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remarked that every time I touched it the fluid in the electro-

meter rose, indicating an increase of temperature, and implying
also an increase of conducting power in the metal thus touched.

I found that this was owing to a reduction of its temperature

;

for on subsequently moistening it with ether, water, &c., or by
blowing upon it, the fluid rose in the electrometer as the tem-
perature was reduced, whilst the application of a spirit-lamp to

increase the temperature of the wire produced a corresponding
fall in the thermometer. Two electrometers were subsequently

employed in circuit, the same current passing consecutively

through them. To one of the electrometers a second battery

was applied. The result was an increase of temperature of the

included wire ; and I discovered that, by raising or lowering the

second battery so as to gradually increase or diminish the tem-
perature of one of the wires, the fluid as it rose and fell in that

electrometer gave rise to a reverse motion of the fluid in the

other, so that as one rose the other fell, and vice versa.

Although these experiments were made more than thirty

years since, I am induced to believe that they may still appear
novel to some, since, in a conversation a short time since with

one of the first electricians of the day, he would scarcely credit

them, alleging that they were contrary to all our experience

;

they must, however, be taken as indicating only the results due
to the peculiar arrangements and conditions herein described.

V. Illustrations of the Dynamical Theory of Gases.—Part I.

On the Motions and Collisions of Perfectly Elastic Spheres.

By J. C. Maxwell, M.A., Professor of Natural Philosophy
in Marischal College and University of Aberdeen''^.

CO many of the properties of matter, especially when in the^ gaseous form, can be deduced from the hypothesis that

their minute parts are in rapid motion, the velocity increasing

with the temperature, that the precise nature of this motion
becomes a subject of rational curiosity. Daniel Bernouilli, Hera-
path, Joule, Kronig, Clausius, &c. have shown that the relations

between pressure, temperature, and density in a perfect gas can
be explained by supposing the particles to move with uniform
velocity in straight linos, striking against the sides of the con-

taining vessel and thus j)roducing pressure. It is not necessary

to suppose each ])article to travel to any great distance in the

same straight line; for the eflect in producing pressure will be
the same if the particles strike against each other; so that the
straight line described may be very short. M. Clausius has de-

termined the mean length of path in terms of the average distance

* Comiiiunioated by the Aiitlior, liaviiig been read at tlie Meeting oi' the
Britisli .\ssociatioii at At)erdepn, September 21, 1S5!>.
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20 Prof. Maxwell un the Motiotis and Collisions

of the particles, and the distance between the centres of two par-

ticles when collision takes place. AVe have at present no means
of ascertaining either of these distances ; but certain phsenomena,

such as the internal friction of gases, the conduction of heat

through a gas, and the diffusion of one gas through another,

seem to indicate the possibility of determining accurately the

mean length of path which a particle describes between two suc-

cessive collisions. In order to lay the foundation of such inves-

tigations on strict mechanical principles, I shall demonstrate the

laws of motion of an indefinite number of small, hard, and per-

fectly clastic spheres acting on one another only during impact.

If the properties of such a system of bodies are found to cor-

respond to those of gases, an important physical analogy will be

established, which may lead to more accurate knowledge of the

properties of matter. If experiments on gases are inconsistent

with the hypothesis of these propositions, then our theory,

though consistent with itself, is proved to be incapable of ex-

plaining the phsenomena of gases. In either case it is necessary

to follow out the consequences of the hypothesis.

Instead of saying that the particles are hard, spherical, and
elastic, we may if we please say that the particles are centres of

force, of which the action is insensible except at a certain small

distance, when it suddenly appears as a repulsive force of very

great intensity. It is evident that either assumption will lead

to the same results. For the sake of avoiding the repetition of

a long phrase about these repulsive foi-ces, I shall proceed upon
the assumption of perfectly elastic spherical bodies. If we sup-

pose those aggregate molecules which move together to have a

bounding surface which is not spherical, then the rotatory mo-
tion of the system will store up a certain proportion of the whole
vis viva, as has been shown by Clausius, and in this way we may
account for the value of the specific heat being greater than on
the more simple hypothesis.

