrangement of its

particles ; and since an arrangement is known, namely, that in

perfect gases, for which we must regard it as established, partly

by existing experimental data, and partly as the result of

theoretical considerations, that the real [capacity for heat] is

independent of temperature, we may assume the same thing for

the other states of aggregation, and may regard the real [capacity

transfer from a warmer to a colder body a negative transformation. Since

we have to consider, however, not only transference of heat but likewise two

other kinds of transformation connected therewith, our point of view on

proceeding to a choice of signs must not be limited to making provision for

the ordimary notions regarding transfers of heat ; we must, on the contrary,

seek for an appropriate distinctive feature common to all three kinds of trans

formations. The theorem enunciated in the text furnishes this feature. Each

of the three kinds of transformation can take place, in one direction, of itself

or without compensation, but in the opposite direction only with compensa

tion. In nature, therefore, there is a general tendency to transformations of

a definite direction. I have taken this tendency as the normal one, and

called the transformations which occur in accordance with this tendency,

positive, and those which occur in opposition to this tendency, negative.—

1864.]
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for heat] as always constant. Thence it follows that the amount

of heat present in a body is simply proportional to its absolute

temperature, inasmuch as we can write

H=mcT (24)

Even when the body is not homogeneous, but consists of

different substances, all, however, at the temperature T, the

foregoing equation will still remain applicable, if for c we substi

tute the corresponding mean value. On the other hand, if diffe

rent parts of the body have different temperatures, we must in

the first instance apply the equation to the separate parts, and

then unite the various equations by summation. If, for the

sake of generality, we assume that the temperature varies con

tinuously, so that the body must be conceived as divided into an

infinite number of parts, the equation takes the following form :

H= |cTe?m (25)

Applying these expressions to the integral given above for the

transformation-value of the heat in the body, and denoting the

initial temperature by T0, we obtain^ for the more simple case

in which the temperature is uniform throughout,

CdH HdT . T ,„„

and, as a general expression embracing all cases,

T
c log sr- dm (27)

Ao

If the disgregation of a body is changed, without heat being

suppbed to or withdrawn from it, by an external object, the

amount of heat contained in the body must be changed in con

sequence of the production or consumption of heat attendant on

the change of disgregation, and a rise or fall of temperature

must be the result ; consequently the question may be raised.

How great must the change of disgregation be in order to

bring about a given change of temperature, it being assumed

that all changes of condition take place reversibly? In this

case we must apply equation (II), putting dQ,_0, whereby it is

transformed into

j^+JrfZ=0 (28)
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If we assume, for the sake of simplicity, that the temperature of

the entire body varies uniformly, so that T has the same value

for all parts, we may apply equation (26) to the determination

of the first of the two integrals; and we thus obtain, for the

required change of disgregation, the equation

Z-Z0=mclog^p* (29)

If we desired to cool a body down to the absolute zero of tem

perature, the corresponding change of disgregation, as shown

by the foregoing formula, in which we should then have T= 0,

would be infinitely great. Hereon is based the argument by

which it may be proved to be impossible practically to arrive at

the absolute zero of temperature by any alteration of the con

dition of a body.

APPENDICES TO SIXTH MEMOIR [1864].

APPENDIX A. (Page 226.)

ON TERMINOLOGY.

The new conceptions which the mechanical theory of heat has

introduced into science present themselves so frequently in all

investigations on heat, that it has become desirable to possess

simple and characteristic names for them.

I have divided into the following three parts the heat which

must be imparted to a body in order to change its condition in

any manner whatever : first, the increased amount of heat ac

tually present in the body ; second, the heat consumed by inte

rior work ; and third, the heat consumed by exterior work. Of

these three quantities of heat the last can only be determined

when all the changes are known which the body has suffered ;

* [If the above simplifying hypothesis—that the temperature is the same

in all parts of the body and changes in the same manner—be not made, we

shall have the equation

Z-Z0=Jclog^rfm,

instead of the equation (29).—1864.]
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for the determination of the two first quantities, however, a

knowledge of the entire series of changes is not necessary, an ac

quaintance with the initial and final conditions of the body suf

fices. Given, therefore, the initial condition, proceeding from

which the body arrives successively at any other conditions what

ever, the first and second of the above quantities of heat may be

regarded as two magnitudes which are perfectly defined by the

condition of the body at the moment under consideration. The

same remark applies, of course, to the sum of these two quanti

ties which I have represented by U, and which is of great im

portance, inasmuch as it presents itself in the first fundamental

equation of the mechanical theory of heat*.

The definition I have given of this magnitude—the sum of

the increment of actually present heat, and of the heat consumed

by interior work—being for general purposes too long to serve

as the name of the quantity, several more convenient ones have

been proposed. As already remarked in the note on p. 226,

Thomson has to this end employed the expression " the mecha

nical energy of a body in a given state," and KirchhofF the term

" Wirkungsfunction." Zeuner, again, in his " Grundzuge der

mechanischen Warmetheorie," has called U " die innere Warme

des Korpers " (interior heat of the body) .

The latter name does not appear to me to correspond quite to

the signification of the magnitude U, since only a portion of the

latter represents heat actually present in the body, in other

words, vis viva of its molecular motions, the other portion having

reference to heat which has been consumed by interior work, and

which, therefore, no longer exists as heat. I do not for a mo

ment imagine that Zeuner had any intention to imply, by that

name, that all the heat represented by U was actually present

as heat in the body ; nevertheless the name might easily be

interpreted in this sense.

Of the two other expressions mentionod above, the term

energy employed by Thomson appears to me to be very appro- ! |

priate ; it has in its favour, too, the circumstance that it corre

sponds to the proposition of Rankine to include under the

common name energy, both heat and everything that heat can

* See equation (II a) of the First Memoir, p. 28, and equation (I) of the

Fourth Memoir, p. 118.
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replace. I have no hesitation, therefore, in adopting, for the

quantity U, the expression energy of the body.

It must be here observed, however, that the total energy of a

body cannot be measured, it is only the increment of energy,

due to the passage of the body from any initial state to its pre

sent condition, that is susceptible of measurement. The initial

condition being assumed as given, the increment of energy is a

perfectly defined magnitude for every other condition of the

body. The question is, are we to understand by the energy of a

body merely the increment of energy estimated from a given

initial condition, or is the energy which the body possessed at

the beginning to be included in the term ? In the latter case,

where the total energy of the body is imphed, we must conceive

the increment of energy to be supplemented by the addition of

an unknown constant having reference to the initial condition.

It will not always be necessary, of course, to mention this con

stant expressly ; we may tacitly assume that it is included.

Since the magnitude U consists of two parts which have fre

quently to be considered individually, it will not suffice to have

an appropriate name for U merely, we must also be able to refer

conveniently to these its constituent parts.

The first part presents no difficulty whatever ; the heat actually

present in the body may be simply called the heat of the body, or

the thermal content of the body {Warmeinhalt des Korpers).

In giving a name to the second part of U, however, we

are at once inconvenienced by a circumstance which embar

rasses the whole mechanical theory of heat,—the fact that heat

and work are measured by different units. The unit of heat is

the quantity of heat which is necessary to raise the temperature

of a unit-weight of water from 0° to 1°, and the unit of work is

the quantity which is represented by the product of the unit of

weight into the unit of length,—in French measure, therefore, a

kilogramme-metre.

NW in the mechanical theory of heat, after admitting that

heat can be transformed into work and work into heat, in

other words, that either of these may replace the other, it be

comes frequently necessary to form a magnitude of which heat

and work are constituent parts. But heat and work being mea

sured by different units, we cannot in such a case say, simply,
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the magnitude is the sum of heat and work ; we are compelled

to say either the sum of the heat and the heat-equivalent of the

work, or the sum of the work and the work-equivalent of the heat.

Rankine has avoided this inconvenient mode of expression in

his memoirs by assuming as his unit of heat the quantity which

is equivalent to a unit of work. Nevertheless, although per

fectly appropriate on theoretic grounds, it must be admitted

that great difficulties oppose themselves to the general introduc

tion of this measure of heat. On the one hand it is always diffi

cult to change a unit when once adopted, and on the other there

is here the additional circumstance that the heat-unit hitherto

used is a magnitude intimately connected with ordinary calori-

metric methods, and the latter being mostly based on the

heating of water, necessitate only slight reductions, and these

founded on very trustworthy measurements ; the heat-unit

adopted by Rankine, however, besides requiring the same re

ductions, assumes the mechanical equivalent of heat to be

known,—an assumption which is only approximately correct.

Accordingly, since we cannot expect the mechanical measure

for heat to be universally adopted, we must always, when quan

tities of heat enter into an equation, first state whether these

quantities are measured in the ordinary manner or by the me

chanical unit, and consequently the above-mentioned inconveni

ence would not be removed by Rankine's procedure.

For this purpose, therefore, I will venture another proposition.

Let heat and work continue to be measured each according to its

most convenient unit, that is to say, heat according to the

thermal unit, and work according to the mechanical one. But

besides the work measured according to the mechanical unit,

let another magnitude be introduced denoting the work measured

according to the thermal unit, that is to say, the numerical value

of the work when the unit of work is that which is equivalent to

the thermal unit. For the work thus expressed a particular

name is requisite. I propose to adopt for it the Greek word

(epyov) ergon*.

* The author has used the German word Werh, which is almost synony

mous with Arbeit, but he proposes the term JErgon as more suitable for intro

duction into other languages. The Greek word epyov is so closely allied to

the English word work, that both are quite well suited to designate two
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The processes which are considered in the mechanical theory

of heat may be very conveniently described by means of this

new term. Heat and ergon are, in fact, two magnitudes which

admit of mutual transformation and substitution, without any

alteration in the numerical values of the respective quantities

being thereby involved. Accordingly, heat and ergon may, with

out preparation, be added to, or subtracted from, one another.

When we consider the work produced during any change in

the condition of a body, we must call it the ergon produced, if

it be measured by the unit of heat, and here again we distin

guish interior ergon and exterior ergon. The latter, as already

stated in the memoirs, is dependent upon the entire series of

successive changes, whilst the former is completely determined

when the initial and final conditions, solely, are known. As

suming the initial condition to be given, therefore, the interior

ergon may be regarded as a magnitude which depends solely

upon the condition of the body at the moment under considera

tion.

Analogous to the expression thermal content of the body,

we may introduce the expression ergonal content of the body.

With reference to the last conception, however, the same re

mark applies which was previously made with reference to

energy. We may understand by ergonal content, either the

increment of ergon reckoned from a given initial condition, or

the total ergonal content. In the latter case we have merely

to conceive an unknown constant, having reference to the

initial state, added to the increment of ergon ; this is so obvious,

however, that in such cases we may usually assume tacitly that

the constant has been included.

The same remark also applies to the thermal content of a

body. By this term we may likewise understand either the in

crement of heat calculated from an arbitrarily assumed initial

condition, or the total thermal content. In the latter case a con

stant associated with that initial condition is to be added to the

heat-increment. The only difference is that in the case of the

ergonal content, the added constant is quite unknown, whilst

magnitudes which are essentially the same, but measured according to dif

ferent units,—T. A. H.
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in the case of the thermal content, the constant may be approx

imately determined, seeing that the absolute zero of temperature

is to a certain extent known.

Now the quantity U is the sum of the thermal content and

ergonal content, so that in place of the word energy, we may use

if we please the somewhat longer expression, thermal and ergo

nal content.

In connexion with these remarks on Terminology I will

venture another suggestion. Hitherto the heat which dis

appears when a body is fused or evaporated has been termed

latent heat. This name originated when it was thought that

the heat which can no longer be detected by our senses, when a

body fuses or evaporates, still exists in the body in a peculiar

concealed condition. According to the mechanical theory of

heat, this notion is no longer tenable. All heat actually present

in a body is sensible heat; the heat which disappears

during fusion or evaporation is converted into work, and con

sequently exists no longer as heat; I propose, therefore, in

place of latent heat, to substitute the term ergonized heat.

In order to distinguish, in a similar manner, the two parts of

the latent heat which I have stated to be expended, respectively,

on interior and on exterior work, the expressions interior and ex

terior ergonized heat might be used.

It must further be observed that of the heat which must be

imparted to a body in order to raise its temperature without

changing its state of aggregation (all of which was formerly re

garded as free) , a great portion falls in the same category as that

which has hitherto been called latent heat, and for which I now

propose the term ergonized heat. For, in general, the heating of

a body involves a change in the arrangement of its molecules.

This change usually occasions a sensible alteration in volume,

but it may occur even when the volume of the body remains the

same. For every change in molecular arrangement, a certain

amount of ergon is requisite, which may be partly interior and

partly exterior, and in producing this ergon, heat is consumed.

Only a part of the heat communicated to a body, therefore,

serves to increase the heat actually present therein ; the remain

ing part constitutes the ergonized heat.

In certain cases, such as those of evaporation and fusion,
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where the proposed term ergonized heat frequently presents

itself, a more abbreviated form of expression may, of course, be

adopted, should it be found convenient to do so. For instance,

instead of using the expressions ergonized heat of evaporation,

and ergonized heat offusion, we may simply say, as I have done

in my memoirs, heat of evaporation and heat offusion.

APPENDIX B. (Page 239.)

ON THE SPECIFIC HEAT OF GASES AT CONSTANT VOLUME.

In the foregoing memoir it was stated that, in order to ob

tain the true heat-capacity of a substance, it must be used as a

strongly over-heated vapour, and in fact in such a condition of

expansion, that the vapour without appreciable error may be

regarded as a perfect gas, and then its specific heat at constant

volume must be determined. Now in reality this is not, strictly

speaking, quite practicable, since permanent gases themselves,

which are furthest removed from their point of condensation,

do not exactly follow the laws of a perfect gas ; and hence we

must certainly assume that at the temperatures at which they

can be observed, condensible gases, and still more substances,

which at the atmospheric pressure and at ordinary temperatures

are either liquid or solid, and only become gaseous at higher

temperatures, deviate still more considerably from those laws.

To this must be added the circumstance that, with chemically

constituted substances, and particularly with those of a compli

cated and not very permanent constitution, partial chemical

changes accompany the processes of heating and cooling ; such

changes, even if they took place to so small an extent as to be

with difficulty detected, might cause the quantities of heat

taken up or given off by the gas during its heating or cooling

at constant volume to deviate considerably from the true heat-

capacity. Notwithstanding these imperfections, which are more

or less unavoidable, the specific heat at constant volume cor

responding to the gaseous condition of a body is always, of all

the several specific heats of the substance, that which is most

suited to serve as the approximate measure of the true heat-ca

pacity, and consequently it is, in a theoretical point of view, a

magnitude of some interest.
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Now Regnault having recently determined experimentally

the specific heats at constant pressures of a considerable number

of gases and vapours, it was easy to calculate from these numbers,

according to the principles of the mechanical theory of heat, the

specific heats at constant volumes. Accordingly, immediately

after the first publication of Regnault's results, I made these

calculations and registered the results in a table for my own

use. With reference thereto, it must be again remarked that

the method of calculation employed is only strictly correct for

a perfect gas ; nevertheless the tables give at least approximate

results for other gases. It must also be observed that the ob

servation of the specific heat of a gas is the more difficult, and

consequently the corresponding observation-numbertheless trust

worthy the less permanent the gas is, and consequently the more

its deportment deviates from the laws of a perfect gas. Since,

then, no greater exactitude can be demanded from the calculation

than that which the observation-numbers themselves possess,

the method of calculation employed may be regarded as per

fectly suited to its object. In forming my Table, I have thought

it advisable to introduce a small change in one of the two series

of numbers which Regnault has given for the specific heats at

constant pressures. I have referred the numbers there to a

unit somewhat different from that employed by Regnault, and

I have likewise chosen a corresponding different unit in one

of the two series containing specific heats at constant volumes.

Regnault, in fact, gives us the specific heats of gases in two

different ways. He first compares the weights of the gases,

and states the quantity of heat which a unit-weight of each

gas requires in order to have its temperature raised one degree ;

this he expresses in ordinary heat-units, that is to say, in terms

of the quantity of heat which a unit-weight of water absorbs

on being heated from 0° to 1°. In the second place he com

pares the volumes of the gases, and here he again uses the

ordinary unit of heat ; the volume to which the numbers refer

being that which a unit-weight of atmospheric air occupies

when it is of the same temperature and under the same pres

sure as the gas itself under consideration.

By this choice of units the second series of numbers clearly

possesses a rather complicated signification, and its application

s
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is thereby embarrassed. When we compare the volumes of the

gases with those of atmospheric air, it is best to choose a unit

of heat in a corresponding manner, that is to say, so as to com

pare the quantity of heat, which the heating of a certain volume

of gas by 1° requires, with that quantity which an equal volume

of atmospheric air at the same temperature and under the same

pressure requires when equally heated. This method of express

ing the specific heats of gases was formerly generally employed,

and consequently I have deemed it advisable to supplement the

numbers given by Regnault under the rubric " en volume" by a

series of numbers, which have reference to the last-named unit

of heat ; this was easily done, inasmuch as it was merely ne

cessary to divide those numbers by the specific heat of a unit-

weight of atmospheric air expressed in ordinary heat-units. In

a similar manner I have also expressed in both ways the spe

cific heats at constant volumes calculated by myself; so that,

on the one hand, gases are compared with equal weights of

water (the ordinary heat-unit having reference to the unit-

weight of water), and on the other hand, they are compared with,

equal volumes of atmospheric air.

The Tables which I calculated for myself in this manner were

published in the year 1861, in a paper which appeared in the

Annalen der Chemie und Pharmacie, vol. cxviii. p. 106, and

which originated in a previous note by Buff; in this paper the

method of calculation was more fully described. The great

importance of the able physical investigations of Regnault

justify me, I think, in here entering on this subject, and com

municating the Tables in question. To do so, however, I must

once more recalculate the Tables ; for Regnault published the

results of his investigations on the specific heats of gases provi

sionally in the year 1853, in the Comptes Rendus, vol. xxxvi.

p. 676, and in the year 1862 his investigations appeared in

a complete form in the second volume of his Relation des Ex

periences, which likewise forms the twenty-sixth volume of the

Memoirs of the Academy of Paris. The numbers in this

volume, however, are not quite the same as those which first

appeared in the Comptes Rendus ; they were somewhat changed

by subsequent corrections.

My previously published Tables having been calculated from
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the numbers first published by Regnault, I have now to apply

my calculations to the corrected numbers.

In order to explain the calculation of the Tables, it will perhaps

be best first to] collect briefly the principal equations having

reference to perfect gases.

The first characteristic equation of perfect gases, is that which

expresses the law of Mariotte and Gay-Lussac, and is given

in equation (I) of the First Memoir, page 21 . If we intro

duce therein the absolute temperature T instead of the tem

perature t, calculated from the freezing-point, and represent,

as before, by p and v the pressure and the volume referred to

the unit of weight, the equation will take the form

7W= RT, (A)

wherein R is a constant to be specially determined for each

gas.

The other equation which here enters into consideration is

that which expresses the first fundamental theorem of the me

chanical theory of heat when applied to a perfect gas. It is

given in the equation (II) of the First Memoir, p. 38, and on

again introducing the absolute temperature instead of the tem

perature counted from the freezing-point, takes the form

dQ=cdT+ AR-dv, (B)
v

wherein A denotes the calorific equivalent of work, and c, as is

manifest from the equation, the specific heat of the gas at con

stant volume, which may now without hesitation be regarded as

a constant, since the conclusions drawn in that memoir have

been confirmed by the experiments of Regnault.

In the First Memoir it was stated that a relation being

established by the equation (A) between the pressure, volume,

and temperature, any two of these magnitudes may be chosen

arbitrarily as independent variables, and the third then regarded

as a function thereof. The two magnitudes thus chosen, then,

determine the condition of the gas, and by their variations the

changes which the gas suffers, and consequently also the

quantities of heat which the gas must thereby absorb may be

expressed ; provided, of course, that we assume, as we always did

in the equations of the First Memoir, that the changes of the

s 2
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gas take place in a reversible manner .In the differential equation

(B) the temperature and volume are chosen as independent

variables; by the help of equation (A) we may at once deduce

from this differential equation the two other corresponding ones,

which contain on their right-hand sides, instead of the tempera

ture and volume, either the temperature and pressure or the

pressure and volume.

After introducing the variables T and p, the equation becomes

rfQ=(c + AR)rfT-AR-^, .... (B,)

P

and on introducing p and v as variables it takes the form

dCt =^vdp+ ^~^-pdv (B2)

From equation (BJ we see that the sum

c +AR

denotes the specific heat of the gas at constant pressure. Repre

senting this by c' and -replacing in a corresponding manner AR

by the difference c—c, the foregoing three equations become

dQ=cdT+{cJ-c)r^dv, (B')

dQ= c'dT- <c'- c) - dp, (B',)

dQ=±vdp+^pdv <By

I take this opportunity of remarking that in my memoirs I

have employed for the two specific heats, a notation different

from the usual one. Formerly, in fact, it was customary to

denote the specific heat of a gas at constant pressure by c, and

the specific heat at constant volume by d. But since from the

point of view reached by the mechanical theory of heat, the

specific heat at constant volume presents itself as a simpler

magnitude (inasmuch as for a perfect gas the specific heat at

constant volume is the true capacity for heat, whilst the spe

cific heat at constant pressure is the sum of the true heat-capa

city, and of the heat consumed by the work of expansion, that
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is to say, a magnitude composed of two essentially different

parts), it appeared to me to be desirable to select the simpler

symbol for the simpler magnitude, and I have therefore denoted

the specific heat at constant volume by c, and the specific heat

at constant pressure by c'.

Each of the three differential equations, (B), (B1), (B2), may

serve for the calculations corresponding to the changes of con

dition of a gas, and we may always select from the three diffe

rent forms the' one which is most convenient for the required

calculation. All three differential equations are unintegrable so

long as the two variables on the right-hand side are regarded as

independent of each other, and they will only become integrablc

when some further relation is given, between the variables

which they involve, by means of which it will be possible to re

duce the differential equations involving three variables to diffe

rential equations between two variables. The nature of the

changes which the gas suffers is so determined by this relation,

that the whole series of changes become known.

The particular relation which exists between the two specific

heats is now manifest from what has been already stated. For

by the equation (10 a) of the First Memoir (p. 39), we have

c' = c +AR, (a)

whence, on substituting for R the fraction ~, in accordance

with equation (A), and at the same time removing the mag

nitude c to the left-hand side, and c' to the right-hand side, we

obtain

, Ap
(b)

Let us suppose this equation to be specially formed for at

mospheric air, and let us denote by cv c/ and the values of c,

c- and v for atmospheric air ; the equation then gives

_ , _Ap
ci~c i ij\vi>

whence follows

Apc'.-c.
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This substituted in equation (b) gives

c=c--(*'-<0 7 (d)

The fraction — is the reciprocal of the density of the gas com

pared with air at the same temperature and under the same

pressure ; hence, on denoting this density by d, we have

c=c'-^T -<e)

The difference c'1—cl which here makes its appearance may

c
also be determined, and to do so the ratio — must first be calcu-

lated from the observed velocity of sound. In my First Memoir

I employed for this ratio the value 1-421 assumed by Dulong;

the value 1*41, however, appears to be a more correct one, the

third decimal being for the present omitted, since if introduced

it would be uncertain. Employing the latter value, therefore,

we will put

7=1-41, (f)

whence it will follow that

141-

Substituting now the value c\ = 0 2375 as found experimentally

by Regnault*, we have

c.=9r!r=0-1684' •..•(g)

and from this we deduce

c'1-c1=0-2375-01684=00691. . . . (h)

On substituting this numerical value in the equation (e) , we have

, 00691
c—c ,—, or

d

c'd- 00691 ...
C= d W

* In the second volume of his Relation des Experiences, p. 108, Regnault

gives the following numbers corresponding to different limits of temperature:

between-30° and + 10° 0 23771.

„ 0° „ +100° 0-23741.

„ 0° „ +200= 0-23751,
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With respect to the specific heats at constant volumes cor

responding to the unit of volume, I denoted them by 7 in my

First Memoir. They are obtained by dividing the specific heats

c corresponding to the unit of weight by the volume which a

unit of weight of the gas, at the particular temperature and

pressure, assumes. We may put therefore

and for atmospheric air,

v (k)

*-S (1)
The magnitude with which we are at present interested, and by

which the quantity of heat consumed in heating the gas at con

stant volume is compared with the quantity which an equal

volume of atmospheric air requires when equally heated under

the same circumstances, is obtained on finding, from the above

two equations, the value of the fraction— . We have, in fact,

7 .

