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Chapter1

The Descriptionof Matter
inBulk

A sample of material - solid, liquid or gas - may be described in one of two basic
ways. On the one hand, it may be described in terms of the component atoms
and molecules of which it is formed, of the interactions between these com-
ponents, and of the boundaries imposed upon them by the sample shape or the
containing vessel. Alternatively, it may be described in terms of the bulk
properties of the sample, which are determined in practical measurements, such
as mass, volume, density, specific heat, dielectric constant, elastic moduli, magnetic
permeability, surface tension, thermal expansion coefficient, thermal conductivity
and so on.

These measurable quantities may be said to describe the various features of a
body of material in its interaction with its surroundings. They also describe those
phenomena observed during experiments on the body in which the state of the
body is affected by external constraints. Their values may be varied by the
application of pressure, or electric and magnetic fields, or by changing the
temperature, In the study of thermodynamics it is these bulk properties or
parameters which are of interest and, in particular, the dependence of these
parameters on temperature. At the same time, since the temperature of a body
is soclosely related to the energy content of that body, this study must also involve
consideration of the changes of energy which occur in bulk processes and in
particular the effect of heat energy and work energy on the state of a body.

If any useful information is to be obtained about the behaviour of matter in
bulk, in terms of these macroscopic properties, and if predictions are to be made
of this behaviour under varying conditions, it is necessary that fundamental laws
icgarding these properties should be established in as simple a manner as possible,
The fact that such laws can be established is the basis of the logical structure
which is known as thermodynamics, and this leads to many relationships between
the various properties. At first sight these relationships are surprising in their
complexity, in view of the substantial omission of any detailed description of the
component particles of the materials under consideration.

The four laws on which the structure of thermodynamics largely depends, and
which will be described in the succeeding chapters, may be summarized as
follows.

19 The Description of Matter in Bulk
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The zeroth law of thermodynamics defines the condition known as thermal
equilibrium and hence allows a definition of temperature.

The first law of thermodynamics specifies the energy balance which exists in any
closed thermodynamic system.

The second law of thermodynamics determines the direction in which thermo-
dynamic processes will occur and the equilibrium state of a physical system.

The third law of thermodynamics sets a limit to both the thermodynamic tempera-
ture and entropy.

A thermodynamic system, as referred to in this summary (and also later in the
text), may be defined conveniently as a bulk system of matter which has proper-
ties and measurable parameters which depend on temperature, pressure and other
imposed conditions. (As a special case, an evacuated enclosure in which there is
energy present in the form of electromagnetic radiation is also considered as a
thermodynamic system.) The particular condition of such a system, which is
specified by assigning values to these various properties, is termed the srare of
the system (which is not to be confused with the phase of the system as referred
to in the term ‘liquid state’). A thermodynamic process is any process which
involves a change in this state. If the system does not interact with its surround-
ings, by for example exchanging heat, energy or material with them, it is said to
be isolated from its surroundings. This state of isolation will not be the most
common case, however, and normally the system will interact with its surround-
ings in some specified manner, so that any thermodynamic process involving the
system will also involve its surroundings. In some cases, the system and its
surroundings are referred to as the universe.

In any macroscopic thermodynamic system there will be components such
as molecules, ions or photons. If the system is to obey the generalized macro-
scopic laws of thermodynamics it must necessarily consist of a sufficient quantity
of matter, or a sufficient number of components, that fluctuations in the arrange-
ment of these components, their position, concentration, momentum, etc. do
not affect significantly any measured macroscopic properties of the system, This
condition must apply even if, for mathematical convenience, an *infinitesimally
small’ element of volume is considered.

Although the laws of thermodynamics are sometimes ‘shown’ to follow very
closely from logic and common sense, it must be remembered that they are
subject, at all times, to experimental test and may be regarded as being firmly
based on experiment and observation. For this reason these laws are used to
establish a methodology which may be applied in the treatment of practical
problems, as will be seen from the many examples of such application which will
be given by way of illustration.

20 The Description of Matter in Bulk
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Chapter 2
The Zeroth Law
and Temperature

Thermal equilibrium

An important concept in the study of thermodynamics is that of thermal
equilibrium. The concept of such equilibrium, involving as it does the establish-
ment of a steady state from which there are no macroscopic fluctuations, is
largely intuitive. For example, consider a thermodynamic system A, one property
of which is monitored continuously. This property might be the electrical resist-
ance of a piece of wire, or the pressure of a gas contained in some restraining
enclosure. If the system is in an environment which is not subject to fluctuation
or to varying external influences, the chosen property of the system will tend to
a steady value which will cease to vary with time. If the system is then introduced
into a new stable environment, the value of the chosen property will at first
change with time and will then settle down to some new steady value. When this
steady state is reached the system is said to be in equilibrium with its surroundings.

Consider now that the system A is, by some means, isolated from any contact
with its surroundings. (Such isolation might be obtained approximately in
practice by suspending the system by fine threads inside a highly evacuated
container with highly reflecting walls.) The properties of the system A will now

diathermic (conducting) wall

¥
-
—

system A

218

(insulating)
wall
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Figure 1 Systems A and B in thermal contact. (The adiabatic wall could be, for
example, an evacuated region surrounding the system)

Thermal Equilibrium
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2.2

22

remain constant and no change will be observed, over any time period, in the
value of the chosen property. If a second system B, which has a previous history
very different from that of A, is introduced close to A but isolated from it, and
from its surroundings, the properties of B will also remain unaltered with time.
Suppose next that the systems A and B be brought into intimate contact within
the enclosure in which they are isolated, as in Figure 1, such that energy can be
exchanged between them through a diathermic or thermally conducting wall.
As energy is exchanged through this wall, the properties of the two systems will
change until, after a period of time, a steady state is reached in which there are no
further observable changes. The two systems are then said to be in thermal
equilibrium.

The establishment of thermal equilibrium does not, in fact, mean that the
system will be in complete, or thermodynamic, equilibrium. The definition given
above ignores, for example, any exchange of material, rather than energy,
between the systems. The condition for chemical equilibrium is discussed in
section 19.1. In addition, those cases have not been considered in which there
is mechanical disequilibrium because one system exerts a force on the other.

The zeroth law of thermodynamics

Consnder now that, within their isolating enclosure, the systems A and B in
their initial disequilibrium states are each placed in thermal contact with a third

syus‘t:n C, so that, as indicated in Figure 2, they are not in contact with each
other.

Figure 2 Systems A and B each placed in contact with the system C

Again after lapse of time a stable or steady state will be attained, in which the
pyopeni&s of the three systems reach values which do not change further with
tupe. In terms of our original definition, systems A and C are then in equilibrium
with each other, as are systems B and C. It is a natural assumption, intuitively
based, that the systems A and B, though not in intimate contact with each other,
are then also in thermal equilibrium. The postulate that this is so is referred to as
the zeroth law of thermodynamics (* zeroth® because it was formulated after the
‘first law’ had been well accepted). There is no experimental evidence which

The Zeroth Law and Temperature

runs contrary to this law. Indeed we may imagine its truth to be tested in the
arrangement of Figure 2 by breaking the contact between the systems A and C
and the systems B and C, once the steady state has been reached, and establishing
such contact between A and B. All the evidence is that there would then be no
further change with time of the values of any monitored properties of the
systems A and B.

The zeroth law of thermodynamics is most usefully stated in the form:

When two thermodynamic systems are each in thermal equilibrium with a third
system, they are also in thermal equilibrium with one another.

When a number of systems are in equilibrium according to this definition it is
convenient to consider that there is some property which has the same value for
each system, however different these systems may be in size and composition.
This property is defined to be the remperature of the systems. Thus in the situation
represented in Figure 1, when thermal equilibrium has been reached the tempera-
ture is the same for the two systems A and B; similarly in Figure 2, the three
systems A, B and C will attain the same temperature.

This very necessary, basic definition of the condition for thermal equilibrium
does not define a scale of temperature any more than the definition of distance
defines the metre. However, the corresponding establishment of scales of
temperature, which is discussed in detail later, will be seen to require far greater
elaboration than does the cutting of two notches in a piece of steel as a standard
of length. On the other hand, it is clearly possible to recognize a difference in
temperature between two systems from the fact that when they are placed in
thermal contact these bodies approach a state of equilibrium from a state of
disequilibrium. It is further possible to state that, during the establishment of
this equilibrium, some quantity known as hear flows from one system to the
other. If this heat flows unidirectionally from the system A to the system B, the
system A is said to be ‘hotter’, or at a higher temperature, than B (and con-
versely). However, this discussion then encroaches on the second law of
thermodynamics, as will be seen in section 4.1, and requires a close definition
of the term ‘*heat’.

The rate at which the equilibrium state is attained in an arrangement such as
that shown in Figure 2 will depend rather critically on the nature of the systems
and, in particular, on the system C. If the equilibrium is established rapidly
through the system C, this system is said to be a good conductor of heat. If, on
the contrary, a long time is required for the establishment of equilibrium, then
the system C will be a bad conductor of heat and, if C should be a high vacuum,
the rate of attainment of equilibrium may be substantially zero.

