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Outline of a Generalized Theory of Relativity and of a
Theory of Gravitation

I. Physical Part
by Albert Einstein

II. Mathematical Part

by Marcel Grossmann
[Teubner, Leipzig, 1913]

I
Physical Part

The theory expounded in what follows derives from the conviction that the
proportionality between the inertial and the gravitational mass of bodies is an exactly
valid law of nature that must already find expression in the very foundation of
theoretical physics. I already sought to give expression to this conviction in several
earlier papers by seeking to reduce the gravitational mass to the inertial mass;! this
endeavor led me to the hypothesis that, from a physical point of view, an (infinitesi-
mally extended, homogeneous) gravitational field can be completely replaced by a
state of acceleration of the reference system. This hypothesis can be expressed
pictorially in the following way: An observer enclosed in a box can in no way decide
whether the box is at rest in a static gravitational field, or whether it is in accelerated
motion, maintained by forces acting on the box, in a space that is free of gravitational
fields (equivalence hypothesis).

We know the fact that the law of proportionality of inertial and gravitational
mass is satisfied to an extraordinary degree of accuracy from the fundamentally
important investigation by E6tvos,2 which is based on the following argument. A
body at rest on the surface of the Earth is acted upon by gravity as well as by the
centrifugal force resulting from Earth’s rotation. The first of these forces is

l1A. Einstein, Ann. d. Phys. 35 (1911): 898; 38 (1912):355; 38 (1912): 443.
2B. E6tvos, Mathematische und naturwissenschaftliche Berichte aus Ungarn 8 (1890);
Wiedemann's Beiblditer 15 (1891): 688.
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proportional to the gravitational mass, and the second to the inertial mass. Thus, the
direction of the resultant of these two forces , i.e., the direction of the apparent
gravitational force (direction of the plumb) would have to depend on the physical
nature of the body under consideration if the proportionality of the inertial and
gravitational mass were not satisfied. In that case the apparent gravitational forces
acting on parts of a heterogeneous rigid system would, in general, not merge into a
resultant; instead, in general, there would still be a torque associated with the
apparent gravitational forces that would have to make itself noticeable if the system
were suspended from a torsion-free thread. By having established the absence of such
torques with great care, EStvis proved that, for the bodies that he investigated, the
relationship of the two masses was independent of the nature of the body to such a
degree of exactness that the relative difference in this relationship that might still
exist from one substance to another must be smaller than one twenty-millionth.

The decomposition of radioactive substances occurs with a release of such -
significant quantities of energy that the change in the inertial mass of the system that
corresponds to that energy decrease according to the theory of relativity is not very
small relative to the total mass.> In the case of the decay of radium, for example,
this decrease amounts to one ten-thousandth of the total mass. If these changes of the
inertial mass did not correspond to changes in the gravitational mass, then there
would have to be deviations of the inertial mass from the gravitational mass much
greater than those allowed by E6tvos’s experiments. Hence it must be considered very
probable that the identity of the inertial and gravitational mass is exactly satisfied.
For these reasons it seems to me that the equivalence hypothesis, which asserts the
essential physical identity of the gravitational with the inertial mass, possesses a high
degree of probability.*

§1. Equations of Motion of the Material Point in the Static Gravitational Field

According to the customary theory of relativity,? in the absence of forces a point
moves according to the equation
) 8{[ds} = 8{[V-ds” - BT - &7 + c%dr?} - 0.

For this equation states that the material point moves rectilinearly and uniformly.
This is the equation of motion in the form of Hamilton’s principle; for we can also

3The decrease of the inertial mass corresponding to the released energy E is, as we
know, E/c?, if c denotes the velocity of light.

4Cf. also §7 of this paper.

SCf. M. Planck, Verh. d. deutsch. phys. Ges. (1906): 136.