7i'

(m)

or substituting for cl its value, and for the fraction — the letter

d as before,

7 " C d. (n)

iave

(o)

7x 0-1684

Lastly, on substituting for c the expression given in (i), we have

7 _c'd- 0-0691

<y~ 0-1684

The product c'd, which occurs in the equations (i) and (o),

is the above-named magnitude, given by Regnault, for the

several gases, in the column headed " en volume." In order

therefore to obtain the specific heat of a gas at constant volume,

expressed in either of the two ways above alluded to, viz., as

compared with that of an equal weight of water or as com

pared with that of an equal volume of air, it is merely neces

sary to deduct the number 0-0691 from the number standing

in the column in question, and then to divide the remainder

either by the density of the gas or by the number 0-1684.
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I have collected the numbers so calculated in a Table (p. 266),

-wherein the several columns have the following significa

tions :—

Column I. The name of the gas.

Column II. The chemical constitution expressed in such a

manner that the diminution of volume accompanying the

combination is at once visible. In fact the volumes of the

simple gases which are stated, are those which must combine in

order to produce two volumes of the compound gas. The hypo

thetical volume of carbon gas which appears therein, is that

which must be assumed in order to say that a volume of carbon

gas combines with a volume of oxygen to produce carbonic

oxide gas, and with two volumes of oxygen to produce carbonic

acid. Accordingly, when in the Table alcohol, for instance, is

denoted by C2 H6 O, it indicates that 2 volumes of the hypo

thetical carbon gas, 6 volumes of hydrogen and 1 volume of

oxygen, give 2 volumes of alcohol vapour. In determining the

volume of sulphur gas, I have employed the specific gravity

2-23 found, at very high temperatures, by Sainte-Claire Deville

and Troost. The ordinary chemical symbols are used, irre

spective of their volumes in a gaseous condition, for the elements

silicon, phosphorus, arsenic, titanium and tin, which enter into

the five last combinations of the Table. Since the gas-volumes

of these elements are either still unknown or affected with

certain, not yet sufficiently explained irregularities.

Column III. The density of the gas as given by Regnault.

Column IV. The specific heat under constant pressure, com

pared with that of an equal weight of water, or what amounts

to the same thing, referred to the unit-weight of gas and ex

pressed in ordinary thermal units. These are the numbers

-which Regnault has given in the column headed " en poids."

Column V. The specific heat under constant pressure, com

pared with that of an equal volume of air, and calculated by

dividing the numbers given by Regnault under the heading

" en volume," by the number 0-2375.

Column VI. The specific heat at constant volume, compared

with that of an equal weight of water, and calculated according

to equation (i).

Column VII. The specific heat at constant volume, compared
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with that of an equal volume of air, and calculated according

to equation (o) .

In the Tables published in the Ann. der Chem. und Pharm., I

added an eighth column, giving the true thermal capacity of the

compounds, as compared with the true thermal capacity of an

equal volume of a simple gas.

The numbers contained in this column depend on the suppo

sition more accurately laid down in the preceding memoir, ac

cording to which a chemically compounded substance contains

just as much heat as the constituents would do if separated and

at the same temperature. According to this supposition, we

may very easily calculate the true thermal capacity, correspond

ing to the unit of volume, of a compound gas, from the changes

of volume which occur during the combination, provided we

know the true thermal capacities, corresponding to the same

unit of volume, of the simple gases. For instance, let us con

sider the three simple gases, oxygen, hydrogen, and nitrogen,

whose specific heats at constant volume may be considered as

very nearly equal to one another ; so that we may also assume

that their true thermal capacities are also equal. (The small

deviations arising from the circumstance that the gases are not

quite perfect ones are here neglected.) Now if we consider

the gaseous compounds of the gases and compare the true

thermal capacities of a unit of volume of each compound with

the true thermal capacities of the simple gases, the numerical

ratios are immediately given by the changes of volume which

occur during combination. We thus obtain for binoxide of

nitrogen, where no change of volume occurs, the true thermal

capacity 1 ; for protoxide of nitrogen and for aqueous vapour,

where the diminution of volume is in ratio 1 : f, the thermal

capacity § ; and for ammonia, where the diminution of volume

is in the ratio of 1 : \, the thermal capacity 2. In a similar

manner the true thermal capacity of any other compound gas

may be determined by the theorem under consideration.

My reasons for omitting this column completely from the

following Table, were twofold. In the first place the true

thermal capacity corresponding to the unit of volume, of each

simple component gas being known, the method of determining

that of the compound gas is so simple that the required numbers
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may be immediately read from the chemical formulae, and con

sequently it is scarcely necessary to print them specially ; and

in the second place, since uncertainties still exist as to the true

thermal capacities, corresponding to the unit of volume, of some

of the simple gases, a discussion thereof ought to precede any

numerical statement. I propose to return to this subject on

some future occasion.

in. rv. V, VI. VII.

Specific heat under
constant pressure

Specific heat at
constant volume

Names of the gases.
Chemical
constitu

tion.
Density.

compared
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water.
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SEVENTH MEMOIR.

ON AN AXIOM IN THE MECHANICAL THEORY OF HEAT*.

1. When I wrote my First Memoir on the Mechanical Theory

of Heatf, two different views were entertained relative to the

deportment of heat in the production of mechanical work. One

was based on the old and widely spread notion, that heat is a

peculiar substance, which may be present in greater or less

quantity in a body, and thus determine the variations of tem

perature. Conformably with this notion was the opinion that,

although heat could change its mode of distribution by passing

from one body into another, and could further exist in different

conditions, to which the terms latent and free were applied,

yet the quantity of heat in the whole mass could neither

increase nor diminish, since matter can neither be created nor

destroyed.

Upon this view is based the paper published by S. Carnot %,

in the year 1824, wherein machines driven by heat are subjected

to a general theoretical treatment. Carnot, in investigating

more closely the circumstances under which moving force can

be produced by heat, found that in all cases there is a passage

of heat from a body of higher into one of a lower temperature ;

as in the case of a steam-engine where, by means of steam,

heat passes from the fire or from a body of very high tem

perature, to the condenser, a space containing bodies of lower

temperature. He compared this manner of producing work

with that which occurs when a mass of water falls from a higher

to a lower level, and consequently, in correspondence with the

expression " une chute d'eau," he described the fall of heat

* Read at a Meeting of the Swiss Association, held at Samaden, August

25th, 1863, and published in Poggendorft-s Annalen, November 1863, vol. cxx.

p. 426.

t On the Moving force of Heat, &c. (First Memoir of this collection).

X Reflexions sur la puissance motrice du feu.



268 SEVENTH MEMOIR.

from a higher to a lower temperature as " une chute du calo-

rique"*.

Regarding the subject from this point of view, he lays down

the theorem that the magnitude of the work produced always

bears a certain general relation to the simultaneous transfer of

heat, i. e. to the quantity of heat which passes over, and to

the temperatures of the bodies between which the transfer takes

place, and that this relation is independent of the nature of the

substances through which the production of work and the trans

fer of heat are effected. His proof of the necessity of such a

relation is based on the axiom that it is impossible to create

a moving force out of nothing, or in other words, that perpetual

motion is impossible.

The other view above referred to is that heat is not invariable

in quantity; but that when mechanical work is produced by

heat, heat must be consumed, and that, on the contrary, by

the expenditure of work a corresponding quantity of heat can

be produced. This view stands in immediate connexion with

the new theory respecting the nature of heat, according to

which heat is not a substance but a motion. Since the end of

the last century various writers, amongst whom Rumford, Davy,

and Seguin may be mentioned, have accepted this theory ; but

it is only since 1842 that Mayer of Heilbronn, Colding of

Copenhagen, and Joule of Manchester examined the theory

more closely, founded it, and established with certainty the law

of the equivalence of heat and work.

According to this theory, the causal relation involved in the

process of the production of work by heat is quite different from

that which Carnot assumed. Mechanical work ensues from the

conversion of existing heat into work, just in the same manner

as, by the ordinary laws of mechanics, force is overcome, and

work thereby produced, by motion which already exists ; in the

latter case the motion suffers a loss, in vis viva, equivalent to

the work done, so that we may say that the vis viva of motion

has been converted into work. Carnot's comparison, therefore,

in accordance with which the~ production of work by heat cor

responds to the production of work by the falling of a mass of

* See page 28 of Carnot-s paper.
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water,—and, in fact, the fall of a certain quantity of heat from a

higher to a lower temperature may be regarded as a cause of

the work produced, was no longer admissible according to

modern views. On this account it was thought that one of

two alternatives must necessarily be accepted ; either Carnot's

theory must be retained and the modern view rejected, accord

ing to which heat is consumed in the production of work, or,

on the contrary, Carnot's theory must be rejected and the

modern view adopted.

2. When at the same period I entered on the investigation of

this subject, I did not hesitate to accept the view that heat

must be consumed in order to produce work. Nevertheless I

did not think that Carnot's theory, which had found in Clapeyron

a very expert analytical expositor, required total rejection ; on

the contrary, it appeared to me that the theorem established

by Carnot, after separating one part and properly formulising

the rest, might be brought into accordance with the more

modern law of the equivalence of heat and work, and thus

be employed together with it for the deduction of important

conclusions. The theorem of Carnot thus modified was treated

by me in the second part of the above-cited memoir, in the

first part of which I had considered the law of the equiva

lence of heat and work.

In my later memoirs I succeeded in establishing simpler and

at the same time more comprehensive theorems by pursuing

further the same considerations which had led me to the first

modification of Carnot's theorem. I will not now enter, how

ever, upon these extensions of the theory, but will limit myself

for the present to the question how, in accordance with the

law of the equivalence of heat and work, the necessity can be

demonstrated of the other theorem in its modified form.

The axiom employed by Carnot in the proof of his theorem,

and which consists in the impossibility of creating moving force,

or, more properly expressed, mechanical work out of nothing,

could no longer be employed in establishing the modified theo

rem. In fact, since in the latter it is already assumed that to

produce mechanical work an equivalent amount of heat must

be consumed, it follows that the supposition of the creation of

-work is altogether out of the question, no matter whether a
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transfer of heat from a warm to a colder body does or does not

accompany the consumption of heat.

On the other hand, I found that another and, in my opinion, a

more certain basis can be secured for the proof by reversing the

sequence of reasoning pursued by Carnot, and by accepting as an

axiom a theorem, in a somewhat modified form, which may be

regarded as a consequence of his assumptions.

In fact, after establishing from the axiom that work cannot

be produced from nothing, the theorem that in order to pro

duce work a corresponding quantity of heat must be transferred

from a warmer to a colder body, Carnot to be consistent could

not but conclude that, in order to transfer heat from a colder

to a warmer body, work must be expended. Although we must

now abandon the argument which led to this result, and not

withstanding the fact that the result itself in its original form

is not quite admissible, it is nevertheless manifest that an

essential difference exists between the transfer of heat from a

warmer to a colder body and the transfer from a colder to a

warmer, since the first may take place spontaneously under

circumstances which render the latter impossible.

> On investigating the subject more closely, and taking into

consideration the known properties and actions of heat, I came

to the conviction that the difference in question had its origin

in the nature of heat itself, inasmuch as by its very nature it

must tend to equalize existing differences of temperature. Heat

accordingly incessantly strives to pass from warmer to colder

bodies, and a passage in a contrary direction can only take

place under circumstances where simultaneously another quantity

of heat passes from a warmer to a colder body, or when some

change occurs which has the peculiarity of not being reversible

without causing on its part such a transfer from a warmer to a

colder body. This change which simultaneously takes place is

consequently to be regarded as the equivalent of that transfer of

heat from a colder to a warmer body, so that it cannot be said

that the transfer has taken place of itself (von selbst) .

I thought it permissible, therefore, to lay down the axiom, that

Heat cannot of itselfpass from a colder to a warmer body,

and to employ it in demonstrating the second fundamental

theorem of the mechanical theory of heat.
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3. This axiom has met with very different receptions on

the part of the scientific public. To some it appeared to be

so self-evident as to render its express statement unneces

sary, to others, on the contrary, its correctness appeared to be

doubtful.

The first opinion is, I find, expressed in the very meritorious

paper published by Zeuner in 1860, under the title " Grundziige

der Mechanischen Warmetheorie," in which he seeks to expound

this theory, so far as at that time developed, in as connected and

simple a manner as possible, in order to extend an acquaintance

with the principal results of this theory to those to whom the

original memoirs were either not accessible, or were difficult of

perusal in consequence of the mathematical developments therein

contained.

In this work Zeuner gives my proof of the second fundamental

theorem essentially in the form in which it was reproduced by

Reech*. In one point, however, his exposition differs from the

latter ; for Reech gives the theorem that heat cannot of itself

pass from a colder to a warmer body, expressly as an axiom laid

down by me, and he bases his demonstration thereon. Zeuner,

however, does not mention this theorem at all, but merely shows

that, if for any two bodies the second fundamental theorem of

the mechanical theory of heat were not true, it would be

possible by means of two cyclical processes performed in

opposite ways with these two bodies, to transfer heat from a

colder to a warmer body without any other change ; and he then

remarks f, "since we can repeat both processes any number of

times by employing the two bodies alternately in the manner

described, it would follow that, without expending either work

or heat, we could continually transfer heat from a body of lower

to a body of higher temperature ; which is absurd." Few

readers, I believe, will admit that the impossibility here alluded

to of the transfer, without any other change, of heat from a

colder to a warmer body is as self-evident as the words " which

is absurd" would imply. In the conduction of heat as well

* Recapitulation tresTsuccinte de9 recherches algebriques faites sur la

theorie dea effets me-caniques de la chaleur par difierents auteurs.—Journ. do

Liiouville, S. 2. vol. i. p. 58.

t Page 24 of his work.
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as in its radiation under ordinary circumstances, we may cer

tainly say that this impossibility is established by daily ex

perience. But even in the radiation of heat, the question may

arise whether it would not be possible, by artificially concen

trating rays of heat by means of mirrors or lenses, to generate

a temperature higher than that possessed by the bodies which

emit the rays, and thus to cause heat to pass into a warmer

body*. The subject is still more complicated in cases where

heat is transformed into work and work into heat, either by

processes such as friction and resistance of the air, or by the

circumstance that one or more bodies suffer changes of condition

in which are involved both positive and negative, interior and

exterior work,—where, in fact, according to the customary mode

of expression, heat is rendered latent or free; which heat the

changing bodies may withdraw from or communicate to other

bodies of different temperatures.

I cannot but think that when in such cases, and however

complicated the processes may be, it is asserted that heat never

passes from a colder to a warmer body without some permanent

change occurringwhich may be regarded as an equivalent thereof,

this theorem ought not to be treated as quite self-evident; it

ought rather to be introduced as a new axiom upon whose

acceptance or rejection the admissibility of the proof depends.

4. The opposite view, however, is more frequently met with,

that this theorem is not sufficiently trustworthy to serve as a

basis of demonstration, or even that it is incorrect.

With reference hereto, I must first explain Rankine's manner

of treating the subject. In a memoir which appeared almost at

the same time as minef, Rankine developed the theory of a

* I have treated this subject, which in other respects is interesting, in a

separate paper read before the Scientific Society of Zurich last June, and

which will appear in a forthcoming Number of these Annals. [It forms the

Eighth Memoir of this collection.]

t It was communicated to the Royal Society of Edinburgh in the same

month (February 1850) in which my paper was read to the Academy of

Berlin. Rankine states in a communication to Poggendorff that his paper

was sent in in October 1849. Its publication, however, took place somewhat

later than mine did. It appeared in the ' Transactions of the Royal Society

of Edinburgh,- vol. xx. p. 147, and was republished, with some changes, in

the Phil. Mag. S. 4. vol. vii. 1854.
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peculiar molecular motion assumed by him and termed molecular

vortices, and from it he deduced conclusions concerning the de

portment of bodies, particularly of gases and vapours, which

agree in some measure with those at which I arrived in the

first part of my memoir by means of the law of the equivalence

of heat and work. The subject of the second part of my memoir,

Carnot-s theorem, as modified by me, and its consequences, is,

however, not contained in Rankine's memoir.

In a subsequent paper communicated to the Royal Society of

Edinburgh in April 1851, and appended as Section 5 to his

former memoir*, Rankine occupies himself with that second

fundamental theorem. He there remarks with reference to my

modified theorem, that he " had at first doubts as to the reason

ing " by which I maintained itf, but that he was induced by

W. Thomson, to whom he had communicated his doubts, to

examine the subject more closely. He arrived thereby at the

conclusion that this theorem ought not to be treated as an in

dependent principle in the theory of heat ; but that it might be K

deduced as a consequence of the equations established by him in

the first section of his memoir.

I must, however, confess that I cannot regard as satisfactory

the demonstration of the theorem thereupon given by Rankine.

5. In the heat which must be communicated to a body in

order to raise its temperature, Rankine distinguishes, as I also

have done, two different portions ; one of which serves to increase

the heat actually present in a body, and the other is consumed

by work. The latter portion includes the heat consumed by

interior as well as by exterior work.

For the heat consumed by work Rankine employs an ex

pression deduced by him in the first section of his paper from

the hypothesis of molecular vortices. I need not here enter

more closely into this mode of deduction, since the circumstance

that it depends on a peculiar hypothesis concerning the con

stitution of molecules, and on their mode of motion, is sufficient

to produce the conviction that complicated considerations must

necessarily arise of a nature to raise doubts as to the degree of

its trustworthiness. In my memoirs I have taken especial care

* Phil. Mag. S. 4. vol. vii. p. 249. t Ibid. p. 251,

T
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to base the development of the equations which enter into the

mechanical theory of heat upon certain general axioms, and not

upon particular views regarding the molecular constitution of

bodies, and accordingly I should be inclined to regard my treat

ment of the subject as the more appropriate one, even were the

above-mentioned circumstance the only one which could be

adduced against Rankine's demonstration. But the determina

tion of the first portion of the heat communicated to a body,

i. e. of the portion which serves to increase the heat actually

present therein, is still more uncertain.

Bankine represents, by the product Idt simply, the increment

of heat present in the body when its temperature / is increased

by dt, no matter whether the volume of the body does or does

not change at the same time ; and in his demonstration he treats

the magnitude f, which he terms " the real specific heat as a

magnitude independent of the volume. We seek in vain, however,

in his memoir for a sufficient reason for this procedure, in fact,

statements appear therein which are in direct contradiction

thereto.

In the introduction to his memoir he gives in equation (XIII)

an expression for the real thermal capacity, which contains a

factor k, of which he saysf, "The coefficient k (which enters

into the value of specific heat) being the ratio of the vis viva of

the entire motion impressed on the atomic atmospheres by the

action of their nuclei, to the vis viva of a peculiar kind of

motion, may be conjectured to have a specific value for each

substance, depending in a manner yet unknown- on some circum

stance in the constitution of its atoms. Although it varies in

some cases for the same substance in the solid, liquid, and

gaseous states, there is no experimental evidence that it varies

for the same substance in the same condition." According to

this, Rankine is of opinion that the real thermal capacity of

one and the same substance may be different in different

states of aggregation ; and for the assumption that it is

* [In a note to the Sixth Memoir, p. 229, I have proposed to employ the

term real capacity for heat, instead of real specific heat, since the former,

or the equivalent expression real thermal capacity, literally signifies that the

heat under consideration is really contained in the body.—1804.]

t Phil. Mag. S. 4. vol. vii. p. 10.



ON AN AXIOM IN THE MECHANICAL THEORY OF HEAT. 275

invariable in the same state of aggregation, the only reason he

gives is, that no known experiment contradicts it.

At page 307 of a more recent work by Rankine, entitled " A

Manual of the Steam-engine and other Prime Movers," London

and Glasgow, 1859, occurs a still more definite statement on

this subject, already cited by me on a former occasion, to the

following effect, " a change of real specific heat, sometimes con

siderable, often accompanies the change between any two of those

conditions," i. e. the three states of aggregation. The magnitude

of the differences between the real thermal capacities of one and

the same substance in different states of aggregation, held by

Rankine to be possible, is manifest from a statement on the

same page to the effect that in liquid-water the specific heat

determined by observation, termed by him the apparent specific

heat, is nearly equal to the real specific heat. Now as Rankine

knows very well that the observed specific heat of water is twice

as great as that of ice, and more than twice as great as that of

vapour, and since the real specific heat (thermal capacity) of ice

and of vapour can certainly not be greater than the observed

one, it follows that Rankine must assume that the real thermal

capacity of water exceeds twice that of ice and of vapour.

If we now inquire how, in accordance with this assumption, for

a body whose temperature t is increased by dt, and whose

volume v is increased by dv, the corresponding increment of heat

actually present in the body is to be expressed, we must proceed

as follows.

In the case where the body, during its change of volume,

suffers no change of condition, the increment of actually present

heat would no doubt be expressible, as Rankine states, by a

simple product of the form tdt ; but different values would have

to be ascribed to the factor t for different states of aggregation.

Where the body, however, changes its state of aggregation as

well as its volume ; for instance, in the case often considered,

where a quantity of matter is given partly in a liquid and

partly in a vaporous condition, and where during a change of

volume the magnitude of both these parts is altered, either by

the partial evaporation of the liquid, or by the partial condensa

tion of the vapour, we should not be able to represent by a

simple product dt the increase of heat which accompanies a

t2
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change both of temperature and volume; we should, on the

contrary, have to employ for the latter an expression of the

form

tdt + t^v;

in fact, if the real thermal capacity of a substance were different

in different states of aggregation, we should necessarily conclude

that the quantity of heat present therein depended upon its state

of aggregation, so that equal quantities of the substance in the

solid, liquid, and gaseous states would contain different quantities

of heat; accordingly, whenever the state of aggregation of a

part of the substance changes without any change of temperature,

the total quantity of heat present therein must also change.

From this it follows that Rankine, according to his own

admission, can only regard the manner in which he expresses

the increment of heat present in the body, and in which he

treats this expression in his demonstration, as trustworthy in

cases where no changes of the state of aggregation present

themselves ; and consequently it is only in these cases that he

can claim accuracy for his proof. In all cases, therefore,

where changes of the state of aggregation present themselves,

the theorem remains unproved ; and notwithstanding this, these

cases are particularly important, inasmuch as it is precisely to

them that the theorem has hitherto been most frequently applied.

We must indeed go further, and assert that the demonstration

loses hereby all trustworthiness, even in those cases where no

changes of the state of aggregation present themselves. For if

Rankine assumes that the real thermal capacity can be different

in different states of aggregation, we do not at all see on what

grounds it is to be regarded as unchangeable, when the state of

aggregation is the same. We know that in solid and liquid

bodies changes in the condition of cohesion may occur without

any change in the state of aggregation, and that in gaseous

bodies, besides the great differences in volume, the circumstance

also presents itself that they follow the laws of Mariotte and

Gay-Lussac with more or less accuracy, according as they are

more or less distant from their point of condensation. Why,

therefore, if changes in the state of aggregation have an in

fluence on the real thermal capacity, may not to these changes
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of cohesion an influence, the same in kind though less in degree,

be with equal justice ascribed ? The assumption that the real

thermal capacity is invariable in the same state of aggregation,

is consequently not merely left unestablished by Rankine, but

would be rendered in the highest degree improbable if the other

assumptions made by him were accurate.

6. The method which I have proposed for the treatment of

the second fundamental theorem in the mechanical theory of

heat, and which, notwithstanding Rankine's objection, I still

hold to be the most convenient, is essentially the following.

By means of the axiom that heat cannot of itselfpass from a

colder to a warmer body, I have first proved the theorem in

question for cyclical processes, that is to say, for processes

wherein all the interior work that may possibly be performed is

subsequently cancelled, so that exterior work alone remains.

After having brought the theorem to such a form that from its

simplicity we may almost conclude with certainty that it cannot

be limited to a special class of phenomena, but must be

generally true, I have then applied it also to the interior work.

I have been thereby led to the establishment of a general law

for the dependence of the active force of heat upon the tem

perature, according to which the effective force of heat is propor

tional to the absolute temperature. By combining the equation

which expresses this law with the equation which I had proved

from the above axiom in the case of a cyclical process, I was

led to the conclusion, that the quantity of heat actually present

in a body must depend on its temperature solely, and not upon the

arrangement of its molecules. If this conclusion be correct, the

real thermal capacity of a body must not only be independent of

its volume when its state of aggregation remains unaltered, but,

contrary to Rankine' s expressed opinion, it must also be inde

pendent of the state of aggregation.