23 The Zeroth Law of Thermodynamics
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Chapter 3
TheFirst Law

Work and energy

Ifa body is subjected to a force F'such that it is caused to move through a distance
/, then the force is said to perform an amount of work W on the body. The quantity
of work is defined in mechanics as the product of the force with the distance
through which the point of application moves in the direction of the force. (In
mathematical terms this is equal to W = F.1, the scalar product of the vectors
F and 1) In the case where the body on which the force acts is free to accelerate,
it is shown in Newtonian mechanics that the work done results in the creation of
an equivalent amount of kinetic energy. That energy is W = dmu?, where m is
the mass of the body and w is the resultant velocity (assuming that the body moves
from rest). If the body is now decelerated and brought to rest so that it loses its
kinetic energy, the force exerted by the body during deceleration will perform
work exactly equal to the kinetic energy dmu?.

It is thus possible to state that, in mechanics, work may be converted to an
equivalent quantity of kinetic energy, and vice versa, so that, if work is con-
sidered as another form of energy, it would be possible to state that energy is
conserved in this single system. However, it is also found that there are systems
in mechanics which, although they are not in motion, are capable of performing
work. Thus a coiled spring, a compressed gas, or a weight suspended above the
earth, are each capable, on being released, of causing work to be performed and
kinetic energy generated. To account for the appearance of this kinetic energy it
has been found convenient to ascribe to the system which performs the work a
latent or potential energy. Then, ignoring the intermediary role played by the
work, it is possible to state that, if the initiating system, the spring, the gas or the
suspended weight, produces in some object (including itself) a certain amount of
kinetic energy, it must have lost an equivalent amount of potential energy. This
statement appears in mechanics as the law of conservation of energy written in
the form:

Gain in kinetic energy = loss in potential energy
or, The sum of the potential energy and the kinetic energy is a constant.

The First Law

Forms of work

In thermodynamics the force which is exerted by one system on another, or by
one body on another, need not be of the normal mechanical form. There can be,
for example, work performed by an electric field on an electric charge, or by a
magnetic field on a magnetic dipole. However, the main distinction which must
be made is between exrernal work, which may be performed on a system, and the
internal work, which is performed within a system. When, for example, a heated
gas expands and drives a piston, there will be work done by the gas on the piston,
and this will be observed outside the gas as external work. At the same time, if
there are attractive forces between the molecules of the gas, there will be work
done by these molecules as they move apart during expansion. This work will
not be observed in the production of kinetic energy or potential energy outside
the gas, and is therefore referred to as internal work. We shall, in general, be
concerned with the external work and it is useful here to consider a number of
illustrative examples in which work is performed on a particular system by means
of an externally impressed force,

A

<Y

A p— p—

-

Figure 3 Wire obeying Hooke's law

25 Forms of Work




321

322

An extensible wire

If a force F is applied to a wire, possibly by means of a weight suspended from
the wire, and this force causes the wire to extend from a length / to a length
I+ dl, then the work done by the force on the wire will be dW’ = F dl. For the
case of a wire obeying Hooke's law, a force F will produce an extension from
the original length /, to a length / = /, + F/A, where A, the modulus of the wire,
is equal to the product of the area of the cross-section and Young's modulus
divided by the original length /,. This extension may be expressed in the form
of the graph of Figure 3. The work F dl may be represented by the area shown
shaded and the total work done in extending the wire from /, to /, + Al as the
force is increased from zero to F, is thus the total area up to Al or

W’ =1F Al

(The same result is obtained by evaluating
Al

j' Fdl,

o

and both give $A(A/)? as the work done.) The work W done by the system,
namely the wire, on its surroundings (which could in this case be the work done
on the earth by the wire via the gravitational field) will be the negative of the
work done by the force. Thus

dW =—Fd]
and W= — iF, Al

This distinction between whether we are talking about work done on the system
or work done by the system must be carefully noted in all thermodynamic

treatments.
A compressible fluid

Cpnsider a fluid which is contained in a cylinder, one end of which is closed bya
frictionless piston, as shown in Figure 4. The pressure of the fluid will exert a

Figure 4 Fluid contained in a cylinder fitted with a frictionless piston

The First Law
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force on the piston in a direction tending to increase the volume of the fluid and,
at equilibrium, there will be an equal and opposite pressure acting on the outside
surface of the piston. If the area of the piston is A and the pressure exerted is p,
the force on the piston will be

F=pA.

When the piston moves a distance dx in the direction of the force, the work done
by the fluid will be

dW = F dx = pA dx.

The change in volume of the fluid during this movement dx is given by dv = A4 dx,
sothat dW =p dv. 31
General cases

As has been stated, the work done by a system may be performed in a number of
ways and may be the result of forces arising electrically, magnetically, mechanic-
ally, etc. In each case the increment of work performed is found to be equal to
the product of some generalized ‘force’, such as electric or magnetic field or
pressure, with an incremental change in some generalized ‘coordinate’, such as
polarization or magnetic moment or volume. Typical values of the work dW
performed by a system when there is a particular type of force acting on, or due
to, the system are shown in Table 1; dW is positive when work is done by the
system.

Table 1 Increments of Work Performed in Various Systems

Intensive Extensive
variable variable
Increment (Generalized (Generalized
System of work force) coordinate)
wire dW=—Fdl force F length/
fluid dW=p dv pressure p volumev

magnetic* material dW=—B,dM/p, magneticfield B, magneticmoment M
dielectric* material dW=-EdP electric field £ dipole moment P
surface dW=—adA surface lensiono area A

*In dielectric and magnetic materials we quote the work done per unit volume.

It is seen from the table that the generalized coordinates, or extensive variables,
are proportional to the amount of material or to the extension of the system,
while the generalized forces, or intensive variables, are independent of the size
of the system.

27 Forms of Work
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Internal energy

When the compressible fluid referred to in 3.2.2 expands and performs work dW
on its surroundings, this work will result, in an ideal mechanical context, in the
generation of either a potential energy or a kinetic energy, equal to dW. If the
fluid of Figure 4 is surrounded by adiabatic walls, the mechanical law of conser-
vation of energy will cease to apply unless it is assumed that, in some way, the
fluid has lost an amount of energy also equal to dW. Similarly, if a voltaic cell
produces an electric current which results in the generation of kinetic energy
of an electric motor, or if the action of surface tension causes the movement of
a thread across the surface of a liquid, there is an imbalance in the energy equa-
tion. The problem is resolved if it is supposed that each system possesses a certain
internal energy, which is a function of the state of that system. For example,
consider that in its initial condition the fluid of Figure 4 has a definite internal
energy U. During the expansion of the fluid, this internal energy changes to

U +dU. Tt is then possible to maintain the principle of energy conservation by
requiring that

dU=—dW or d(W+ U)=0, 32

so that the total energy of the system and its surroundings remains constant.

If the internal energy of a system is to be a definite quantity when the system
is in a given state (that is, when the system is at a given temperature with a given
set of constraints acting upon it), this internal energy can only be a function of
that state of the system and not of the way in which that state was attained. Thus,
if the expansion of the fluid is reversed, so that work dW is performed on the
fluid while its temperature and other constraints return to their original values,
the internal energy must return from the value U + dU to the original value U.

Heat

It has been postulated that, during the establishment of thermal equilibrium
between two bodies which were initially at different temperatures, there is a
flow of heat from the hotter body to the colder body. That this quantity heat has
the nature of energy (rather than, say, the nature of the postulated fluid caloric)
has been long established by the work of Count Rumford and Humphrey Davy.
These workers showed that the temperature of a system could be made to rise
purely by the performance of work on the system and that the greater the amount
of work which was performed the greater was this rise in temperature. The
subsequent quantitative experiments performed to establish the exact equivalence
of heat and work, and hence of heat and energy, were performed by such workers
as Joule and Rowland and, more recently, by Laby and Hercus and others. The
results of these experiments were largely discussed in terms of a quantity known as
‘the mechanical equivalent of heat’, which defined the amount of mechanical
energy required to produce a given quantity of heat such as, for example, that
required to raise the temperature of one gramme of water by one degree on the

28 The First Law

3.5

i i it, which was derived to
centigrade scale. Defined in terms of the normal heat unit, w
account for the changes in temperature when heat passed from one body to
another, this mechanical equivalent of heat was found to be

J = 4-186 joules per 15°C calorie,

where one calorie is the amount of heat required to raise the temperature of one
gramme of water by one degree centigrade at 15°C. However, since it is
established that heat and work areentirely equivalent, this statement really deﬁn§
the specific heat of water at 15°Cto be 4-186 joules per gramme per degree centi-

grade.

