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D. Posterior Probabilities
Standard errors, p-values, and significance tests are common techniques for as-
sessing random error. These procedures rely on the sample data, and are justified
in terms of the “operating characteristics” of the statistical procedures.164  How-
ever, this frequentist approach does not permit the statistician to compute the
probability that a particular hypothesis is correct, given the data.165  For instance,
a frequentist may postulate that a coin is fair: it has a 50-50 chance of landing
heads, and successive tosses are independent; this is viewed as an empirical state-
ment—potentially falsifiable—about the coin. On this basis, it is easy to calcu-
late the chance that the coin will turn up heads in the next ten tosses:166  the
answer is 1/1,024. Therefore, observing ten heads in a row brings into serious
question the initial hypothesis of fairness. Rejecting the hypothesis of fairness
when there are ten heads in ten tosses gives the wrong result—when the coin is
fair—only one time in 1,024. That is an example of an operating characteristic
of a statistical procedure.

But what of the converse probability: if a coin lands heads ten times in a row,
what is the chance that it is fair?167  To compute such converse probabilities, it is
necessary to postulate initial probabilities that the coin is fair, as well as prob-
abilities of unfairness to various degrees.168  And that is beyond the scope of
frequentist statistics.169

164. “Operating characteristics” are the expected value and standard error of estimators, probabili-
ties of error for statistical tests, and related quantities.

165. See supra § IV.B.1; infra Appendix. Consequently, quantities such as p-values or confidence
levels cannot be compared directly to numbers like .95 or .50 that might be thought to quantify the
burden of persuasion in criminal or civil cases. See Kaye, supra note 144; D.H. Kaye, Apples and Oranges:
Confidence Coefficients and the Burden of Persuasion, 73 Cornell L. Rev. 54 (1987).

166. Stated slightly more formally, if the coin is fair and each outcome is independent (the hypoth-
esis), then the probability of observing ten heads (the data) is Pr(data|H0) = (1/2)10 = 1/1,024, where
H0 stands for the hypothesis that the coin is fair.

167. We call this a “converse probability” because it is of the form Pr(H0|data) rather than
Pr(data|H0); an equivalent phrase, “inverse probability,” also is used. The tendency to think of Pr(data|H0)
as if it were the converse probability Pr(H0|data) is the “transposition fallacy.” For instance, most
United States senators are men, but very few men are senators. Consequently, there is a high probability
that an individual who is a senator is a man, but the probability that an individual who is a man is a
senator is practically zero. For examples of the transposition fallacy in court opinions, see cases cited
supra note 142. See also Committee on DNA Forensic Science: An Update, supra note 60, at 133
(describing the fallacy in cases involving DNA identification evidence as the “prosecutor’s fallacy”).
The frequentist p-value, Pr(data|H0), is generally not a good approximation to the Bayesian Pr(H0|data);
the latter includes considerations of power and base rates.

168. See infra Appendix.
169. In some situations, the probability of an event on which a case depends can be computed with

objective methods. However, these events are measurable outcomes (like the number of heads in a
series of tosses of a coin) rather than hypotheses about the process that generated the data (like the claim
that the coin is fair). For example, in United States v. Shonubi, 895 F. Supp. 460 (E.D.N.Y. 1995), rev’d,
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In the Bayesian or subjectivist approach, probabilities represent subjective
degrees of belief rather than objective facts. The observer’s confidence in the
hypothesis that a coin is fair, for example, is expressed as a number between zero
and one;170  likewise, the observer must quantify beliefs about the chance that
the coin is unfair to various degrees—all in advance of seeing the data.171  These
subjective probabilities, like the probabilities governing the tosses of the coin,
are set up to obey the axioms of probability theory. The probabilities for the
various hypotheses about the coin, specified before data collection, are called
prior probabilities.