The last result being obtained, the course of reasoning might

perhaps be reversed. For if we assume, from the commence

ment, the truth both of the theorem, that the quantity of heat

actually present in a body is independent of the arrangement of

its molecules, and of the before mentioned law relative to the

dependence of the effective force of heat on the temperature, we

can prove therefrom the correctness of the equation which ex
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presses for cyclical processes the second fundamental theorem

of the mechanical theory of heat*. I cannot but think, however,

that little encouragement would have been given to the physicist

who should have proposed to start from the improved theorem

relative to the heat actually present, which involves the con-

* [It will, I think, be useful here to collect together the equations which

express the above mentioned theorems in order to render perfectly clear the

relation which exists between them.

Let dL be the total work, or, in other words, the sum of the interior and

exterior work done by the heat during the time that the body undergoes, in

a reversible manner, an infinitesimal change of condition, and let T be the

absolute temperature of the body at the moment this change of condition

occurs, then the law that the effective force ofheat is proportional to the absolute

temperature is expressed by saying that the equation

T

must hold for every reversible cyclical process.

The heat which must be imparted to the body during the above-mentioned

infinitesimal change of condition, and whose quantity has always been denoted

by dQ, consists of two parts, (1) the quantity rfH, which serves to increase

the heat H actually present in the body, and (2) the quantity AdL consumed

in the production of the work dL. We have, therefore, the equation

dQ=dH.+AdL,

whence we deduce

dh=dQ-dR

A

By the substitution of this value of rfL, the above equation expressing the

law relative to the effective force of heat assumes the form

^=0 (a)

J5

The theorem that the heat actually present in a body depends solely upon the

temperature of the latter and not upon the arrangement of its molecules, and

therefore that the magnitude H, which denotes this heat, is a function of T

solely, may be expressed by saying that the equation

fe=0 (b)

holds for every cyclical process.

Lastly, the secondfundamental theorem of the mechanical theory of heat is, for

every cyclical process, expressed by the equation

-f=o (O

J5

A glance at the three equations (a), (b), (c) is sufficient to show that

each is a necessary consequence of the other two.—1866.]
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sequence, that the real thermal capacity of a body may differ so

far from the specific heat determined by observation, as to

amount to less than half of the latter. A theorem which differs

so much as this does from hitherto received notions, could only

have a prospect of recognition on being supported by reasons

which other considerations have rendered extremely probable. It

appears to me, therefore, that this reversed mode of reasoning,

although useful as elucidating the subject from another side, is

not suitable for the purpose of demonstration.

Another circumstance which gives a preference to my mode <~

of treating the subject is, that the fundamental theorem under

consideration is proved thereby, so far as it refers to cyclical

processes, without the assistance of any assumption whatever

concerning the interior condition of a body, and that it is only

on applying the theorem to interior work that the interior con

dition of the body, and in particular the quantity of heat present

in the body, enters into consideration. Thence arises the ad

vantage that the fundamental theorem, so far as it refers to

cyclical processes, can be maintained unchanged, even by one

who entertains doubts concerning the accuracy of the conclusion

concerning the quantity of heat contained in the body*.

* [Now that the theorem that the heat actually present in a body is in

dependent of the arrangement of its molecules, and hence that its real thermal

capacity is the same in all conditions, has gained a certain scientific founda

tion from the developments contained in the Sixth Memoir, we may possibly

soon come to regard this theorem from the commencement no longer as im

probable, but rather as theoretically probable. The theorem, too, may receive

additional verification if the attention of many physicists be directed thereto.

In this case it may hereafter appear more justifiable to deduce the equation

which expresses for a reversible cyclical process the second fundamental

theorem in the mechanical theory of heat, from the theorem mentioned in

the text relative to the dependence of the effective force of heat upon the

temperature, together with the theorem just alluded to concerning the heat

actually present in a body ; and this mode of deduction will possibly be not

unfrequently employed, since it is both convenient and easily intelligible.

In doing so, however, it must not be forgotten that the two theorems

upon which this mode of deduction is based, first acquired their credibility

from the circumstance that they lead to an equation whose truth has been

proved in another manner. The reduction of the equation, therefore, to such
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7. A more definite objection to my axiom has recently been

raised by Hirn, and it is from this that the present memoir prin

cipally originated, since the same objection appears to other

authors to be valid.

In a former work, entitled Recherches sur V-equivalent me-

canique de la Chaleur, Hirn opposed the theorem of the equi

valence of heat and work. In his new work, Exposition ana-

lytigue et experimentale de la theorie mecanique de la Chaleur, he

withdraws his former assertions relative to the equivalence, but

opposes the axiom that heat cannot of itself pass from a colder

to a warmer body. After the appearance of this work, he ex

tended his views on the same subject, in two articles published

in Cosmos*. I replied in the same journalf ; and he thereupon {

explained that in bringing forward his objection, he only in

tended to direct attention to an apparent contradiction, for that

essentially he agreed with me. I cannot but. think, however,

that his objection arises from an incorrect interpretation of my

axiom, a misconception which certainly might easily be formed,

and which on that account renders a thorough correction more

necessary.

Hirn describes a peculiar operation invented by himself, the

result of which he believes to be in contradiction to my axiom.

Let A and B, in fig. 9, represent two cylinders of equal

cross section, connected at the bottom by a comparatively

narrow tube, and in which move air-tight pistons; let the

piston-rods be provided with teeth which fit on both sides into

the teeth of a wheel situated between them, so that when one

of the pistons descends the other must ascend to an equal ex

tent. The total space consisting of the spaces underneath the

pistons, and of the space enclosed by the tube connecting the

theorems cannot exactly be regarded as a proof of the equation, but rather

as a means of rendering its physical meaning clear. It -will certainly be

granted that at a time when those theorems were in nowise accepted, and when

one of them indeed was at variance with views which were very widely

entertained, this mode of deduction could not even have served to raise the

probability of the truth of the equation in the minds of the scientific public.—

1864.]

* Tome xxii. (Premier semestre, 1863) pp. 2a3 & 413.

t Ibid. p. 560. J Ibid. p. 734.
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Fig. 9.

two cylinders, must consequently remain invariable during the

motion of the pistons ; since every diminution of space in the

one cylinder is accompanied by just as

great an augmentation in the other.

Let us suppose that at the commence

ment one piston is quite at the bottom of

the cylinder B, and consequently the

other at the top of the cylinder A ; and

let us assume that the latter is filled with

a perfect gas of a given density, whose

temperature is t0. Now let the piston in

A gradually descend and consequently

that in B ascend, so that the gas shall be

gradually driven from the cylinder A to

the cylinder B. Let us conceive, more

over, that the connecting tube through

which the gas must pass is maintained

constantly at a temperature tl higher than

t0, so that each quantity of gas which

traverses the tube shall be thereby raised

to the temperature tl) and shall pass at

this temperature into the cylinder B. The walls of both cylinders,

on the contrary, shall be supposed to be impermeable to heat, so

that the gas within the cylinder neither receives nor loses heat,

but merely receives heat from without when traversing the

connecting tube. In order to have a definite example relative

to temperatures, we will suppose that the initial temperature of

the gas in the cylinder A is that of the freezing-point 0° ; the

temperature of the connecting tube being 100°, as it would be,

if, for instance, it were surrounded by the vapour of boiling

water.

The result of this operation may now be understood without

difficulty.

The first small quantity of gas which passes through the

connecting tube has its temperature raised from 0° to 100°, and

consequently expands proportionally, that is to say, by about the

J^gth part of its original volume. The gas which is still in the

cylinder A will thereby be somewhat compressed, and conse

quently the pressure in both cylinders will be increased. The
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next small quantity of gas which passes through the tube will

likewise expand, and thereby compress the gas in both cylinders.

In a similar manner every succeeding quantity of gas which

passes through the tube contributes by its expansion not only

to the still further compression of the gas remaining in A, but

also to that of the gas already in B, which had previously ex

panded, so that the density of the latter gradually approaches to

what it was before. The compression causes a heating of the

gas in both cylinders; and since the quantities of gas which

successively pass into the cylinder B have all the temperature

100° at their entrance, they must subsequently acquire tempera

tures above 100°; and, moreover, this excess of temperature

must be greater the more the quantity in question is afterwards

again compressed.

If we consider, therefore, the condition at the close of the

operation, when all the gas has been forced from A into B, it

is evident that the highest stratum of gas immediately under the

piston, which first passed over and consequently suffered the

greatest subsequent compression, must be the hottest. The

underlying strata, taken in order down to the lowest, which

possesses exactly the temperature 100° which it assumed on

passing over, will be less and less heated.

For our present purpose it is not necessary to know the tem

peratures of the several strata individually, it will suffice to

determine the mean temperature, which is also that temperature

which would ensue if the temperatures existing in the several

strata became equalized by conduction or by a mixture of the

quantities of gas. This mean temperature amounts to about

120°. .

In an article which subsequently appeared in Cosmos, Hirn

completed this operation by supposing the gas in B, after being

heated, to be brought into contact with quicksilver at 0°, and

thereby cooled again to 0° ; and then he supposed the gas to be

driven back from B to A under the same circumstances under

which it had arrived from A to B, and thus that it became

heated in the same manner ; then he again supposes it to be

cooled by quicksilver, subsequently again driven from A to B,

and so on, so that a periodical process is obtained by which the

gas continually returns to its initial state, and all the heat given
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up by the source of heat ultimately passes to the quicksilver

used in cooling. We will not, however, here enter into the ex

tension of this procedure, but will limit ourselves to the con

sideration of the previously described simple operation through

which the gas is heated from 0° to a mean temperature of 120° ;

for this operation already contains the essential parts whereon

the objection of Him is based.

8. In this operation external work is neither gained nor lost ;

for since the pressure in both cylinders is always the same, both

pistons are pressed upwards at each instant with equal force,

and these forces destroy one another on the toothed wheel upon

which the teeth of the piston rods work ; so that, disregarding

friction, the smallest force would be sufficient to cause a rotation

of the toothed wheel in one sense, or in the other, and thereby

a descent of the one piston and ascent of the other. The excess

of heat in the gas, therefore, cannot be generated by exterior

work, and there can of course be no question of interior work,

since the latter is altogether excluded by the hypothesis of a

perfect gas.

The process is manifestly the following. When a quantity of

gas, very small in proportion to the whole quantity under con

sideration, becomes heated in the connecting tube and thereby

expanded, it must receive from the source as much heat as is

requisite to elevate its temperature under constant pressure. Of

this quantity one portion serves to increase the heat actually

present in the gas, and another portion is consumed by the work

of expansion. But since the expansion of the gas in the tube

necessitates a compression of that in the cylinder, just as much

heat must here be generated as was there consumed. This

second portion of the heat given up by the source, and which has

become transformed to work in the tube, appears again in the

cylinders, therefore, as heat, and serves to heat the gas still in A

above its initial temperature 0°, and to heat the gas already in

B, which at its entrance had the temperature 100°, above this

temperature, and thus to bring about the above-mentioned

excess of temperature.

Consequently, without taking the intermediate processes into

consideration, we may say that the entire quantity of heat which

the gas contains at the end of the operation above that which it
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had at first, proceeds from the source of heat surrounding the

connecting tube. We thereby arrive at the peculiar result, that

the enclosed gas is heated above 100°, viz. to a mean temperature

of 120°, by means of a body at 100°, that is to say, by the aqueous

vapour surrounding the connecting tube. Hirn finds in this

a contradiction of the axiom, that heat cannot of itself pass

from a colder to a warmer body, since, according to his repre

sentation, the heat given by the vapour to the gas has passed

from a body at 100° to another at 120°.

9. In so doing, however, he has overlooked one circumstance.

If the gas had had at the commencement a temperature of 100°,

or more, and had then been raised to a still higher tempera

ture by vapour which had only a temperature of 100°, then

a contradiction to my axiom would certainly have presented

itself. The state of the case, however, is different. In order

that at the end of the operation the gas may be warmer than

100°, it must necessarily be colder than 100° at the commence

ment, and in our example, where at the conclusion it has a tem

perature of 120°, it had at the commencement a temperature 0°.

The heat imparted by the vapour to the gas, therefore, has

served partly to raise the gas from 0° to 100°, and partly to bring

it from 100° to 120°.

Now since the temperatures alluded to in my axiom are those

which the bodies between which the transfer of heat takes

place, possess at the moment when they receive or lose heat,

and are not those which the bodies subsequently possess, we

must form the following conception of the transfer of heat which

takes place in this operation. One part of the heat given up by

the vapour has passed into the gas during the time that its

temperature was still below 100°, has passed therefore from the

vapour into a colder body ; it is only the other portion of the

heat, viz., that which serves to raise the gas above 100°, which

has passed from the vapour to a warmer body.

If we compare this with the principle according to which,

whenever heat is to pass from a colder to a warmer body with

out either a transformation from work into heat, or a change in

the molecular condition of a body, other heat must necessarily

pass in the same operation from a warmer to a colder body, it

will be at once manifest that a complete accordance exists. The
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peculiarity presented by the operation which Hirn has con

ceived, consists solely in the fact, that there are not two dif

ferent bodies of which one is colder and the other warmer than

the source of heat, but that one and the same body, the gas,

plays in one portion of the operation the part of a colder,

and in the other portion of the operation the part of a warmer

body. This involves, however, no departure from my axiom,

it is merely a special case of the many possible cases. Hirn's

misconception has arisen from his directing his attention to

the final temperature solely, instead of taking into account

the different temperatures which the gas possesses successively

during the course of the operation.

10. The subject may be further represented in a somewhat

different manner, and by so doing a conception will come under

discussion, which I have introduced in my last memoir*, and

which in my opinion is of great importance in the theory of

heat ; I refer to the transformation-value of the heat contained

in a body. I wish in conclusion to consider this subject, since

an explanation of this conception will perhaps powerfully con

tribute to prevent misconceptions of the before mentioned

kind.

In my memoirs I have given the term transformation to the

passage of heat from a body of one temperature to a body at

another temperature, since it may be said that heat of a certain i. f *

temperature is transformed to heat of another temperature.

This process is thereby brought into parallelism with two other

processes, which may also be termed transformations, that is to

say, with the transformations of heat into work, and vice versa",

and with the transformation which I have designated as a

change of " disgregation." In order to be able to distinguish

in a suitable mathematical manner the direction of the pas

sage of heat, I have called the passage from a warmer to a

colder body a positive transformation, and the passage from a

colder to a warmer body a negative one ; accordingly the above

axiom may be expressed by saying that a negative transformation

cannot occur of itself, that is to say, without being accompanied

in the same operation by a positive transformation, whilst a

* [Sixth Memoir of this collection.]



286 SEVENTH MEMOIR.

positive transformation, on the contrary, can very well take

place without being accompanied by a negative one.

On applying this to the above described operation, in which a

quantity of gas is heated to 120° by means of heat proceeding

from vapour at 100°, the question arises how the heat contained

in a body must be considered when we wish to determine its

temperature. Can we, in fact, consider all the heat contained

in a body of the temperature t, simply as heat of the tempera

ture t, or must we ascribe other temperatures to this heat ?

If the first were the case, that is to say, if the heat contained

in a body of the temperature t were to be considered through

out as heat of the temperature t, we should, through the above

described operation conceived by Him, arrive at a result in

contradiction to my axiom, for we should have to reason thus.

The heat contained in the aqueous vapour is heat of 100°. If

by means of a portion of this heat the gas is raised to 120°, this

portion is present in the gas as heat of 120°, and consequently

whatever the intermediate temperatures may have been, a

certain quantity of heat becomes ultimately transformed from

heat of 100° to heat of 120°.

This is not the conception, however, from which I started

when formulizing the theorem of the equivalence of transfor

mations.

When a body is heated, a portion of the heat which must be

imparted to it for this purpose, is in general consumed in ex

terior and interior work (provided the body by being heated

changes its volume and the arrangement of its molecules), and

the other portion serves to increase the heat actually present

in the body. We may here neglect the first portion, and limit

ourselves solely to the consideration of the second. If we now

conceive the body to be raised from any initial temperature t0 to

any other temperature t, it will not receive all the heat which is

necessary thereto at the temperature t, but it will receive the

different elements of this heat at different and gradually in

creasing temperatures, so that to each element of heat a definite

temperature will correspond. If, on the other hand, the body be

cooled, it will not give off all the heat which is necessary thereto

at one and the same temperature, but it will part with different

elements at different and gradually sinking temperatures.
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Now, when we speak of the temperature of the heat contained

in a body, we must not, according to my view, ascribe one and

the same temperature to the whole quantity of heat ; we must

rather conceive this whole quantity to be divided into an

infinite number of elements, and to each element we must

consider that temperature to correspond which the body on

cooling would have at the moment when it parted with this

element, or that which on being heated it would have at the

moment when it received this element of heat.

11. In the memoir above alluded to I gave a simple mathe

matical magnitude in which the temperatures of the several

elements of heat were taken into account in the manner re

quired by the theorem of the equivalence of transformations,

and I termed this magnitude the transformation-value of the

body's heat.

In fact, if we conceive that the heat which serves to raise the

temperature of a given body (and of which, as before said, we

only consider the portion which is finally present as heat in the

body, and not the portion which may have been consumed in

work consequent upon the change of condition caused by heat

ing) has proceeded, in some manner or other, from the transfor

mation of work into heat, we may determine the equivalence-

value of the transformation of each element of heat thus ge

nerated. Let T denote the temperature of the body counted

from the absolute zero, and let us suppose this temperature to

be increased by dT, the increase which thereby takes place

in the heat actually present in the body will then be repre

sented by the product mcdT; wherein m denotes the mass of

the body, and c its real thermal capacity. The equivalence-

value of the transformation from work to heat, from which

this element of heat has proceeded, will be expressed by the

fraction

mcdT

T -

If we apply this to the determination of the quantity of heat

which must be added to that present in the body, in order to

raise it from the given inital temperature T0 to another tempe

rature T, the equivalence-value of the transformation from

which this quantity of heat, with its temperatures rising from
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element to element has proceeded, will be represented by the

integral

C TmcdT

It T '

which I have called the transformation-value of the body's heat

estimated from a given initial temperature.

If it were required to determine the transformation-value of

the entire quantity of heat present in the body, we should have

to conceive the body to be heated from the absolute zero up to the

absolute temperature T under consideration, and consequently

to put 0 as the lower limit of the above integral. The value of

the integral would thereby become infinitely great, since the

product mc, which appears in the numerator, cannot vanish. In

order, therefore, to obtain a finite value for the integral, it is

necessary to start from a finite absolute temperature as a lower

limit, and consequently not to determine the transformation-

value of the entire heat present in the body, but only that of

the additional quantity of heat which the body at its present

temperature possesses above what it had at the temperature

chosen as the starting-point for heating.

The actual integration is rendered very simple by the help of

a deduction previously drawn by me. In fact, for reasons into

which I will not here enter, I concluded that the real thermal

capacity of a body is not only independent of its molecular

arrangement, but also of its temperature. We may consequently

place the real thermal capacity c, together with the mass m, as

factors before the sign of integration, whereby the integral

becomes

C T dT . T

Should this last simplification, however, not be deemed a

sufficiently well grounded one, should it, in fact, be deemed

desirable to regard c as a still unknown function of the tempe

rature, it would merely be necessary to change, somewhat, the

form of the expression for the tranformation-value of the body's

heat, the conception of a transformation-value would thereby

suffer no essential alteration.

By the introduction of this new conception, we can very

easily and with perfect accuracy characterize the changes which
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may spontaneously occur in the distribution of heat. If we

conceive any process whatever such that ultimately no other

transformations remain except passages of heat between bodies

of different temperatures, all other transformations which may

possibly occur in the course of the process being again cancelled

by opposite transformations which likewise occur therein, we

may enunciate the following general theorem relative to passages

of heat, and the changes in the distribution of heat consequent

thereon. The change which occurs by such a process in the

distribution of heat can only be such that the sum of the trans

formation-values of the heat in the several bodies is thereby in

creased or in the limit remains unchanged ; it can never be such

that the sum of the transformation-values diminishes thereby.

If we test in this manner the result of the operation above

considered, by which a quantity of gas has its temperature

raised from 0° to 120° by means of the heat arising from vapour

at 100°, we shall find that here also the sum of the transformation-

values of the heat contained in the vapour and in the gas in

creases, and that accordingly the theorem of the equivalence of

transformations, and the axiom from which it is deduced, is

simply verified by this operation*.

* [I regret very much that I have here been compelled to dissent from

Hirn-s expositions of the second fundamental theorem in a manner similar to

that in which, on a former occasion, I found it necessary to declare myself

opposed to his -view of the first fundamental theorem of the mechanical

theory of heat. I feel convinced, however, that no one will think of reproach

ing him for having raised the objection which has been discussed in the

present memoir.

The second fundamental theorem of the mechanical theory of heat, and

all that depends thereupon, is much more difficult to understand than the

first fundamental theorem, and the way in which Hirn has interpreted the

former is, in fact, as has already been mentioned, not an unnatural one, so

that in all probability others may also have encountered the same difficulty.

Under these circumstances the objection raised by Hirn was fully justified

from a scientific point of view ; and when, as in the present case, an objection

of this kind is made with such clearness and precision, and accompanied by

so ingenious an illustration as the operation conceived by Hirn, science can

only derive profit therefrom ; such a procedure, in fact, deserves to be regarded

as a meritorious one. The exposition of the subject is very much facilitated

by the definite and clear elucidation of the apparent contradiction, and in this

manner the advantage is gained of at once and for ever settling a difficulty

which, otherwise perhaps, might have given rise to many misconceptions and

rendered necessary frequent and long discussions.—1864.]
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EIGHTH MEMOIR.

ON THE CONCENTRATION OF RAYS OF HEAT AND LIGHT, AND ON

THE LIMITS OF ITS ACTION*.

The- starting-point of my treatment of the second fundamental

theorem in the mechanical theoryofheat, was the difference which

exists between the transfer ofheat from a warmer to a colder body,

and that from a colder to a warmer one ; the former may, but the

latter cannot, take place of itself. This difference between the

two kinds of transmission being assumed from the commence

ment, it can be proved that an exactly corresponding difference

must exist between the conversion of work into heat, and the

transformation of heat into work; that heat, in fact, cannot

simply transform itself into work (another simultaneous change,

serving as a compensation, being always necessary thereto),

whereas the opposite transformation of work into heat may occur

without compensation.

A general and prevailing tendency in nature to changes of a

certain character is indicated by these principles, and the latter

may be extended in a similar manner to a third action, affecting

the changes of the condition of bodies ; into this, however, I do

not propose to inquire here. On applying the above considera

tions to the universe as a whole, we arrive at the remarkable

conclusion to which W. Thomson first drew attentionf, he

having then admitted the truth of the modification applied by

me to Carnofs theorem, and adopted my conception of the

second fundamental theorem in the mechanical theory of heat.

For if in the universe cases continually occur, through friction

or other similar impediments to motion, of the conversion into

heat, that is to say, into molecular motions, of the motions with

which large masses are animated, and which are due, either

* Communicated June 22, 1863, to the Natural Science Association of

Zurich, and published in PoggendorfPs Anndlen for January 1864, vol. cxxi.

p. 1.

t Phil. Mag; S. 4. vol. iv. p. 304.
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actually or conceivably, to work done by natural forces; and

if, further, heat always strives to alter its distribution, so that

existing differences of temperature may be cancelled, then the

universe must gradually be approaching more and more to the

condition in which forces can produce no further motion, and

differences of temperature can no longer exist.

This conclusion suggested to Rankine his paper " On the Re-

concentration of the Mechanical Energy of the Universe"*,

wherein the question is examined whether, to counterbalance the

above processes whereby mechanical energy becomes more and

more dissipated, another of an opposite effect is not conceivable,

whereby mechanical energy may be again concentrated and

stored up in individual masses.

After having spoken of the manifold ways in which heat may

be produced by the work of natural forces, and of the incessant

tendency of heat to distribute itself amongst bodies so as to

annul existing differences of temperature, and after adding that

the heat present in bodies has also a tendency to become con

verted into radiant heat, so that all the bodies in the universe

continually give off more and more heat to the aether which per

vades space, Rankine continues f :—

"Let it now be supposed that, in all directions round the

visible world, the interstellar medium has bounds beyond which

there is empty space.

" If this conjecture be true, then on reaching those bounds

the radiant heat of the world will be totally reflected, and will

ultimately be reconstituted into foci. At each of these foci, the

intensity of heat may be expected to be such that, should a star

(being at that period an extinct mass of inert compounds) in

the course of its motions arrive at that part of space, it will be

vaporized and resolved into its elements, a store of chemical

power being thus reproduced at the expense of a corresponding

amount of radiant heat.