The first law of thermodynamics

The experiments by which the quantity J has been measured were carried out
under substantially adiabatic conditions so that, by 3.2, tl.':e work done on any
system 1o raise its temperature simply goes to increase the ugtemal energy of the
system by an amount equal to the work done. Once the eqmval?n.ce of heat and
work have been established it becomes apparent that the addition of a given
quantity of heat to a system will simply im:l"ease lthe internal energy by an equiva-
t, provided no other change takes place. i !
len(t:oa:;?d‘: agpain the expansion of the fluid of Figure 4. .If the adnabatfc walls
are replaced by thermally conducting walls, it is possnble' that, during the
expansion, heat dQ will flow through the walls into the ﬂu.ld. The work dW
done by the fluid, which decreases the internal energy of the fluid, will be counter-
acted by this heat dQ. With the internal energy content defined so that the energy
balance is preserved, 3.2 will now be replaced by

d(W+ U) =dQ.
This implies that the work done plus the change in internal energy must just

equal the energy added to the fluid in the form of heat and the normal form of
this energy-balance equation is

dQ =dU + dW, 33

which, in mathematical form, expresses the first Iaw.of rhcr.modynamlcs. T!_ze
extension of this expression to include any system, with the internal energy in
the form of potential energy of a spring, the kinetic energy of the mqlecula of
a gas, or the chemical energy of a voltaic cell, allows us to express this first law
in the form:

In a conservative system energy is neither created nor destroyed but may be
converted from one form to another.

In this case the work dW represents an interchange of energy be.tween one
system and a neighbouring system which together form a copservauve system.
The work dW may thus appear as kinetic or potential energy, internal energy or,

29 The First Law of Thermodynamics
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where the work is done against frictional forces, it may be dissipated as heat.
(The law could be generalized to include the conversion of mass to energy.)

The inexact differential

Although it may appear initially to introduce mathematical complications, it is
of particular importance in thermodynamics to establish how various quantities,
such as pressure and temperature, work and heat, depend on the srare of a
system as opposed to the method or manner by which that state was attained,
This may be illustrated by considering the fluid discussed in relation to Figure 4
and imagining that this fluid is heated and expands while doing work upon its
surroundings. Such an expansion could take the fluid from the state A (with
pressure p, and volume v,) of Figure 5(a) along the path I to finish at the state B

2 h

| (P2 v2) I (P2.v2)
8 8

Py, ve)
A

<Y

v
(a) (b) (c)
Figure 5 Work done by a fluid for different paths between two states

(p1,v3). Since, for a small change dv in volume, 3.1 gives the work done as p dv,
the work done by the fluid during the expansion would be

B B
J‘pdv-j dw
A (path 1)

which is equal to the shaded area under the line AB. If now the temperature of
the fluid were varied during the expansion, so that its pressure at a given volume
were different from the value along the path I, the expansion from A to B might
be caused to occur, for example, along the path marked II in Figure 5(b),
provided that the pressure and temperature and hence the volume returned to the
required values at the end of the path. It is clear that the work done in this case,
being the shaded area under this new path, is different from that in Figure 5(a).

Thus j dW#f aw, 34
A(pall n A(pnn mn

even though the initial and final states of the fluid are exactly the same for the
two paths. In a similar manner it may be shown that this type of inequality may
arise for the work done by any system when the system changes by two different
routes between a given initial state and a given final state.

The First Law

If a cyclic process is now constructed such that the fluid is expanded from A
along the path I and compressed from B back to A along path II, the work done
during such a process is clearly equal to the cross-hatched area between the paths,
as shown in Figure 5(c). However, the system returns to its initial state .at A, and
we have postulated that there is a definite internal energy for a system in a given
state. There can therefore be no change in the internal energy of the system over
the complete cycle and hence, by the first law, any energy which was necessary
to supply the work done by the fluid over the cycle must have been gamed.m the
form of heat from some source or sources external to the fluid. It is possible to
generalize therefore that, for a cyclic process, in which we require §dU =0,

§JW¢0, §dq¢o
and, from 3.3,

fao-faw. s

where § indicates integration round a complete cycle returning to the original
state. It is usual, on the basis of these equations, to state that dU is a perfect,
exact or total differential while 4Q and dW are inexact differentials. An alterna-
tive, but entirely equivalent, statement is that U is a function of the state of the
system alone, while Q and W are functions both of the state of the system and of
the particular process by which that state has been attained.

Since it is obvious from the discussion of the processes involved in Figure 5
that the initial and final states at A and B can only be specified if the values of the
temperature, pressure and volume are fixed for these states, it follows that we
can write

§am§¢-§a-a

Thus 7, p and v are functions of the state of the system only, and d7, dp and dv
are therefore exact differentials.

31  The Inexact Differential
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Chapter 4
The Second Law

Reversible and irreversible processes

The first law of thermodynamics, with its requirement that during any process
which changes the state of a system the overall energy shall be conserved,
provides a powerful tool for determining which thermodynamic processes are
allowed and which are not. However, this law does not give any indication
whether a particular process will occur, but only whether the process is allowed
to occur by the condition that the energy is conserved. Thus, for example, it is
Just as possible for energy to be conserved when a person winds up a clock
spring as when the spring is unwound during the driving of the clock mechanism.
In the first case, manual energy, derived from stored chemical energy, is converted
into potential energy of the clock spring. In the second, this internal potential
energy is converted into kinetic energy of the clock mechanism and is substantially
dissipated as heat. However, while the unwinding of the spring can occur spon-
taneously, the winding-up cannot. Similarly, in many systems in nature, it is
possible for a process to occur spontaneously in one direction but for the
reverse process to occur only under the conscious application of an external
agency. Itis the role of the second law of thermodynamics to predict the direction
in which such natural processes occur once they are allowed by the condition
imposed by the first law,

Tt will be seen to be difficult to express the second law of thermodynamics in a
simple manner while at the same time covering the generality of processes and
conditions to which it must apply. (The difficulty of makinga simple statement of
this law is frequently the cause of much confusion!) First of all, the direction in
which a process can occur is intimately involved with the concept of time and with
the ‘arrow’ of time. It is accepted as a natural phenomenon that time is increasing
in one direction only. Therefore, if we state that a process occurs spontaneously
from an initial state A to a final state B, it is understood that the state B occurs
at a later time than the state A. What we should like as scientists is some logical
general statement, which can preferably be written in a mathematical form, that
expresses the fact that spontaneous processes occur in one direction only, so
that the final state occurs at a later time than the initial state!

In order to be able to obtain and to state an understandable form for the
second law of thermodynamics in its full sense, it is necessary first to distinguish

The Second Law

between two types of processes, that is, between reversible and irreversible
processes.

For a system to undergo a reversible process during which the state of the
system is changed in some manner, it is necessary that the sense in which the
change is occurring can be reversed exactly at any point in the process. This will
require that the change is occurring under the influence of forces which are only
infinitesimally in disequilibrium and which are of such a nature that, if the sense
of the disequilibrium is reversed, then the whole sequence of events constituting
the change will likewise be reversed in time. The whole process which has occurred
up to a given point can then be reversed and the steps retraced to the original
state without leaving any change in the rest of the universe. For these conditions
to be satisfied it is clear that, during the whole of such a process, the system will
at all times be in an equilibrium state with relation to its surroundings and to its
own motion, so that no irreversible effects such as gas turbulence and electrical
eddy currents can be produced, or work done against frictional forces. Thus, for
example, if the pressure applied externally to the fluid of Figure 4 is instan-
taneously increased to be appreciably greater than the pressure within the fluid,
the piston will accelerate during the compression of the fluid and the resulting
kinetic energy of the piston will be dissipated either as a turbulence in the gas,
which is subsequently converted to heat, or as sound waves as the piston oscillates
about some equilibrium position. The process in which the fluid is involved in
such a case will not therefore be reversible. Similarly, in a reversible process, there
must be no expenditure of energy in overcoming friction or viscosity, since work
which is so expended during motion in one direction cannot be regained when
the motion is reversed. Some irreversible processes are illustrated in Figure 6.

viscous force
I S moving magnet
applied force et (vl ‘_D
F + dfF i s [-molal
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A — | | eddy cur
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Figure 6 Examples of irreversible processes

The definition of a reversible process effectively ensures that no practical
process can be exactly reversible. However, an ideal limiting system can be
envisaged where the necessary equilibrium is maintained while some change in
the state of the system occurs infinitely slowly, and there is no friction or viscosity,
whether mechanical, electrical or magnetic. (Some practical systems may
approximate closely to this ideal case.) Much consideration will be given to
these ideally reversible processes.
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Those processes which do not, even ideally, satisfy the conditions for revers-
ibility are termed irreversible. Such a case, for example, is seen in the Joule
paddle-wheel experiment, which contributed to the establishment of the first
law of thermodynamics. Here a volume of water is heated as weights fall through
a predetermined height, so causing a paddle to rotate against the viscosity of the
water. The falling of the weights and the heating of the water occur spontaneously.
However, no amount of heat subsequently applied to or extracted from the water
will cause the weights to rise again to their original positions! Here the irreversi-
bility of the turbulence of the water is the main contribution to the irreversible
nature of the process.