DOC. 13 GENERALIZED THEORY OF RELATIVITY 153

set
(1a) 51 f Hds) = 0,
where
= - ém
dt

is posited, if m designates the rest mass of the material point. From this we obtain,
in the familiar way, the momentum J, Jy, J;, and the energy E of the moving point:

J.o=m 3” =m X ; ete —
X ¢z - 42

2 ‘ ,
OH, ,OHy OH, pg.p_ |
\ ox oy oz m

This mode of representation differs from the customary one only by the fact that
in the latter J,, Jy, J,, and E contain also a factor ¢. But since ¢ is constant in the
customary theory of relativity, the system given here is equivalent to the ordinary
one. The only difference is that J and E possess dimensions other than those in the
customary. mode of representation.

I have shown in previous papers that the equivalence hypothesis leads to the
consequence that in a static gravitational field the velocity of light ¢ depends on the
gravitational potential. This led me to the view that the customary theory of relativity
provides only an approximation to reality; it should apply only in the limit case
where differences in the gravitational potential in the space-time region under
consideration are not too great. In addition, I found again equations (1) or (1a) as the
equations of motion of a mass point in a static gravitational field; however, ¢ is not
to be conceived of here as a constant but rather as a function of the spatial
coordinates that represents a measure for the gravitational potential. From (la) we

.obtain in the familiar fashion the equations of motion

E =

dc
3) d mx - '"C‘a? .

It is easy to see that the momentum is represented by the same expression as
above. In general, equations (2) hold for the material point moving in the static
gravitational field. The right-hand side of (3) represents the force &, exerted on the
mass point by the gravitational field. For the special case of rest (g = 0) we have

R— aC

x = "M==

ox
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From this one sees that ¢ plays the role of the graviiationa] potential.
From (2) it follows that for a slowly moving point

mx
J ==
c

)

At a given velocity, the momentum and the kinetic energy are thus inversely
proportional to the quantity c; in other words: the inertial mass, as it enters into the

momentum and energy, is n , where m denotes a constant that is characteristic of the
C .

mass point and independent of the gravitational potential. This is consonant with
Mach’s daring idea that inertia has its origin in an interaction between the mass point
under consideration and all of the other mass points; for if we accumulate masses in
the vicinity of the mass point under consideration, we thereby decrease the

gravitational potential c, thus increasing the quantity M that is determinative of
¢

inertia.

§2. Equations of Motion of the Material Point in an
Arbitrary Gravitational Field. Characterization of the Latter

By introducing a spatial variability of the quantity ¢, we have breached the frame of
the theory presently designated as the “relativity theory”; for now the expression
designated by ds no longer behaves as an invariant with respect to orthogonal linear
transformations of the coordinates. Thus, if the relativity principle is to be
maintained—which is not to be doubted—then we must generalize the relativity
theory in such a way that the theory of the static gravitational field whose elements
bave been indicated above will be contained in it as a special case.

If we introduce a new space-time system K'(x’, ¥, ', t') by means of an arbitrary
substitution
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x'=x'(x, y, 2, )

y'= yl(x’ ¥ 2,0

Z’=72'(x, ¥, 2, ¢)

t'=1t(x,y z, 1),
and if the gravitational field in the original system K was static, then, upon this
substitution, equation (1) goes over into an equation of the form

8{[as'} = o,

ds'? = g, dx'? + gudy'? +..+ 2g,dx'dy’ +..., -
and where the quantities guv are functions of x', y’, z', t'. If we put x,, x,, x3, X4 in
place of x', y', Z’, ', and write again ds instead of ds’, then the equations of motion
of the material point with respect to XK' take the form

where

5{[ ds} = (0, where
(1" ,
- ds’= Y g, dxdx,.
By

We thus arrive at the view: that in the general case the gravitational field is
characterized by ten space-time functions

8u 812 813 8u

81 8n 8n 8xu

83 83 83 83

841 842 843 8m
which in the case of the customary theory of relativity reduce to

8uv = gvm

-1 0 0 O
0 -1 0 O
0 0 -1 O
0 0 0 =+c¢?,

where ¢ denotes a constant. The same kind of degeneration occurs in the static
gravitational field of the kind considered above, except that in the latter case g4 = c?
is a function of x;, x5, X3. |

The Hamiltonian function H thus has the following value in the general case:

(%) = —m% = ‘m\/guxlz *ork QXX H ok DG XL+ gy
The comresponding Lagrangian equations