" Thus it appears that, although, from what we can see of the

known world, its condition seems to tend continually towards

the equable diffusion, in the form of radiant heat, of all physical

energy, the extinction of the stars, and the cessation of all phe

nomena, yet the world, as now created, may possibly be pro-

* Phil. Mag. S. 4. vol. iv. p. 358. t Ibid. p. 360.

V 2
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vided within itself with the means of reconcentrating its physical

energies, and renewing its activity and life."

According to this, Rankine appears to think it possible so to

concentrate rays of heat by reflexion, that in the foci thereby

produced, a body may be heated to a temperature higher than

that of the bodies which emitted the rays. If this view were

correct, the principle assumed by me as an axiom, that heat

cannot of itself pass from a colder to a warmer body, would be

false, and as a consequence the proof, founded on this axiom,

of the second fundamental theorem in the mechanical theory

of heat would have to be rejected.

The wish to put the truth of the axiom beyond all doubt of

this kind, and the fact that, apart from this special question, the

concentration of rays of heat, with which that of luminous rays

is elosely connected, is a subject offering many points of interest,

have induced me to submit to closer mathematical investigation

the laws which govern the concentration of rays, and. the influ

ence which the latter may- have on the interchange of rays be

tween bodies. The results of this investigation I propose here

to communicate.

I. Insufficiency of the previous determination of the mutual radi

ation between two surfaces for the case now under con

sideration.

1. When two bodies are placed in a medium penetrable by

rays of heat, they transmit heat to each other by radiation. In

general, one portion of the rays which fall on a body is absorbed,

whilst another portion is partly reflected and partly transmitted ;

and it is well known that the powers of absorption and emission

have a simple relation to each other. As it forms no part of

our present object to examine the variations and regularities

involved in this relation, we will take the simple case where the

bodies under consideration have the property of at once com

pletely absorbing all incident rays, either at their surfaces, or

within a stratum so thin that its thickness may be neglected.

Such bodies have been denominated perfectly black by Kirch -

hoff in his well-known and remarkable memoir on the relation

between emission and absorption*.

* PoggendorfFs Annalen, vol. cix. p. 275, and Phil. Mag. 8. 4. vol. xx. p. 1.
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Bodies of this kind have also the greatest possible emissive

power, and it has long been assumed as certain that the intensity

of their emission depends solely upon their temperature; so

that at the same temperature all perfectly black bodies radiate

the same amount of heat from equally large portions of their

surfaces ; now, since the rays which a body emits are not homo

geneous, but of different colours, the emission must be con

sidered specially with respect to the different colours : Kirchhoff

accordingly has completed the above theorem by showing that

perfectly black bodies at the same temperature not only radiate

the same total amount of heat, but also equal quantities of every

particular kind of heat ; moreover, since, in our investigation,

these particularities are likewise to be excluded from considera

tion, we shall always assume in future that we are solely con

cerned with rays of a particular kind, or more strictly, with rays

whose wave-lengths vary only within infinitely small limits. For

whatever holds for one kind of rays being, in a corresponding

manner, true for every other kind, the results found for homo

geneous heat may without difficulty be extended to heat con

sisting of different kinds of rays.

To avoid unnecessary complications, we will likewise disregard

all phenomena of polarization, and assume that we have to deal

with unpolarized rays solely. Helmholtz and Kirchhoff have

explained how polarization will have to be taken into account in

considerations of this kind.

2. Let s1 and *2 be given surfaces of any two perfectly black

bodies of the same temperature, and upon them let any two

elements, ds1 and ds2, be selected with a view of determining

and comparing the quantities of heat which they mutually

transmit to each other by radiation. When the medium which

surrounds the bodies and fills the intervening space is homo

geneous, so that the rays proceed in right lines from one surface

to the other, it is easy to see that the quantity of heat which

the element dst sends to dst must be just as great as that which

ds2 sends to dsv If, however, the medium which surrounds the

bodies is not homogeneous, but of such a character as to cause

refractions and reflexions, the procedure is less simple, and a

more careful consideration is necessary in order to convince our

selves that here also the above perfect reciprocity still exists.

Kirchhoff has examined this question in a very elegant manner.
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and I will here briefly give his results so far as they have refer

ence to the case, where the rays suffer no diminution of in

tensity on their way from one element to the other, that is to

say, where the refractions and reflexions occur without loss, and

the propagation is not accompanied by absorption. In doing

so I shall merely change, to some extent, his notation and his

system of coordinates in order to secure a closer agreement with

what will follow.

Of the infinite number of rays which one of two given points

emits, only one can in general attain the other; or should

more do so in consequence of refractions and reflexions, their

number will at all events be limited, and each can be con

sidered individually*. The path pursued by a ray which, starting

from one of the two points, arrives at the other, is determined on

the principle that the time required to traverse it is less than

that which any other adjacent path would have demanded. This

minimum time, which, with Kirchhoff, we will denote by T, is

determined by the positions of the two points, a single ray being,

of course, selected for consideration in the case where many se

parate rays present themselves.

Returning now to the two elements dsl and ds3, we will con

ceive tangent planes to each surface drawn at a point of each

element, and consider dsl) ds2 as elements of these planes. In

each of the latter we will introduce an arbitrary system of

rectangular coordinates, xv yl and xv y2f. If in each plane we

now take a point, the time T, which the ray requires to travel

* That a,point can emit an infinite number of rays may perhaps be regarded,

from a strictly mathematical point of view, as an incorrect mode of expression ;

since a surface only, not a mathematical point, can radiate heat or light. It

would accordingly be more correct to refer the radiation of light and heat to

a surface-element in the vicinity of the point, instead of to the point itself.

Nevertheless, since the notion of a ray is itself a pure mathematical abstrac

tion, the conception of an infinity of rays proceeding from each point of a sur

face may be retained without fear of any misunderstanding arising therefrom.

When the quantity of heat or light which a surface radiates has to be deter

mined, the magnitude of the surface will of course enter into consideration,

and when the surface is divided into elements, these elements will not be

points but infinitesimal surfaces, whose magnitudes will enter as factors into

the formula? which represent the quantities of heat or light radiated from

these surface-elements.

t Kirchhoff placed his coordinate systems in two planes perpendicular to

the directions of the ray in the vicinity of the two surface-elements, and upon

these planes he likewise projected the elements.
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from one to the other, is, as above remarked, determined by the

positions of the two points, and accordingly is to be regarded

as a function of the four coordinates of the two points.

This granted, the following is, according to Kirchhoff*, the

expression for the quantity of heat which the element dsl sends

to the element ds2 during the unit of time,

wherein it denotes the ratio of the circumference to the diameter

of a circle, and e, is the intensity of the emission of the surface

sl at the element dsv so that e, dsl represents the total quan

tity of heat which the element radiates during the unit of

time.

In order to obtain the expression for the quantity of heat

which dst sends to dsv we have only to replace el in the pre

ceding expression by the intensity of emission e2 of the surface s2

at the element dsr Everything else remains unchanged; for

the expression is symmetrical with respect to the two elements ;

since the time T which a ray requires in order to traverse the

path between two points of the two elements is the same in

whichever direction the ray moves. If, now, we assume that

the two surfaces, when at the same temperature, radiate equal

quantities of heat (that, in short, e1 = e2) , it will follow that the

element dst must send just as much heat to ds9 as ds2 sends

to dsv

3. It was stated above that between two given points only one

ray, or a limited number of rays, was in general possible. In

particular cases, however, it may happen that an infinite number

of the rays, which proceed from one point, may converge to the

other, and these may either fill a part of the surface of a cone,

or of the solid angle formed by a cone. The same applies ob

viously to rays of light as well as to rays of heat, and in optics

it is customary to call the point to which the rays proceeding

from a given point and filling a conical space converge, the

image of the latter point, or since the first point may also be

the image of the second, the two are called conjugate foci.

When what has here been said of two isolated points applies

* Pogg. Ann. vol. cix, p. 286; Phil. Mag. S. 4. vol. xx. p. 9,
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to all the points of two surfaces, so that every point of the one

surface has its conjugate focus at a point on the other, one

surface is said to be the optical image of the other.

The question now arises, how does the ray-interchange take

place between the elements of two such surfaces ? Is the above

reciprocity still maintained ; in other words, the temperatures

being equal, does each element of the one surface send to an

element of the other surface exactly as much heat as it receives

therefrom ? If so, one body could not raise another to a higher

temperature than its own ; if otherwise, then by the concentra

tion of rays it would be possible for one body to raise another to

a higher temperature than it possesses itself.

Kirchhoff's expression is not directly applicable to the case

under consideration. For if the surface s2 were the optical

image of s^ then the rays proceeding from a point px of the

surface »,, and filling a certain cone, would converge to a deter

minate point p2 of the surface s2, and none of the points of s2

adjacent to p2 would receive rays from 7^, consequently the co

ordinates x1, yx of the point px being given, the coordinates

x2, y2 of the point p2 will no longer be arbitrary, but perfectly

determined ; and similarly, when x2) y2 are given, the coordi

nates xv yx will be determined. Accordingly no real magnitude

of a finite value can be represented by a differential coefficient

of the form -j—-j—, wherein, when differentiating according to

xv the coordinate xx is to be regarded as variable, whilst the

second coordinate y1 of the same point, as well as the coordinates

x2, y2 of the other point, are to be considered as having constant

values, and similarly, when differentiating according to x2 the

coordinate x2 is to be considered variable, whilst y2, xv y1 re

main constant.

In this case, therefore, an expression of a form somewhat

different from that of Kirchhoff's must be found, and to this

end the following considerations, similar in kind to those which

led Kirchhoff to his own expression, will be of service.
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II. Determination of corresponding points and of corresponding

surface-elements in three planes intersected by rays.

4. Let three planes a, b, c be given, of which b lies between

a and c (fig 10). In each .plane let a system of coordinates be

established, and let the latter be denoted Pig iq

respectively by xa,ya; xb,yb; and xc,yc. p.

If a point pa be given in the plane a, and V\

a point pb in the plane b, and we consider

a ray passing from one to the other, we

shall have for the determination of its path

the condition, that the time required for its

passage thereon will be a minimum when

compared with the times of passage along

all neighbouring paths. Let To4 denote

this minimum time, which will be a function

of the coordinates x^ ya, and xv yb of the points pa and pb. In

a similar manner let be the time of passage of the ray be

tween the two points pa and pc in the planes a and c, and Tbc

the time required for a ray to pass from one to the other of the

points pb and pc in the planes b and c. We must consider Tao

as a function of the four quantities xa, ya, xc, yo, and Tbe as a

function of xb, yw x^ yc.

Now since a ray, which passes through two planes, also cuts

in general the third, we have for each ray three intersections

which are so related to one another, that in general any one is

determined by the other two. Suitable equations for this de

termination may be easily established by help of the above con

dition.

We will first assume the points pa and pc in the planes a and c

(fig. 10) to be immediately given ; the point where the ray cuts

the intermediate plane b being still unknown, shall be repre

sented by p'b in order to distinguish it from other points in that

plane. We will now select any point pb whatever in the plane

b, and consider two auxiliary rays, of which one passes from

Pa to Pb, aim tne otter from pb to pc. In fig. 10 the auxiliary

rays are denoted by broken lines, and the principal ray, proceed
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ing directly from pa to pc, with which we are really concerned, is

shown by a full line*. If in accordance with the preceding we

call To6, 1^ the times corresponding to the two auxiliary rays,

and form the sum T^+T^ the value of the latter will depend

upon the position of the selected point pb, and must accord

ingly be considered as a function of the coordinates xb, yb of

pb ; since the points pa and pc are supposed to be given. Now

of all the values which this sum can acquire by giving to the

point pb different positions in the vicinity of the point p\, the

one obtained on allowing pb to coincide with p\, and thus

causing the two auxiliary rays to coincide with portions of the

direct one proceeding from pa to pc, must be a minimum.

Hence to determine the coordinates of the point p'b, we have

the following two equations of condition,

^+TJ_0. rf(Trt + T^_0i . .

dxb - dyb

Since the quantities ToS and Tbe> besides the coordinates

xb, yb of the previously unknown point, likewise contain the

coordinates xa, ya and xc, yc of the points previously supposed

to be given, the two preceding equations, once established,

may be regarded simply as two equations between the six

coordinates of the three points in which the three planes are

intersected by one and the same ray.

We will now regard as previously

given, the two points pa and pb, in

which the ray intersects the planes

a and b (fig. 11), and as unknown

the point plc, in which it cuts the

plane c. We will then select any

point pe whatever in the plane c, and

consider the two auxiliary rays pass

ing, respectively, from pa to pc, and

from pb to pc. In the figure, the latter

are again indicated by broken lines, and

the principal ray by a full line. Calling the times of passage along

* The paths of the rays are drawn somewhat curved in the figure, merely
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the auxiliary rays Tao and T^, the difference, TM—Tfc, will be de

pendent upon the position in the plane c of the selected pointpc.

Of all the values acquired by this difference when the point pc is

placed near the point p'c, none will be so great as that which

results from making pc coincide with^'o. For in this case the

ray proceeding from pa to pc cuts the plane b in the given

point jt>4, and consequently it consists of the rays passing from

Pa to Pw an(^ from Pb to Pc- ^e may therefore put

and hence deduce the equation

T —T =Txae Lbc 3-ab

for the difference under consideration. But should the point po

not coincide with pfc, the ray proceeding from pa to pc would

not coincide with the two rays from pa to pb, and from pb to pc,

and the direct ray between pa andj9o being the one which

corresponds to the least time of passage, we should have the

inequality

whence we should deduce for the difference under consideration

the inequality

xac xic Aa6'

that is to say, the difference TM—TJo could in general be smaller

than in the foregoing special case, where the point pc lay in the

production of the ray proceeding from pa to pb ; that particular

value of the difference, therefore, is a maximum*. Hence we

to indicate that the path pursued by a ray between two given points is not

necessarily the right line which connects these points, but that, in consequence

of refractions and reflexions, another route may be imposed upon it which may

consist either of a broken line composed of several straight ones, or of a

curved line, according as the medium traversed by the ray changes suddenly

or gradually.

* In Kirchhofl-s memoir, p. 285 (p. 8 of translation), the quantity is stated

to be a minimum, which corresponds essentially to the difference last con

sidered,—the only modification being that KirchhofTs quantity has reference
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again deduce two equations of condition ; namely,

dx rfy.

(2)

If, lastly, we suppose the points pb and pc in the planes b and c

to be given, and regard the point where the ray cuts the plane a

as unknown, we obtain the following two equations by a process

of reasoning which, being precisely similar to the foregoing,

may be here omitted :—

^-TJ=n. rf(Ta-TJ_n

<tea - dya

(3)

We have thus arrived at three pairs of equations, of which

each pair may serve to express the mutual relation which exists

between the three points in which a ray intersects the three

planes a, b, c, and this in such a manner that, whenever two of

the points are given, the third can be found; or still more

generally, when of the six coordinates of the three points any

four are given, the remaining two may be determined.

5. We will now consider the follow

ing problem. Let a point pa be given

in one of the three planes, say aT and

in a second plane b, a surface-element

dsb. If we conceive the rays which

proceed from the point pa to the several

points of dsb to be continued until they

reach the third plane c, they will in

general determine on the plane c an

infinitesimal surface-element dsc (see

fig. 12) ; required the ratio of the surface-elements dsb and dsc.

In this case two, xa and ya, of the six coordinates of the three

points in which each ray intersects the three planes are given.

Hence any values of the coordinates xb, yb being assumed, the

to four planes instead of three. This error is probably typographical ; what

ever its origin, however, a substitution of the term minimum for maximum

at that place involves no further c rror, since the theorem, that the differential

coefficients must vanish, which is employed in the calculations which follow,

holds for a maximum as well as for a minimum.
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coordinates xc, yc are thereby in general determined. In this

case, therefore, each of the coordinates xc and ye may be re

garded as a function of the two coordinates xb, yb.

If we suppose the arbitrary form of the surface-element dsb to

be that of a rectangle dxb . dyb, and seek the points in c which

correspond to the several points of its contour, we shall obtain

in the latter plane an infinitesimal parallelogram for the form

of the corresponding element dsc. Irrespective of its sign, the

magnitude of this parallelogram will be represented, according

to simple geometrical principles, by

sdx, dyi_dxs dys^ ^

\dxb dyb dyb dxj *- *-

The circumstance that in the determination of this surface-

element the absolute magnitude alone is considered, shall be

indicated by prefixing the letters v.n. (valor numericus) to the

differential expression which may itself have a positive or

negative value. We may then write

as=v.n.(^.^J^dy±\dsb -. (4)

\dxb dyb dyb dxj

To determine the relation which exists between the coordi

nates xc, ye and the coordinates xb, yb, we must employ one of

the three pairs of equations in Art. 4. To this end we will first

employ the two equations (1). On differentiating the latter

according to xb and to yb, and remembering that each of the

quantities denoted by T contains those two of the three

pairs of coordinates xa, ya ; xb, yb ; xc, yc which are indicated

by its suffixes, and that xc and yc have to be treated as functions

of xb and yb, whilst xa and ya are to be regarded as constants, we

obtain the following four equations :—
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<*s(To4 + T6r) JTta dx d*T

+

d2%, dyc

^»^6 ' tetdxt ~ dyb^~ dxbdye dyb

" =0 1

= 0,

+ _d*%, dx,+ d*Tbc dyi=o

dybdxe ~dxb dybdyc dxb '

d*Tbe dx d«Tta dyc

(5)

dybdxc dyb ' dybdyc dyb

The required relation between the elements and dge is now

obtained by substituting the values of as de-

dxb dyb dxb' dyb

termined by these equations in the equation (4) . In order to

exhibit the result of this substitution in an abbreviated form, we

will introduce the symbols

L= ».W.( —

\dx

rf-4T

(6)
»bdxc dVbdy* dxbdyc dybdx

The required relation may then be written thus :

(8)

E

A-

Similarly, on assuming a definite point pe to be given in the

plane c (fig. 13), we may determine the

surface-element dsa in the plane a, which

corresponds to the given element dsb in

the plane b ; in fact, the result may be

deduced from the foregoing by simply

interchanging everywhere the suffixes a

and c. If, for brevity, we likewise intro

duce the symbol

Fig. 13.

- C

C=v.n.^
rf8T.» d*T d*T„i d*T

dxadxb dyadyb dxjyb dyadxb
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we shall have

E

(10)

Fig. 14.

Let us, lastly, suppose a definite point pb to be given in the

plane b (fig. 14) , and in the plane a let

us select any surface-element dsa. Con

ceive rays to proceed from the several

points of the latter element, and passing

through the point pb to be continued to

the plane c. If we seek the magnitude

of the surface-element dsc, which all these

rays determine on the plane c, we shall

find on employing the symbols already

introduced,

*. = C

a. :—

Pi

6

(H)

From this we see that the two surface-elements which here

correspond are related to one another in precisely the same

manner as are the two surface-elements which we obtain when,

a definite element dsb being given in the plane b, we first assume

a point on the plane a, and afterwards a point in the plane c, as

the starting-point, and determine each time the surface-element

in the third plane, c or a, which corresponds to dsb.

6. In the calculations of the foregoing article we have em

ployed only the first of the three pairs of available equations,

given in Art. 4. The calculations, however, may be performed

in the same manner on employing either of the other two pairs

(2) or (3) . By means of each pair we are led to three quantities,

analogous to A, C, and E, which serve to express the ratio of the

surface-elements. Of the nine quantities which, on the whole,

present themselves in this manner, it occurs three times that

two are equal to one another, so that the nine quantities are

reduced to six. Although the expressions for three of these six

quantities have already been given, I will here for the sake of

completeness give the whole series.
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By means of these six quantities each ratio of two surface

elements may be represented by three different fractions, in the

following manner :— '

E A C

dsb- A ~ F ~- B'

dsb C B D

K~
E ~ A ~ C

*. A F B

ds~ C~ B~ D.

As is easily seen, the three equations have reference, respectively,

to the three cases where the definite point through which the

rays must pass is taken in the plane a, in c, or in b. Of the

three vertical rows of fractions representing the ratios of the

surface-elements, the first is deduced from the equations (1), the

second from the equations (2) , and the third from the equations

(3) of Art. 4.

Since the three fractions which represent a definite ratio of

two surface-elements must be equal to one another, we obtain

the following equations between the six quantities from which

the fractions are formed :—
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n_BC. F_CA.
F=

AB

C -

(12)

(13)AS=EF; B«=FD; C*=DE.

Now our subsequent calculations are to be made with these

six quantities ; and since each ratio of two surface-elements is

represented by three different fractions, we may select from the

latter, in each special case, the fraction which proves to be most

convenient.

III. Determination of the mutual radiation in the case where no

concentration of rays takes place.

7. We will in the first place consider the case to which Kirch-

hoff's expression refers, by seeking to determine how much heat

two surface-elements transmit to each other, on the hypothesis

that each point of either element receives from each point of the

other but one ray, or at most but a limited number of single

rays, each of which admits of separate consideration.

Fig. 15.

da.

Two elements, d sa and dsc, in the

planes a and c (fig. 15) being given, we

will first determine the heat which the ele

ment ds„ sends to the element ds .
a c

To this end let us conceive an inter

mediate plane b to be drawn parallel to

a, and at so small a distance p from the

latter that the portion of each ray pro

ceeding from dsa to dsc which lies be

tween the two planes a and b may be re

garded as rectilinear, and the medium between the two plan

as homogeneous. Let any point be now taken in the element dsa)

and let us consider the pencil of rays which proceed therefrom

to the element dsc ; this pencil intersects the plane b in an ele

ment dsb, whose magnitude may be expressed by one of the three

fractions standing in the uppermost of the horizontal rows of (II) .

Selecting the last of these fractions, we have the equation

dsb=^ds0. (14)
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This quantity C may in the present case be reduced to a parti

cularly simple form in consequence of the peculiar position of

the plane b.

We will, with Kirchhoff, choose the coordinate system in b

so that it shall correspond perfectly with the coordinate system

in the parallel plane a. That is to say, the origins of the two

coordinate systems shall lie in a line perpendicular to both

planes, and the coordinates of one system shall be parallel to the

corresponding coordinates of the other system. The distance r

from a point xa, ya in the one plane to a point xb, yb in the other

will then be determined by the equation

r=Vp*+(xb-Xa)*+(yb-yf. . . . (15)

Now the propagation of rays between the two planes being by

hypothesis rectilinear, the length of the path described by a

ray proceeding from one to the other of these points will be

simply the distance r between the points themselves ; and if we

represent by va the velocity of propagation in the neighbourhood

of the plane a, the time required for the description of the dis

tance r will be determined by the equation

<a> v

a

since the velocity va, according to our hypothesis, does not sen

sibly change in the interval between the planes a and b. Ac

cordingly the expression for C may be thus written :—r-

VM ' v>a \dxa dxb ' dya dyb dxa dyb ' dya dxj '

Substituting here the value of r as given by (15), we have

C=^-&- (16)

The equation (14), therefore, becomes

&» =t,a^B&. (17)

If, further, we denote by S the angle between the infinitely

small pencil of rays proceeding from a point of the element



CONCENTRATION OF RAYS OF LIGHT AND HEAT. 307

dsa, and the normal to that element, we may put

cos 3= -,

and the foregoing equation will thereby assume the form

cos4 S

dsb=^Bdsc. ...... (18)

8. The magnitude ofthe surface-element dsb being thus found,

the quantity of heat which the element dsa transmits to the ele

ment dsc may be also easily expressed. For an infinitely

small pencil of rays proceeds to dse from each point of the

element dsa, and the conical apertures of the pencils pro

ceeding from the several points may be regarded as equal

to one another. The magnitude of the conical aperture of

each such pencil of rays is determined by the magnitude and

position of the surface-element dsb which the cone determines on

the plane b. To express this conical aperture geometrically, con

ceive a spherical surface of radius p described around the vertex

of the cone as centre. All rays being propagated in right lines

within this sphere, the aperture of the cone will be represented

by the fraction if da be the surface-element in which the

spherical surface is intersected by the cone of rays. Now the

element dsb being at the distance r from the vertex of the cone

and the normal to dsb, like its parallel the normal to dsa, ma

king with the infinitely small cone the angle we have the

equation

da _cos$. dsb .
P* —w~ ' (iy)

from which, by substituting the value of dsb as given in (18),

we deduce

— = _!,_

p2 cos a

We have now to determine how much of the heat emitted

by the element dsa corresponds to this infinitely small aperture ;

in other words, how much heat the element dsa transmits through

that particular element da of the spherical surface. In the first

^- --msc (20)

x 2
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place this quantity of heat must be proportional to the magni

tude of the radiating element dsa; it must further be propor

tional to the magnitude of the aperture of the cone, that is to

say, to the fraction and lastly, according to the known law

of radiation, it must De also proportional to the cosine of the angle

3 which the infinitely small cone of rays forms with the normal.