These prior probabilities can then be updated, using “Bayes’ rule,” given data
on how the coin actually falls.172  In short, Bayesian statisticians can compute
posterior probabilities for various hypotheses about the coin, given the data.173

Although such posterior probabilities can pertain directly to hypotheses of legal
interest, they are necessarily subjective, for they reflect not just the data but also

103 F.3d 1085 (2d Cir. 1997), a government expert estimated for sentencing purposes the total quantity
of heroin that a Nigerian defendant living in New Jersey had smuggled (by swallowing heroin-filled
balloons) in the course of eight trips to and from Nigeria. He applied a method known as “resampling”
or “bootstrapping.” Specifically, he drew 100,000 independent simple random samples of size seven
from a population of weights distributed as in customs data on 117 other balloon swallowers caught in
the same airport during the same time period; he discovered that for 99% of these samples, the total
weight was at least 2090.2 grams. 895 F. Supp. at 504. Thus, the researcher reported that “there is a 99%
chance that Shonubi carried at least 2090.2 grams of heroin on the seven [prior] trips . . . .” Id. How-
ever, the Second Circuit reversed this finding for want of “specific evidence of what Shonubi had
done.” 103 F.3d at 1090. Although the logical basis for this “specific evidence” requirement is unclear,
a difficulty with the expert’s analysis is apparent. Statistical inference generally involves an extrapolation
from the units sampled to the population of all units. Thus, the sample needs to be representative. In
Shonubi, the government used a sample of weights, one for each courier on the trip at which that
courier was caught. It sought to extrapolate from these data to many trips taken by a single courier—
trips on which that other courier was not caught.

170. Here “confidence” has the meaning ordinarily ascribed to it rather than the technical inter-
pretation applicable to a frequentist “confidence interval.” Consequently, it can be related to the bur-
den of persuasion. See Kaye, supra note 165.

171. For instance, let p be the unknown probability that coin lands heads: What is the chance that
p exceeds .6? The Bayesian statistician must be prepared to answer all such questions. Bayesian proce-
dures are sometimes defended on the ground that the beliefs of any rational observer must conform to
the Bayesian rules. However, the definition of “rational” is purely formal. See Peter C. Fishburn, The
Axioms of Subjective Probability, 1 Stat. Sci. 335 (1986); David Kaye, The Laws of Probability and the Law of
the Land, 47 U. Chi. L. Rev. 34 (1979).

172. See infra Appendix.
173. See generally George E.P. Box & George C. Tiao, Bayesian Inference in Statistical Analysis

(Wiley Classics Library ed., John Wiley & Sons, Inc. 1992) (1973). For applications to legal issues, see,
e.g., Aitken et al., supra note 45, at 337–48; David H. Kaye, DNA Evidence: Probability, Population
Genetics, and the Courts, 7 Harv. J.L. & Tech. 101 (1993).
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the subjective prior probabilities—that is, the degrees of belief about the various
hypotheses concerning the coin specified prior to obtaining the data.174

Such analyses have rarely been used in court,175  and the question of their
forensic value has been aired primarily in the academic literature.176  Some stat-
isticians favor Bayesian methods,177  and some legal commentators have pro-
posed their use in certain kinds of cases in certain circumstances.178

V. Correlation and Regression
Regression models are often used to infer causation from association; for ex-
ample, such models are frequently introduced to prove disparate treatment in
discrimination cases, or to estimate damages in antitrust actions. Section V.D
explains the ideas and some of the pitfalls. Sections V.A–C cover some prelimi-
nary material, showing how scatter diagrams, correlation coefficients, and re-
gression lines can be used to summarize relationships between variables.

174. In this framework, the question arises of whose beliefs to use—the statistician’s or the factfinder’s.
See, e.g., Michael O. Finkelstein & William B. Fairley, A Bayesian Approach to Identification Evidence, 83
Harv. L. Rev. 489 (1970) (proposing that experts give posterior probabilities for a wide range of prior
probabilities, to allow jurors to use their own prior probabilities or just to judge the impact of the data
on possible values of the prior probabilities). But see Laurence H. Tribe, Trial by Mathematics: Precision
and Ritual in the Legal Process, 84 Harv. L. Rev. 1329 (1971) (arguing that efforts to describe the impact
of evidence on a juror’s subjective probabilities would unduly impress jurors and undermine the pre-
sumption of innocence and other legal values).