(©6) —

yield directly the expression for the momentum J of the point and for the force &

(11)
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{13}




(14])

[15]

[16]

156 DOC. 13 GENERALIZED THEORY OF RELATIVITY

exerted on it:
J = - 81%n * 81Xy * Bi3¥3 * 8y
. ds
O dr
m 8ndyx + 8ydx, + gpydxs + giudx,
dg b1
agw
E ——+tdx dx,
H
® &, --1n2 % Zagw d, &,
2 ds-dt dx, ds dt
Further, for the energy E of the point, one obtams
oH dx, dx, dx, dx,
(9) L= '(X—a; ++ ) + H = —m(&uz + g42E + g43—d_9' * Sua d:

In the case of the customary theory of relativity only linear orthogonal
substitutions are permissible. It will turn out that we are able to set up equations for
the influence of the gravitational field on the material processes that are covariant
with respect to arbitrary substitutions.

First, from the role that ds plays in the law of motion of the material point, we
can draw the conclusion that ds must be an absolute invariant (scalar); from this it
follows that the quantities guv form a covariant tensor of the second rank,® which we
call the covariant fundamental tensor. This tensor determines the gravitational field.
Further, it follows from (7) and (9) that the momentum and the energy of the material
point form together a covariant tensor of the first rank, i.e., a covariant vector.’

§3. The Significance of the Fundamental Tensor
of the guv for the Measurment of Space and Time

From the foregoing, one can already infer that there cannot exist relationships
between the space-time coordinates x,, x,, X3, X, and the results of measurements
obtainable by means of measuring rods and clocks that would be as simple as those
in the old relativity theory. With regard to time, this has already found to be true in
the case -of the static gravitational field.® The question therefore arises, what is the

8CY. Part 0, §1.
TCf. Part I, §1.
8Cf., e.g., A. Einstein, Ann. d. Phys. 35 (1911): 903 ff.
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physical meaning (measurability in principle) of the coordinates Xy, X9, X3, Xy

We note in this connection that ds is to be conceived as the invariant measure
of the distance between two infinitely close space-time points. For that reason, ds
must also possess a physical meaning that is independent of the chosen reference
system. We will assume that ds is the “naturally measured” distance between the two
space-time points, and by this we will understand the following.

The immediate vicinity of the point (x;, x,, X3, x,) with respect to the coordinate
system is determined by the infinitesimal variables dx,, dx,, dx,, dx,, We assume
that, in their place, new variables d€,, d€,, d&,, dE , are introduced by means of a
linear transformation in such a way that

ds? = dE} + SE3 + dE2 - dE2

In this transformation the guv are to be viewed as constants; the real cone ds? = 0
appears referred to its principal axes. Then the ordinary theory of relativity holds in
this elementary d€ system, and the physical meaning of lengths and times shall be
the same in this sytem as in the ordinary theory of relativity, i.e., ds is the square of
the four-dimensional distance between two infinitely close space-time points,
measured by means of a rigid body that is not accelerated in the d§ -system and by
means of unit measuring rods and clocks at rest relative to it.

From this one sees that, for given dx,, dx,, dx;, dx,, the natural distance that
corresponds to these differentials can be determined only if one knows the quantities
guv that determine the gravitational field. This can also be expressed in the
following way: the gravitational field influences the measuring bodies and clocks in
a determinate manner.

From the fundamental equation

ds? = ngdx dx
v

one sees that, in order to fix the physical dimensions of the quantities guv and xv, yet
- another stipulation is required. The quantity ds has the dimension of a length.
Likewise, we wish to view the xv (x, too) as lengths, and thus we do not ascribe any
physical dimension to the quantities gpuv.

§4. The Motion of Continuously Distributed Incoherent Masses
in an Arbitrary Gravitational Field

In order to derive the law of motion of continuously distributed incoherent masses,
we calculate the momentum and the ponderomotive force per unit volume and apply
the law of the conservation of momentum.

