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The Charge: IBE, despite its apparent ubiquity in human reasoning, lacks a clear articulation: 

 “As long as [IBE] is left vague, it seems to fit much rational activity. But when we scrutinize 
its credentials, we find it seriously wanting.” - Bas van Fraassen, Laws and Symmetry p. 131 

Schupbach wants to rectify this situation by giving IBE the probabilistic treatment 

 

Section 1: Introduces a probabilistic notion of “explanatory power” and uses this to define a version 
of IBE, IBEp 

Section 2.1: Argues IBEp is cogent 

Section 2.2: Computer simulations to check IBEp against competitors (Bayesian inference and 
chance) 

 

Section 1: The formal account 

Disclaimer: Any IBE argument appeals to a notion of “explanatory goodness” to select one 
explanation as the best. However, there are many different senses of ‘explanatory goodness’ 
(simplicity, unification, generality, power) Thus, there may be no general account of IBE. 

Schupbach is concerned only with IBEp, where “explanatory goodness” is “explanatory power” 
which he attributes to C.S. Pierce: 

The surprising fact, C, is observed;  

But if A were true, C would be a matter of course;  

Hence, there is reason to suspect that A is true. 

 

Conditions we wish any measure of explanatory power ℰ to satisfy: 

Condition 1: Positive explanatory power increases expectedness of the proposition 

Condition 2: Negative explanatory power decreases expectedness of the proposition 

Condition 3: No explanatory power does not increase or decrease expectedness of the 
proposition 

Condition 4: Maximum explanatory power leads to certainty of the proposition 



Condition 5: Minimum explanatory power leads to certainty that the proposition of false 

Condition 6: The more positive power over the proposition, the less positive power over its 
negation  

 

First, we interpret expectedness as probability. Then we define a measure ℰ(𝑒, ℎ) for explanatory 
power of hypothesis ℎ over evidence 𝑒 with the following desired mathematical structure: 

 ℰ(𝑒, ℎ) ∈ [– 1,1]  

 ℰ(𝑒, ℎ) = 1 when a hypothesis ℎ has maximum explanatory power over evidence 𝑒 

ℰ(𝑒, ℎ) = −1 when a hypothesis ℎ has minimum explanatory power over evidence 𝑒 

ℰ(𝑒, ℎ) = 0 when a hypothesis ℎ has no power over evidence 𝑒 

The additional formal adequacy conditions must be met: 

CA1 (Neutrality): ℰ(𝑒, ℎ) = 0 if and only if Pr(ℎ ∧ 𝑒) = Pr(ℎ) × Pr (𝑒) 

CA2 (Maximality): ℰ(𝑒, ℎ) = 1 if and only if Pr(𝑒|ℎ) = 1 

CA3 (Symmetry): ℰ(𝑒, ℎ) =  −ℰ(¬𝑒, ℎ) 

CA4 (Irrelevant Conjunction): If Pr(𝑒 ∧ ℎଶ) = Pr (𝑒) × Pr (ℎଶ)  and Pr(ℎଵ ∧ ℎଶ) =

Pr (ℎଵ) × Pr (ℎଶ) and Pr(𝑒 ∧ ℎଵ ∧ ℎଶ) = Pr (𝑒 ∧ ℎଵ) × Pr (ℎଶ), then ℰ(𝑒, ℎଵ ∧ ℎଶ) =

ℰ(𝑒, ℎଵ) 

From which we get (proof in the appendix): 

Theorem 1: The only measure with a desirable mathematical structure that satisfies CA1–
CA4 is 

ℰ(𝑒, ℎ) =  
Pr(ℎ|𝑒) − Pr(ℎ|¬𝑒) 

Pr(ℎ|𝑒) + Pr(ℎ|¬𝑒)
 

 

