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Newton's equations of motion retain their form when one transforms to a
new system of coordinates that is in uniform translational motion relative to

the system used originally according to the equations '%
' =z - vt 1
' =y g?
2! =z . ,gj

As long as one believed that all of physics can be founded on Newton's

7777 - ——

equations of metiom, one therefore could not doubt that the laws of nature are
the same without regard to which of the coordinate systems moving uniformly
(without acceleration) relative to each other they are referred. However,
this independence from the state of motion of the system of coordinates used,
which we will call "the principle of relativity," seemed to have been suddenly -
called into question by the brilliant confirmations of H. A. Lorentz's i
electrodynamics of moving bodies.! That theory is built on the presupposition
of a resting, immovable, luminiferous ether; its basic equations are not such
that they transform to equations of the same form when the above
transformation equations are applied.4 :

After the acceptance of that theory. one had to expect that one would

luminiferous ether on optical phenomena. It is true that in the study cited
Lorentz proved that in optical experiments, as a consequence of his basic
assumptions, an effect of that relative motion on the ray path is not to be
expected as long as the calculation is limited to terms in which the ratio

/. A. Lorentz, Versuch einer Theorie der elekirischen und opiischen -
Erscheinungen in bewegten Korpern. [Attempt at a theory of electric and
optical phenomena in moving bodies] Leiden, 1895. Reprinted Leipzig, 1906.
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df = i;dz + F&dy + I}dz - pdV + TdS (28) [90]
de
Fz = ‘a't'": etc. (29)
Keeping in mind that
dez = F&i dt = 3d6 = d(i@z) - G&di , etc. [91]

and
Tdn = d(Tp) - 5dT ,

one obtains from the above equations the relation

d(-F + Tp + ¢6) = szi + Gydﬂ + szé + pdV + pdT .

Since the right-hand side of this equation must also be a total
differential, and taking into account (29), it follows that

d (o)  d (B o dJe
——— :F — :F — =F
9o HEe A
But these are the equations derivable by means of the principle of least
action which Mr. Planck had used as his starting point. : [92]

V. PRINCIPLE OF RELATIVITY AND GRAVITATION
817. dccelerated reference system and gravitaiional field

So far we have applied the principle of relativity, i.e., the assumption
that the physical laws are independent of the state of motion of the reference
system, only to nomacceleraied reference systems. Is it conceivable that the
principle of relativity also applies to systems that are accelerated relative
to each other?
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While this is not the place for a detailed discussion of this questiongﬁg
it will occur to anybody who has been following the applications of the
principle of relativity. Therefore I will not refrain from taking a stand on
this question here. wJ?*

We consider two systems X, and X, in motion. Let I; be acceleratédgz
in the direction of its JX-axis, and let 7 be the (temporally constant) {2&
magnitude of that acceleration. 3, shall be at rest, but it shall be located 5
in a homogeneous gravitational field that imparts to all objects an e
acceleration -7 in the direction of the J-axis. N

As far as we kmnow, the physical laws with respect to X, do not differ °
from those with respect to IX,; this is based on the fact that all bodies are'5£
equally accelerated in the gravitational field. At our present state of ‘fi
experience we have thus no reason to assume that the systems % and 3Z; -
differ from each other in any respect, and in the discussion that follows, we—
shall therefore assume the complete physical equivalence of a gravitational ‘
field and a corresponding acceleration of the reference system.

This assumption extends the principle of relativity to the uniformly .
accelerated translational motion of the reference system. The heuristic value -
of this assumption rests on the fact that it permits the replacement of a S—
homogeneous gravitational field by a uniformly accelerated reference system, .
the latter case being to some extent accessible to theoretical treatment.

!