To this end, we must first calculate the three-dimensional volume ¥ of our mass

17
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point. We consider an infinitely small (four-dimensional) piece of the space-time
thread of our material point. Its volume is
[[[ [axdx,drss, = v,
If we introduce the natural differentials d€ in place of the dx, assuming that the
measuring body is at rest with respect to the material point, we have to set

[[[dEdEdE; = v,

i.e., equal to the “rest volume” of the material point. Further, we have

[, = as,
where ds has the same meaning as above.
If the dx are related to the df by the substitution

dx, = Yy a,dE,,

then we have

£ rr 9(dx,,dx,,dxs,dx,)
dx dx,dxdx, = D2 % 4 .4E dE,dE.d
J 1] Jonttestec = [ ]| Sy g, aey “ertestests
or
Vdr = Vds-la,,l|.
But since
ds? = ngdxpdxv = E guvappavadgpdga = dﬁf * dEg * dE§ - dEia
nv By po
there obtains the following relation between the determinant
g = lg;wl’

i.e., the discriminant of the quadratic differential form ds® and the substitution
determinant |¢tpg|:

g (Iapol)z = _1’
1

le,,| = —.
AT
Thus, one obtains the following relation for V:
1
Vdt = Vids -——.
- /s
From this one obtains with the help of (7), (8), and (9), if one substitutes p,, for

N |

=|5
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i; = -Pm/-_g'Zglv & Z“’
-§=-pm/‘ Z&w — %
S AR
We note that
®y.v = Po%'i" * -

is a second-rank contravariant tensor with respect to arbitrary substitutions. From the
foregoing one surmises that the momentum-energy law will have the form

J 1 og,
(10) )y =Y /-e=s20,=0. (0=1234)
~ axv 245 ax,, "

The first three of these equations (o = 1,2,3) express the momentum law, and the
last one (o = 4) the energy law. It turns out that these equations are in fact covariant
with respect to arbitrary substitutions.® Also, the equations of motion of the material
point from which we started out can be rederived from these equations by integrating
over the thread of flow.

We call the tensor Oy the (contravariant) stress-energy tensor of the material
flow. We ascribe to equation (10) a validity range that goes far beyond the special
case of the flow of incoherent masses. The equation represents in general the energy
balance between the gravitational field and an arbitrary material process; one has only
to substitute for Oy the stress-energy tensor corresponding to the material system
under consideration. The first sum in the equation contains the space derivatives of
the stresses or of the density of the energy flow, and the time derivatives of the
" momentum density or of the energy density; the second sum is an expression for the
effects exerted by the gravitational field on the material process.

§5. The Differential Equations of the Gravitational Field

Having established the momentum-energy equation for material processes (mechani-
cal, electrical, and other processes) in relation to the gravitational field, there remains
for us only the following task. Let the tensor ©,y for the material process be given.

%Cf. Part II, §4, No. 1.

(21]
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What differential equations permit us to determine the quantities g, i.e., the
gravitational field? In other words, we seek the generalization of Poisson’s equation
Ap = 4akp .

We have not found a method for the solution of this problem as thoroughly
compelling as that for the solution of the problem discussed previously. It would be
necessary to introduce several assumptions whose correctness seems plausible but not
evident.

The generalization that we seek would likely have the form
11 ‘ =T,,
where k is a constant and I'yv a second-mnk contravariant tensor derived from the
fundamental tensor guv by differentiatial operations. In line with the Newton-Poisson
law one would be inclined to require that these equations (11) be second order. But
it must be stressed that, given this assumption, it proves impossible to find a
differential expression I'yy that is a generalization of A¢ and that proves to be a
tensor with respect to arbitrary transformations.!® To be sure, it cannot be negated
a priori that the final, exact equations of gravitation could be of higher than second
order. Therefore there still exists the possibility that the perfectly exact differential
equations of gravitation could be covariant with respect to arbitrary substitutions.
But given the present state of our knowledge of the physical properties of the
gravitational field, the attempt to discuss such possibilities would be premature. For
that reason we have to confine ourselves to the second order, and we must therefore
forgo setting up gravitational equations that are covariant with respect to arbitrary
transformations. Besides, it should be emphasized that we have no basis whatsoever
for assuming a general covariance of the gravitational equations.'!