On the Motion and Collision of Perfectly Elastic Spheres.

Prop. I. Two spheres moving in opposite directions with velo-

cities inversely as their masses strike one another ; to determine
their motions after impact.

Let P and Q be the position

of the centres at impact ; A P,

B Q the directions and magni-
tudes of the velocities before

impact ; P «, Q i the same after

impact; then, resolving the ve-

locities parallel and perpendi-

cular to P Q the line of cen-

tres, we find that the velocities parallel to the line of centres are
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exactly reversed, while those perpendicular to that line are un-

changed. Compounding these velocities again, we find that the

velocity of each ball is the same before and after impact, and

that the directions before and after impact lie in the same plane

with the hne of centres, and make equal angles with it.

Prop. IT. To find the probability of the direction of the velo-

city after impact lying between given limits.

In order that a collision may take place, the line of motion of

one of the balls must pass the centre of the other at a distance

less than the sum of their radii ; that is, it must pass through

a circle whose centre is that of the other ball, and radius (s) the

sum of the radii of the balls. AVithin this circle every position

is equally probable, and therefore the probability of the distance

from the centre being between r and r + dr is

Irdr

s^

Now let
(f)

be the angle AP« between the original direction and

the direction after impact, then APN = i0, and r=s sin i^, and

the probability becomes
i sin (j) d(f).

The area of a spherical zone between the angles of polar distance

<!> and (^ + 1?(/) is

27r sin </> dxf)

;

therefore if w be any small area on the surface of a sphere, radius

unity, the probability of the direction of rebound passing

through this area is

CO

so that the probability is independent of
(f),

that is, all directions

of rebound are equally likely.

Prop. III. Given the direction and magnitude of the veloci-

ties of two spheres before impact, and the hue of centres at im-

pact ; to find the velocities after impact.

Let A, B re-

present the veloci-

ties before impact,

so that if there had
been no action be-

tween the bodies

they would have
been at A'and Battheendof a second. Join A B, and let G be their

centre of gravity, the position of which is not affected by their

mutual action. Draw G N parallel to the line of centres at im-

pact (not necessarily in the plane A OB). Draw aGh iu the
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22 Prof. Maxwell oh the Motions and Collisions

planeAGN, making NG«=NGA, and Gfl = G A and G6= GB;
then by Prop. I. G a and G b will be the velocities relative to G;
and compoimding these with G, we have O a and b for the
true velocities after impact.

By Prop. II. all directions of the line aGb are equally pro-
bable. It appears therefore that the velocity after impact is

compounded of the velocity of the centre of gravity, and of a
velocity equal to the velocity of the sphere relative to the centre of
gravity, which may with equal probability be in any direction

whatever.

If a great many equal spherical particles were in motion in

a perfectly elastic vessel, collisions would take place among the
particles, and their velocities would be altered at every collision

;

so that after a certain time the vis viva will be divided among the
particles according to some regular law, the average number of

particles whose velocity lies between certain limits being ascer-

tainable, though the velocity of each particle changes at every

collision.

Prop. IV. To find the average number of particles whose velo-

cities lie between given limits, after a great number of collisions

among a great number of equal particles.

Let N be the whole number of particles. Let x, y, z be the

components of the velocity of each particle in three rectangular

directions, and let the number of particles for which x lies be-

tween X and x-\-dx be 'N/{x)dx, where /(«) is a function of x to

be determined.
The number of particles for which y lies between t/ and y + dy

will be ^f{y)dy ; and the number for which z lies between z and
z + dz will be 'Nf{z)dz, where / always stands for the same
function.

Now the existence of the velocity x does not in any way affect

that of the velocities y or z, since these ai-e all at right angles to

each other and independent, so that the number of particles

whose velocity lies between x andx + dx, and also between j^and

y + dy, and also between z and z + dz, is

m^)MA^dxdydz.
If we suppose the N particles to start from the origin at the

same instant, then this will be the number in the element of

Volume {dxdydz) after unit of time, and the number referred to

unit of volume will be

But the directions of the coordinates are perfectly arbitrary, and
therefore this number must depend on the distance from the
origin alone, that is
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of Perfectly Elastic Spheres. 23

Solving this functional equation, we find

/(x) = CeA•'^ (/)(;-2)=CV''.