In nature the processes which occur spontaneously are necessarily irreversible,
although many do not obviously involve irreversible forces. Thus a plant may
grow from a seed, wither and die but it cannot ‘ungrow’. A small amount of
coloured dye placed in a beaker of water will spread out and will become, in
time, dispersed uniformly through the water. Since there is no violation of
conservation of energy in either of these processes, it is possible to visualize
another universe, still subject to the law of conservation of energy, in which
plants reverse their growing sequence to return to seeds and a dye uniformly
distributed in water gradually gathers itself into one small volume. However,
this is not our universe, and our problem is to formulate some principle which
will predict the observed behaviour in the universe which is familiar to us.

One well-known observation, which can be related in a convenient manner to
the zeroth and first laws, has been taken as a basis for a statement of the required
principle but describes the directionality in a rather restricted form. This observa-
tion is that a body placed in contact with cooler surroundings cools down spon-
taneously by giving up heat to these surroundings and that the body will not get
hotter, spontaneously, by extracting heat from such surroundings. Thus we
may state that:

The transfer of heat from a cooler to a hotter body cannot occur spontaneously,
but will require the performance of work.

The transfer of heat produced by the application of external work would take
place in some form of refrigerator, and the consideration of the operation of
idealized refrigerators led Clausius to the conclusion that:

It is impossible to construct a self-acting device that, operating in a cycle, will
produce no other effect than the transfer of heat from a cooler to a hotter body.

From the equivalence of heat energy and work energy, this statement may be
shown to be equivalent - see Appendix A - to an alternative statement by Kelvin
and Planck, namely:

1t is impossible to construct an engine that, operating in a cycle, will produce no
other effect than the extraction of heat from a reservoir and the performance of an
equivalent amount of work.

34 The Second Law

4.2

These two statements are just different ways of expressing the second law of
thermodynamics and, while they are exact in the context in which they are given,
they are necessarily largely restricted to such a context.

Entropy

In order to obtain a more generally applicable formulation of this law wh.ich
governs the direction of thermodynamic processes we may define i quant.ny,
which is to be called the entropy, which necessarily increases during lrrever.sn.ble
processes and which never decreases. For this quantity to be useful in describing
the behaviour of a particular system it must necessarily be a function of the state
of that system, so that whenever the system is in a particular state the entropy
will have a particular value. If we can find some quantity which has this mm,
then the condition that this quantity increases will determine the direction in
which any spontaneous process will occur, and it will be possible to state the
second law of thermodynamics in the form:

In any thermodynamic process the entropy of the universe will increase or remain
constant but will never diminish.

Three points regarding this ‘law’ may be noted. First, if the particular process
occurs in an isolated system that system may be considered as its own universe.
However, in most cases the systems will not be isolated from all their surround-
ings, and, in any process which occurs, the entropy of both the system itself and
its surroundings will be altered. Strictly, therefore, in such cases the whole
universe must be considered as a single system. Second, the condition that the
entropy can remain constant during a thermodynamic change is necessary to
allow for those processes which are reversible. This follows since for an isolated
system (or for the whole universe) to return reversibly to its original state — a_nd
hence to its original value of entropy - without the entropy ever decreasing
requires that the entropy shall have remained at a constant value throughout
the whole process. Third, this definition gives no indication of the nature of the
quantity which we have called ‘entropy’, nor has it given any indication that it
will be possible even to find such a quantity for all types of systems. .

If the entropy is, for convenience, given the symbol § it is possible to write
the second law in mathematical form such that, for an isolated system,

AS>0 4.1

for any thermodynamic process. The inequality sign then applies to those
processes which are irreversible and the equality sign to those which are reversible.
The ‘arrow’ of time will then be specified by stating that if there are two states
of the universe, or of an isolated system, the one with the higher entropy will
occur at the later time. The entropy changes corresponding to the two cases of
4.1 are indicated in Figure 7 for an isolated system.
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Figure 7 Changes in entropy with time for an isolated system

In order to advance usefully from this point it is necessary to obtain a specifica-
tion for the entropy in terms of known thermodynamic quantities and, as we
shall see, this may be partially achieved by the use of the classical statements of
the second law which were given above.

Stages in the Carnot reversible cycle

The thermodynamic concept of entropy was first formulated from consideration
of the efficiency of practical and ideal engines by a French engineer, Carnot,
although the results were not expressed in terms of entropy until some time later.
The essence of the discussion was an idealized reversible engine, postulated by
Carnot, which may be described in the following manner which we have made
as general as possible.

Consider that the working substance of an engine is connected by frictionless
means to an external load on which it can perform work. The working substance
may be, for example, a fluid, a rod of metal, a paramagnetic salt or a thermo-
couple, provided that, whatever substance is employed, the thermodynamic
changes in which that substance is involved within the engine can occur reversibly.
(The working substance is frequently taken to be an ideal gas but, although it will
be seen in section 11.4 that the results obtained in this case are of particular
interest, such a treatment is too restrictive for the present purpose.) There is
considered to be available to the engine two heat reservoirs at different tem-
peratures 6, and 8, with 6, > 6,, the definition of the temperature difference
being such that heat will flow from the higher temperature reservoir (the source)
at , to the lower temperature reservoir (the sink) at 6,.

The engine is now allowed to perform a cycle of completely reversible opera-
tions in which it does work on the external load and returns to its initial state.
This cycle is performed in a series of four distinct stages.

(a) The engine is first placed in contact with the higher-temperature heat reservoir
(or source), so that the working substance attains the temperature ;. The engine

36 The Second Law

is then allowed to do work on the load as the state of the working substance
changes reversibly at constant temperature 8,, while heat Q, is taken in from the
reservoir, as illustrated in Figure 8(a). The first stage of the cycle is thus isothermal
and reversible.

work done
work done T l by load
on load

engine

Q;

engine

reservoir 8, (sink)
(a) (b) (c)

Figure 8 Stages in the Carnot reversible cycle

reservoir 6, (source) insulator

(b) The engine is now isolated from its surroundings by means of some insulator,
as indicated in Figure 8(b), while it is allowed to do work on the load, so that the
internal energy of the working substance decreases and its temperature decreases
to the value of the second heat reservoir (or sink) at 6,. This process is thus
adiabatic and reversible.

(c) The engine at temperature @, is placed in contact with the sink and, as
indicated in Figure 8(c), the load is now allowed to perform work on the engine.
The load thus returns towards its original position, while the working substance
is held at the constant temperature #,. This stage of the cycle is carried out
reversibly and isothermally while heat Q; is given to the sink and the process
continues until a state is reached such that

(d) when the engine is insulated from its surroundings again and the load is
allowed to perform further work, adiabatically and reversibly, on the engine,
the load returns to its original position and the engine returns to its original
state at temperature 6.

By the first law of thermodynamics, the work done by the engine during the
above cycle of events must be equal to the difference between the heat Q, given
to the engine by the source and the heat Q, absorbed from the engine by the
sink, since the internal energy will return to its original value and there is no
gain or loss of heat during the adiabatic processes. Hence

W= 0, — Q. 4.2

If the thermodynamic efficiency 7 of an engine (as opposed to any mechanical
efficiency) is defined, in terms of the work done W and the heat Q, which must
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4.3.1

be taken in at the higher temperature in order to obtain this work, as

w
e ¥ i
we have, for the Carnot-type engine,

Q- Qs
] o 44
Carnot’s principle

Because of the form of the engine described by Carnot, it is possible to enunciate
the principle that:

No engine operating between two given reservoirs can be more efficient than a
Carnot engine operating between the same two reservoirs.

This statement follows from, and can be shown to be equivalent to, the
Kelvin-Planck and Clausius statements of the second law of thermodynamics.
Consider that there is an irreversible engine E; which drives a Carnot engine Ec¢
in reverse, while both operate with the same source and sink. Suppose also that
the engine E, takes heat Q, from the source while the work W which it does
during the cycle drives the engine Ec to give heat Q' back to this source, as
indicated in Figure 9.

Figure 9 Carnot engine Ec driven in reverse by engine Ey. (It is not strictly

important whether E; is reversible or not, since only the Carnot engine is driven

in reverse. It is important, however, that the heat exchange by E; only occurs with
the same source and the sink)

E, will give heat Q; to the sink such that, by equation 4.2,
Qa =0 -

The Second Law

and similarly Ec will take heat Q; from the sink given by

0:=01—

The efficiencies of the two engines E; and Ec may be written as
- w y — w

m_Qn ¢ K = nc-Ql ’Q:__
O O Q Qo

If, in contradiction to Carnot’s principle, we assume that the Carnot engine
has the lower efficiency, that is,

T > 7’Cv 4'5
this will require that
w W

pasnliny CAIE

o 0O

and so Q] must be greater than Q,. Thus, during the process in which work W
is done by E; on Ec without involving any external agency, the source will
become hotter by taking in heat Q) — Q,, which is exactly equal to the heat
Q) — Q,lost by the source. This result clearly contravenes the Clausius statement
of the second law of thermodynamics, and hence the assumption 4.5 must be
invalid. Thus Carnot’s principle follows directly as a result of this statement, and
we must write

T * Y.