The Laplacian scalar A¢ is obtained from the scalar ¢ if one forms the
expansion (the gradient) of the latter and then the inner operator (the divergence) of
this. Both operations can be generalized in such a way that one can carry them out
on every tensor of arbitrarily high rank, namely while permitting arbitrary substitu-
tions of the basic variables.!? But these operations degenerate if they are carried out
on the fundamental tensor gyuv.!* From this it seems to follow that the equations
sought will be covariant only with respect to a particular group of transformations,

(251 which group however, is as yet unknown to us.

19Cf. Part 1, §4, No. 2.

1CY. also the arguments given at the begmmng of §6.
12part 1, §2.

13Cf. the remark on p. 28 in Part I, §2.



DOC. 13 GENERALIZED THEORY OF RELATIVITY 161

Given this state of affairs, and in view of the old theory of relativity, it seems
natural to assume that the transformation group we are seeking also includes the
linear transformations. Hence we require that I'yy be a tensor with respect to
arbitrary linear transformations.

Now it is easy to prove (by carrying out the transformation) the following
theorems:

1. If ®,4 , isa contravariant tensor of rank n with respect to linear transforma-

tions, then
Z Y a®nﬁ...l :
i ax“

is a contravariant tensor of rank n + 1 with respect to linear transformations
(expansion).!¢
2. If ®, , isa contravariant tensor of rank n with respect to linear transforma-
tions, then
E a®aﬁ...l
A ax 1 )
is a contravariant tensor of rank n — 1 with respect to linear transformations
(divergence).
If one carries out these two operations on a tensor in succession, one obtains a
tensor of the same rank as the original one (operation A, carried out on a tensor).
For the fundamental tensor ypv one obtains

3 (, M
a -_— .
® 2 o (Y"B 3,
One can also see from the following argument that this operator is related to the
Laplacian operator. In the theory of relativity (absence of gravitational field) one
would have to set ' o

81 =8n =8 = -1, g44=C2, g‘w=0, for p # v;

1
hence Yiu S ¥z =¥ = -1 Yy = o Yo =0, forp = v,

- If a gravitational field is present that is sufficiently weak, i.e., if the guv and ypv
differ only infinitesimally from the values just given, then one obtains instead of the
expression (a), neglecting the second-order terms,

4y v is the contravariant tensor reciprocal to guv (Part I, §1).

(26]

[27]
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Y, P, P 1 P
ox? ox} ox?  ¢? ox?

If the field is static and only guv is variable, we thus artive at the case of the
Newtonian theory of gravitation if we take the expression obtained for the quantity
Tuv up to a constant.

Hence one might think that, up to a constant factor, the expression (a) must
already be the generalization of A ¢ that we are seeking. But this would be a
mistake; for alongside this expression, in a generalization of this kind there could also
appear terms that are themselves tensors and that vanish when we neglect the kinds
of terms just indicated. This always occurs when two first derivatives of the guv or
Y uv are multiplied by each other. Thus, for example,

)3 98ap g

af Bx M Bx v
is a covariant tensor of the second rank (with respect to linear transformations); it
becomes infinitesimally small to the second order if the quantities gop and yup
deviate from constant values only infinitesimally to the first order. We must therefore
allow still other terms in I',v, in addition to (a), which terms, for now, must satisfy
only the condition that, taken together, they must possess the character of a tensor
with respect to linear transformations.

We make use of the momentum-energy law to find these terms. To make myself

clear about the method used, I will first apply it to a generally known example.

In electrostatics - g L4 p is the vth component of the momentum transferred to

Xy

the matter per unit volume, if @ denotes the electrostatic potential and p the electric
density. We seek a differential equation for ¢ of such kind that the law of the
conservation of momentum is always satisfied. It is well known that the equation

y&e .,

v oxl
solves the problem. The fact that the momentum law is satisfied follows from the
identity

d (3¢ 99)_ 0 |1 (3e)|. 30 « d%0(__ 0.
y;: Bx“[axv ax#) axv[Zz[ax#)] axﬁ? ax:( ox, Pl

B

Thus, if the momentum law is satisfied, then an identity of the following

construction must exist for every v: On the right side, - g ? s multiplied by the left
xV

side of the differential equation; on the left side of the identity there is a sum of the
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differential quotients.