If we make A positive, the number of particles will increase

with the velocity, and we should find the whole number of par-

ticles infinite. We therefore make A negative and equal to

5, so that the number between x and x + dx is

NCe «*6fe.

Integrating from <r= — oo to *= + oo , we find the whole num-
ber of particles,

NC s/wct = ^, .-. C= —7-,
« V TT

f{x) is therefore

1 _i!

J— e "'.

U \' IT

Whence we may draw the following conclusions :

—

1st. The number of particles whose velocity, resolved in a cer-

tain direction, lies between x and x + dx is

"^ ~^. e-'oc- dx (1)
a. V TT

2nd. The number whose actual velocity lies between v and
v-\-dv is

"^ --!!-=. v'e~'^^dv (2)

3rd. To find the mean value of v, add the velocities of all the

particles together and divide by the number of particles; the

I'esult is

mean velocity = —-^ (3)
V TT

4th. To find the mean value of v^, add all the values together

and divide by N,
mean value of r;^=|«^ (4)

This is greater than the square of the mean velocity, as it

ought to be.

It appears from this proposition that the velocities are distri-

buted among the particles according to the same law as the

errors are distributed among the observations in the theory of

the " method of least squares." The velocities range from to

00 , but the number of those having great velocities is compara-
tively small. In addition to these velocities, which are in all

directions equally, there may be a general motion of translation
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24 Prof. Maxwell on the Motions and Collisions

of the entii'e system of particles which must be compounded with

the motion of the particles relatively to one another. We may
call the one the motion of translation, and the other the motion
of agitation.

Prop. V. Two systems of particles move each according to the

law stated in Prop. IV. ; to find the number of pairs of particles,

one of each system, whose relative velocity lies between given

limits.

Let there be N particles of the first system, and N' of the

second, then NN' is the whole number of such pairs. Let us

consider the velocities in the direction of x only ; then by
Prop. IV. the number of the first kind, whose velocities are be-

tween x and x + d.v, is

1 -i:
,N = e a^ ax,

a. s^TT

The number of the second kind, whose velocity is between x + y
and X + 1/ + dij, is

N'„-7-e ^' dy,

where /3 is the value of « for the second system.
The number of pairs which fulfil both conditions is

Now X may have any value from — cX3 to + go consistently with

the difference of velocities being between y and y + dy ; therefore

integrating between these limits, we find

1 y2__

Va^ + P'' VTT

for the whole number of pairs whose difference of velocity lies

between y and y + dy.

This expression, which is of the same form with (1) if we put
NN' for N, «^ + /S^ for a^, and y for x, shows that the distribu-

tion of relative velocities is regulated by the same law as that of

the velocities themselves, and that the mean relative velocity is

the square root of the sum of the squares of the mean velocities

of the two systems.

Since the direction of motion of every particle in one of the

systems may be reversed without changing the distribution of

velocities, it follows that the velocities compounded of the velo-

cities of two particles, one in each system, are distributed accord-

ing to the same formula (5) as the relative velocities.

Prop. VI. Two systems of particles move in the same vessel;
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to prove that the mean vis viva of each particle will become the

same iu the two systems.

Let P be the mass of each particle of the first system, Q that

of each particle of the second. Let p, q be the mean velocities

in the two systems before impact, and let

p',(/he the mean velocities after one impact.

Let A 0=;^ and OB= (j, and let A B be

a right angle ; then, by Prop. V., A B will be

the mean relative velocity, G will be the

mean velocity of centre of gravity ; and
drawing aGb at right angles to G, and
making a G=AG and 6G = BG, theaOa
will be the mean velocity of P after impact,

compounded of G and G a, and b will

be that of Q after impact.