Example 1 (Symmetry): Pr(ℎ|𝑒) = .9 and Pr(ℎ|¬𝑒) = .5 

ℰ(𝑒, ℎ) =  
. 9 − .5 

. 9 + .5
=  .29 

−ℰ(¬𝑒, ℎ)  = − 
. 5 − .9 

. 5 + .9 
=  .29 

Example 2 (Neutrality): Pr(ℎ|𝑒) = .9 and Pr(ℎ|¬𝑒) = .9 

ℰ(𝑒, ℎ) =  
. 9 − .9 

. 9 + .9
=  0 



With ℰ, we can describe IBEp as the claim that hypothesis ℎ has greater explanatory power ℰ than 
any of its competitors ℎ௜ . In argument form: 

𝑒 

(IBEp)  ℰ(𝑒, ℎ) > ℰ(𝑒, ℎ௜), for any ℎ௜ competing with ℎ 

∴ ℎ 

 

 

Section 2.1: IBEp and ℰ(𝑒, ℎ) are cogent 

(1) Positive ℰ(𝑒, ℎ) always increase expectedness of ℎ 
(2) In the limiting case where our priors in ℎ ≥  ℎ௜ are roughly equal, IBEp matches Bayesian 

inference 

 

When explanatory power is positive, our hypothesis always raises the probability of the evidence, 
and the evidence always raises the probability of our hypothesis. 

This can help illuminate the “benign” circularity of IBE. 

 

However, the central claim of IBEp is that a certain hypothesis ℎ has more explanatory power than 
any competitor ℎ௜ (ℎ can be the best explanation if it is the least bad) so: 



 

So, the hypothesis that is the most powerful explanation is the one that makes the evidence the most 
likely. This is equivalent to Bayesian inference: 

Pr(ℎ|𝑒) > Pr(ℎ௜|𝑒) 

⇔  
Pr(ℎ)Pr(𝑒|ℎ)

Pr(𝑒)
>

Pr(ℎ௜)Pr(𝑒|ℎ௜)

Pr(𝑒)
 

⇔  Pr(ℎ)Pr(𝑒|ℎ) > Pr(ℎ௜)Pr(𝑒|ℎ௜) 

except we are ignoring the prior probabilities of ℎ and ℎ௜ when evaluating explanatory power. 

Assuming our hypotheses’ prior probabilities are roughly equal, we should conclude that IBEp does provide 
strong support for a hypothesis. IBEp is a “genuine epistemic virtue” (50). 

 

Section 2.2: Computer trials 

In this section, Schupbach uses computer simulated trials to compare the reliability of IBEp when 
compared to Bayesian approach and chance. The methodological steps are: 



  

Importantly, the simulation selects the true hypothesis proportionally to the prior probabilities. 
Thus, the priors match objective chance. The program is run for 2-10 hypotheses, each for a million 
iterations.  Results: 

 

 

IBEp significantly outperforms chance and slightly underperforms Bayesian inference, regardless of 
the number of hypotheses or the catch-all. IBEp thus looks like “a poor man’s Bayesianism” (54). 

However, when we allow our priors to deviate from their objective values, the results change: 



 

Which shows that the greater the deviations of our priors from objective chance, the more IBEp 
should be favored over Bayesian inference. 

 

Conclusions 

 IBEp offers a precise, formal account of a IBE in terms of explanatory power ℰ(𝑒, ℎ) 
 IBEp is cogent and reliable 
 IBEp might be favorable over Bayesian inference when our priors have high variance 

 

A Worry 

Schupbach cleans up “best” but not “explanation.” The same counterexample that sank the DN 
model (as well as probabilistic theories of causation) appears to sink ℰ(𝑒, ℎ) as well. Let 𝑒 be the 
proposition of a flagpole being a certain height and ℎ be the proposition of its shadow being the 
appropriate length at the appropriate time of day. Pr(ℎ|𝑒) is much higher than Pr(ℎ|¬𝑒). By 
ℰ(𝑒, ℎ), ℎ has large explanatory power over 𝑒. However, ℎ should have no explanatory power over 
𝑒, because shadow lengths do not explain flagpole heights.  