It may therefore be expressed by the product

. da ,
e cos d —s as ,

P

where e is a factor dependent on the temperature of the surface-

element. To determine this factor, we have the condition that

the total quantity of heat radiated by the element dsa, in other

words, the quantity transmitted by it to the whole hemispherical

surface above the plane a, must be equal to the product ea dsa>

where ea denotes the intensity of the emission of the plane a at

the position of the element dsa. We have, consequently, the

equation

-j^^cos §da= ea,

where the integration is to be extended over the whole hemi

sphere. From this it follows that

eir=ea.

On introducing the value of e, thus determined, into the above

expression, we obtain the following formula for the quantity of

heat transmitted by the element dsa through da :

e« cv da ,
cos S -g ds .

IT P* "

In order to obtain the required expression for the quantity

of heat transmitted by the element dsa to the element dsc, we have

merely to substitute in this formula the value of the fraction ^

already found and given in the equation (20) . The result is

e„ vi — ds„ ds.
a a a c

If, in exactly the same manner, we seek the quantity of heat
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which, on the contrary, the element dsc sends to dsa, and in doing

so denote by ec the intensity of the emission from the plane c in

proximity to the element dsc, and by va the velocity with which

the rays are propagated in the neighbourhood of this element,

we shall find the expression

e„ v* — dsn ds.

9. The expressions obtained in the preceding article are es

sentially the same as KirchhofFs expression given in Art. 2,

the only difference being that the former still contain the square

of the velocity of propagation as a factor, which factor does not

appear in Kirchhoff's expression on account of his having, for

the object in view, considered solely the velocity of propagation

in empty space and considered that as unity. Since the bodies,

however, whose mutual radiation is under consideration may

possibly be situate in different media, in which latter the veloci

ties of propagation differ, this factor is not unessential in such

cases, and its appearance leads at once to a peculiar and theore

tically interesting conclusion.

As mentioned in Art. 1, it has been hitherto assumed that,

for perfectly black bodies, the intensity of emission depends upon

the temperature solely ; so that, at the same temperature, equal

portions of the surfaces of two such bodies radiate equal quanti

ties of heat. So far as I know, it has nowhere been stated that

the nature of the surrounding medium can have any influence

on the intensity ofthe radiation. Since in both the above expres

sions for the mutual radiation of two elements, however, a factor

is involved, which depends on the nature of the medium, the

necessity of considering the medium is forced upon us, and at

the same time the possibility presents itself of determining its

influence.

On forming the ratio of those two expressions, and cancelling

the factor — dsa ds , which is common to both terms, we find that
7T c

the quantity of heat which the element dsa transmits to the ele

ment ds„ bears to that which the element dse transmits to the

element dsa the ratio



310 K1UHTH MEMOIR.

Now if we were to assume that the radiation is necessarily the

same at the same temperature, even when the media adjacent to

the two elements differ, we should have to put ea=ec for equal

temperatures, and the quantities of heat which the two elements

transmit to each other would then have the ratio of v\ : v\, in

stead of being equal to each other. Hence it would follow that

two bodies placed in different media, e. g. the one in water and

the other in air, do not seek to equalize their temperatures by

mutual radiation, but that the one could by radiation raise the

other to a temperature higher than its own.

If, on the contrary, the theorem stated by me as an axiom

be admitted in all its generality, namely that heat cannot of

itself pass from a colder to a warmer body, then the mutual

radiations of two perfectly black surface-elements of the same

temperature must be considered as equal to one another, and

we must put

eavl=eev\ (21)

Hence follows the proportion

ea:ee= i%:vl; (22)

or, since the ratio of the velocities of propagation is the inverse

of that of the coefficients of refraction of the two media, say

na and nc, the proportion

ea:ec=nl-.n2c (23)

According to this, therefore, the radiations of perfectly black

bodies of the same temperature are different in different media ;

they are inversely proportional to the squares of the velocities of

propagation in those media, and therefore directly proportional to

the squares of their coefficients of refraction. The radiation in

water, for instance, must have to that in air the ratio of

Q2: 1 = 16: 9 nearly.

If we take into consideration the circumstance that in the

heat radiated from a perfectly black body there are rays of verv

different colours, and if we admit that the equality of the mutual

radiation must hold not only for the total heat, but likewise for
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that of each particular colour, we shall obtain proportions

like (22) and (23) for each colour; in these proportions, how

ever, the ratios on the right, to which the ratios of radiation are

equated, will have somewhat different values.

Ifwe wish to consider, instead of perfectly black bodies, bodies

which absorb incident rays partially instead of completely, we

must introduce into the formulae, instead of emission, a fraction

having emission for its numerator and the coefficient of absorp

tion for its denominator, and thus obtain for this fraction relations

corresponding to those which previously had reference to emis

sion alone. Into this generalization of our result, which would

involve a discussion of the influence of ray-direction on emission

and absorption, I need not here enter, since it follows at once

from an appropriate consideration of the subject.

IV. Determination of the mutual radiation between two elements

which are optical images of each other.

10. We will now proceed to the case where it is no longer

true, as before assumed, that the planes a and c, so far as they

enter into consideration, interchange rays in such a manner, that

from each point of the one plane proceeds but one ray, or at most

a limited number of distinct rays, to each point of the other

plane. The rays which diverge from each point of one plane

may, in consequence of refractions or reflexions, become con

vergent and meet again in the other plane ; so that correspond

ing to a point pa, selected for consideration in the plane a, there

may be in the plane c one or more points or lines in which an

infinite number of the rays which issued from pa intersect, whilst

other parts of the plane c may receive no rays whatever from

that point. In such a case, of course, similar properties are

also possessed by the rays which, issuing from the plane c,

arrive at the plane a, since the same paths are pursued by the

rays which pass to and fro between the two planes.

From the infinity of different cases of this kind, we will for

the sake of greater clearness, first treat the extreme one where

all the rays which issue from the point pa in the plane a, and

fall within a certain finite conical space, meet again at a definite
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point po of the plane c, as shown in Fig- 16-

fig. 16. This case would occur, for

instance, if the directions of the rays

were changed by a spherical mirror

or by a lens, or by any system of

centred mirrors or lenses, and we

were to disregard the accompany

ing spherical and chromatic aberra

tions ; it may be remarked, indeed,

that chromatic aberration is in every

case to be excluded, since, from the commencement, we have

limited our considerations to homogeneous rays. As already

stated, the name conjugate foci will be given to two points so

related, that the rays which issue from the other converge in

each.

In such a case, with the coordinates xa, ya of the point pa

from which each of the rays in question has issued, are simul

taneously determined the coordinates xc, yc of the point pe)

where the ray strikes the plane c. The other points of the

plane c, which are in the neighbourhood of pc, receive no

rays from the point pa, since there is no path leading to

them which possesses the property of being describable by a

ray in a time which is a mathematical minimum when compared

with the times of description of every other adjacent path.

Accordingly the quantity Tac, which represents this minimum of

time, can have no real value for points adjacent to pc, but solely

for the point pc itself. As a consequence of this it follows, that

the differential coefficients of TO0 cannot be real and finite mag

nitudes if formed on the assumption that the coordinates xa, ya

are constant, whilst one of the coordinates xc, yc varies ; or, on

the contrary, that xc, ye are constant during the variation of

x or y . Hence we conclude, that of the six quantities

A, B, C, D, E, F determined by the six formulae (I), the three,

B, D, F, which contain differential coefficients of Tec are not

applicable to our present inquiry.

The three other quantities, A, C, E, contain, however, dif

ferential coefficients of Tab and T6e solely. Consequently, if we
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assume the plane b to be so chosen, that between it and the

planes a and c, so far at least as the latter enter into considera

tion, the ray-interchange takes place in the manner previously

described, that is to say, from each point of b proceeds one, but

only one ray to each point of the planes a and c, or at most a

limited number of distinct rays, the quantities To6 and Tic will

have real and not infinitely great values for all points which

have to be considered. The quantities A, C, and E, therefore,

are just as applicable in the present as in the former case.

In the present case, one of these magnitudes, E, takes a special

value, which may be at once deduced. The two equations (1), or

dxb ' dyb

must hold with respect to the three points in which a ray inter

sects the three planes a, b, c. Now since in our present case

the positions of the points pa and pc in the planes a and c do

not suffice to determine the position of the intersection of a ray

with the plane b, inasmuch as the latter plane may be intersected

in any point within a certain finite area, the two foregoing

equations must hold for all such points, whence it follows that,

by the differentiation of these equations according to xb and yb)

new and equally true equations must be obtained. We have

therefore

^(Ta6+Tj_n, <*2(Tttt+T6c)_n. ^(Tgt +TJ_n

dx\ ' dxbdyb dy\

On applying these equations to the one by which, in the

system (I), E is defined, we have

E=0 (25)

The two other quantities, A and C, have, in general, finite

values dependent upon the circumstances of each individual case ;

these values must be employed in the following determinations.

11. Let it be granted that the element dsa of the plane a has

dsc for its optical image in the plane c, so that each point of the

element dsa forms, with a point of the element dsc, a pair of con

jugate foci, and vice versa. We will inquire whether the quan
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tities of heat are equal which these two elements, considered as

belonging to the surfaces of two perfectly black bodies of the

same temperature, transmit to each other.

In order, first, to determine the position and magnitude of

the image dsc of the given element dsa, let us select any pointpb

in the intermediate plane b, and conceive rays passing through

it from every point of the element dsa. Each of these rays

strikes the plane c in the conjugate focus of the point whence

the ray issued, hence the surface-element in which this pencil of

rays cuts the plane c is precisely the optical image of the element

dsa ; in other words it is dso. To express the magnitude of the

image dsc relative to dsa, therefore, we may employ one of the

three fractions, in the lowest horizontal row of (II.) , which repre

sentee ratio of the two surface-elements which an infinitesimal

pencil of rays, with vertex pb in the intermediate plane b, deter

mines upon the planes a and c. Of the three fractions in ques

tion, however, one only is suitable, the two others being indeter

minate, so that we have the equation

i4 ™
o

This equation is of interest in optics, since it is the most

general equation for determining the relative magnitudes of an

object and its optical image ; it may be remarked with respect to

it, that the intermediate plane b, to which the quantities A and

C have reference, being arbitrary, may in each particular case be

chosen so as most to facilitate the calculation.

12. The surface-element dsc, image of dsa, having been deter

mined, let us take a surface-element dsb instead of a point in

the plane b, and consider the rays which the two elements ds

and dsc transmit through it. All rays which, issuing from a

point of the element dsa, pass through the element dsb unite

again in a point of the element dsc ; accordingly, all rays trans

mitted by the element dsa through dsb precisely reach dsc, and

vice versa, the rays which dsc sends through dsb all strike the

element dsa. The two quantities of heat which the elements

dsa and dsc transmit to the element dsb are, therefore, also the



CONCENTRATION OF KAYS OF LIGHT AND HEAT. 315

quantities of heat which the elements dsa and ds0 transmit to

each other through the intermediate element dsb. Now these

quantities of heat may be at once found, according to previously

established principles.

In fact, for the quantity of heat which the element dsa sends

to the element dsb, the same expression holds which in Art. 8

was developed for the quantity of heat which the element ds

sends to the element dsc ; provided we therein replace ds and B

by dsb and C respectively. The required expression is, there

fore,

2C

a 7T a b'

Similarly the expression already found for the quantity of heat

which the element dsc transmits to the element dsa furnishes

the quantity of heat which the element dsc sends to the element

dsb, on changing in the former dsa to dsb) and replacing the

quantity B by the quantity A. Hence the expression required is

e$l — ds ds.-

On remembering now that, according to equation (26),

Cdsa?=Adsc,

we conclude that the two quantities here expressed are to each

other in the ratio of eav2a . ecv2c.

We arrive at precisely the same result when, in the inter

mediate plane b, we take any other surface-element dsb and con

sider the quantities of heat which the elements dsa and dso

transmit to each other through it. The two quantities of heat

always bear to each other the ratio of ejc? : ecv2c. Now, since

the total quantities of heat which the elements dsa and dse

transmit to each other consist of those which they transmit

through the several elements of the intermediate plane, we con

clude, as the final result, that the total quantities of heat which

the surface-elements dsa and dsc transmit to each other have

the ratio eav2a : ecv2c.

This is the same ratio as that which was found in Arts. 8 and 9
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X

for the case where no concentration took place. It follows,

therefore, that however much the concentration of rays may

change the absolute magnitudes of the quantities of heat which

two surface-elements interchange by radiation, the ratio of these

quantities is not altered thereby.

In Art. 9 it was shown that if for ordinary unconcentrated

inter-radiation the theorem is to hold, in virtue of which heat

cannot be thereby transferred from a colder to a warmer body,

the radiation must necessarily vary in different media, and that

in such a manner that for perfectly black bodies of the same

temperature we have always

evl= ev'i.
a a e e

If this equation be fulfilled, then in the present case also, where

of the two surface-elements dsa and ds0 one is the image of the

other, the quantities of heat must be equal which they transmit

to each other, and hence, notwithstanding the concentration,

neither element can raise the other to a temperature higher than

its own.

V. Relation between the enlargement and the ratio of the aper

tures of an elementary pencil of rays.

13. As a secondary result of the preceding investigation, I

may be allowed here to develope a proportion which appears to

me to possess general interest, inasmuch as it renders manifest

a peculiar difference in the constitution of the pencil of rays at

the object and at its image, which difference must always pre

sent itself in a definite manner whenever object and image are

of unequal magnitude.

If we consider the infinitesimal pencil of rays which, issuing

from a point of the element dsa, pass through the element dsb of

the intermediate plane and then combine in a point of the ele

ment ds,., we may compare the divergence which these rays pre

sent at the point of issue with their convergence at the point of

combination. This divergence and convergence, in other

words, the apertures of the infinitesimal cones, which the rays

form at the points of issue and combination, may be imme

diately found by the same method as that which we employed

in Art. 8.
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Around each of the points in question we conceive a spherical

surface to be described with a radius so small, that the rays

within the sphere may be regarded as rectilinear, and we con

sider the element which the pencil intercepts on the spherical

surface. Let this surface-element be denoted by da, and let p

be the radius of the sphere ; then the aperture of the infinite

simal cone formed by the rays, considered as rectilinear, will be

represented by the fraction

In the similar case treated in Art. 8 we determined this frac

tion by the equation (20) ; and to obtain the expression appli

cable to our present case, it will suffice to change slightly the

letters involved in the expression there found. To express the

aperture of the cone, whose vertex is at the point of the plane a

whence the rays issue, we have to put in place of the element

dsc, and the quantity B of our former expression, the element

dsb and the quantity C. In order, moreover, to indicate more

distinctly that we are considering the cone whose vertex is in

the plane a, we will use the symbol §a instead of to denote the

angle between the elementary pencil and the normal to the

surface-element dsa ; and for a similar reason we will provide

the fraction — which represents the required aperture with the

P

suffix a. We have then

In order to obtain the corresponding formula for the aperture

of the cone, whose vertex is at the point in the plane c where the

rays unite, we have merely to replace every suffix a in the pre

ceding formula by c, and likewise the quantity C by A. The

result is

(27)

(28)

From these two equations we obtain the proportion
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and if to this we apply the equation (26), we find

cos $a(d<r\ cos 3, fd<r\

On introducing coefficients of refraction in place of velocities of

propagation, this proportion becomes

n\ cos f-f ) : nl cos Sc f = dse : dsa. . (30)

i a i c

On the right of this proportion stands the ratio of the mag

nitudes ofa surface-element of the image, and the corresponding

surface-element of the object ; in short, the superficial enlarge

ment ; it furnishes, therefore, a simple relation between the en

largement and the ratio ofthe apertures of an elementary conical

pencil of rays. It is moreover obvious that for the truth of the

proportions it is not absolutely necessary that the rays should be

ultimately convergent and actually intersect in a point ; on the

contrary, they may be divergent, so that their rectilinear back

ward productions meet in a point and form a so-called virtual

image.

If, as a special case, we assume the medium to be the same

at the point whence the rays issue and where they combine ; if,

for example, the rays proceed from an object in air and, after

suffering any refractions and reflexions whatever, give an image

in air, really or virtually, then va=vc and na=nc, and we have

cos Sa : cos 3C = dsc : dsa.

If we further introduce the condition that the elementary pencil

of rays is to make equal angles with both surface-elements, for

instance, to be normal to each, the cosines will disappear, and

we shall have

In this case, therefore, the apertures of the elementary conical

pencils of rays at the object and at the image are simply in

versely proportional to the magnitudes of the corresponding

surface-elements of object and image.

In the clear and elaborate exposition of the laws of refraction
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in systems of spheric surfaces, which Helmholtz has given in

his ' Physiological Optics '* preparatory to examining the refrac

tions which take place- in the eye, I find on p. 50, and expanded

on p. 54, an equation which expresses the relation between the

magnitude of the image and the convergence of the rays for the

case where the directions of rays are changed by refraction, or

even by reflexion in centred spheric surfaces, and where the rays

strike the planes containing object and image normally or ap

proximately so. So far as I know, the relation has never before

been given with the generality which appertains to the propor

tions (29) and (30).

VI. General determination of the mutual radiation between two

surfaces in which any concentrations whatever occur.

14. The investigation must now be generalized so as to em

brace every imaginable case of ray-concentration, and not

merely the extreme case where all the rays, issuing from a point

of the plane a within a certain finite conical angle, are again

collected in a point of the plane c, so that a conjugate focus

there ensues. To define more accurately the conception of con

centration, we will introduce the following definition. If rays,

issuing from any point p^ fall on the plane c, and have in the

neighbourhood of this plane directions such that at any point

thereon the density of the incident rays is infinite compared

with the mean density, we shall say that at that point occurs a

concentration of the rays issuing from pa.

According to this definition we may easily make the concen

tration of rays mathematically intelligible. Between the point

pa and the plane c we take any intermediate plane b, so situated

that in it no concentration of the rays issuing from pa occurs,

and also so related to the plane c that, as far as our considera

tions extend, the pencils of rays which proceed from points in

the one suffer no concentration in the other. We then con

ceive an infinitesimal pencil of rays proceeding from pa, and

compare the magnitudes of the surface-elements dsb and dse

which it intercepts on the planes b and c. If on doing so we

find dsc to be infinitely small in comparison with dsb, so that we

* Allgemeine Encyklopiidie der Physik, edited by G. Karsten.
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may put

ds

*?r0' . (31)

the fact will indicate that a concentration of rays, in the above

sense, takes place in the plane c.

Returning now to the equations (II) of Art. 6, of which equa

tions those in the first horizontal row have reference to the pre

sent case, we find that of the three fractions in that row, each of

which represents the ratio of the surface-elements, the first is

applicable to the case under consideration; since, according

to the hypothesis now made relative to the position of the

intermediate plane, the magnitudes A and E are determinable

in the ordinary way. We have, accordingly, the equation

*•._!

dsb A-

In order that this fraction representing the ratio of the two ele

ments may vanish, the numerator E must do so, since the deno

minator A, in virtue of our hypothesis relative to the position

of the plane b, cannot be infinitely great. Hence the equation

of condition,

E= 0, (32)

is the mathematical criterion for deciding whether the rays

issuing from the point pa do or do not suffer a concentration at

the particular point of the plane c ; in the case of a concentra

tion this equation must be fulfilled.

If, on the contrary, we now suppose a point pc to be given in

the plane c, and we inquire whether or not the rays issuing from

this point suffer a concentration at any place on the plane a, we

find in an exactly similar manner the condition

dsb U'

and since, according to (II), we may put

*?_E

dsb C

we obtain the same condition,

E= 0.
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It is, in fact, manifest that when rays proceeding from a point

of the plane a suffer concentration in a point of the plane c, the

rays which issue from the latter point must likewise undergo

concentration in the first plane.

Having in the equations (12) and (13) expressed the relations

which exist between the six magnitudes A, B, C, D, E, F, we

may employ these equations to find what B, D, and F become

when E=0, and A and C have values different from zero. Ac

cording to those equations, we have

B=TT' D=F? F=W - - - (33)

so that all three magnitudes become infinitely great in the case

under consideration.

15. We will now seek to determine the ratio of the quantities

of heat which two surfaces interchange by radiation, in such a

manner that the result shall always hold, no matter whether a

concentration of rays takes place or not.

For the sake of greater generality, let any two surfaces, sa and

sc, be given in place of the two planes a and c. Between these two

surfaces we take a third, sb, subject only to the condition that the

rays which proceed from sa to sc, or in the contrary direction,

suffer no concentration in sb. In sa let any element dsa be now

chosen, and let dsb be an element in sb so situated that the rays

from ds which pass through dsb reach, when prolonged, the

surface s0. This done, we will next determine how much heat

the element dsa sends to and receives from the surface sc through

the element dsh of the intermediate surface.

To find the first of these two quantities of heat, we have

merely to. determine how much heat the element dsa sends to

the element dsb ; for according to the hypothesis relative to the

position of the element dsb, the whole of this heat, after passing

through the element dsb, reaches the surface sc. The required

quantity of heat may be at once expressed by means of the

formulae previously developed. To do so, we conceive the

tangent plane to the surface sa drawn at a point of the element

dsa, and likewise the tangent plane to sb at a point of the

Y
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element dsb, and consider the given surface-elements as coin

cident with elements of these planes. On introducing coordi

nate systems xa, ya and xb, yb into these tangent planes and

forming the magnitude C, as defined by the third of the equa

tions (I), the required quantity of heat transmitted by the

element dsa to the element dsb, and thence to the surface sc, will

be represented by the expression

e„ »? — ds ds..
if

Passing next to the quantity of heat which the element dsa

receives from the surface s through the element dsb, it must be

observed, with reference to the points of the surface sc from

which the several rays proceed, that in general the simple

relation no longer holds here, as in the special case, where the

element dsa had an optical image ds in the surface sc, and was

consequently itself the optical image of ds . If we select any

definite point pb of the intermediate element dsb, and conceive

rays passing through this point from all points of the element

dsa, we obtain an infinitely small pencil of rays which intersect

s0 in a certain surface-element. It is from this surface-element

that rays proceed to the element dsa through the selected point

pb. If, however, we were to choose any other point in dsb as the

vertex of a pencil of rays, we should obtain a somewhat dif

ferently situated element in the surface sc. Consequently the

rays which the element dsa receives from the surface sc through

the several points of the intermediate element, do not all

proceed from one and the same element of the surface sc.

Nevertheless, the magnitude of the intermediate element dsb

being arbitrary, there is nothing to prevent us from making it

as small as we please,—in fact an infinitesimal of a higher order

than the given element dsa. This granted, the element of the

surface sc, which corresponds to the element dsa, will change its

position so little when the vertex of the pencil of rays moves

within the element dsb, that the differences will be infinitesimal

when compared with the dimensions of the element itself, and
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may accordingly be neglected. On this hypothesis, therefore,

we may consider the portion of the surface sc, which inter

changes rays with the element dsa through the element dsb, to

be identical with the element dsc, which we obtain on selecting

any point pb of the element dsb as the vertex of a pencil of rays

proceeding from dsa.

The magnitude of this element dsc can be easily expressed by

foregoing principles. We conceive, as before, the tangent plane

to the surface sb at the point pb to be drawn, as well as the

tangent plane to the surface sa, at a point of the element dsa, and

the tangent plane to sc at a point of dsc ; and we regard the two

last surface-elements as elements of the respective tangent

planes. On introducing systems of coordinates into the three

tangent planes and forming the magnitudes A and C, as denned

by the first and third of the equations (I) , we have, by (II),

The quantity of heat which this element dsc transmits to the

element dsb, and which, as above explained, may be regarded as

equal to the quantity received by the element dsa from the sur

face se through the element dsb, is represented by

e vi — ds, ds,,

or, on substituting for dsc the value just given, by

e„ i>l — ds^ ds„

On comparing this expression with the one previously found

for the quantity of heat, which the element dsa transmits

through dsb to the surface sc, it will be seen that the two

quantities have to each other the ratio

e v2 : e v2.
a a co

Now if we suppose sa and sc to be surfaces of two perfectly

black bodies of the same temperature, and assume that for

such surfaces the two products eav2a and etP are equal—an

y 2
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assumption which was shown to be necessary in the case of

radiation without concentration—the quantities of heat repre

sented by the two expressions under consideration will likewise

be equal to one another.

- 16. If we take a different element in the intermediate sur

face sb, again considered as an infinitesimal of higher order, the

element of the surface sc, which interchanges rays, through it,

with the element dsa, will have a different position ; but the two

interchanged quantities of heat will again be equal to one

another, and the same will be true for all other elements of the

intermediate surface.