If the differential equation for ¢ were not yet known, the problem of finding it
would be reduced to that of finding this identity. What is essential for us to realize
is that this identity can be derived if one of the terms occurring in it is known. All
one has to do is to apply repeatedly the product differentiation rule in the forms

dv

a = ﬂ +
K(w) axvv axvu
and
¥ _ 9, ou
ugg = —v(uv) 3 vv,

and then finally to put the terms that are differential quotients on the left side and the
rest of the terms on the right side. For example, if one starts with the first term of
the above identity, one obtains, one after another,

d [ dg de acp L)
; ox (ax ) Z ox} Z ax ax

_de v Po . 3 | 1v(20)
8xv§ax; axv{Zg[ax#)}’

from which we obtain the above identity upon rearrangement.
Now we turn again to our problem. It follows from equation (10) that

o
—Z ars g" qC) (@ = 1234)

is the momentum (or energy) imparted by the gravntatlonal field to the matter per unit
volume. For the energy-momentum law to be satisfied, the differential expressions
[y of the fundamental quantities y,v that enter the gravitational equations

L =T 7

‘must be chosen such that

1 98,
=Y /g r
ZK#Z,, /g ox, *
can be rewritten in such a way that it appears as the sum of differential quotients.
On the other hand, we know that the term (a) appears in the expression sought for

Iuv. Hence the identity that is being sought has the following form:
Sum of differential quotients

iy Pl 3 M
ZAZvﬁaxa{%axa(Y“baxﬁ)

+ the other terms, which vanish with the first approximation.}
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The identity that is being sought is thereby uniquely determined; if one
constructs it according to the procedure indicated,'® one obtains

V=3 07:¢ 99 97,, 04
t_. ‘IQ __. 9 g
vw ( —9-Yep 3 7z a“o‘) 28::: (p —9 Vi a; a;)

aprp apte

(12)1—21/_ g’"lzv— 52 (resV=3- a,,) Zyapyzei,ﬁ"a;;

afTe

agto ayf@ 1 agge 371

1 _%e

+ 2?‘”’ Yor gz, cz, aa:‘, 27'"7'”} bz, oz, }
apgzy apze (4

Thus, the expression for I'yv that is enclosed between the curly brackets on the

right-hand side is the tensor that is being sought that enters into the gravitational

equations

k@, =T,.
To make these equations more comprehensible, we introduce the following
abbreviations:

08, 9Y,, 1 0g,, 9Y,
9 2t 2 [Y“‘””” 5, ax: ALK Bxﬂp '

afrp
We will designate O,v as the “contravariant stress-energy tensor of the
gravitational field.” The covariant tensor reciprocal to it will be denoted by tuv; then

we have , - -

L 0g,, 9Y,, 1 98rp Moy
(14) 2K Ly = a;, [ ox, ox, 28‘“ Top ox, Bxﬂ

Likewise, for the sake of brevity, we introduce the following notations for
differential operations carried out on the fundamental tensors y and g:

N | _ 9 Mop
15  AL(Y) = Z = o [Yam/_g ) Y Ve 3, 3,

afrp

_ K — 9,,) 08, 08,
a6 D.m =3 a—xa(m\/_g ax,,] PR Oxg

L
V-8

I5Cf. Part I, §4, No. 8.

Y
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Each of these operators yields again a tensor of the same kind (w. resp. to linear

transformations).
With the application of these abbreviations the identity (12) assumes the form

3

(120 Y (/B8 K0y } = 2T VDA, (1) + KD, |

gV axv 2 uv axo
or also

d o 121 A .

12b) 3 {8V K | = 53 V-85 (-D,u(8) + xL,, ).

v axv 2 uv a‘xa I

If we write the conservation law (10) for matter and the conservation law (12a)

for the gravitational field in the form
3 ag v
0 SR Fe ) - SRR, -0

nv

) az (V=880 ) - Z V-g- ag‘“ 0

av

(12¢)

zfiz' g"“ AL,

then one recognizes that the stress-energy tensor U,y of the gravitational field enters
the conservation law for the gravitational field in exactly the same way as the tensor
Ouv of the material process enters the conservation law for this process; this is a
noteworthy circumstance considering the difference in the derivation of the two laws.