§18. Space and lime in a uniformly accelerated reference system

Ve first consider a body whose individual material points, at a given
time ¢ of the nonaccelerated reference system S, possess no velocity
relative to S, but a certain acceleration. What is the influence of this
acceleration 7 on the shape of the body with respect to S7

_If such an influence is present, it will consist of a constant-ratio o
dilatation in the direction of acceleration and possibly in the two directions
perpendicular to it, since an effect of another kind is impossible for reasons
of symmetry. The acceleration-caused dilatations (if such exist at all) must
be even functions of <7; hence they can be neglected if one restricts omeself
to the case in which 7 is so small that terms of the second or higher power
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in 7 may be neglected. Since we are going to restrict ourselves to that
case, we do not have to assume that the acceleration has any influence on the
shape of the body.

We now consider a reference system ¥ that is uniformly accelerated
relative to the nonaccelerated system S in the direction of the latter's
X-axis. The clocks and measuring rods of 3, examined at rest, shall be
identical with the clocks and measuring rods of S. The coordinate origin of
T shall move along the J-axis of &, and the axes of X shall be
perpetually parallel to those of §. At any moment there existsa - -— — . .
nonaccelerated reference system S' whose coordinate axes coincide with the
coordinate axes of X at the moment in question (at a given time t¢' of
§'). If the coordinates of a point event occurring at this time ¢' are ¢,
7. ( with respect to X, we will have

' = ¢
y' =00 )
2! =¢(

~ because in accordance with what we said above, we are not to assume that
acceleration affects the shape of the measuring instruments used for measuring
£, ., (. We shall also imagine that the clocks of X are set at time ¢' of
§' such that their readings at that moment equal ¢'. What about the rate of
the clocks in the next time element 77

First of all, we have to bear in mind that a specific effect of
acceleration on the rate of the clocks of I need not be taken into account,
since it would have to be of the order 42. Furthermore, since the effect of
the velocity attained during r on the rate of the clocks is negligible, and
the distances traveled by the clocks during the time 7 relative to those
traveled by S' are also of the order 72, i.e., negligible, the readings of
the clocks of ¥ may be fully replaced by readings of the clocks of S' for
the time element .

From the foregoing it follows that, relative to I, light in vacuum is
propagated during the time element 7 with the universal velocity ¢ if we
define simultaneity in the system §' which is momentarily at rest relative

[951]

e

I e




(96l

[971

304 THE RELATIVITY PRINCIPLE

to 3, and if the clocks and measuring rods we use for measuring the time and
length are identical with those used for the measurement of time and space in
nonaccelerated systems. Thus the principle of constancy of the velocity of
light'can be used here too to define simultaneity if one restricts oneself to
very short light paths.

We now imagine that the clocks of ¥ are adjusted, in the way
described, at that time ¢ =0 of § at which ¥ is instantaneously at rest
relative to S. The totality of readings of the clocks of I adjusted in
this way is called the "local time" ¢ -of the system X. It is immediately
evident that the physical meaning of the local time ¢ is as follows. If one
uses the local time ¢ for the temporal evaluation of processes occurring in
the individual space elements of X, then the laws obeyed by these processes
cannot depend on the position of these space elements, i.e., on their coordi-
nates, if not only the clocks, but also the other measuring tools used in the
various space elements are identical.

However, we must not éimply refer to the local time ¢ as the "time" of
I, because according to the definition given above, two point events occurring
at different points of ¥ are not simultaneous when their local times ¢ are
equal. For if at time ¢ = 0 two clocks of I are synchronous with respect
to S and are subjected to the same motioms, then they remain forever
synchronous with respect to S§. However, for this reason, in accordance with
84, they do not run synchronously with respect to a reference system S’
instantaneously at rest relative to I but in motion relative to S, and
hence according to our definition they do not run synchromously with respect
to I either.