175. The exception is paternity litigation; when genetic tests are indicative of paternity, testimony
as to a posterior “probability of paternity” is common. See, e.g., 1 Modern Scientific Evidence: The
Law and Science of Expert Testimony, supra note 3, § 19–2.5.

176. See, e.g., Probability and Inference in the Law of Evidence: The Uses and Limits of Bayesianism
(Peter Tillers & Eric D. Green eds., 1988); Symposium, Decision and Inference in Litigation, 13 Cardozo
L. Rev. 253 (1991). The Bayesian framework probably has received more acceptance in explicating
legal concepts such as the relevance of evidence, the nature of prejudicial evidence, probative value, and
burdens of persuasion. See, e.g., Richard D. Friedman, Assessing Evidence, 94 Mich. L. Rev. 1810 (1996)
(book review); Richard O. Lempert, Modeling Relevance, 75 Mich. L. Rev. 1021 (1977); D.H. Kaye,
Clarifying the Burden of Persuasion: What Bayesian Decision Rules Do and Do Not Do, 3 Int’l J. Evidence &
Proof 1 (1999).

177. E.g., Donald A. Berry, Inferences Using DNA Profiling in Forensic Identification and Paternity
Cases, 6 Stat. Sci. 175, 180 (1991); Stephen E. Fienberg & Mark J. Schervish, The Relevance of Bayesian
Inference for the Presentation of Statistical Evidence and for Legal Decisionmaking, 66 B.U. L. Rev. 771 (1986).
Nevertheless, many statisticians question the general applicability of Bayesian techniques: The results of
the analysis may be substantially influenced by the prior probabilities, which in turn may be quite
arbitrary. See, e.g., Freedman, supra note 112.

178. E.g., Joseph C. Bright, Jr. et al., Statistical Sampling in Tax Audits, 13 L. & Soc. Inquiry 305
(1988); Ira Mark Ellman & David Kaye, Probabilities and Proof: Can HLA and Blood Group Testing Prove
Paternity?, 54 N.Y.U. L. Rev. 1131 (1979); Finkelstein & Fairley, supra note 174; Kaye, supra note 173.
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Notwithstanding the lack of adequate empirical research, other commentators
believe that the danger of prejudice (in the form of the transposition fallacy)
warrants the exclusion of likelihood ratios.261

3. Should Posterior Probabilities Be Excluded?
Match probabilities state the chance that certain genotypes would be present
conditioned on specific hypotheses about the source of the DNA (a specified
relative, or an unrelated individual in a population or subpopulation). Likeli-
hood ratios express the relative support that the presence of the genotypes in the
defendant gives to these hypotheses compared to the claim that the defendant is
the source. Posterior probabilities or odds express the chance that the defendant
is the source (conditioned on various assumptions). These probabilities, if they
are meaningful and accurate, would be of great value to the jury.

Experts have been heard to testify to posterior probabilities. In Smith v.
Deppish,262  for example, the state’s “DNA experts informed the jury that . . .
there was more than a 99 percent probability that Smith was a contributor of the
semen,”263  but how such numbers are obtained is not apparent. If they are
instances of the transposition fallacy, then they are scientifically invalid (and
objectionable under Rule 702) and unfairly prejudicial (under Rule 403).

However, a meaningful posterior probability can be computed with Bayes’
theorem.264  Ideally, one would enumerate every person in the suspect popula-
tion, specify the prior odds that each is the source of the forensic DNA and
weight those prior odds by the likelihoods (taking into account the familial
relationship of each possible suspect to the defendant) to arrive at the posterior
odds that the defendant is the source of the forensic sample. But this hardly
seems practical. The 1996 NRC Report therefore discusses a somewhat differ-
ent implementation of Bayes’ theorem. Assuming that the hypotheses of kinship
and error could be dismissed on the basis of other evidence, the report focuses
on “the variable-prior-odds method,” by which:

an expert neither uses his or her own prior odds nor demands that jurors formulate their
prior odds for substitution into Bayes’s rule. Rather, the expert presents the jury with a

261. See Koehler, supra note 168, at 880; Thompson, supra note 168, at 850; cf. Koehler et al., supra
note 246 (proposing the use of a likelihood ratio that incorporates laboratory error).