Now
QAB= v// + r/, AG= .^^p'+ q% BG=——- \^p^ +r

0G=.

therefore

and

QV
P + Q

p'= Oa = \/ilHp^+(f) + ^Y±W,
P + Q

>_n^- v/'P^(/>^ + y^)+Py + QV
P + Q

and

Vp''-Qq''={l:^y(Pp'-Qq' (6)

It appears therefore that the quantity Vp'^— Qq^ is diminished

at every impact in the same ratio, so that after many impacts it

will vanish, and then
Fp^= Qq^

Now the mean vis viva is « Pa'^= 'TT^P^ ^^^' ^' ^° ^ "o" Q?^ ^° ^

Q ; and it is manifest that these quantities will be equal when
Vp^ = Qq^.

If any number of different kinds of particles, having masses

P,Q,R, and \elocit'ies p, q,r respectively, move in the same

vessel, then after many impacts

Pp^= Qq^= Rr\ 8ic (7)

Prop. VII. A particle moves with velocity r relatively to a

number of particles of which there arc N in unit of volume; to
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26 Prof. Maxwell on the Motions and Collisions

find the number of these which it approaches within a distance

s in unit of time.

If we describe a tubular surface of which the axis is the path
of the particle,' and the radius the distance s, the content of this

surface generated in nnit of time will be trrs^, and the number
of particles included in it will be

N7r?-s2, (8)

which is the number of particles to which the moving particle

approaches within a distance s.

Prop. VIII. A particle moves with velocity v in a system
moving according to the law of Prop. IV. ; to find the number of

particles which have a velocity relative to the moving particle

between r and r + dr.

Let u be the actual velocity of a particle of the system, v that

of the original particle, and r their relative velocity, and 6 the

angle between v and r, then

u^^v'^ + r^— 2vr cos 6.

If we suppose, as in Prop. IV., all the particles to start from the

origin at once, then after unit of time the " density " or number
of particles to unit of volume at distance u will be

1 -—N e a^

From this we have to deduce the number of particles in a shell

whose centre is at distance v, radius = r, and thickness =dr,

=-< e «= — e «^ ydr, ... (9)

which is the number required.

Cor. It is evident that if we integrate this expression from
r = to r—cc, we ought to get the whole number of particles

= N, whence the following mathematical result,

I dx.x{e "' —e~ a'
' ) = x/ttoci. . . (10)

Prop. IX. Two sets of particles move as in Prop. V. ; to find

the number of pairs which approach within a distance s in unit
of time.

The number of the second kind which have a velocity between
V and v + dv is

4 _if
N' -=v^e ^^dv= n'.

The number of the first kind whose velocity relative to these is

N

JDN


JDN




of Perfectly Elastic Spheres. 27

between r and r + dr is

1 r Jl^"^! (r + QZ

N =-(e «2 — e <«2 )^r=n,

and the number of pairs which approach within distance s in

unit of time is

4 _^ f _ t'^~''' i«'+'-)^
i

By the last proposition we are able to integrate with respect

to r, and get

Integrating this again from r= to r=x
,

2NN'i/7r\/a2 + yS^* (11)

is the number of collisions in unit of time which take place in

unit of volume between particles of different kinds, s being the

distance of centres at collision. The number of collisions be-

tween two particles of the first kind, s, being the striking

distance, is

and for the second system it is

2a. Q,B
The mean velocities in the two systems are —-^ and —-^ ; so

V TT V TT

that if /j and l^ be the mean distances travelled by particles of

the first and second systems between each collision, then

J =7rN, v2s,^ + 7rNo s^
'J «

l=7rN,^±^%2 4-^N,v/2.,^

Prop. X. To find the probability of a particle reaching a

given distance before striking any other.

Let us suppose that the probability of a particle being stopped
while passing through a distance dx, is udx ; that is, if N par-

ticles arrived at a distance x, ^udx of them would be stopped
before getting to a distance x + dx. Putting this mathematically,

-J—=— i\«, or I\=L'C~"''.
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Putting N = l when x=Q, we find e'" for the probability of a

particle not striking another before it reaches a distance x.

The mean distance travelled by each particle before striking is

-=/. The probability of a particle reaching a distance = nl

without being struck is e~". (See a paper by M. Clausius, Phi-

losophical Magazine, February 1859.)