To obtain the total quantity of heat which the element dsa

transmits to the surface so, and likewise the total quantity which

it receives in return, the two expressions above found must be

integrated relative to the intermediate surface sb, and the

integral extended to that portion of this surface which is en

countered by the rays which proceed from the element dsa to

the surface sc, and vice versd. It is manifest that the two in

tegrals will be equal to one another, since for each element dsb

the two differential expressions are equal.

Lastly, the quantity of heat which the entire surface sa inter

changes with the surface sc will be obtained by the further in

tegration of the two expressions relative to the surface sa, and

here again the equality which exists for the several elements

dsa will not be disturbed.

The theorem above established for more special cases, in virtue

of . which two perfectly black bodies of the same temperature

interchange equal quantities of heat, provided the equation

eava=ecve *s applicable to them, also presents itself as the result

of considerations altogether independent of the circumstance

whether or not the rays proceeding from sa to sc, or from sc to sa

suffer concentration. The only condition imposed was, that the

rays proceeding from sa and se suffer no concentration in the in

termediate surface sb, and this condition may always be fulfilled,

inasmuch as the intermediate surface may be arbitrarily chosen.

From this result it further follows, of course, that when re

ciprocal action takes place between a given black body and any
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number of other black bodies of the same temperature, the for

mer receives from all the latter, put together, exactly as much

heat as it transmits to them.

17. The preceding developments were made on the supposi

tion that the reflections and refractions therein involved occur

without loss, and that no absorption takes place. It may easily

be shown, however, that the final result remains unchanged, even

when this condition is relinquished. To this end let us consider

for a moment the different ways in which a ray may become

weakened during its passage from one body to another. On

reaching the dividing surface of two media, one portion may

suffer reflection, and the other, after refraction, pursue its

course in the adjacent medium. Whichever of these two por

tions, however, we consider as the prolongation of the original

ray, we shall have a weaker ray. Again, a ray on passing

through a medium may suffer absorption. Now in each of these

cases the law holds that the weakening effect is proportionally

the same for two rays propagated in opposite directions along

the same path. The effect of such processes will be, therefore,

to diminish to the same degree both the quantities of heat which

two bodies mutually transmit to each other, so that if these quan

tities were equal before the weakening occurred, they will re

main equal afterwards.

Another circumstance to be mentioned in connexion with the

above-named processes is, that a body may receive like-directed

rays proceeding from different bodies. For instance, from a

point situated in the dividing surface of two media, a body, A,

may receive two rays coincident in direction, but proceeding

from two different bodies, B and C ; and of these rays one may

have come from the adjacent medium, after having suffered re

fraction at the point, whilst the other may have remained in the

same medium, and have suffered reflection merely. In this case,

however, the two rays must have been weakened by refraction

and reflection in such a manner that, if originally equal in in

tensity, the sum of their intensities must afterwards be equal to

the original intensity of each. If we now conceive an equally

intense ray to proceed in an opposite direction from the body A,

it will, at the same point, be divided into two parts, one of which

will enter the adjacent medium and proceed to the body'B,

whilst the other will be reflected to the body C. The two parts



326 EIGHTH MEMOIR.

which in this manner reach B and C from A will be just as

great as the parts of rays which A receives from B and C.

Under the hypothesis of equal temperatures, therefore, the rela

tion between the body A and the bodies B and C is such, that

it exchanges equal quantities of heat with each. In consequence

of the equality of the actions on two rays which pursue, in

opposite directions, any path whatever, the above relations must

hold in all other cases, however complicated.

Further, if, instead of perfectly black bodies, we also consider

bodies which only partially absorb incident rays, or if, instead

of homogenous heat, we consider heat due to waves of different

lengths, or lastly, if, instead of regarding all rays as unpolarized,

we have regard to the phenomena of polarization, we shall in all

cases be concerned solely with circumstances which affect, to

the same extent, the heat emitted by a body, and the heat

which it receives from other bodies.

It is not necessary to consider here all these circumstances,

for they occur also in ordinary radiation without concentration,

and the sole object of the present memoir was to investigate the

effects which may possibly arise from the concentration of rays.

18. The following is a brief summary of the principal results

of the foregoing considerations :—

1. To harmonize the effects of ordinary radiation, without

concentration, with the principle that heat cannot of itself pass

from a colder to a warmer body, it is necessary to assume that

the intensity of emission from any body depends not only upon

its own constitution and its temperature, but also upon the

nature of the surrounding medium ; in fact the intensities of

emission of one and the same body in different media must be

inversely proportional to the squares of the velocities with which

rays are therein propagated, or, in other words, directly propor

tional to the squares of the coefficients of refraction for these

media.

2. If this assumption as to the influence of the surrounding

medium be correct, the above principle must obtain, not only

for ordinary radiation, but also when the rays become concen

trated in anymannerwhatever throughreflections and refractions ;

for although concentration may change the absolute magnitudes

of the quantities of heat which two bodies radiate to each other,

it cannot alter the ratio of these magnitudes.
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NINTH MEMOIR.

ON SEVERAL CONVENIENT FORMS OF THE FUNDAMENTAL EQUATIONS

OF THE MECHANICAL THEORY OF HEAT*.

In my former Memoirs on the Mechanical Theory of Heat,

my chief object was to secure a firm basis for the theory,

and I especially endeavoured to bring the second fundamental

theorem, which is much more difficult to understand than the

first, to its simplest and at the same time most general form,

and to prove the necessary truth thereof. I have pursued special

applications so far only as they appeared to me to be either appro

priate as examples elucidating the exposition, or to be of some

particular interest in practice.

The more the mechanical theory of heat is acknowledged to

be correct in its principles, the more frequently endeavours are

made in physical and mechanical circles to apply it to different

kinds of phenomena, and as the corresponding differential equa

tions must be somewhat differently treated from the ordinarily

occurring differential equations of similar forms, difficulties of

calculation are frequently encountered which retard progress

and occasion errors. Under these circumstances I believe I

shall render a service to physicists and mechanicians by bring

ing the fundamental equations of the mechanical theory of heat

from their most general forms to others which, corresponding to

special suppositions and being susceptible of direct application

to different particular cases, are accordingly more convenient

for use.

1. The whole mechanical theory of heat rests on two funda

mental theorems,—that of the equivalence of heat and work,

and that of the equivalence of transformations.

In order to express the first theorem analytically, let us

* Read at the Philosophical Society of Ziirich on the 24th of April, 1866,

published in the Vierteljahrsschrift of this Society, Bd. x. S. 1.; Pogg. Ann.

July, 1805, Bd. cxxv. S. 353 ; Journ. de Liouville, 2e ser. t. x. p. 301.
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contemplate any body which changes its condition, and consider

the quantity of heat which must be imparted to it during the

change. If we denote this quantity of heat by Q, a quantity of

heat given off by the body being reckoned as a negative

quantity of heat absorbed, then the following equation holds

for the clement dQ of heat absorbed during an infinitesimal

change of condition,

dQ=dV +AdW (I)

Here U denotes the magnitude which I first introduced into the

theory of heat in my memoir of 1850, and defined as the sum of

the free heat present in the body, and of that consumed by interior

work*. Since then, however, W. Thomson has proposed the

term energy of the body for this magnitude f, which mode of

designation I have adopted as one very appropriately chosen ;

nevertheless, in all cases where the two elements comprised in

U require to be separately indicated, we may also retain the

phrase thermal and ergonal content, which, as already explained

on p. 255, expresses my original definition of U in a rather

simpler manner. W denotes the exterior work done during the

change of condition of the body, and A the quantity of heat

equivalent to the unit of work, or more briefly, the thermal

equivalent of work. According to this AW is the exterior work

expressed in. thermal units, or according to a more convenient

terminology recently proposed by me, the exterior ergon. (See

Appendix A. to Sixth Memoir.)

If, for the sake of brevity, we denote the exterior ergon by a

simple letter,

k>= AW,

we can write the foregoing equation as follows,

dQ=dU + dw (Ia)

In order to express analytically the second fundamental

theorem in the simplest manner, let us assume that the changes

which the body suffers constitute a cyclical process, whereby

the body returns finally to its initial condition. By dQ we will

again understand an element of heat absorbed, and T shall

* Pogg. Ann. Bd. lxxix. S. 385, and p. 29 of this collection,

t Phil. Mag. S. 4. vol. ix. p. 52a
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denote the temperature, counted from the absolute zero, which

the body has at the moment of absorption, or, if different

parts of the body have different temperatures, the temperature

of the part which absorbs the heat element dCl. If we divide

the thermal element by the corresponding absolute temperature

and integrate the resulting differential expression over the

whole cyclical process, then for the integral so formed the

holds, in which the sign of equality is to be used in cases where

all changes of which the cyclical process consists are reversible,

whilst the sign < applies to cases where the changes occur in a

non-reversible manner*.

2. We will first consider more closely the magnitudes occur

ring in equation (I a) in reference to different kinds of changes

of the body.

The exterior ergon w, which is produced whilst the body

passes from a given initial condition to another definite one,

depends not merely on the initial and final conditions, but

also on the nature of the transition.

In the first place, we have to consider the exterior forces which

act on the body, and which are either overcome by, or overcome

the forces of the body itself;—the exterior ergon being positive

in the former, and negative in the latter case. The question

» In my memoir "On a Modified Form ofthe Second Fundamental Theorem

of the Mechanical Theory of Heat " (Fourth Memoir of this collection), in

which I first gave the most general expression of the Second Fundamental

Theorem for a Cyclical Process, the signs of the differentials <ZQ were

differently chosen ; there a thermal element given up by a changing body

to a reservoir of heat is reckoned positive, an element withdrawn from a

reservoir of heat is reckoned negative. With this choice of signs, which in

certain general theoretical considerations is convenient, we have to write

instead of (II),

In the present memoir, however, the choice mentioned in the text is every

where retained, according to which a quantity of heat absorbed by a changing

body is positive, and a quantity given off by it is negative.

relation

(II)
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then arises, are these exterior forces, at each moment, the same

as, or different from the forces of the body ? Now although we

may assert that for one force to overcome another, the former

must necessarily be the greater ; yet since the difference between

them may be as small as we please, we may consider the case

where absolute equality exists as the limiting case, which,

although never reached in reality, must be theoretically con

sidered as possible. When force and counter-force are different,

the mode in which the change occurs is not a reversible one.

In the second place, the change taking place in a reversible

manner, the exterior ergon likewise depends upon the inter

mediate conditions through which the body passes when chang

ing from the initial to the final condition, or, as it may be figu

ratively expressed, upon the path which the body pursues when

passing from its initial to its final condition.

With the energy U of the body whose element, as well as

that of the exterior ergon, enters into the equation (I a), it

is quite different. If the initial and final conditions of the

body are given, the variation in energy is completely deter

mined, without any knowledge of the way in which the trans

ition from the one condition to the other took place—in fact

neither the nature of the passage nor the circumstance of its

being made in a reversible or non-reversible manner, has any

influence on the contemporaneous change of energy. If, there

fore, the initial condition and the corresponding value of the

energy be supposed to be given, we may say that the energy is

fully defined by the actually existing condition of the body.

Finally, since the heat Q which is absorbed by the body

during the change of condition is the sum of the change of

energy and of the exterior ergon produced, it must like the

latter depend upon the way in which the transition of the body

from one condition to another takes place.

Now in order to limit the field of our immediate investigation,

we shall always assume, unless the contrary is expressly stated,

that we have to do with reversible changes solely.

The equation (I a) which expresses the first fundamental

theorem, holds for reversible as well as for non-reversible

changes; hence, in order to apply it specially to reversible
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changes, we have not to modify it externally in any manner,

but merely to understand that by w and Q, are meant the ex

terior ergon and quantity of heat which correspond to reversible

changes.

On applying to reversible changes the relation (II) which

expresses the second fundamental theorem, we have not only

to understand by Q the quantity of heat which relates to

reversible changes, but also, instead of the double sign <, we

have simply to employ the sign of equality. We obtain for all

reversible cyclical processes, therefore, the equation

£-0 (II.)I T

3. In order to be able to calculate with the equations (I a)

and (II a), we will assume that the condition of the body under

consideration is denned by any appropriate magnitudes what

ever ; the cases which most frequently occur are those where the

condition of the body is either denned by its temperature and

volume, or by its temperature and the pressure to which it is

exposed, or finally by its volume and pressure. We will not at.

present, however, confine ourselves to any particular magnitudes,

but assume that the condition of the body is defined by any two

magnitudes, say x and y ; these magnitudes will be considered

in the calculations as independent variables. In special applica

tions, we are of course always at liberty to identify one or both of

these variables with any one or two of the above-named magni

tudes, temperature, volume, and pressure.

If the magnitudes x and y define the condition of the body,

then its energy U, which depends only on the instantaneous

condition of the body, must admit of being represented as a

function of these two variables. It is otherwise with the mag

nitudes w and Q. The differential coefficients of these magni

tudes, which we will denote in the following manner,

dw dw ., .

£-«. ?=N- <2)

are definite functions of x and y. For if we assume that
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the variable x becomes x + dx, whilst y remains unchanged,

and that this change of condition of the body takes place

in a reversible manner, a perfectly definite process is assumed,

and hence the exterior work thereby done is defined, whence

it follows, further, that the function must likewise have a

definite value. The same holds good if we assume that y

changes to y + dy, whilst x remains constant. But if the

differential coefficients of the exterior ergon w are definite

functions of x and y, it follows from equation (I a) that

the differential coefficients of the heat Q which is absorbed by

the body, must likewise be definite functions of x and y.

If we now form for dw and dQ. their expressions in dx and dy

and, neglecting terms of a higher order than the first in dx and

dy, write

dw = mdx + ndy, (3)

dQ=Mdx+~Hdy (4)

we obtain two complete differential equations, which cannot be

integrated so long as the variables x and y are independent of

one another, since the magnitudes m, n, and M, N do not satisfy

the conditions of integrability :—

dm_dn ^ rfM_dN

dy ~ dx dy ~ dx-

The magnitudes w and Q thus belong to those which were

discussed in the mathematical introduction to this collection of

Memoirs, whose peculiarity consists in the fact that, although

their differential coefficients are definite functions of both inde

pendent variables, they themselves cannot be represented by such

functions, but only become defined when a further relation is

given between the variables, and by that means the sequence of,

or path pursued during the changes is prescribed.

4. If we return to equation (I a) , and put therein for dw and

dQ the expressions (3) and (4), and also separate d\J into the

two parts which have reference to dx and dy, we obtain the

equation

Mdx+N%= + mjdx + + njdy.

Since this equation must hold for all values of dx and dy, it
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may be resolved into the following two :—

If we differentiate the first of these equations with respect to y,

and the second with respect to x, we obtain

dM_ d*U dm

dy dxdy dy'

dN_ d*U dn

dx ~ dy dx dx'

Now to U may be applied the well-known theorem, according

to which when any function whatever is differentiated succes

sively according to each of two variables, the order in which

the differentiations are made has no influence on the result;

accordingly

d*V _ d*\J

dx dy ~ dy dx'

If, having regard to this last equation, we subtract the second of

the two former equations from the first, we get

dM «TN_dm dn (t..

dy dx~ dy dx

In order to treat equation (II a) in a similar manner, let us

substitute in it for dQ. its value given in (4), we thus obtain

U^-dx + -^-dyj=0.

If the integral standing on the left-hand side vanish as often as

x and y resume their original values, the expression under the

integral sign must be a perfect differential of a function of x

and y, and hence the above-named condition of integrability

must be fulfilled ; in the present case this condition is

dy\T/~dx\t)'

On performing the differentiations, and remembering that the
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temperature T of the body is also to be considered as a function

of x and y, we obtain

1 ^M_M dT_l rfN_N dT

T ' dy T9 - dy ~ T * dx T8 ' rf,r ;

or differently arranged,

dM dN l/^dT XTrfT\ ...

We will give to the equations (5) and (6) thus obtained, a

somewhat different form. In order not to have too many different

letters in the formulae, we will in future replace M and N,

which were introduced as symbols for the differential coefficient

—j- and -r-, by the differential coefficients themselves. We

further observe that the difference on the right-hand side of (5),

which on replacing m and n by the differential coefficients -=-

n dw ,
and -y- becomes

dy

d (dw\ d /dw\

dy \dx) dx \dy/'

is a function of x and y, which may usually be regarded as

known, inasmuch as the forces operating on the body externally

being susceptible of direct observation, the exterior ergon can

be determined. We shall call this difference, which frequently

occurs in the following pages, the ergonal difference corresponding

to xy, and introduce for it a particular symbol by putting

F _d^ (dw\_± (dw\ m

**~dy\dxJ dx\dy) K)

In consequence of this change in the notation, the equations (5)

and (6) become

dy\dx) dx\dy) "' {}

dy\dx) dx\dyJ~T\dy' dx dx' dy)" - U

These two equations form, for reversible changes, the analytical

expressions of the two fundamental theorems in the case where
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the condition of the body is defined by any two variables. From

them a third, and simpler equation at once results, inasmuch as

it contains only the differential coefficients of Q. of the first

order, namely,

f.f.f.f=^ (10)ay dx dx dy ** '

5. The three foregoing equations are particularly simple,

when we select the temperature of the body as one of the in

dependent variables. To this end we will put y=T, so that

now the undetermined magnitude x and the temperature T are

the two independent variables. When y=T, it follows that

dT

dy~

Moreover, with respect to the differential coefficient -=-, we

supposed on forming it that, whilst x changes to x + dx, the

other variable, hitherto called y, remains constant. Since at

present T itself is the other variable, which is supposed to be

constant in the differential coefficient, we have to put

f=0.ax

The ergonal -difference corresponding to #T is now

d /dw\ d (dw

"*T~~dT\dx
^=Mix-)-dx\W' - . - - <n)

and on introducing this value the equations (8), (9) and (10)

become

rfT(&)-^(rfT)=E^ <12)

dT\dx) dx\dTj~T' dx' . . - - (13)

S=TE- <14)

If we introduce the product TElT, given in (14), in place of the

differential coefficient -5— in equation (12), and differentiate

s
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it, as there prescribed, according to T, we obtain the following

simple equation,

6. We have hitherto made no special assumptions concerning

the exterior forces to which the body is subjected, and to which

the exterior ergon produced during a change of condition refers.

We will now consider more closely a case which is of very

frequent occurrence, namely, that where the only external

force, or at least the only one which is important enough to

merit notice in the calculations, is a pressure acting on the

surface of the body with equal intensity at all points, and which

is everywhere directed perpendicularly to that surface.

In this case exterior ergon is produced solely in consequence

of changes of volume in the body. If we call p the pressure on

a unit of surface, the exterior work which is done, when the

volume v increases by dv, is

dW=pdv,

and accordingly the exterior ergon, that is to say, the exterior

work measured by thermal units, is

dw=Apdv (16)

If we conceive the condition of the body to be denned by any

two variables x and y, the pressure p and the volume v must be

considered as functions of x and y. We can consequently write

the foregoing equation in the following form,

dw=Kp^£dx+Tydy)'

from which it follows that

dw_ . dv

dx ~ * dx-

dw_ . dv

dy~ Pdy

(17)

Introducing these values of ~ and ^~ into the expression for

E™ given in (7), performing the two differentiations therein
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indicated, and remembering at the same time that r— =

dx dy

d*v , . .
-3—3-, we obtain
dy dx

E^A(d^-dx~£ dy) (18)

We have to employ this value of in the equations (8) and

(10).

If x and T be the two independent variables, we obtain

^-A{dT dx dx dTJ' - • -

which quite corresponds to the preceding equation. This value

has to be employed in the equations (12), (14), and (15).

The expression (18) acquires very simple forms when we choose

either the volume or the pressure as one of the independent

variables, and when we make the volume and the pressure the

two independent variables. In these cases, as may be easily seen,

the equation (18) becomes transformed, respectively, into

e.=-a!' <»>

B,=A (22)

If, finally, in those cases where either the volume or the

pressure is taken as one of the independent variables, we wish

to make the temperature the other independent variable, we

need only replace y by T in equations (20) and (21).

7. Under the circumstances before alluded to, when the only

existing exterior force is a uniform and normal surface-pressure,

the independent variables most frequently used for defining the

condition of the body, are the magnitudes just mentioned, that

is to say, volume and temperature, or pressure and temperature,

or finally, volume and pressure. Although the systems of dif

ferential equations answering to these three cases could easily be

deduced from the above general systems, yet on account of their

frequent application I will here place them side by side.

The first system is the one which I have always employed in

my memoirs when special cases were under consideration.
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When v and T arc chosen as independent variables,

d fdQ\_^fdQ\_ .dp

dT\dv) dv\dTJ~ dT

7t\JSJ dv\d't)~T- dv-

When ^> and T are chosen as independent variables,

dv \

~dp--~Aidr-

dp\dTJ~ dT*

When v and p are taken as the independent variables

if^V-f—Va

dp\dv J dv\dpj~ '

dp\dv J dv\dp/~T\dp dv dv dp)'

*-AT
dp dv dv dp~ -

(23)

(24)

(25)

8. The simplest of the cases to which the equations of the

preceding Article are applicable, is that where a homogeneous

body is given of absolutely uniform temperature, which is ex

posed to a uniform and normal surface-pressure, and can, by a

change of temperature and of pressure, change its volume with

out at the same time changing its state of aggregation.

dQ.
In this case the differential coefficient ^ has a simple

physical meaning. For if we suppose the weight of the body to

be equal to unity, this differential coefficient denotes the specific
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heat at constant volume, or the specific heat at constant pressure,

according as, when forming it, the volume or the pressure was

supposed to be constant.

In cases where the nature of the subject requires that

the independent variables should often be changed, and hence

where differential coefficients occur which only differ from one

another in that the magnitude which was supposed to be con

stant during differentiation is not the same in all, it is con

venient to denote this difference by an outward mark, in order

to avoid the necessity of repeated verbal explanations. I shall

do this by enclosing the differential coefficients in brackets, and

adding, in the form of a suffix with a bar over it, the magnitude

which is supposed to be constant during differentiation. Accord

ingly, we will write the two differential coefficients which denote

the specific heat at constant volume, and the specific heat at con

stant pressure, in the following manner :—.

Further, of the three magnitudes, temperature, volume, and

pressure, which in our present case come under consideration

when determining the condition of the body, each is to be re

garded as a function of the other two, hence the following six

differential coefficients may be formed :—

/dp\ fdp\ /dv\ (dv\ sdT\ fdT\

UtAj \dvJf-' \dph' \dv)f \dph-

The suffixes, which here indicate the magnitude which in each

differentiation is supposed constant, might be omitted provided

we agreed, once for all, that of the three magnitudes T, v, and p,

the one which does not occur in the differential coefficients is

to be considered as constant. Nevertheless, for the sake of

clearness, and because differential coefficients of the same magni

tudes occur in which the quantity supposed to be constant is

not the same as at present, we will, at least in the following

equations, retain the suffixes.

It will facilitate the calculations to be made with these six

differential coefficients, if we first determine the relations ex

isting between them.

In the first place, it is clear that amongst the six differential

and

z2
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coefficients there are three pairs of reciprocals. For example,

if we assume the magnitude v to be constant, the dependence

between the two other magnitudes T and p is such that each of

them may be regarded simply as a function of the other. It is

the same with T and v ifp be assumed to be constant, and with

v and p when T is supposed to be invariable. Consequently we

must put

In order to obtain the relation between the three pairs of

differential coefficients, we will by way of example consider p

as a function of T and v. Then we have the complete differ

ential equation

If, now, we apply this equation to the case where p is constant,

we have to put

dp=0 and dv=(^Q clT,

whereby it is transformed into

If we remove dT and then divide by i^^j.) we obtain

With the help of this equation, in conjunction with the equa

tions (26), we can represent each of the six differential coeffi

cients as a product or quotient of two other differential coeffi

cients.

9. To return to the consideration of the absorption and pro

duction of heat by the given body, let us denote the specific

heat at constant volume by c, and the specific heat at constant

pressure by C ; then, if we assume the weight of the body to be

unity, we must put

fdQ\ sdQ\ „



CONVENIENT FORMS OF THE FUNDAMENTAL EQUATIONS. 341

Further, according to equations (23) and (24),

so that we can form the following complete differential equa

tions,

dQ=c(fT+AT(j|)jfo, (28)

rfQ=CdT-AT(J^)j^ (29)

By comparing these two expressions of dQ, we may at once

deduce the relation which exists between the two specific heats

c and C. In fact, from the last equation, which has reference

to T and p as independent variables, we can deduce an equation

wherein the independent variables are T and v. To do this,

we need only consider p as a function of T and v, and ac

cordingly write

By the introduction of this value of dp in equation (29) it is

transformed into

*- [c-™(%)-, (IX*-

If in place of the product of two differential coefficients in the

last term of the above, we put by help of equation (27) a simple

differential coefficient, we get

«=[c_AT(*),(*)^+AT(j|)>.