Ve now define the "time" 7 of the system I as the totality of those
readings of the clock situated at the coordinate origin of ¥ which are,
according to the above definition, simultaneous with the events which are to
be temporally evaluated.! _

"7 "Ve shall now determines the relation between the time 7 and the local
time ¢ of a point event. It follows from the first of equations (1) that

IThus the symbol "7r" is used here in a different sense than above.
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two events are simultaneous with respect to §', and thus also with respect to
¥, if

tl—?z'l'l:tz“zg'zz’
where the subscripts refer to the ome or to the other point event, respec-

tively. We shall first confine ourselves to the consideration of times that
are so short! that all terms containing the second or higher power of 7 or

v can be omitted; taking (1) and (29) into account, we then have to put [98]
Ty~ 3 =3) -3y =6 - §
=0 iy = 0y
V=9t =97, [99]

so that we obtain from the above equation

n-n=(G-&) .

If we move the first point event to the coordinate origin, so that oy =7
and ¢; = 0, we obtain, omitting the subscript for the second point event,

g = r[l + %5] . (30)

This equation holds first of all if 7 and ¢ lie below certain

- limits. It is obvious that it holds for arbitrarily large 7+ if the acceler-
ation 7 1is constant with respect to I, because the relation between. ¢ and
7 must then be linear. Equation (30) does not hold for arbitrarily large ¢.
From the fact that the choice of the coordinate origin must not affect the
relation, one must conclude that, strictly speaking, equation (30) should be
replaced by the equation

g =re

Nevertheless, we shall maintain formala (30).

ITn accordance with (1), we thereby also assume a certain restriction with
respect to the values of ¢ = g'.
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According to §17, equation (30) is also applicable to a coordinate
system in which a homogeneous gravitational field is acting. In that case we
have to put @ = 9{, vhere € is the gravitational potemntial, so that we
obtain

- 7[1 " E%] . (30a)

We have defined two kinds of times for 3. Which of the two definitioms
do we have to use in the various cases? Let us assume that at two locations
of different gravitational potentials (7£) there exists one physical system
each, and we want to compare their physical quantities. To do this, the most
natural procedure might be as follows: First we take our measuring tools to
the first physical system and carry out our measurements there; then we take
our measuring tools to the second system to carry out the same measurement
here. If the two sets of measurements give the same results, we shall denote
the two physical systems as "equal." The measuring tools include a clock with
which we measure local times ¢. From this it follows that to define the
physical quantities at some position of the gravitational field, it is natural
to use the time o. '

However, if we deal with a phenomenon in which objects situated at posi-
tions with different gravitational potentials must be considered simultan-
eously, we have to use the time 7 in those terms in which time occurs -
explicitly (i.e., not only in the definition of phy81ca1 quantities), becanse
otherwise the simultaneity of the events would not be expressed by the equal-
ity of the time values of the two events. Since in the definition of the time
7 a clock situated in an arbitrarily chosen position is used, but hot an
arbitrarily chosen instant, when using time 7+ the laws of nature can vary
with position but not with time.

o 819. The effect of the gravitational field on clocks

If a clock showing local time is located in a point P of gravitational
potential &, then, according to (30a), its reading will be (1 + g;) times

greater than the time 7, i.e., it runs (1 + g;) times faster than an
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identical clock located at the coordinate origin. Suppose an observer located
somewhere in space perceives the indications of the two clocks in a certain
way, e.g., optically. As the time Ar that elapses between the instants at
which a clock indication occurs and at which this indicatiom is perceived by
the observer is independent of 7, for an observer situated somewhere in space

the clock in point P runs (1 + ) times faster than the clock at the
coordinate origin. In this sense we may say that the process occurring in the
clock, and, more gemerally, any physical process, proceeds faster the greater
the gravitational potential at the position of the process taking place.