If the engine E; were replaced by another Carnot reversible engine Ec., it
would be possible to reverse the direction of operation and thus to consider the
inverse of the relation 4.5. Then we could show by the same logic that

%c * 7N

as well as

Ner # e

The only way in which both these relations may be satisfied is that

e =TNec

when the two Carnot engines are working between the same temperatures.

One consequence of Carnot’s principle may be seen if it is realized that (a) all
Carnot engines which are working between the same temperatures will necessarily
have the same efficiency; (b) by virtue of the processes which make them irrevers-
ible, irreversible engines working between the same temperatures will be less

efficient than the corresponding Carnot engines. Thus if we can determine these
efficiencies it may be possible to obtain a measure of the irreversibility, and
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therefore to give a specification for the entropy. First of all, however, it is
necasarytodeﬁne.bymeamoftheCamotcycle,auquwmofwmperamm
on which the temperatures of the source and sink may be measured.

A thermodynamic scale of temperature

Because the efficiency of all Carnot engines operating between the same two
reservoirs is the same, independent of their form or of their working substances,
it follows that this efficiency can only be a function of the temperatures of the
source and the sink, since these temperatures are the only constant parameters
in the description of the engines. We thus have a basis for defining a temperature
scale independent of any property of any particular material, that is, a universal
or absolute scale. For this purpose we define the temperatures of the source and
sink of a given Carnot engine on an absolute temperature scale as 7; and T3
respectively, such that the efficiency of the Carnot engine operating between
these temperatures is

_Li-T;

¢

4.6

By comparison with 4.4 we can see that this implies that
e n-n _Ql ~ Qs

T &
Ec, |—————w,
e, b———w,

Figure 10 Two Carnot engines operating with the sink of one
as the source of the other

40 The Second Law

. Q:
[ == —

0 T o 4.7
so that the temperatures of the two reservoirs, in this definition, are in the ratio
of the heats which the engine absorbed from one and rejected to the other.

That the definition of 4.6 gives a logical choice of a temperature scale may be
seen by supposing that two Carnot engines operate as shown in Figure 10,
where the sink of one engine acts as the source of the other. The heat Q; given
out by the engine E¢, at temperature 7; is absorbed by Ec, at the same
temperature. Then, by the definition of 4.7,

Tl Ql Tl Qz
F:BQ: (for Ec,) and E-E (for Ec,),

so that, whatever the value of the intermediate temperature T3,

which is the relation which would apply for a single Carnot engine operating
between temperatures 7y and 75. Thus, by taking a complete series of Carnot
cycles, any range of temperatures may be specified in a self-consistent manner.

The temperatures defined by 4.6 and 4.7 will obviously contain an arbitrary
constant. In practice this constant will be evaluated by taking some fixed tem-
perature as a reference point for the whole temperature scale. This fixed point is
normally taken at the triple point of water with the value 273-16 K (degrees
Kelvin, or simply kelvins). Then it is possible to refer all other temperatures to
this value since there will be an absolute zero of temperature, 0 K, such that, as
the temperature of the sink of a Carnot engine approaches this zero of tempera-
ture, the value of Q,, the heat rejected by the engine, approaches asymptotically
to zero. With the fixed points chosen on this basis, the interval of temperature
between the melting point of pure ice under standard atmospheric pressure and
the boiling point of pure water under standard atmospheric pressure is a hundred
degrees on the Kelvin scale, and with T3 = 27316 K, T} = 273:16 Q,/05 K

The fact that there are thus established a hundred degrees in the so-called
‘fundamental interval’ of temperature between the ice point and the steam
point does not mean that the Kelvin scale, or thermodynamic scale, is equivalent
to any other centigrade scale. This will be clear in the discussion of Chapter 19
where it will be seen that, when the practical measurement of a temperature
depends on some particular property of some particular substance this practical
temperature must be reduced to an absolute temperature by calibration against
the Kelvin scale.

The establishment of the hundred steps or degrees necessary between the ice
point and the steam point by use of the Carnot engine alone is theoretically
achieved by establishing a sequence of a hundred such Carnot engines, as shown
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Figure 11 Sequence of a hundred Carnot engines, the sink of one acting as the
source for its neighbour. Each engine performs the same amount of work and
takes in the heat given out by the one above in the temperature sequence

in Figure 11. With each engine taking in the heat given out by its neighbour
and each performing work W, it is clear that

W= Q100 — Qss = Qss — Qog = ... = Q1 — Q. 4.8

It is clear also that, since the temperatures are defined in 4.6 to be in direct ratio
to the heats taken in and given out, 4.8 implies that

Tioo—=Too=Too—Tog=...= Ty — To.

Th.ere are thus a hundred equal intervals between the ice point and the steam
pqmt, and each of these may be taken to be equal to one kelvin or, on the scale
with the ice point at 0°C and the steam point at 100°C, to 1°C.

The quantity Q/T

In the above discussion of the Carnot engine it was seen that the engine takes in
heat Q, from the reservoir at temperature 7, and gives out heat Q: to the sink at
temperature 73, the temperatures being effectively defined by the values of (o))
and Q,. We now distinguish between high-quality heat (i.c. heat at a high tem-
perature) and low-quality heat (i.e. heat at a low temperature) by defining a
quantity o which is the ratio of the quantity of heat to the temperature at which
that heat is available. Then, for the heat Q, taken from the source, this quantity
will have the value

O

Oy = o=y

1
while for the heat Q, delivered to the sink it will be

Q:
O3 == w0

T

Over the wl'xole Carnot cycle there will be a change in the quantity o for the
system consisting of the engine, the source and the sink by an amount

Ag =0y — 0oy, 49

The Second Law

since o; has been taken from the source and o delivered to the sink while the
working substance returns to its original state and therefore suffers no change
in o. (There is, of course, no change in o over the adiabatic processes where there
is no exchange of heat.) Taking the values given for o, and o, we have

Ava 410
n T

However, since the definition of our absolute temperature is chosen to give
Q:/Q2 = Ti/T; (see 4.7), so that /T, = Q,/T,, the change in o over the com-
plete Carnot cycle is

Ao =0. 411

Not only does this argument give Ao = 0 for the complete cycle but, if any
single part of the reversible cycle is considered, the same result is seen to be
obtained. For example, when during the first stage of the cycle the engine takes
in heat Q, from the source of temperature 7, there is a decrease in the quantity o
of the source by an amount —Q,/7; while the working substance of the engine
gains an amount +Q, /7, and so, over this stage, Ao = 0 for the complete system
of engine and source, although it is not zero for the source separately nor for the
working substance separately. Similarly, as explained above, Ao is zero over
the adiabatic stages.

The above argument may be extended to any reversible process, since it will
always be found that any such process can be divided into sequences of infini-
tesimal reversible isothermal and adiabatic processes, each of which must
separately satisfy the condition do = 0 for the complete system. This condition
is normally expressed in terms of the sum of increments such that, if a part of
the system gains a heat dQ while it is at temperature 7, the change in o over a
reversible process is

W=Q,-Q; =150, irrev= W =Q,-Q'; =50, —

Ao =0 m 8a >0
oy
P (=R 1'. BN T, '\
SAR RN A e *

sink T,

Figure 12 Reversible and irreversible engines between the same reservoirs
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where the changes in ¢ are considered for all parts of the system (and for the
universe if the system is not isolated).

It is immediately clear from the above analysis that the quantity Ao satisfies
the condition that we have required for the change in entropy AS for any
reversible process, namely that AS = 0, as in 4.1. This result gives encouragement
therefore to examine the behaviour of this quantity o for the case of an irreversible
process.

Let us suppose that, as expected from Carnot’s principle, the irreversible
engine shown in Figure 12 has an efficiency », which is, through the very processes
which make it irreversible, less than 7, the efficiency of the corresponding
Carnot engine. Then, if heat Q3 is given to the sink by the irreversible engine
for heat Q, taken in from the source,

0 -0Q; -0 Th-T;
Ne = -

h™=

o, Q, T,
and hence, for 7; < 7¢,
Q-0 Ti-Tp
Q, y
Thus, on rearranging, we see that
2 &, 413
n T

and, taking our definition for o and comparing with 4.10, we see that this
equation corresponds, for the irreversible engine, to

Ao >0.