On comparing this expression for dQ, with that given in (28), and

considering that the coefficients of dT in both expressions must be

equal, we obtain the following equation expressing the relation

between the two specific heats,

<30>

The differential coefficient which here occurs repre

sents the expansion of the body caused by an increase in its
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temperature, and is to be considered as known. The other

differential coefficient, (Jji)_> ifi not, it is true, usually given

directly by observation in the case of solid and liquid bodies,

but according to (27) we may put

fdP\ Qrr)„

\dpJr

and the differential coefficient in the numerator of this fraction

is again the one before referred to, whilst the differential co

efficient in the denominator represents, when taken with a

negative sign, the diminution of volume through increase of

pressure or the compressibility ; for a number of liquids this has

been measured, and for solid bodies it can be approximately esti

mated from the coefficients of elasticity. By the introduction

of this fraction equation (30) becomes

c=c+AW (31)

\dpjj

On using this equation for numerical calculations, it must be

remembered that the unit of volume in the differential co

efficients is the cube of that unit of length which was employed

in the determination of the magnitude A; and the unit of

pressure is the pressure which a unit of weight exerts when

spread over a unit of surface. Hence we have to reduce to

these units the coefficients of expansion and the coefficients of

compressibility whenever the latter have been referred to other

units, as is usually the case.

Since the differential coefficient is always negative, it

follows that the specific heat at constant volume must always

be less than that at constant pressure. The other differential

coefficient j is generally a positive magnitude. For water,

however, at the temperature of maximum of density it vanishes,

and accordingly the two specific heats at this temperature are
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equal. At all other temperatures, under or over the tempera

ture of maximum density, the specific heat at constant volume is

less than that at constant pressure ; for even if the differential

coefficient have a negative value below this temperature,

the signs in the formula are not affected thereby, since the square

of this differential coefficient is alone involved therein*.

From the equations (28) and (29) we can easily deduce a

complete differential equation for Q, having reference to p and

v as independent variables. To do this, we need only consider

* To give an example of the application of equation (31), we will consider

water at a few definite temperatures, and calculate the difference between

the two specific heats.

According to the observations of Kopp, whose results are tabulated in the

Lehrbueh der Phys. und Theor. Chemie, S. 204, we have for water, if its volume

at 4° be taken as unit, the following coefficients of expansion

at 0 .... -0-000061,

at 25 .... +0-00025,

at 50 ... . +0-00045.

According to the observations of Grassi (Ann. de Chim. et de Phys. 8 ser.

t. xxxi. p. 437, and Kronig-s Journ. fiir Physik des Auslandes, Bd. ii. S. 129),

we have for the compressibility of water the following numbers, which give

the diminution of volume, caused by an increase of pressure equal to an

atmosphere, expressed as a fraction of the volume corresponding to the

original pressure :— 0

at 0 0-000050,

at 25 ... . 0-000046,

at 50 ... . 0-000044.

We will now by way of example go through the calculation for the tern*

perature of 25°.

As unit of length we will choose the metre, and as unit of weight the

kilogramme. We then have to assume a cubic metre as the unit of volume,

and since the volume of a kilogramme of water at 4° is 0-001 cubic metre,

we must, in order to obtain (^j-) multiply the above-given coefficient of

expansion with 0-001, hence

(^\ = 0-00000025=25 . 10-8.

In accordance with the foregoing, the unit of volume, in the case of com

pressibility, is that which water occupies at the temperature under con

sideration and at the original pressure, which we may assume to be the

ordinary pressure of one atmosphere. This volume is, at 25°, equal to 0-001003

cubic metre. Moreover, one atmosphere is taken as the unit of pressure,

whilst we must take for our unit the pressure of a kilogramme upon a square
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T as a function ofp and v, and accordingly put

If we substitute this value in equation (29) for dT, we have

^=Kf);-AT(£)J*+c©,*

=(i);[c-AT(5vm]*+c©>-

The difference, standing between square brackets in the last

expression, is by (30) equal to c, hence we can write the equa

tion thus :

*-<Si++c(£i*- - • <32)

10. The three complete differential equations (28), (29), and

metre, whereby one atmosphere of pressure will be represented by 10333.

Accordingly we have

<M 0 000046 . 0 001003 AR nfl-13
($) = -45 . 10
\dplT 10333

Besides this we have, at 25°, to put

T=273+25=298,

and, with Joule, we will assume

A=424-

These numerical values introduced into equation (31) give

C-e=298 25^10-" ^
424 45 .10-13

In the same manner the following numbers result from the above values

of the coefficients of expansion and of compressibility at 0° and 50° ;

at 5 .... C-«=0-0005,

at 50 .... C-c=00358.

If for the specific heat C at constant pressure we use the values found

experimentally by Regnault, we obtain for the two specific heats the follow

ing pairs of numbers :—

at0° \ C= 1>

I c=0i(-9995 ;

Rt250 IC=1-0016,

I c=0-9918;

at50o|C = ln°0f-

I c =0-9684.
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(32) do not fulfil the condition of immediate integrability ; this

is at once manifest, as far as the two first are concerned, from

the equations already given. In fact, if we introduce into the

equations, which in the systems (23) and (24) stand lowest, the

letters c and C, they become

whilst the equations which must be fulfilled if (28) and (29)

are integrable, are

In a similar, though somewhat more tedious manner, it may be

proved that the equation (32) is not integrable ; this, however,

is manifest from the circumstance that (32) is deduced from

(28) and (29) . The three equations belong, therefore, to those

complete differential equations which are described in the In

troduction to the present collection of Memoirs, and which can

only be integrated when another relation between the variables

is given, and by that means the sequence of the changes is pre

scribed.

Among the manifold applications which can be made of the

equations (28), (29), and (32), I will here only adduce one by

way of example. Let us assume that the body changes its

volume in a reversible manner through a change of pressure,

without thereby losing or acquiring heat. We will determine

the change of volume which, under these circumstances, is caused

by a given change of pressure, and in what manner the tempe

rature simultaneously changes, or more generally, what rela

tions, under these circumstances, exist between temperature,

volume, and pressure.

We obtain these relations immediately by putting dQ=0

in the three above-named equations. Equation (28) gives

(33)
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(FT
If we divide the terms of this equation by dv, the fraction

thereby resulting is, for this particular case, the differential co

efficient of T according to v, which we will distinguish from

other dinerential coefficients of T according to v by giving to

it the suffix Q. Hence we obtain

sdT\ AT/dp\ ....

UJ5—t{M w

In a similar manner we obtain from equation (29)

From the equation (32) we obtain, in the first place,

\dpja

\dv)-p

for which, according to (27), we may write

cdp)s~c(dp\ (36^

On introducing into this equation the value of c as given in (31),

it becomes

fdv\ fdv\ AT/rfiA*

11. When the equations of the two foregoing Articles are

applied to a perfect gas, they assume still more definite, and at

the same time very simple forms.

In this case the laws of Mariotte and Gay-Lussac give the

following relation between T, v, and p,

pv=UT, (38)

wherein R is a constant. From this it follows that

(39)

On combining the two last equations with the equations (33),
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we obtain

(dc\ n fdC

From this it follows that for a perfect gas the two specific heats

c and C can only be functions of the temperature. On other

grounds, which depend on special considerations into which I

will not now enter, it may be shown that the two specific heats

are independent of the temperature, and consequently are con

stant; results which, with respect to specific heat at constant

pressure, have been corroborated by the experimental researches

of Regnault on permanent gases.

If we apply the two first of equations (39) to equation (30),

which gives the relation between the two specific heats, we

obtain the expression

c—C—A >
p v

which by (38) becomes

c=C-AR (41)

On applying the first two of equations (39), the equations (28),

(29), and (32) assume the following forms :

dQ,=cdT + AB,-dv,
v

dQ=CdT-AT&-dp,

P

dQ,= ^vdp+ gri?^

(42)

wherein, moreover, the product AR can, in virtue of (41), be

replaced by the difference C— c. As in the First Memoir of

this collection, and in the Appendix B to the Sixth Memoir,

several examples have already been given of the applications of

these equations, I will not here enter into further details.

12. Another case, which on account of its frequent applica

tions is of particular interest, is that where with the changes of

condition of the body a partial change of the state of aggregation

is associated.

We will assume that a body is given, of which one part is in

one, and the remaining part in another state of aggregation.

For instance, one portion of the body may be conceived to be in
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a liquid, and the rest in a vaporous state (the density of the

latter being that which the vapour naturally assumes when in

contact with the liquid), or one part of the body may be in a

solid and the other in a liquid state, or one part in a solid and

the other in a vaporous state. Accordingly we will, for the sake

of generality, abstain from explicitly defining the two states of

aggregation with which we are to be concerned, and simply refer

to them as the first and second states of aggregation.

Conceive then a certain quantity of matter to be enclosed

in a vessel of a given volume, and one portion of it to be in

the first and the other in the second state of aggregation. If

the specific volumes (volumes referred to the unit of weight)

which the substance occupies at a given temperature in the two

states of aggregation be unequal, the two portions existing in

different states of aggregation in a given space must necessarily

have quite definite magnitudes. For when the portion which

is in the state of aggregation of greater specific volume increases

in magnitude, the pressure which the enclosed substance exerts

on the containing walls, and with it the reaction of the latter

on the substance, must likewise increase, so that a point will

ultimately be reached when the pressure is so great as to prevent

all further passage into this state of aggregation. When this

point is reached, the magnitudes of the portions present in the

two states of aggregation cannot change further, so long as the

temperature of the mass and its volume (i. e. the volume of the

vessel) remain constant. But if, whilst the temperature remains

constant, the volume of the vessel increase, the portion which is

in the state of aggregation corresponding to the greater specific

volume may increase still further at the expense of the other,

until the same pressure as before is again reached, and all

further change again prevented.

Hence follows a peculiarity which distinguishes this case from

all others. For if we take the temperature and the volume of

the mass as the two independent variables by which its condition

is defined, then the pressure is not a function of both these vari

ables, but of the temperature solely. The same thing also occurs

when, instead of the volume, another magnitude is taken for the

second independent variable, which can likewise change indepen

dently of the temperature and, together with the temperature,
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define the whole condition of the body;—the pressure cannot

depend on such a variable. The two magnitudes, temperature

and pressure, cannot in this case be chosen as the two variables

which serve to define the condition of the body.

In conjunction with the temperature T, we will now, in order

to define the condition of the body, take any undetermined

magnitude x as our second independent variable. Accordingly,

in the expression

\dT - dx dx-dm)'

which by (19) gives the ergonal difference corresponding to xT,

(ZD
and which we will next consider, we must put ^=0, whereby it

will become

<«)

By means of this the three equations (12), (13), and (14) take

the following forms :—

dTKdxJ dAdTJ dT tlx - - • w

d /dQ\_d^fdQ\_l dQ
dT\dx) dx\dl)~T - dx' • • • - W

m

13. In order to give these equations more definite forms, we

will call the whole weight of the substance M, and the portion of

it which is in the second state of aggregation m, so that M—m

is the weight of the portion which is in the first state of aggrega

tion. We will, further, consider the magnitude m as the indepen

dent variable which, together with T, defines the condition of the

body.

Let the specific volume of the substance in the first state of

aggregation be denoted by o-, and the specific volume in the

second state of aggregation by s. Both magnitudes have re

ference to the temperature T, and to the pressure correspond

ing to this temperature, and, like the pressure, are to be

regarded as functions of the temperature solely. If we denote,
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further, the volume which the whole mass possesses by v, we

have to put

«= (M—m)<T + ms

=m(s—a) + M<T,

or, introducing the symbol u for the difference s—a,

v=»»M + Mer, (47)

whence follows

«-
- - <«)

Let r be the quantity of heat which must be imparted to the

mass in order that a unit of weight of it at the temperature T,

and under the corresponding pressure, may pass from the first

state of aggregation into the second, so that

£- w

We will next introduce the specific heats of the substance in the

two states of aggregation into the equations. The specific heat

treated of here is neither the specific heat at constant volume nor

that at constant pressure, but has reference to that quantity of

heatwhich is necessary to heat the substancewhen simultaneously

with the temperature the pressure changes in the manner deter

mined by the circumstances of the case under consideration.

This kind of specific heat is denoted in the following formulae

by c for the first state of aggregation and by h for the second*,

and we have

-^ = (M.-m)c+mh,

or, arranged differently,

d^=m(h-c) + M.c (50)

From (49) and (50) it follows immediately that

d /dQ\ _ dr d fdQ.\_, . .
dT\dmJ-dT'' dm\dTJ~ c' ' ' <51)

On introducing the values given in the equations (48) to (51)

into the equations (44), (45), and (46), after replacing x by m

* The letter c, therefore, has in the following formulas a meaning different

from what it had above, when it denoted the specific heat at constant volume.
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in the latter, we have

dir dj)
af+c~h=KuW (52)

dir 7*
—+c-h=T, (53)

r=ATMJ|. (54)

These are the fundamental equations, having reference to the

formation of vapour, which have already been established in the

First Memoir of this collection (pp. 34, 65, and 52).

In the previous numerical calculations, which had special re

ference to the vaporization of water, I did not distinguish, in the

case of the liquid state of aggregation, the specific heat implied

in these equations from the specific heat of water at constant

pressure. This procedure was in fact perfectly justifiable, since

the difference between these two kinds of specific heat is less

than the error of observation occurring in the experimental de

termination of the specific heat*.

* We can easily deduce from the above equations the relation which

exists between the specific heat at constant pressure and that specific heat

which corresponds to the assumption that the pressure increases with the

temperature in such a manner that it is always equal to the maximum

tension of the vapour given off by the liquid.

According to equation (29), the quantity of heat which must be imparted

to a unit-weight of the liquid while the temperature increases by dT, and

the pressure by dp, is determined by the equation

wherein C denotes the specific heat at constant pressure. Let us now

assume that the pressure increases with the temperature in the same

manner as the maximum tension of the vapour, and let us denote the in

crement of pressure which corresponds to the increment of temperature <2T

by ^ (fT ; the quantity of heat which under these circumstances must be

imparted to a unit-weight of liquid in order to raise its temperature by dT,

will then be represented by

On dividing this equation by «2T, the resulting fraction ^ will denote the

specific heat under consideration ; and since the latter is denoted by c in the
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If we form the complete differential equation

and put therein the values given in (49) and (50) , we deduce

dGL=rdm+ [m(h—c) + Mc]dT.

On substituting for h—c its value resulting from (53), we have

'dr
dGL=rdm+ fro {^~ -Q + McldT,

text, we shall have

Let us apply this specially to water, and at the same time, by way of example,

adopt the temperature 100°. According to the experiments of Kopp, the

coefficient of expansion of water at 100°, the volume of the water at 4° being

taken as unit, is 0O0080. We must multiply this magnitude by 0O01, in

order to obtain (-5p)_> for the case where a cubic metre has been taken as

the unit of volume and a kilogramme as the unit of weight. Hence

t||V =0-00000080.

Again, according to the tension series of Regnault, the pressure being ex

pressed in kilogrammes to the square metre, we have for the temperature

100°,

*=370.

The absolute temperature T at 100° is nearly equal to 373, and for A we

will put with Joule ^ ; we tnus obtain

AT (—) - 4£=~ - 0-00000080 . 370=-0002G.

\dTIp dT 424

Hence follows

c=C-0-00026 ;

and if we now assume for the specific heat of water, at 100", under constant

pressure, the value resulting from Regnault's empirical formulae, we obtain

the following values for the two specific heats under comparison :

0=1-013,

c= 1-01274.

Hence we see that the two magnitudes are so nearly equal that it would have

been useless to take the difference between them into account in my former

numerical calculations.

The consideration of the influence of pressure on the freezing of liquids

leads to a somewhat different result ; for a considerable change in the pressure
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which equation may also be written

or still shorter,

rfQ=rf(»»r)-^rfT + McdT, . . . (55)

dQ=Tdf^+ McdT (56)

I will not enter here into the applications of these equations,

since they have frequently been discussed in the First and Fifth

Memoirs of this collection.

14. All the foregoing considerations had reference to changes

changes the freezing-point very little, and hence the differential coefficient

^ has, in this case, a very great value. The procedure which I adopted in

my Note on this subject (p. 82 of this collection) is therefore not quite ac

curate, since I there also employed, in numerical calculations, the known

values of c and h which correspond to the specific heats of water and ice

at constant pressure. In the Appendix to the Note (p. 89), I have, in fact,

already alluded to this circumstance. If we assume, in accordance with

the calculations made in that Note, that for an increment of pressure

amounting to one atmosphere the freezing-point sinks about 0°-00733, we

must put

dp_ 10333

dl~~000733'

On bringing this value into combination with the coefficients of expansion of

water and of ice at 0° in the same manner as before, we obtain, instead of the

numbers 1 and 0-48 which represent the specific heats of water and ice at

constant pressure, the following values :—

c= 1-0-05=0 95,

h=0-48+ 0-14=0-62.

Applying these values to the equation

dr ,,r
dT=C-k+T>

we have, instead of the result,

^=0-62+0-29=0-81,

given at p. 82, the following somewhat different one :—

^=0-33+0-29=0-62.

ax

It may, however, be remarked, with reference to the small correction which

we have here taken occasion to introduce, that it relates only to an isolated

calculation,—in fact to the numerical calculation of an equation, which, as I

have stated in the Note, is practically unimportant, and only merits mention

for theoretical considerations; the equation itself and the theoretical con

siderations referring thereto are not affected by this correction.

2 A
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which occurred in a reversible manner. We will now also take

non-reversible changes into consideration in order briefly to indi

cate at least the most important features of their treatment.

In mathematical investigations on non-reversible changes two

circumstances, especially, give rise to peculiar determinations of

magnitudes. In the first place, the quantities of heat which must

be imparted to, or withdrawn from a changeable body are not

the same, when these changes occur in a non-reversible manner,

as they are when the same changes occur reversibly. In the

second place, with each non-reversible change is associated an

uncompensated transformation, a knowledge of which is, for

certain considerations, of importance.

In order to be able to exhibit the analytical expressions cor

responding to these two circumstances, I must in the first place

recall a few magnitudes contained in the equations which I have

previously established.

One of these is connected with the first fundamental theorem,

and is the magnitude U, contained in equation (I a) and dis

cussed at the beginning of this Memoir ; it represents the ther

mal and ergonal content, or the energy of the body. To deter

mine this magnitude, we must apply the equation (I a), which

may be thus written,

d\J = dQ-dw; (57)

or, if we conceive it to be integrated, thus :

U=U0+ Q-m> (58)

Herein U0 represents the value of the energy for an arbitrary

initial condition of the body, Q denotes the quantity of heat

which must be imparted to the body, and w the exterior ergon

which is produced whilst the body passes in any manner from

its initial to its present condition. As was before stated,

the body can be conducted in an infinite number of ways from

one condition to another, even when the changes are to be

reversible, and of all these ways we may select that one which

is most convenient for the calculation.

The other magnitude to be here noticed is connected with the

second fundamental theorem, and is contained in equation (II a).

J/70

Tp- vanishes
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whenever the body, starting from any initial condition, returns

thereto after its passage through any other conditions, then

the expression ^ under the sign of integration must be the

complete differential of a magnitude which depends only on the

present existing condition of the body, and not upon the way by

which it reached the latter. Denoting this magnitude by S, we

can write

rfS=^; (59)

or, if we conceive this equation to be integrated for any re

versible process whereby the body can pass from the selected

initial condition to its present one, and denote at the same time by

S0 the value which the magnitude S has in that initial condition,

S = S0+J^ (60)

This equation is to be used in the same way for determining S

as equation (58) was for defining U.

The physical meaning of the magnitude S has been already

discussed in the Sixth Memoir. If in the fundamental equa

tion (II) of the present Memoir, which holds for all changes

of condition of the body that occur in a reversible manner, we

make a small alteration in the notation, so that the heat taken

up by the changing body, instead of the heat given off by it, is

reckoned as positive, that equation will assume the form

CdQ CdB. , C

Jt=J-t-+J'
rfZ (61)

The two integrals on the right are the values for the case under

consideration, of two magnitudes first introduced in the Sixth

Memoir.

In the first integral, H denotes the heat actually present in

the body, which, as I have proved, depends solely on the tem

perature of the body and not on the arrangement of its parts.

Hence it follows that the expression is a complete differen

tial, and consequently that if for the passage of the body from

CdH
its initial condition to its present one we form the integral j ^ ,

2a2
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J'

we shall thereby obtain a magnitude which is perfectly defined

by the present condition of the body, without the necessity of

knowing in what manner the transition from one condition to

the other took place. For reasons which are stated in the Sixth

Memoir, I have called this magnitude the transformation-value

of the heat present in the body.

It is natural when integrating, to take, for initial condition,

that for which H= 0, in other words, to start from the absolute

zero of temperature ; for this temperature, however, the integral

'JTT

~- is infinite, so that to obtain a finite value, we must take

an initial condition for which the temperature has a finite

value. The integral does not then represent the transformation-

value of the entire quantity of heat contained in the body, but

only the transformation-value of the excess of heat which the

body contains in its present condition over that which it

possessed in the initial condition. I have expressed this by call

ing the integral thus formed the transformation-value of the

body's heat, estimated from a given initial condition (p. 248).

For brevity we will denote this magnitude by Y.

The magnitude Z occurring in the second integral I have

called the disgregation of the body. It depends on the arrange

ment of the particles of the body, and the measure of an in

crement of disgregation is the equivalence-value of that trans

formation from ergon to heat which must take place in order

to cancel the increment of disgregation, and thus serve as a

substitute for that increment. Accordingly we may say that

the disgregation is the transformation-value of the existing

arrangement of the particles of the body. Since in determining

the disgregation we must proceed from some initial condition of

the body, we will assume that the initial condition selected for

this purpose is the same as that which was selected for the

determination of the transformation-value of the heat actually

present in the body.

The sum of the two magnitudes Y and Z, just discussed, is

the before-mentioned magnitude S. To show this, let us return

to equation (61), and assuming, for the sake of generality, that

the initial condition, to which the integrals in this equation

refer, is* hot necessarily the same as the initial condition which
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was selected when determining Y and Z, but that the integrals

refer to a change which originated in any manner whatever

suited to any special investigation, we may then write the inte

grals on the right of (61) thus :

j^=Y-Y0 and jdZ=Z-Z0,

wherein Y0 and Z0 are the values of Y and Z which correspond

to the initial condition. By these means equation (61) becomes

j^=Y+Z-(Y0+Z0) (62)

Putting herein

Y + Z= S, (63)

and in a corresponding manner

we obtain the equation

j^=S-S0, . (64)

which is merely a different form of the equation (60) , by which

S is determined.

We might call S the transformational content of the body, just

as we termed the magnitude U its thermal and ergonal content.

But as I hold it to be better to borrow terms for important

magnitudes from the ancient languages, so that they may be

adopted unchanged in all modern languages, I propose to call

the magnitude S the entropy of the body, from the Greek word

TpoTrr), transformation. I have intentionally formed the word

entropy so as to be as similar as possible to the word energy ;

for the two magnitudes to be denoted by these words are so

nearly allied in their physical meanings, that a certain similarity

in designation appears to be desirable.

Before proceeding further, let us collect together, for the sake

of reference, the magnitudes which have been discussed in the

course of this Memoir, and which have either been introduced

into science by the mechanical theory of heat, or have obtained

thereby a different meaning. They are six in number, and

possess in common the property of being denned by the present

condition of the body, without the necessity of our knowing

the mode in which the body came into this condition : (1) the
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thermal content, (2) the ergonal content, (3) the sum of the two

foregoing, that is to say the thermal and ergonal content, or

the energy, (4) the transformation-value of the thermal content,

(5) the disgregation, which is to be considered as the transfor

mation-value of the existing arrangement of particles, (6) the

sum of the last two, that is to say, the transformational content,

or the entropy.

15. In order to determine the energy and the entropy for

particular cases, the several expressions above given for dQ have

to be used in conjunction with the equations (57) and (59), or

(58) and (60). I will here, by way of example, treat a few

simple cases merely.