There exist "clocks" that are present at locations of different gravita-
tional potentials and whose rates can be controlled with great precision;
these are the producers of spectral lines. It can be concluded from the
aforesaid! that the wave length of light coming from the sun's surface, which
originates from such a producer, is larger by about ome part in two millionth
than that of light produced by the same substance on earth. {100]

§20. The effect of gravitation on eleciromagneiic phenomena

If we refer an electromagnetic process at some point of time to a non-
accelerated reference system S' that is instantaneously at rest relative to
the reference system X accelerated as above, then the following equations
will hold according to (5) and (6):

1

o) _aw _ o
AR AR

BET T etc.

and

191 _or _ oz
R AN T T

In accordance with the above, we may readily equate the S'-referred
quantities p', u', I', I', z', etc., with the corresponding Z-referred

IWhile assuming that equation (30a) holds for an inhomogeneous gravitational
field as well.
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quantities p, v, f, I, £, etc., if we limit ourselves to an infinitesimally
short period! that is infinitesimally close to the time of relative rest of
S' and 3. Further, we have to replace ¢' by the local time ¢. However,

we must not simply put

a _ 0
gt" ~ s °

because a point which is at rest relative to X, and to which equations
transformed to I should refer, changes its velocity relative to §' during
the time element di' = do, to which change, according to equatioms (7a) and
(7b), there corresponds a temporal change of the Z-related field component.
Hence we have to put

axr' _ox aL' _ ol
il = kel -
ar gy ‘ N 0N
rrl RN | il
27 oz o an
G =9 2k i AR

Hence the X-referred electromagnetic equations are

1 axy _oaN _o¥
?[’mU?’E'Tﬁ"ﬁf
% [pu + g!.+ 1‘N g% —-gg
1 07 of ol
RS AT/ 5
10l _9Y 42
c 9~ 9" 9y
1 [oF _ 07 _ &X
'5[3; %Z]-
1 [oN _0X 8Y
E[?E+ Y]— .

This restriction does not affect the range of validity of our results because
inherently the laws to be derived cannot depend on the time.
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We multiply these equations by [1 + j‘ and put for the sake of brevity
X*:I[1+%§], =Y [ %5] ,» etc.
p¥ = p[l + %é] .

Neglecting terms of the second power in 9, we obtain the equatioms

10 axr) af* )

TR TR s

1 ar<y _ ar* _ on*

¢t O] o T | (31a)
1( az7¥ _ o 0[* ‘

CA S 3 e S T

1 omr D v "‘az* Y

¢dr T "

}:%‘”—* %?—-%‘? } (32a)
) )

¢ do ~ dp ~ OE -

These equations show first of all how the gravitational field affects: the
static and stationary phenomena. The same laws hold as in the gravitation-
free field, except that the field components I, etc. are replaced by

X[l + %é], etc., and p 1is replaced by p[l + -;Lﬂ
Furthermore, to follow the development of nonstationmary states, we make
use of the time 7 in the terms differentiated with respect to time as well

as in the definition of the velocity of electricity, i.e., we put according to
(30)

12 o
and L=

vy = [1 + %5] e (102]
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We thus obtain

L [rrw, + G = 9F - I s (31b)
c[l + %5
and
1 %’5." ‘.\ %Z_*- ete. (32b)
c[l + %%q

These equations too have the same form as the corresponding equations of
the nonaccelerated or gravitation-free space; however, ¢ is here replaced by

the value
!1+1§] [1+-7] .

From this it follows that those light rays that do not propagate along the - -
{-axis are bent by the gravitational field; it can easily be seen that the

change of direction amounts to é% sin ¢ per cm light path, where ¢

denotes the angle between the direction of gravity and that of the light ray.
With the help of these equations and the equations relating the field

strength and the electric current of one point, which are known from the )

optics of bodies at rest, we can calculate the effect of the gravitational

field on optical phenomena in bodies at rest. One has to bear in mind,

- however, that the above-mentioned -equations from the optics of bodies at rest

hold for the local time . Unfortunately, the effect of the terrestrial
gravitational field is so small according to our theory (because of the

smallness of %%) that there is no prospect of a comparison of the results of
the theory with experience.

If we successively multiply equations (31a) and (32a) by é; ----- g;

and integrate over infinite space, we obtain, using our earlier notation,

J [1+%§]2£;(ué¥+ uﬂY+ u'LZ)dw+J [1 + 1§]2 T aa—(,l'% }’2 +erot )dw = 0 .

