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Outline

@ Anderson’s Results on Erasure Bounds (§§2-3.2, 5)



Setup (pp. 67-8)

The setting is unitary non-relativistic quantum mechanics.

We start with copies of a system S coupled to an environment &,
each of which is in a state 5 ® p¢

® The ,6,.3 have support on orthogonal subspaces (what
Anderson means here by “distinguishable”).

* p& is a Gibbs state.
® The fraction of copies in state ,c“)f is denoted by p;.

We then suppose that these copies undergo unitary evolution:
Ui(pP @ p8) U7 —ﬁf‘c’ where

o Trg[pP8] = pi oo aNd Pl is SOMe designated state.
e In general, the U; can be distinct.



Notation

Quantities:
° EI.S and T: the environment’s energy (when S is initially in
state p7) and initial temperature.
o S5 = —Trs[p? log, p7]: von Neumann entropy in bits.
* H({p;j}) = — X pjlog, pj: Shannon entropy in bits.
® kg: Boltzmann’s constant.
Operations:
e A-:changein -, i.e., final value minus initial value.
e (-): QM expectation value of -.
e = arithmetic average of - over the copies of the system.



Conditional Erasure (p. 70)

“Conditional” means no restrictions on the U;.

A(E®) > —kgT In(2)AS?
A(EE) > ~kgTIn(2) D piAST
i
Special case in which each AS,.S = 0, these become the
“Landauer-Bennett limits”:

A(EEY >0
A(EZY>0




Unconditional Erasure (p. 73)
“Unconditional” means that there’s some U s.t. U; = U for all i.

A(E) = —kgTIn(2) > piAST + ks TIn(2)H({py))

Special case 1: when the p; are 0-1, this reduces to the conditional
erasure case.
Special case 2 in which each AS® = 0:

A(E®) > kg T In(2)H({p}})

Extra-special case in which j € {1,2} and py = p> = 1/2, this
becomes the “Landauer limit”:

A(E®?) > kpTIn(2) ~ 0.69kpT.



Unconditional Erasure (p. 73)
“Unconditional” means that there’s some U s.t. U; = U for all i.

A(EP) > ~ksTIn(2) > piAST + ks T In(2)H((pj))

Special case 1: when the p; are 0-1, this reduces to the conditional
erasure case.
Special case 2 in which each AS® = 0:

A(E®) > kg T In(2)H({p}})

Extra-special case in which j € {1,2} and py = p> = 1/2, this
becomes the “Landauer limit”:

A(E®?) > kpTIn(2) ~ 0.69kpT.



Assumptions

¢ Totes just unitary NRQM, no classical thermo, no second law
¢ Environment starts in equilibrium = Gibbs state
¢ Elementary technical features of von Neumann entropy



Interpretation: Statistical Aspects

The results are doubly statistical, involving expectation values and
averages over a collection.

Such averages are what are actually measured and reported in
experiments for the “Landauer limit”:

e Berut et al (2012): In(2)ks T to Kz

silica bead in water with optical tweezers

® Junetal (2014): (0.71 £ 0.03)kg T

florescent particle in colloidal suspension with electrostatic force

® Hong et al (2012): (1.45+0.35)kg T

single domain nanomagnet with external fields

e Orlov et al (2012): ~ 0.01kg T for “Landauer-Bennett limit”

CR network



Interpretation: Is the “Landauer limit” the
Landauer limit?

Usually Landauer’s limit is
© phrased in terms of thermodynamic quantities such as work,
heat, or entropy,
® and applies to individual erasure operations.
Each of these deserves further comment:
© The approach taken here does not guarantee that the
environments ends in an equilibrium state. Perhaps for
sufficiently “large” systems it will be a good approximation?
® The statistical nature seems unavoidable; it has a definitively
more “Gibbsian” flavor. (The is in contrast to the derivation of
a non-averaged Landauer-Bennett limit.)



Interpretation: Information and
Computation

Landauer thought that his work showed that “information is
physical” and that computation implicated thermodynamics.
* No substantive notions of information or computation appear
in Anderson’s chapter.

Anderson does remark that “The Shannon entropy . ..is commonly
taken as a measure of information encoded in S .. . information
[that] is lost from S in erasure” (p. 73).

* However, the bound says very little about any changes for any
one of the individual copies of S in the collection. Thus this
interpretation does not seem to be supported by the technical
result it expounds.



Outline

@® Comparisons with Bennett (§3.3.1)



Data and Protocol (Cf. p. 78)

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional 20
Unconditional >0
None (Un)Conditional 20 Random  (Un)Conditional 20

Replacements

Cost: Reversible/Irreversible = A(E€) 2 0/ > 0.
Erase with(out) Copy = (Un)conditional
Reset/Erase = (Un)Conditional



Data and Protocol (Cf. p. 78)

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E?®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional 20
Unconditional >0
None (Un)Conditional 20 Random  (Un)Conditional 20

Replacements

Cost: Reversible/Irreversible = A(E€) 2 0/ > 0.
Erase with(out) Copy = (Un)conditional
Reset/Erase = (Un)Conditional



Data and Protocol (Cf. p. 78)

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional 20
Unconditional >0
None (Un)Conditional 20 Random  (Un)Conditional 20

Replacements

Cost: Reversible/Irreversible = A(E€) 2 0/ > 0.
Erase with(out) Copy = (Un)conditional
Reset/Erase = (Un)Conditional



Data and Protocol (Cf. p. 78)

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional 20
Unconditional >0
None (Un)Conditional z0 Random  (Un)Conditional z0

Replacements

Cost: Reversible/Irreversible = A(E€) 2 0/ > 0.
Erase with(out) Copy = (Un)conditional
Reset/Erase = (Un)Conditional



Data and Protocol: On Being “Random”

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E?®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional 20
Unconditional >0
None (Un)Conditional 20 Random  (Un)Conditional 20

Random?

Anderson takes Bennett’s “random” data to be a uniform mixture of
the N data states: o3, = N™' 3, 7.

But if it were interpreted as an unknown ﬁf, then the erasure
protocol must be unconditional.

“



Data and Protocol: On Being “Data”

Anderson writes,

“we take a system to be encoding data if and only if it is prepared
in one of the data states and if there exists a record or copy of the
data instantiated in a physical system that is external both to the
system S and to the observer-inaccessible environment”

(pp- 75-6).

Data is “unknown” just when a record of it exists but is known at
best “known statistically.”
* |s the “record” requirement too vague? Trivial?

* |s it subject to counterexamples? Consider the calculation of
new digits of x.



Data and Protocol: Can Andersonian

Data be Unknown?

Anderson Bennett
Data Erasure Protocol A(E®) Data Erasure Protocol A(E®)
Known Conditional 20 Known Conditional 20
Unconditional >0 Unconditional >0
Unknown Conditional z0
Unconditional >0
None (Un)Conditional 20 Random  (Un)Conditional 20

How can there be a record of data that is unknown which facilitates
a conditional erasure?
Is the “record” requirement ultimately superfluous?



Outline

@® Comparisons with Norton (§4)



Points of Agreement

¢ Random data states are not necessarily
equilibrium/thermalized states. (p. 84)

¢ Unconditional protocals are needed for resetting a state that is
unknown. (p. 87)



Points of Disagreement

® Having knowledge of a system’s state can matter to erasure
costs because it enables conditional erasure, even if that
knowledge does not bear on what the system’s state is.
(pp. 84-5. Cf. p. 188 of Norton 2011.)

* Reversible erasure requires a conditional process. (pp. 87-8.
Cf. pp. 190, 198 of Norton 2011.)
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