262. 807 P.2d 144 (Kan. 1991).
263. See also Thomas v. State, 830 S.W.2d 546, 550 (Mo. Ct. App. 1992) (a geneticist testified that

“the likelihood that the DNA found in Marion’s panties came from the defendant was higher than
99.99%”); Commonwealth v. Crews, 640 A.2d 395, 402 (Pa. 1994) (an FBI examiner who at a prelimi-
nary hearing had estimated a coincidental-match probability for a VNTR match “at three of four loci”
reported at trial that the match made identity “more probable than not”).

264. See supra § VII.C.2.
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table or graph showing how the posterior probability changes as a function of the prior
probability.265

This procedure, it observes, “has garnered the most support among legal schol-
ars and is used in some civil cases.”266  Nevertheless, “very few courts have con-
sidered its merits in criminal cases.”267  In the end, the report concludes:

How much it would contribute to jury comprehension remains an open question, espe-
cially considering the fact that for most DNA evidence, computed values of the likelihood
ratio (conditioned on the assumption that the reported match is a true match) would swamp
any plausible prior probability and result in a graph or table that would show a posterior
probability approaching 1 except for very tiny prior probabilities.268

E. Which Verbal Expressions of Probative Value Should Be
Presented?

Having surveyed various views about the admissibility of the probabilities and
statistics indicative of the probative value of DNA evidence, we turn to a related
issue that can arise under Rules 702 and 403: Should an expert be permitted to
offer a non-numerical judgment about the DNA profiles?

Inasmuch as most forms of expert testimony involve qualitative rather than
quantitative testimony, this may seem an odd question. Yet, many courts have
held that a DNA match is inadmissible unless the expert attaches a scientifically
valid number to the figure.269  In reaching this result, some courts cite the state-
ment in the 1992 NRC report that “[t]o say that two patterns match, without
providing any scientifically valid estimate (or, at least, an upper bound) of the
frequency with which such matches might occur by chance, is meaningless.”270

265. NRC II, supra note 1, at 202 (footnote omitted).
266. Id.
267. Id. (footnote omitted).
268. Id. For arguments said to show that the variable-prior-odds proposal is “a bad idea,” see

Thompson, supra note 69, at 422–23.
269. E.g., Commonwealth v. Daggett, 622 N.E.2d 272, 275 n.4 (Mass. 1993) (plurality opinion

insisting that “[t]he point is not that this court should require a numerical frequency, but that the
scientific community clearly does”); State v. Carter, 524 N.W.2d 763, 783 (Neb. 1994) (“evidence of
a DNA match will not be admissible if it has not been accompanied by statistical probability evidence
that has been calculated from a generally accepted method”); State v. Cauthron, 846 P.2d 502 (Wash.
1993) (“probability statistics” must accompany testimony of a match); cf. Commonwealth v. Crews,
640 A.2d 395, 402 (Pa. 1994) (“The factual evidence of the physical testing of the DNA samples and
the matching alleles, even without statistical conclusions, tended to make appellant’s presence more
likely than it would have been without the evidence, and was therefore relevant.”).

270. NRC I, supra note 1, at 74. For criticism of this statement, see Kaye, supra note 195, at 381–82
(footnote omitted):

[I]t would not be ‘meaningless’ to inform the jury that two samples match and that this match makes it more
probable, in an amount that is not precisely known, that the DNA in the samples comes from the same
person. Nor, when all estimates of the frequency are in the millionths or billionths, would it be meaningless
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“…likelihood ratio … would swamp any plausible prior probability and result in a graph or table that would show a posterior probability approaching 1 except for very tiny prior probabilities.”

Footnote 268:
“Id. For arguments said to show that the variable-prior-odds proposal is “a bad idea,” see
Thompson, supra note 69, at 422–23.”