As for the general reversible process, it is also possible to express a general
irreversible process as a combination of infinitesimal steps, but in this case while
some steps may be reversible others will definitely be irreversible. Then com-
bining 4.12 and 4.13 to give the result for both the reversible and irreversible
increments of ¢ over the whole irreversible cycle will give

dQ
Ac f T > 0. 4.14

Irreversible
cycle

That this inequality holds for any irreversible stage of a complete cycle may then
be demonstrated by considering that stage to be but a single part of an otherwise
reversible cycle. Then, since Ao > 0 for the whole cycle and Ao = 0 for the part
that is reversible, it is necessary that Ao > 0 for the irreversible part, 4.14 may
thus be generalized so that

44 The Second Law
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Also, although the value of ¢ of the substance which is undergoing the cyclic
process may increase or decrease during different parts of a cycle, the value of o
will be unchanged at the completion of the cycle because the substance will
return to its original state. Any total increase in Ac over the whole cycle must
therefore occur in the system as a whole and is usually expressed as an increase
in o for the universe, since this will cover all interaction between the working
substance and its surroundings.

It is thus seen that the quantity o has all the properties required of the entropy
by 4.1. We therefore make the transfer by defining a change in entropy such that:

If a system or substance at temperature T increases its heat content by an amount
dQ there is an increase in the entropy of the system or substance of
d
as- 92 4.15
4
and, over any complete process, the change in entropy of the system is the integral
of dS over that process, so that

AS= J. Q 4.16
T

process

The condition, that in a reversible process the total change in entropy of the
universe as a whole is zero, is satisfied because for every gain by a system of heat
dQ at temperature 7" some other system must lose the same amount of heat at
the same temperature or the process will not be reversible.

Properties of entropy
Because of the manner in which the entropy has been defined, we know that:

(a) we can only be concerned with changes in entropy and not with absolute
entropy since no basis has been laid for absolute values;

(b) because the entropy of a system returns to its original value at the end of a
reversible cycle, this value must be a function of the state of the system and not
of its history, that is, dS is an exact differential.

(c) it may be possible to consider independently those changes of entropy which
occur within a system and those which occur in the surroundings, but it is the
combination of these, the change in the complete universe, which will determine
whether the process is reversible or not;

(d) in a reversible, adiabatic process there is no change of heat content of any
system at any point and hence
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4.6.1

AS= J' d—Q
T

is_ ident_ically zero and the process is therefore referred to as isentropic. (In some
discussions adiabatic processes are frequently stated to take place rapidly in
order to ensure that dQ = 0. It would not be expected that such a process would
be {eyersible since we require that, to be reversible, the changes should follow
eql.uhbr'ium states. Hence we expect there to be an increase in entropy in such an
édxabauf: process performed rapidly and the distinction must be made between
1sentropic and non-isentropic adiabatic processes.)

On the basis of these criteria and definitions, and equations 4.15 and 4.16, it is

possible to derive a number of simple, though important, relationships involving
the entropy.

The temperature-entropy diagram

Any process in which a system can exchange heat with its surroundings may be
represented on a temperature-entropy diagram by representing any point in the
proo&s_s by the value of temperature and entropy at that point. If the process is
reversible, any change in the heat content may be represented by writing
dQ = T dS. (This relation cannot be assumed for an irreversible process since,

TA

T P L SR (a)

(d) (b)

Tt oo

(c)

S: S,
Figure 13 7-S diagram of the Carnot cycle

A
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in such cases, there may be entropy changes associated with processes other than
the addition of heat to a system.) Since only changes in entropy are considered,
the actual value of entropy will be taken relative to some arbitrary zero.

Thus, for example, the Carnot cycle may be represented by two processes (the
isothermal processes) at constant temperature (7; and 73) and two (the adiabatic
processes) at constant entropy (S; and ). The form that this representation of
the cycle will take is shown in Figure 13 where (2) and (c) represent the isothermal
processes and (b) and (d) represent the adiabatic processes. The heat taken from
the source along the stage (a) is clearly

Ti(S: — S2) = Oy,

while the heat given to the sink along (c) is
T2(S: — S2) = Qa.

The work done during the cycle is, as before,
W= 0y — Q= (T) — T1)(S: — 52),

which is the area of the cycle on the 7-S diagram. (Not surprisingly, because
of our original definition, we see that the thermodynamic efficiency 7 is

Ql—Qz=T|—Tz_)
) T

Available work

When a system undergoes an irreversible change, which necessarily involves an
increase in the entropy of the universe, there will be a decrease in the total work
which is available from any energy sources involved. This may be illustrated
very simply by considering a system consisting solely of two vessels each con-
taining an identical mass of liquid but at two different temperatures. Useful work
could be obtained from the masses of liquid in these vessels if they were used
respectively as the source and sink of a Carnot engine. However, if the two
volumes of liquid are first mixed together so that they become a single volume
with double the mass and with a single temperature, they can no longer be so
used. The useful work which was originally available and which has been lost
by the mixing process is directly proportional to the gain in the entropy, AS,
which occurs during the irreversible mixing. In fact, as shown in Appendix B,
if the lowest temperature sink which is accessible to the system is at temperature
Ty, the loss of available work is 7, AS.

On the other hand, if the two volumes of liquid had been brought to the same
temperature reversibly there would be no gain in entropy and the maximum
amount of work would be extracted from them.

The fact that an increase in entropy is associated with a decrease in available
work indicates that as the entropy of the universe increases with time so there
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is a decrease in the useful activity available from the original energy sources.
We thus see the increase in entropy as involving at the same time the ‘running
down’ of the universe.

Irreversible changes in systems

We have seen from 4.1, which we used as a definition for a change in entropy,
that the condition AS > 0 must be satisfied for an irreversible process which
involves the exchange of heat. However, there are irreversible processes in which
no exchange of energy occurs, whether in the form of heat or otherwise. Such
processes usually involve a change in the form or arrangement of the system,
as will happen for example when one pure gas diffuses into another pure gas to
form a mixture of gases. Similarly, but in a different system, there will be a
disordering, or change in the arrangement, of the atomic magnetic moments
when a magnetized paramagnetic material (thermally isolated from its sur-
roundings) becomes demagnetized on the sudden removal of the magnetic
field. The processes are certainly irreversible, there being no question that they
proceed under equilibrium conditions, while there is equally no change of heat
content of the system. In each of these processes there will be a gain in entropy
although

2o
y i

since dQ = 0 identically. It is clear that for processes of this type we must write
AS > J. d—Q 4.17
y i

if we wish the entropy to increase for all irreversible processes.

It is fairly easy to account for this additional entropy (which obviously does
not arise in these cases from such effects as friction, eddy currents and so forth,
which would involve exchange between different forms of energy) by the method
outlined in the following discussion. However, we must noteat once that, because
of this result, the calculation of changes in entropy according to equation 4.16
is only strictly permissible for processes which are reversible. For this reason it
will be observed that in subsequent calculations the change in the entropy of a
system will be calculated, where possible, as if the system had followed a
reversible path between the initial and final state, even if it has not. Then, since
the entropy of the initial and final states will be a function of those states alone,
the difference between the two entropies will be the same when calculated for a
reversible path as for any other sequence of changes between the two states.
Inevitably, though, there will be seen to be cases where no reversible path is in
fact possible.

Consider an example. Two beakers each contain a mass m of a liquid which
has temperature-independent specific heat ¢. The one beaker is at temperature
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T, the other at temperature 75. The two masses of liquid are added together in
a third beaker (which is insulated from its surroundings and has zero thermal
capacity) to give a total mass 2m at temperature ¥(7; + 73). Because the process
is irreversible there will be a gain in the total entropy of the universe. However,
in order to calculate the change in entropy we must use the fact that the ent.ropy
of the final state is independent of the path by which this final state i:r» attained.
We thus compute the change in entropy of the two masses of liquid as if th?y had
followed reversible paths to the temperature (7 + T3), so that it is possible 'to
write the change in entropy as in 4.16. Such reversible paths. would neco?ssanly
consist of a series of equilibrium stages. The reversible heating (.or cooling) of
the two beakers would therefore require a series of heat reservoirs, each at an
infinitesimally lower temperature than its neighbour, Howe.\tr;r, since 3;:: are
ired for a ‘thought’ experiment, they present us with no pro -
onll’{:m -(-n;nch (l;l"the g:rﬁn"?teinon of the spgciﬁc heat), the change in
entropy of4he liquid which starts at temperature 7, is
(T +T12

dQ
AS(liquid at 7) = j? =

7

while the change in entropy of the liquid which starts at T3 is

(T 4712
AS(liquid at 73) =

T

If the two volumes of liquid are now added together in the original is?lated
beaker to form a single volume, we shall have reached the same‘state asin 'the
case of direct mixing. The process of the mixing will now be entirely reversible

and involve no change in entropy, and so the total change in entropy of the
liquid will be

| T| + Tj -b-]nTl +T3]
AS(total) = me| In 2T, oT,
(T| -+ Tz)1
= ln —
4T, T;

which is necessarily positive since
(T + Tl)’ >4, T, forT\# T

In the reversible processes which we have envisaged there will be no change in
the universal entropy, since our imaginary reservoirs will have. l.ost an amount
of entropy equivalent to AS(total). In the case of the direct m!xmg no external
systems are involved and the entropy gain is an absolute gain for the whole
universe.
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If the. two liquids contained by the beakers had been of different chemical
eompt?smop and entirely immiscible, so that they could exchange heat but could
not mzx,‘thns type of calculation would still be valid, since the ‘mixing’ process
w«:.vul.d snl! be reversible. However, if the liquids had been different but had been
miscible, it would not have been possible to separate the liquids by any simple
process after they had been mixed together and the entropy change would have
been greater. (For a discussion of such mixing see section 11.5.)