If all the particles are at rest but one, then the value of a. is

where s is the distance between the centres at collision, and N
is the number of particles in unit of volume. If v be the velo-

city of the moving particle relatively to the rest, then the num-
ber of collisions in unit of time will be

and if u, be the actual velocity, then the number will be v^x

;

therefore

^\

where i\ is the actual velocity of the striking particle, and v its

velocity relatively to those it strikes. If v^ be the actual velocity

of the other particles, then v= \^v^ + v^^. If Vy = v^ then

v= a/2vi, and _
«= v/27rs2N.

Note.—M. Clausius makes «= |7rs^N.

Prop. XI. In a mixture of particles of two different kinds, to

find the mean path of each particle.

Let there be N, of the first, and N2 of the second in unit of

volume. Let Sj be the distance of centres for a collision between

two particles of the first set, s^ for the second set, and s' for col-

lision between one of each kind. Let v^ and v^ be the coefficients

of velocity, M, Mg the mass of each particle.

The probability of a particle Mj not being struck till after

reaching a distance x^ by another particle of the same kind is

The probability of not being struck by a particle of the other

kind in the same distance is

Therefore the probabihty of not being struck by any particle

before reaching a distance x is
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and if l^ be the mean distance for a particle of the first kind,

)-=^27rV^N, + 7rA/l+^,.'^N,. . . (12)

Similarly, if l^ be the mean distance for a particle of the second
kind,

)-=^/27r.,2N, + 7r\/l^.'^N,. . . (13)

The mean density of the particles of the first kind is N,M,=pj,
and that of the second lS^^lci = p2. If we put

D= v/2'^, (14)

f = Ap, + Rp„ l=Cp, + DpS . . (15)

and
B_M^_V nfi\
C~M2r;, ~V ^^^'

Prop. XII. To find the pressure on unit of area of the side of

the vessel due to the impact of the particles upon it.

Let N = number of particles in unit of volume

;

M = mass of each particle;

V = velocity of each particle

;

/ = mean path of each particle

;

then the number of particles in unit of area of a stratum dz
thick is -^

,

,, ,

Nrfe (17)

The number of collisions of these particles in unit of time is

l^dzj (18)

The number of particles, which after collision reach a distance be-
tween nl and {n + dn)l, is

'Nje-"dzdn (19)

The proportion of these which strike on unit of area at distance

^ i« nl-z
-2^' (20)

the mean velocity of these in the direction of z is

7ll+ z
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30 Prof. Maxwell on the Motions and Collisions

Multiplying together (19), (20), and (21), and M, we find the

momentum at impact

Integrating with respect to z from to nl, we get

^MNw2ne-"rf«.

Integrating with respect to n from to co , we get

^MNz;2

for the momentum in the direction of z of the striking particles

;

the momentum of the particles after impact is the same, but in

the opposite direction; so that the whole pressure on unit of area

is twice this quantity, or

jo = ^MNt;2 (22)

This value of p is independent of / the length of path. In

applying this result to the theory of gases, we put MN=p, and
r^= 3A, and then

p= kp,

which is Boyle and Mariotte's law. By (4) we have

v''=loL^, .:u^= 2k (23)

We have seen that, on the hypothesis of elastic particles

moving in straight lines, the pressure of a gas can be explained

by the assumption that the square of the velocity is proportional

directly to the absolute temperature, and inversely to the specific

gravity of the gas at constant temjierature, so that at the same
pressure and temperature the value of NM?'^ is the same for all

gases. But we found in Prop. VI. that when two sets of par-

ticles communicate agitation to one another, the value of Mr^ is

the same in each. Fi'om this it appeal's that N, the number of

particles in unit of volume, is the same for all gases at the same
pressure and temperature. This result agrees with the chemical

law, that equal volumes of gases are chemically equivalent.