é%(u[ + u”Y + u£Z) is the energy n, supplied to the matter per unit
volume and unit local time ¢ if this energy is measured by measuring tools
situated at the corresponding location. Hence, according to (30),
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1, = na[l + %g] is the (similarly measured) energy supplied to the matter per [108]

unit volume and unit local time 7; g;(x?+-Y2---+-N2) is the electromagnetic
If we take into account

energy € per unit volume, measured the same way.

that according to (30) we have to set 5% = [1 - %5]5;, we obtain

J [1 ; %g]»f,rdw 4 {j [1 + %ﬁ]e dw} =0 .

This equation expresses the principle of conservation of energy and
An energy, or energy imput, that, measured
locally, has the value F = edw or F = 5 dwdr, respectively, contributes to
the energy integral, in addition to the value F that corresponds to its

magnitude, also a value 7{ —g ® that corresponds to its position.
- Thus, to each energy £ 1n the gravitational field there corresponds an

E“ _energy of p031t1on that equals the potentlal energy of a "ponderable" mass of

magnltude %%.
Thus the proposition derived in §11, that to an amount of energy F

there corresponds a mass of magnltude J%, holds not only for the imeriial but
also for the graviiational mass, if the assumption introduced in §17 is

correct.

(Received on 4 December 1907)
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CORRECTIONS TO THE PAPER: "ON THE RELATIVITY PRINCIPLE

AND THE CONCLUSIONS DRAWN FROM IT® <

by A. Einstein ,Mégé

[Jahrbuch der Radioaskisvitit und Elekironik 5 (1908): 98-99] ;?

»

2

During the proofreading of the article cited I missed unfortunately
several errors that have to be corrected because they impede the reading of f%

the article.

Formula 15b (p. 435) should read

4 UZ;—C(M - Zl{)dw] .3

S

! ‘
; o
. R RSN [REIEN
d l ’ By T PATATT g

The factor % in the second formula on p. 451 is in error: the formula

should read

¢ = —12

1 -

Formula 28 on p. 453 should read

U

5

ey

df = Pzdz + Fydy + dez - pdV + Tdp .

A few lines further on, the subscript in G& should be added. In the
penultimate line on p. 455 it should read "replaceable" instead of "usable."
[Translator's note: This correction does not apply to the translated ver-

sion.]

On p. 451 it should read

IThis Jahrbuch 4 (1907):

411.
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and
w£ = [1 + %é] u‘f .

On p. 462 the subscripts in the quantities u§ and #, have to be
added. Also, in about the middle of this page a mistake in sign should be
corrected: the equation should read

A letter by Mr. Planck induced me to add the following supplementary
remark so as to prevent a misunderstanding that could arise easily:

In the section "Principle of relativity and gravitation", a reference
system at rest situated in a temporally constant, homogeneous gravitational
field is treated as physically equivalent to a uniformly accelerated,

... gravitation-free reference system. The concept "uniformly accelerated" needs
further clarification.

If—as in our case—one considers a rectilinear motion (of the system

sa—

'Z), the acceleration is given by the expression g%} where v denotes the

velocity. According to the kinematics in use up to now, g% is independent
of the state of motion of the (nonaccelerated) reference system, so that one
might speak directly of (instantaneous) acceleration when the motion in a

.- -certain time element is given. According to the kinematics used by us, %%

does depend on the state of motion of the (nonaccelerated) reference system.
But among all the values of acceleration that can be so obtained for a certain
motion epoch, that one is distinguished which corresponds to a reference
system with respect to which the body considered has the velocity v = 0. It
is this value of acceleration which has to remain constant in our "uniformly (3]
accelerated" system. The relation v = 4¢ used on p. 457 thus holds only in
first approximation; however, this is sufficient, because only terms linear
in ¢t and T, respectively, have to be taken into account in these
considerations.

(Received on 3 March 1908)