Entropy, probability and disorder

We have already mentioned that such processes as the mixin,

dnt}'er;m gases or the demagnetizing of a paramagnetic materisnlt (:\;‘iellthrgtﬁf :: :
gain in .cltxtropy. not because of an exchange of heat but because of the very
lmve_rsxbnlity of the changes which occur. The property which these processes
have in common is that they involve a spontaneous change from a more ordered
arrangement t(? a less ordered arrangement of the components of the particular
system. Thus, in Figure 14(a) the initial state of the separated gases, indicated

unit volume unit volume two units of volume
oxyge
Xygen gas nitrogen gas mixed oxygen and nitrogen
initial state i
i final state
l 8, =0

Pt ——
P \ /-

Figure 14 Increase in disorder when (a) two different gases at the same

temperature and pressure are mixed together, and (b i i
removed from a paramagnetic specimen ' T

(b)

for convenience as oxygen and nitrogen, is more ordered i

That the process is irreversible is obvious if it is mdtta;dml;amm:;u; :
process follows spontaneously on the removal of the partition between the .
but that the _replaoemcnt of the partition will not cause the gases to sepamm
from the mixture. Indeed, quite a complicated procedure would be required
.to resegregate th§ oxygen and nitrogen molecules. Similarly, in Figure 14(b)

if the field B, which causes the magnetization is instantaneously removed, the’
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atomic magnetic moments will instantaneously be partially aligned with no
field applied. The magnetization which results from this alignment will disappear
with time as the system tends spontaneously to a state where these moments
are arranged in a random manner. Again the direction of the spontaneous
change from the magnetized to the demagnetized state will result in a more
disordered state replacing the ordered state of the magnetized specimen. Since
the transfer from the initial state to the final state in both of the cases illustrated
in Figure 14 is irreversible, there is clearly a gain of entropy in each case. We
may therefore conclude that a disordered state has a higher entropy than an
ordered state. (Although in both the cases illustrated here the final state is
that of higher entropy, in most cases both the energy and the entropy of the
system have to be considered in order to determine the final state - see section
6.2))

If there is to be any exact relation established between the disorder and the
entropy of a system, it is clearly necessary that the disorder shall be expressible
in some way in terms of either the macroscopic or microscopic parameters of
the system. The way in which such an expression can be obtained is seen most
simply if it is noted that a disordered state of a system can be achieved in more
ways (or by more arrangements of the components) than can an ordered state.
Thus, in the final (or mixed) state of Figure 14(a), where both gases have
spread through twice their original volumes, each molecule can be found in
twice as many positions as were possible in the initial state where the gases were
confined by the partition, each to one half of the complete enclosure.

Consider that the unit volume of oxygen contains N molecules and that these
can be arranged in the limited volume in £2,(0,) distinct ways. When the partition
is removed, each molecule can take up two positions for every one in the initial
state and so the number of arrangements will increase by a factor 2¥ to

Q(0,) = Qy(0;) x 2%,

Similarly, if ©,(N,) is the initial number of ways of arranging the nitrogen
molecules in one half of the enclosure, there will be

Q¢(N;) = Q(N,) % 2¥

ways of arranging the N nitrogen molecules once the partition has been removed.
Consequently, if the total number of arrangements possible in the initial and
final states of the whole gas system are {(initial) and £(final), then

Q(initial) = Q,(0,) x Q(N>)
and Q(final) = Q(0,) x Q(N3) = Q(03) x 2¥ x Q(Ny) % 2%,

since each arrangement of the oxygen molecules may be taken together with each

arrangement of the nitrogen molecules. Thus
M = 23N, 4.18
Q (initial)
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Since N will be of the order of 10?2 for a litre of gas at standard temperature and
pressure, this ratio is considerable and the number of ways of arranging the
molecules with the partition removed is considerably greater than the number of
arrangements available before this removal, Consequently, once the partition
has been removed, the molecules moving in a random manner will have a far
greater probability of being found in the completely mixed state than in the
segregated state. The irreversible mixing of the gases associated with the increase
in entropy is therefore also associated with an increase in the likelihood of finding
the mixed state relative to that of finding the unmixed state once the partition
has been removed.

A similar argument applied to the magnetized specimen of Figure 14(b)
would show that there is only one way of finding the magnetic moments com-
pletely aligned, but many ways of finding them orientated at random. The final
disordered state is, in both cases, the most probable state and it appears therefore
that there is a relation between high probability and high entropy.

If we now consider that heat energy, involving as it does a random motion of
molecules in a gas or of ionic vibrations in a solid or of electromagnetic radiation
in space, is a disordered form of energy, it is possible to associate the increase in
entropy which occurs with the addition of heat to a body with an increase in
disorder. However, the manner in which the disorder due to the addition of heat
energy can be expressed in terms of arrangements of the molecules or ions is
beyond the scope of our present text.

Suppose that for some system the number of distinct arrangements of its
components, which we shall call the statistical weight of the system, is 2. The
relation between the entropy and the disorder can then be envisaged in the form

S=/% 4.19

The actual form of the function f(£2) may be simply established by considering
a composite system composed of two separate systems A and B which do not

system A system B
Q, Qp
- Sa Sa -
R %
Qr0.5an

Figure 16 Two non-interacting systems A and B

interact in any way, as indicated in Figure 15. Then the entropy of the composite
system will be

Sas = Sp + Sp, 420
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where S. and Sg are the individual entropies of A and B. At the same 'tnme
total we:ght of the combination will be given by the product of the weights Q4
and Qg of A and B respectively, i.e.

Qup = Q4 % g, 421
since every one of the £, possible arrangements of the system A may be taken

i 4.20 and
together with every one of the arrangemengs Q4. For equations
“g: to be consistent with each other the relation between S and Q must be of

the form
S=kinQ, 4.22

where, after the originator of this expression, the constant & is called Boltzmann’s
constant. Then

Suwkann-kan‘-é-kan.—SA-i-S..

This problem of the relation between entropy and the weight of a s.ystem vjrull
be discussed further in subsequent sections of the text. Howe_vc?r, it is interesting
at this point to note that, by virtue of 4.22, the result of mixing the fwo equal
volumes of the two gases shown in Figure 14(a) (the gases both being at the
same temperature and pressure) is to increase the entropy by the amount

AS = Seinat — Stausar = k In Q(final) — k In Q(initial),

which, on substituting from 4.18, gives the entropy of mixing as

AS =2NkIn2. 423
(The value of Boltzmann’s constant which is required l.o give the same change
in entropy for a reversible process from both the equations

dS-d—TQ- and dS =k d(In Q)

k=138 x 1073 JK.
This constant will occur later in our treatment of the kinetic theory of gases.)

The combined first and second laws

Because of the introduction of the concept of entropy it is'possible to rewrite
the mathematical form of the first law of thermodynamics for a reversible
process with dQ replaced by 7'dS. Then 3.3 becomes, for a system at tempera-
ture T,

TdS =dU +dW. 4.24

i i i iginal is that, while dQ
The advantage of this expression compared wnsh the original is t s
is an inexact differential, dS is an exact differential. Then, because dU is an exact

53 The Combined First and Second Laws




4.9

differential and dW may also be expressed in terms of an exact differential

(which depends on the particular system and its constraints, as is seen from

Table 1), it is possible for mathematical relationships to be established between

the various parameters of the systemin question, as will be discussed in Chapter 6.
For irreversible processes, the combined law gives

TdS >dU + dw,

but, as is very clear, such an expression has more physical significance than
mathematical application and, as already explained, changes in entropy will be
calculated, using 4.24, for reversible paths between the initial and final states.
The substitution 7°dS = dQ is often used to obtain an expression for the
specific heat of a material. The thermal capacity of a body is defined as dQ/dT
and the specific heat (strictly, the specific thermal capacity) is the thermal
capacity per unit mass (denoted ¢) or per mole (denoted C). The value of the
specific heat will depend on the conditions under which the heat dQ is supplied
and the so-called principal specific heats C, and C, are the values with pressure
and volume respectively maintained constant. These specific heats may be
expressed in terms of changes in entropy, since dQ/dT = T dS/dT, as

Ay S
C,= T(—) and C,= T(—) . 4.25
aT/, a7/,
If the volume v of a fluid is maintained constant, then dW = p dv = 0, and so
it follows from 4.24 that

U
= B 426
G (ar).