We have next to determine the value of /, the mean length of

the path of a particle between consecutive collisions. The most
direct method of doing this depends upon the fact, that when
different strata of a gas slide upon one another with different ve-

locities, they act upon one another with a tangential force tend-

ing to prevent this sliding, and similar in its results to the fric-

tion between two solid surfaces sliding over each other in the

same way. The explanation of gaseous friction, according to

our hypothesis, is, that particles having the mean velocity of

translation belonging to one layer of the gas, pass out of it into

another layer having a difl^erent velocity of translation ; and by
striking against the particles of the second layer, exert upon it
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a tangential force which constitutes the internal friction of the

gas. The whole friction between two portions of gas separated
by a plane surface, depends upon the total action between all the
layers on the one side of that surface upon all the layers on the

other side.

Prop. XIII. To find the internal friction in a system of moving
particles.

Let the system be divided into layers parallel to the plane of

xy, and let the motion of translation of each layer be u in the

direction of x, and let u= P^-\-Ez. We have to consider the
mutual action between the layers on the positive and negative

sides of the plane xy. Let us first determine the action between
two layers dz and dz', at distances z and —^ on opposite sides

of this plane, each unit of area. The number of particles which,
starting from dz in unit of time, reach a distance between nl and
{n + dn)lhhy (19),

N - e-" dz dn.

The number of these which have the ends of their paths in the

layer tfe' is

N -^ e-" dz dz' dn.

The mean velocity in the direction of x which each of these has
before impact is A + B,?, and after impact A + Br'; and its mass
is M, so that a mean momentum =MB(z

—

z') is communicated
by each particle. The whole action due to these collisions is

therefore

NMB
2^^2

(^ -z')e-» dz dz' dn.

We must first integrate with respect to z' between £•'=0 and
z'=:z—nl ; this gives

for the action between the layer dz and all the layers below the
plane xy. Then integrate from z=0 to z= nl,

IMNB/ra^e-n dn.

Integrate from n=0 to n = ao , and we find the whole friction

between unit of area above and below the plane to be

F= ^MN/t;B='p/j;^=Ai^,^ '^ dz ^dz'
where fi is the ordinary coefficient of internal friction,

1 /
1 Mw ..-..^
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where p is the density, / the mean length of path of a particle,

and V the mean velocity v = —^= =2a / —

'=iWlk- ••• (^^)

Now Professor Stokes finds by experiments on air.

s/^ = 116.
P

If we suppose Vk=9S0 feet per second for air at 60° , and
therefore the mean velocity i;=1505 feet per second, then the

value of /, the mean distance travelled over by a particle between
cousecutive collisions, = ^qryVo o*^ ° ^ ^^ inch, and each particle

makes 8,077,200,000 collisions per second.

A remarkable result here presented to us in equation (24), is

that if this explanation of gaseous friction be true, the coefficient

of friction is independent of the density. Such a consequence of

a mathematical theory is very startling, and the only experiment
I have met with on the subject does not seem to confirm it. We
must next compare our theory with what is known of the diffusion

of gases, and the conduction of heat through a gas.

[To be continued.]

VI. On the different States of Silicic Acid. By M. H. Rose *.

T^TUMEROUS determinations of the density of silicic acid,

i-^ and especially those of Count Schaffgotsch, prove that

there exist two distinct modifications of this acid, one of which
has a density of 2'6, whilst in the other the density rises to 2'2,

or 2*3. The first is always crystallized, or more or less crystal-

line, the second always amorphous.
Crystallized silica is found not only in rock-crystal, quartz,

amethyst, sandstone, and quartzose sand, but also in a great

number of the varieties of silica, in appearance compact, but
really formed of an aggregation of crystalline particles, as their

property of polarizing light proves—such are chalcedony, chryso-

prase, jasper, flint, and certain siliceous woods. Some of these

varieties may contain traces of water or foreign matter, which
make their density vary a little, without, however, causing the

same to fall below 2*6.

The chemical and physical properties of all these substances

are exactly the same. If crystallized quai'tz seems to resist some-

* The original memoir by Prof. H. Rose will be found in Poggendorff's
Annalen, September 1859. The present abstract is translated from the
Bibliottivque Universelle for Sept. 20th, 1859.
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