Let the body under consideration be homogeneous and of

the same temperature throughout, upon which the only active

foreign force is a uniform and normal surface-pressure, and let

us assume that it can change its volume, with a change of tem

perature and pressure, -without at the same time suffering a

partial change of its state of aggregation; then if the weight

of the body be taken as unit, we can employ for dQ the equa

tions (28), (29), and (32) given in Art. 9. In these equations,

the specific heat at constant volume, there denoted by c, and the

specific heat at constant pressure, denoted by C, occur; now,

since the latter specific heat is that which is usually directly

determined by observation, we will use the equation (29) in

which it occurs, namely,

dQ=CdT-AT—dp*.
dT

With respect to the exterior ergon we have, for an infinite

simal change of condition during which the volume increases by

dv, the equation

dw=Apdv ;

and if T and p are chosen as independent variables, we can give

this equation the form

* I write here simply ^ instead of the symbol (^r^J- in (29), because in

a case where only T and p occur as independent variables, it is manifest that

in the differentiation with respect to T, the other variable p is supposed con

stant.
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Applying these expressions for dQ, and dw to equations (57)

and (59), we obtain

From the equation

(05)

dp ~ Vr2'

the last in (33), it is easy to see that these two complete dif

ferential equations are integrable, without necessarily assuming

a further relation between the variables. By performing the in

tegration, we obtain expressions for U and S, of which each con

tains but one undetermined constant ; this is the value which the

magnitude U or S has in the initial condition of the body selected

as one of the limits of the integration.

If the body is a perfect gas, the equations assume a simpler

form. They may be obtained either by combining equations

(65) with the equation ^?t>=RT, which expresses the law of

Mariotte and Gay-Lussac, or by going back to the equations (57)

and (59), putting therein5 in place of dQ, one of the expressions

before deduced for a perfect gas, and contained in the equations

(42), and introducing at the same time one of the three expres-

T / T \
sions AR — dv, AR (^T— — dpJ, and Apdv for dw. If we choose

the first of equations (42), as being the most convenient for the

present case, we have

dV= cdT,

<fS = c7p +AR—
T v

(66)

Since c and AR are constant, these equations may be immediately

integrated ; on doing so and denoting the initial values of U

and S, for which T=T0 and v=v0, by U0 and S0, we have

U=U0+c(T-T0), i

T v \ • • • (67)

S = S0 + clogi +ARlogf

-■-o v0 J

We will treat, as a last special case, that to which Arts. 12 and
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13 refer, where the body under consideration is a mass of the

weight M, of which the portion M—m is in one, and the portion

m in a different state of aggregation, and where the pressure,

to which the whole mass is exposed, depends only on the tem

perature.

We will assume that at first the whole mass is in the first

state of aggregation, that it has the temperature T0, and is also

exposed to the pressure corresponding to this temperature. The

values of the energy and entropy in this initial condition may be

denoted by U0 and S0. We will next conceive the body to be

brought from this initial condition to its final one, in the follow

ing manner :—Whilst the entire mass continues in the first state

of aggregation, the body is first raised from the temperature T0

to the temperature T, and at the same time the pressure changes

so as to have at every moment the magnitude which corresponds

to the then existing temperature. Thereupon the portion of the

mass whose weight is m passes, at the temperature T, from the

first into the second state of aggregation. We will consider N

these two changes separately, and in so doing employ the nota

tion of Art. 13.

For the first-mentioned change of temperature we have to

use the equation

dQ=McdT.

The magnitude c occurring here is the specific heat of the

body in the first state of aggregation, on the assumption that

the pressure, during the change of temperature, alters in the

manner above stated. The foot-note to Art. 13 gives an account

of this magnitude, and according to what is there proved

we may without hesitation, in the case where the first state

of aggregation is liquid or solid and the second gaseous, put

for c, in all numerical calculations, the specific heat of the

liquid or solid body at constant pressure. It is only when we

are concerned with high temperatures, for which the vapour

tension increases very rapidly with the temperature, that the

difference between the specific heat c, and the specific heat at

constant pressure, becomes sufficiently great to be regarded.

On remembering that with an increase in temperature dT, an

increase in volume M^ dT, and consequently the exterior
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ergon MAp-™dT is associated, it follows from the foregoing

equation that

dS=M^dT.

For the change of the state of aggregation taking place at the

temperature T, we have

dQ,=rdm.

Since the increment dm of the portion in the second state of

aggregation involves an increment of volume equal to udm, and

consequently an amount of exterior ergon denoted by Apudm,

it follows from the above that

d\J =(r— Apu) dm.

If in order to replace the magnitude u by magnitudes better

known experimentally, we apply the equation (54), which may

be thus written,

r
Au-

dT

it follows that

d\J=rl 1—,A-\ dm

Mi)
At the same time from the expression for dQ, we have directly

T

dS=^dm.

The two differential equations referring to the first process

must be integrated according to T from T0 to T, and the two

referring to the second process according to m from 0 to m ;

hence we obtain

\ dT/ .

S = Sn+M

(68)

* A few more complete mathematical developments concerning energy and

entropy will be communicated in an Appendix to this Memoir.
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16. If we now assume that in one of the ways above in

dicated the magnitudes U and S have been determined for a

body in its different conditions, the equations which hold good

for non-reversible changes may be at once written down.

The first fundamental equation (la), and the equation (58),

resulting from it by integration, which we will arrange thus,

Q=U-U0+w, . (69)

hold just as well for non-reversible as for reversible changes ;

the only difference being, that of the magnitudes standing on

the right side, the exterior ergon w has a different value, in the

case where a change occurs in a non-reversible manner, from

that which it has in the case where the same change occurs in a

reversible manner. With respect to the difference U—U0 this

disparity does not exist. It only depends on the initial and

final condition, and not on the nature of the transition. Con

sequently we need only consider the nature of the transition so

far as is necessary in order to determine the exterior ergon

thereby performed; and on adding this exterior ergon to the

difference U—U0, we obtain the required quantity of heat Q

which the body takes up during the transition.

The uncompensated transformation involved in any non-rever

sible change may be thus obtained :—

The expression for the uncompensated transformation which

is involved in a cyclical process, is given in equation (11) of the

Fourth Memoir (p. 127). If we give to the differential dQ, in

that equation the opposite sign, a quantity of heat given off by

the body to a reservoir of heat being there reckoned positive,

whilst here we consider the heat taken up by the body to be

positive, it becomes

N=-j^ (70)

If the body has suffered one change or a series of changes,

which do not form a cyclical process, but by which it has

reached a final condition which is different from the initial

condition, we may afterwards supplement this series of changes

so as to form a cyclical process, by appending other changes of

such a kind as to reconduct the body from its final to its initial

condition. We will assume that these newly appended changes,
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by which the body is brought back to the initial condition, take

place in a reversible manner.

On- applying equation (70) to the cyclical process thus formed,

we may divide the integral occurring therein into two parts, of

which the first relates to the originally given passage of the

body from the initial to the final condition, and the second to

the supplemented return from the final to the initial condition.

We will write these parts as two separate integrals, and dis

tinguish the second, which relates to the return, by giving to

its sign of integration a suffix r. Hence equation (70) becomes

Since by hypothesis the return takes place in a reversible

manner, we can apply equation (64) to the second integral,

taking care, however, to introduce the difference S0— S instead

of S — S0 (where S0 denotes the entropy in the initial condition,

and S the entropy in the final condition), since the integral here

in question is to be taken backwards from the final to the initial

condition. We have therefore to write

By this substitution the former equation is transformed into

The magnitude N thus determined denotes the uncompensated

transformation occurring in the whole cyclical process. But from

the theorem, that the sum of the transformations which occur

in a reversible change is null, and hence that no uncompensated

transformation can arise therein, it follows that the supposed

reversible return has contributed nothing to the augmentation

of the uncompensated transformation, and the magnitude N

represents accordingly the uncompensated transformation which

has occurred in the given passage of the body from the initial

to the final condition. In the deduced expression, the difference

S — S0 is again perfectly determined when the initial and final

conditions are given, and it is only when forming the integral

-=- that the manner in which the passage from one to the

(71)

other took place must be taken into consideration.
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17. In conclusion I wish to allude to a subject whose com

plete treatment could certainly not take place here, the exposi

tions necessary for that purpose being of too wide a range, but

relative to which even a brief statement may not be without in

terest, inasmuch as it will help to show the general importance

of the magnitudes which I have introduced when formulizing the

second fundamental theorem of the mechanical theory of heat.

The second fundamental theorem, in the form which I have

given to it, asserts that all transformations occurring in nature

may take place in a certain direction, which I have assumed as

positive, by themselves, that is, without compensation ; but that

in the opposite, and consequently negative direction, they can

only take place in such a manner as to be compensated by

simultaneously .occurring positive transformations. The appli

cation of this theorem to the Universe leads to a conclusion to

which W. Thomson first drew attention*, and of which I have

spoken in the Eighth Memoir. In fact, if in all the changes of

condition occurring in the universe the transformations in one

definite direction exceed in magnitude those in the opposite

direction, the entire condition of the universe must always

continue to change in that first direction, and the universe must

consequently approach incessantly a limiting condition.

The question is, how simply and at the same time definitely

to characterize this limiting condition. This can be done by

considering, as I have done, transformations as mathematical

quantities whose equivalence-values may be calculated, and by

algebraical addition united in one sum.

In my former Memoirs I have performed such calculations

relative to the heat present in bodies, and to the arrangement

of the particles of the body. For every body two magnitudes

have thereby presented themselves—the transformation-value

of its thermal content, and its disgregation ; the sum of which

constitutes its entropy. But with this the matter is not ex

hausted ; radiant heat must also be considered, in other words,

the heat distributed in space in the form of advancing oscilla

tions of the aether must be studied, and further, our researches

must be extended to motions which cannot be included in the

term Heat.

* Phil. Mag. Ser. 4. vol. iv. p. 304.
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The treatment of the last might soon be completed, at least

so far as relates to the motions of ponderable masses, since

allied considerations lead us to the following conclusion. When

a mass which is so great that an atom in comparison with it

may be considered as infinitely small, moves as a whole, the

transformation-value of its motion must also be regarded as

infinitesimal when compared with its vis viva ; whence it follows

that if such a motion by any passive resistance becomes con

verted into heat, the equivalence-value of the uncompensated

transformation thereby occurring will be represented simply by

the transformation-value of the heat generated. Radiant heat,

on the contrary, cannot be so briefly treated, since it requires

certain special considerations in order to be able to state how

its transformation-value is to be determined. Although I have

already, in the Eighth Memoir above referred to, spoken of

radiant heat in connexion with the mechanical theory of heat, I

have not alluded to the present question, my sole intention

being to prove that no contradiction exists between the laws of

radiant heat andv an axiom assumed by me in the mechanical

theory of heat. I reserve for future consideration the more special

application of the mechanical theory of heat, and particularly

of the theorem of the equivalence of transformations to radiant

heat.

For the present I will confine myself to the statement of one

result. If for the entire universe we conceive the same magni

tude to be determined, consistently and with due regard to all

circumstances, which for a single body I have called entropy,

and if at the same time we introduce the other and simpler con

ception of energy, we may express in the following manner the

fundamental laws of the universe which correspond to the two

fundamental theorems of the mechanical theory of heat.

1. The energy of the universe is constant.

2. The entropy of the universe tends to a maximum.
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APPENDIX TO NINTH MEMOIR [1866].

ON THE DETERMINATION OF THE ENERGY AND ENTROPY OF A

BODY*.

It may perhaps not be inappropriate if I communicate, as an

Appendix to the foregoing Memoir, a few further developments,

in order to show how the equations which serve for the deter

mination of energy and entropy may be derived directly from

the fundamental equations of the mechanical theory of heat.

1. The first fundamental equation will be applied in the form

which is given in (I a) of the foregoing Memoir, and the second

in the form equivalent to that given in (59) . We have, therefore,

dQ=(TU + dw, (A)

dQ,=TdS (B)

The first of these two equations applies to reversible, as well as

to non-reversible changes ; the second, on the contrary, holds

good for reversible changes solely. But in order to be able to

bring the two equations into conjunction, we will suppose that

they relate to one and the same reversible change of a body.

In this case the thermal element dQ, is the same in both equa

tions, hence we can eliminate it from the equations, whereby we

obtain

TdS=dV+dw (a)

We will now assume that the condition of the body is defined

by any two variables, which we will provisionally denote quite

generally by x and y. We can afterwards put in the place of

these undefined variables definite magnitudes, such as tem

perature, volume, pressure, or any others appropriate to the

particular investigation in view. If the condition of the body

is defined by the two variables x and y, all magnitudes which

are defined by the actually existing condition of the body, in

dependently of the way in which the body came into this con-

* The substance of this Appendix is taken from a note which was recently

published by me, and which may be found in Schlomilch's Zeitschriftfiir Ma-

thematik mid Physik, Bd. xi. S. 31, and in an English Translation in the Phil

Mag. Series 4. vol. xxxii. p. 1.
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dition, must be capable of being expressed by functions of these

variables, in which the variables themselves may be regarded

as independent of each other. Accordingly the entropy S and

the energy U are to be regarded as functions of the independent

variables x and y. In this respect, however, the external ergon

w deports itself very differently, as was repeatedly stated in the

foregoing Memoir. Although the differential coefficients of w

may be regarded as definite functions of x and y, in so far as

reversible changes only are concerned, w itself cannot be ex

pressed by such a function, but can only be defined when,

besides the initial and final conditions of the body, the way in

which the change from the one to the other takes place is like

wise given.

If now in equation (a) we put

ds=nx-dx+dydy'

, dw , dw ,
dw=^dx+^dy,

it is transformed into

„rfS , , mdS , fd\] dw\, /rfU , dw\ ,
TTzdx^Tydy=\jx- + lx-)dx+{-dy- + Ty)dy-

Since this equation must be true for arbitrary values of the dif

ferentials dx and dy, and therefore for that case, amongst others,

in which one or other of the differentials vanishes, it resolves

itself at once into the two following equations :

TdS_dU dw

dx dx dx

<IS_dV dw

dy ~ dy dy

(*)

Prom these equations one of the magnitudes S and U may be

eliminated by means of a second differentiation.

2. We will first eliminate the magnitude U, since the result

ing equation is the simpler of the two.

For this purpose we will differentiate the first of the equations

(6) with respect to y, and the second with respect to x. In so
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doing we will write the second differential coefficients of S and

U in the usual way. The differential coefficients of ^ and ^,

on the other hand, shall be written, as in the foregoing Me

moir, thus :

d fdw\ an)j d /dw\

dy\dx) dx\dy )'

in order to express explicitly that they are not differential co

efficients of the second order of any function of x and y. Lastly,

we shall have to remember that the magnitude T which occurs

in these equations, namely the absolute temperature of the body,

must also be regarded as a function of x and y. On thus dif

ferentiating we obtain

^F.^+T—=— —(—\

dy dx dxdy dxdy dy\dx)

dT dS T d*8 _ rf8U d /dw\

dx dy dydx~ dydx dx\dy )

Subtracting the second of these equations from the first, and re

membering that

we have

d*8 _ rf*U _ d*U

dxdy dydx dxdy dydx

dT rfS _ dT dS _ d_ rdw\ _ rdw\

dy dx dx dy~ dy\dx) dx\dy)

In the foregoing Memoir I have called the difference which

stands here on the right-hand side, the ergonal difference corre

sponding to xy, and denoted it by ; so that we may put

„ _ d (dw\ _ d fdw\

i~Jy\dx) dx\dy)- W

The foregoing equation is thus transformed into

dT dS_dT .^S=E (d]

dy dx dx dy > '

This is the differential equation, resulting from equation (a),

which serves to define S.

In order now to eliminate the magnitude S from the two equa-
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tions (b), we will write them as follows :—

dS_l dV 1 dw

dx~T- dx +T- dx'

rfS_l rfU 1 rfw

rfy~T- rfy T- dy-

Of these equations, again, we will differentiate the first with

respect to y, and the second with respect to x, whereby we have

- dxdy~T - dxdy T* - dy - dx + dy\T - dx)-

dydx~T dydx T*- dx - dy + dx\T- dy)-

Subtracting the second of these equations from the first, bring

ing all the terms of the resulting equation in which U occurs to

the left-hand side, and multiplying the whole equation by T2,

we have

dT d\J dT dXJ_Ttrd^fl dw\ _d^(\ dw\l

dy- dx dx- dy ~ Ldy\T - dx) dx\T - dy)] -

For the magnitude which here stands on the right-hand side

we will likewise employ a special symbol, putting

e'*»=t2[^(t-^)~^(t--^)]- * - (<?)

The last equation then becomes

dT dV_dT dJJ ,

dy - dx dx - dy * ^ '

This is the differential equation, resulting from equation (a),

which serves to define U.

3. Before pursuing further the treatment of the two differential

equations (d) and (/), it will be advisable to direct attention for

a moment to the magnitudes and E- which therein occur.

Between these two magnitudes the following relation existSj

which can be easily deduced from the expressions given in (c)

and (e),

p. -rm? rfT dw dT dw
E„=TE„-^-^ + ^.^- ...(g)

Both the magnitudes E^ and E-^ are functions of x and y.

If in order to define the body we select, instead of x and y, any

other two variables, which we may call £ and ij, and form with

2 B
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them the corresponding magnitudes E^ and E'fl|, namely,

_ d fdw\ _ d fdw\ I

t"~dn\<lii) dkUv)' !

^[|(rtK(r£)]>J ' ' '
these magnitudes are of course functions of £ and y, just as the

foregoing magnitudes arc functions of # and y. But if now one

of the last two expressions, e.g. the one for Efii, is compared

with the expression for the corresponding magnitude E , we find

that they represent, not merely expressions for the same magni

tude with reference to different variables, but actually different

magnitudes. For this reason I have not called E simply the

ergonal difference, but the ergonal difference corresponding to xy,

whereby it is at once distinguished from E» or the ergonal dif

ference corresponding to £)j. The same holds good of E' and

E\ , which are also to be regarded as two different magnitudes.

The relation existing between the magnitudes E and E» may

be found as follows. The differential coefficients occurring in

the expression given for E* in (h) may be arrived at by first

forming the differential coefficients in relation to the variables

x and y, and then treating each of these two variables as a func

tion of £ and >j. In this way we obtain

dw _ dw dx dw dy

d% ~ dx d% dy df-

dw dw dx dw dy

dy ~ dx dy dy dm

Let the first of these two expressions be differentiated with

respect to y and the second with respect to £, and we then ob

tain, by the application of the same process,

Id /dw\ dx dx d /dw\ dx dy dw dsx

dx\dx) d£ dy dy\dx) d% dy dx d%dy

d fdw\ dx dy , d /dw\ dy dy dw d2y

dx\dyJ dy d% rdy\dyJ d% dy dy dj;dy

( d fdiv\ dx dx d (dw\ dx dy dw d*x

d fdw\ J dx\dxJ d£ dy dy\dx) dy d% dx d£dy

d£\dy J ~~ | d fdw\ dx dy d fdw\ dy dy dw d*y

[ dx\dy) d% dy dy\dy J dj; dy dy d£di)
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If the second of these equations be subtracted from the first;

most of the terms on the right-hand side will disappear, and there

will remain only four terms, which may be thus expressed as a

product of two binomial expressions—

d /dw\ d fdw\_fdx dy dx dy\Vdfdw\ d fdw\-\

d~n\MJ ~'dJ\di[J ~\d^-dn~dn"d^J [dy\JxJ~fa\dy~)l

The expression standing on the left-hand side of this equation

is Ef>i, and that contained within square brackets on the right-

hand side is E^. Hence we finally obtain

„ (dx dy dx dy\„ ...
hto=\M-Tn~dl-dl)h-'> W

Similarly we may also find

, _fdx dy_dx dy\ ,

If we replace only one of the variables by a new one—if, for

instance, we retain the variable x while putting the variable ij in

place of y, we have in the two foregoing equations and

dx dx
consequently ^ = 1, and ^ =0, whereby they become

E«=?E« and E-OT= ?E-„- - - - (*)*» dl) ** "n dr) 1 w

If, further, the original variables are retained but their order

of succession altered, the magnitudes in question take the oppo

site sign, as may be seen at once from the expressions (c) and

(e) ; that is to say, they become

E =-E and E' =-E- (I)

4. We now return again to the differential equations (d) and

(/) that have been deduced for S and U.

These assume particularly simple forms when the temperature

T is taken as one of the independent variables. If, for instance,

^T dT
we put T=y, it follows thence that — = 1 and ^— =0 ; and

we have also, in place of EJJ( and -E- , to write EiT and E-^.

Equations (d) and (/) thus become

dx ~

dV

dx *T-

. . . (m)

2 b 2
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These equations can at once be integrated with respect to x, and

we thus deduce

S=jE^+ <MT), | M

U-pV*r+*(T),j 1 '

where $(T) and ^(T) are two arbitrary functions of T.

The last two equations can of course be easily changed back

again by putting any other variable y in place of the variable T.

For this purpose we only require to substitute for T the func

tion of x and y which represents this magnitude. The equations

hence resulting are the same as those obtained when we start

from the more general differential equations (d) and (/), and

apply to them the common process of integration, keeping in

mind, at the same time, that according to (k) we have to put

%En=Z„ and^E'^E^

We have thus in what precedes arrived, by help of the par

tial differential equations deduced from equation (a), at expres

sions for S and U, each of which still contains an arbitrary func

tion of T. If we wish to determine the functions, which are

there left arbitrary, we must go back to equations (A) and (B),

whence equation (a) was obtained by the elimination of dQ.

5. Let us assume that the condition of the body is determined

by its temperature and any other variable x ; we can then give to

the two equations (A) and (B) the following form :

dS _ rfS . 1 dQ 1 dQ. ,
-dT+-^d*=riTdT+r-^dx,

dU Jm d~U /dQ dw\,„ /dQ dw\ ,

Since these equations must be true for any values of the dif

ferentials dT and dx, each resolves itself, as has been already

pointed out in a similar case above, into two equations. Of the

four equations thus arising we will here employ only those two

which can serve for the determination of ^ and of ^j^, namely

«fS_ 1 dQ

dT ~ T - dT'
1 (o)_dQ._dw v

dT ~ dT dT-
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In order to determine the two other differential coefficients

and t?, we will apply the equations (m) deduced above.

uOS 0/00

With the aid of these expressions of the four differential co

efficients we can form the following complete differential equa

tions of S and U :

(P)

Since the magnitudes S and U must be capable of being re

presented by functions of T and x, in which the two variables T

and x may be looked upon as independent of each other, the

known equation of condition of integrability must apply to both

the foregoing equations. For the first equation this is

d_(\ dQ\_dExT

dzKT- dTJ dT'

or, differently written,

dx\dTJ dT {9)

which is equation (15) of the foregoing Memoir. For the second

equation the equation of condition is

d fdQ\ d_ rdw\ _ dE'rT

dz{dT) dx\dTJ~-dT- W

These two equations of condition are connected with each

other in such a manner that from either of them the necessity

of the other can be immediately deduced. Between the two

magnitudes EjT and E'jT, which occur in them, the following

relation subsists, which results from (g) if we therein place

T=y:

E'^TE^-fg- ....(•)

Differentiating this equation with respect to T, we have

-dT ~rfT- dt{dx)-

Now bearing in mind that

7-1-1-

dt\dxJ dx

_ d /dw\ d /dw\
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the last equation becomes

dE'^ dEyi_d_fdw\

By aid of this equation we can immediately refer either of the

equations (q) and (r) to the other.

By the integration of the complete differential equations (p)

each of the two magnitudes S and U can be determined, except

as to a constant that still remains unknown.

Of course any other variable y might be substituted for the

variable T in these complete differential equations, if it appeared

appropriate for special purposes to make the substitution ; this

could be done without any difficulty, if T were supposed to be a

known function of x and y, and therefore does not require to be

further dwelt upon.

6. All the foregoing equations are developed in such a way

that no limiting conditions are set up in relation to the external

forces which act upon the body, and to which the external ergon

has reference. We will now consider the particular case rather

more closely, where the only external force which acts either to

hinder or promote the change of condition in the body, and so

occasions the production of positive or negative ergon, is a pres

sure uniformly distributed over the whole surface ofthe body, and

everywhere directed perpendicularly to the surface of the body.

In this case, in accordance with equations (17) of the foregoing

Memoir, ifp denote the pressure and v the volume, we must put

dw _ . dv

dx dx

dw _ . dv

dy~ dy

By introducing these values into the expressions given for

and E' in (c) and (e), we have

^=KUy{Plx)-Tx(Pty)]>

.pi -AT*f—(P — {P-—M
X'n-^1 idy{T dx) dx\T dyJY

In the last of these equations we will put, for shortness,

(«)
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