The usefulness of these expressions will be seen in Chapter 6.

Carathéodory’s principle

The method by which the entropy has been introduced so far has required an
appreciation of physical method and procedure. It is, however, possible to
introduce the entropy in @ more formal mathematical manner, of which we shall
give here only the briefest indication, and that for a particular case.

Consider that, by the first law of thermodynamics, the heat supplied to a
dielectric system is given by
dQ = C,dT + p dv — E dP, 4.27

where work is performed by the system as it expands against the pressure and on
the system by the electric field as the polarization P increases. The substitution
dU = C, dT has been made from 4.26. Consider further that the system is in the
state X defined by a given set of values of 7, v and P as indicated in Figure 16,

It is known that the states which are accessible from X by an adiabatic process,
i.e. by a process in which dQ = 0, are limited to a surface in (P, T, v) space, while
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Ph

adiabatic surface
C,dT + pdv-EdP=0

v

Figure 16 State X of system represented in the coordinates P, T and v

any state lying off this surface is not accessible from X by such a process. Itis
Carathéodory’s principle that, for such inaccessible states to exist, it must be
possible to write 4.27 in the form

dQ=C,dT+pdv— EdP=Ydy,
where Y and y are both functions of 7, v and P, while dy must be a perfect

differential. It is then possible to identify ¥ with 7 and y with a function of
state S, the entropy, so that

dQ=TdS
and the heat change is expressed in terms of a perfect differential.

Calculation of change in entropy

As an example of change in entropy, consider that heat is supplied to a wire of
resistance ten ohms by a current of one ampere flowing for one minute. Consider
two cases. (a) That the wire is isolated from its surroundings and, having a
temperature-independent thermal capacity of 10J K~!, increases in temperature
from its initial state at 0°C. (b) That the wire is in thermal contact with a large
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quantity of ice at its melting point, so that the additional heat will melt a certain
amount of ice without raising the temperature.

(.a) There are 600 J of energy supplied, so that the temperature of the wire will

rise from 0°C to 60°C. If this change in temperature were caused to oceur in

a reversible manner, the difference in entropy of the wire between the initial

and final states would be, taking C as the thermal capacity, so that dQ = C dT,
T,

f 333
= _J‘CdT_ f A e (S
T A F o ;
3

T

In a reversible process this amount of entropy would have been lost by the
agency supply?ng the heat to the wire, but in the present, irreversible process the
ordered electrical energy is converted to disordered heat energy. The change in

mu;):l: represents a net gain, therefore, both to the wire and to the universe as
a whole.

(b) The 600 J of energy are supplied to the wire, in this case at constant tem-
peratune, the heat created being used to convert ice at 0°C to water at 0°C.
If this process had been carried out reversibly there would have been a gain in
entropy of the ice-water system by

N 219K
T 28 !

wh‘ich, since the process is irreversible, represents a net gain of entropy for the
universe.
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Chapter5
The ThirdLaw

Behaviour of matter at low temperatures

The experimental observation of the properties of matter as the temperature is
lowered below room temperature towards the lowest values attainable leads to
the conclusion that the disorder of any system decreases as the temperature
decreases and, as measured in terms of the entropy, tends to a limiting value.
Any attempt to formulate a law which will account for this behaviour, and which
will supplement the laws discussed in the preceding chapters, must take into
account a number of basic observations.

(a) On the temperature scale defined thermodynamically in section 4.4 (and
later to be defined practically in Chapter 20) there is found to be an absolute zero
of temperature at which, for example, the volume of an ideal gas extrapolates to
zero. However, the gas phase itself does not exist at the lowest temperatures
since, as this zero of temperature is approached, the gas undergoes changes of
phase to more ordered condensed states, first to a liquid and then, generally, to
a solid. Once the solid phase is formed its internal energy will extrapolate to
some zero-point value at the absolute zero of temperature.

(b) If we maintain our definition for a reversible process that
d
AS - J’ —Q L
T

then, if C is the thermal capacity of a given condensed system so that dQ = C dT,
we have

As-jﬂ.
T

It is clear that there will be a singularity in the entropy as T approaches zero
unless C also approaches zero at least as fast as 7. As will be discussed in Chapter
10, this required temperature dependence of the specific heat is confirmed by
experimental observations on solids and is, furthermore, predicted by the
method of statistical physics.

(c) The experimental evidence from chemical reactions which were allowed to
take place at low temperatures suggested to Nernst that:
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The entropy change which occurs in a chemical reaction between two ordered solids
tends to zero as the temperature tends to zero.

This statement is known as the Nernst heat theorem.

(d) It is observed that in any magnetic system the spin magnetic moments from
which the magnetism arises will tend to a completely ordered arrangement as
the zero of temperature is approached, so that the weight of the state of the
magnetic moments at absolute zero tends to unity (there being only one way of
attaining complete order). The corresponding entropy, given by the logarithm
of the weight, is zero.

The experimental results summarized here led Simon to produce a general state-
ment governing the thermodynamic behaviour of such properties as specific heat,
paramagnetism of solids and many others as absolute zero is approached. The
result was the *Nernst-Simon’ statement, viz.:

The entropy change associated with any reversible isothermal process of a condensed
system approaches zero as the temperature approaches zero.

This more general statement is the third law of thermodynamics. (In this statement
‘condensed system’ normally refers to a solid but will, in the case of liquid-
helium-II, refer to the liquid phase.)

Table 2 Some Results of the Third Law

Although we have not dealt with detailed thermodynamic properties so far,
it is instructive to list in Table 2 a few of the significant results of this law which
will illustrate its importance. (It must be pointed out, however, that the absolute
zero of temperature has not actually been reached and that the verification of
these predictions is based on extrapolation to T =0.)

The results of the third law of thermodynamics for magnetic materials are
illustrated in Figure 17. This shows the variation with temperature of the
magnetization for a paramagnetic material in the presence of a magnetic field,

System Quantity considered Result
2 - . dv
voltaic cell electromotive force V' lim —.=0
120 dT
elastic solid isothermal bulk modulus 8 lim . =0
T0 ﬂ
=y ¢ . do
surface of liquid  surface tension o lim—==0
-0 dT
magnetic material magnetic moment M lim——=0
T-0
e . dB.
superconductor critical field B, lim—==0
10 dT
solid specific heat C, limC,=0
T-0
solid-liquid pressure p for change of lim L. 4 =0
phase change phase at temperature 7,  T+*0 dr,
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Figure 17 Behaviour of magnetic materials as absolute zero is approached

slope of magnetization curve
(c)
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5.2

and for a single domain ferromagnetic material of Curie temperature 7%, and
also the variation of dM/dT for each case. It is clear that the experimental results
indicate agreement with the third law.

The unattainability of absolute zero

An alternative form of the third law to that given by the Nernst-Simon statement
is obtained by considering the representation of a system on a temperature-
entropy diagram as the temperature approaches zero. Such a representation is
shown in Figure 18, where the curves X = X; and X = X; represent two possible

Th X=X, X=X,
/z
F
0 5 *

Figure 18 Temperature—entropy diagram for a system approaching 7= 0

values of a particular constraint parameter X which is maintained constant
while the temperature and entropy are varied along the curves. (Usually the
system chosen for these discussions is a paramagnetic salt and the parameter
held constant is the magnetic field. Then we normally have X, = By, where By,
is zero, and X; = Bo,, where By, is a large magnetic field capable of producing a
high degree of magnetic ordering. However, X could equally be the pressure
applied to a gas or fluid, the force on a wire or the electric field on a dielectric.)
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In the figure Sy, the entropy remaining at 7 = 0, is the zero-point entropy, which
may be considered to be due to the disorder which remains ‘frozen® into the
solid even at absolute zero.

Now suppose that, starting with the system in the state represented by the
point A, the value of X'is changed isothermally from X to X3, so that the entropy
changes to the value at B. (This process would require some heat reservoir at
constant temperature to supply or remove heat as required to maintain the
isothermal condition.) Once the system is at the state B it may be isolated from
its surroundings while the value of X is changed isentropically from X; to X,
so that the temperature falls to the value at C. A repetition of each of these steps
in turn will trace the path C - D — E — F > etc., provided that at each step
there is available a constant-temperature reservoir at the appropriate tempera-
ture. With each step the successive changes in entropy and temperature become
smaller as is required by the third law, and approach zero as 7 approaches zero,
since the curves along X, = constant and X, = constant must both finish at the
same value of entropy at 7T =0 for the Nernst-Simon statement to be valid.
1t follows that an infinite number of steps will be needed to attain absolute zero
by such a series of processes in which the changes produced in the entropy
diminish towards zero and it is possible to generalize by stating that:

This statement is referred to as the principle of the unattainability of absolute
zero, and by exactly the same reasoning we see that:

The first of these statements is very well borne out by experience (see Chapter
15), while the equivalence of both to the Nernst-Simon statement is demon-
strated in detail in Appendix C.
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