From equation (12a) follows the expression for the differential tensor entering
into the gravitational equations

(17) rpv = p.v(Y) - K.ﬁp.v
' Thus, the gravitational equations (11) are of the form
(18) Ap.v(Y) = K((.I)uv + 0‘;\)) ‘ [32]

These equations satisfy a requirement that, in our opinion, must be imposed on
a relativity theory of gravitation; that is to say, they show that the tensor ¥,v of the
gravitational field acts as a field generator in the same way as the tensor @y of the
material processes. An exceptional position of gravitational energy in comparison  (33]
with all other kinds of energies would lead to untenable consequences.

Adding equations (10) and (12a) while taking into account equation (18), one
finds




[34]

(35]
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(19) Yy 9 {ﬁ 8B + ﬁ,w)} =0 (0 = 12.3.4)

< ox,

This shows that the conservation laws hold for the matter and the gravitational
field taken together.

In the foregoing we have given preference to the contravariant tensors, because
the contravariant stress-energy tensor of the flow of incoherent masses can be
expressed in an especially simple manner. However, we can express the fundamental
relations that we have obtained just as simply by using covariant tensors. Instead of

Ouv, we must then take T, = Egmgvﬂ(")ap as the stress-energy tensor of the
aB

material process. Instead of equation (10), we obtain through term-by-term
reformulation

@0 > 2 (FEVT) * ST Vg
My v My

It follows from this equation and equation (16) that the equations of the gravitational
field can also be written in the form
(21) - pv(g) = K(tpv * Tuv);
these equations can also be derived directly from (18). The equation that corresponds
to (19) reads

d
(22) Y V8 VoulT *+ 1)} = 0.

5 ox,

ayp
*.T =0
ox. ¥

o

§6. Influence of the Gravitational Field on Physical Processes,
Especially on the Electromagnetic Processes

Since momentum and energy play a role in every physical process and, for their part,
also determine the gravitational field and are influenced by it, the quantities gy v that
determine the gravitational field must appear in all systems of physical equations.
Thus, we have seen that the motion of the material point is determined by the

equation
8{[as} = o,

[P
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where
ds? = Y g, dxdx,.
v

ds is an invariant with respect to arbitrary substitutions. The equations to be sought,
which determine the course of some physical process or other, must be so constructed
that the invariance of ds will entail the covariance of the equation system in question.

But in the pursuit of solutions to these general problems, we at first encounter
a fundamental difficulty. We do not know with respect to which group of transforma-
tions the equations we are seeking must be covariant. At first it seems most natural
to demand that the systems of equations should be covariant with respect to arbitrary
transformations. But opposed to this is the fact that the equations of the gravitational
field that we have set up do not possess this property. For the equations of
gravitation we have only been able to prove that they are covariant with respect to
arbitrary linear transformations; but we do not know whether there exists a general
group of transformations with respect to which the equations are covariant. The
question as to the existence of such a group for the system of equations (18) and (21)
is the most important question connected with the considerations presented here. At
any rate, given the present state of the theory, it is not justifiable for us to demand
a covariance of physical equations with respect to arbitrary substitutions.

But on the other hand we have seen that for material processes it is indeed
possible to set up an erergy-momentum balance equation that does permit arbitrary
transformations (§4, equation 10). Therefore it nevertheless seems natural to assume
that all systems of physical equations, with the exception of the gravitational
equations, should be formulated in such a way that they are covariant with respect
to arbitrary substitutions. This exceptional position that the gravitational equations
occupy in this respect, as compared with all of the other systems, has to do, in my
opinion, with the fact that only the former can contain second derivatives of the
" components of the fundamental tensor.

The construction of such systems of equations requires the resources of
generalized vector analysis as it is presented in Part II.

Here we confine ourselves to indicating how one obtains the electromagnetic
field equations for the vacuum in this way.!® We start from the assumption that the
electrical charge is to be viewed as something unchangeable. Suppose that an
infinitesimally small, arbitrarily moving body has the charge e and the volume dV;

160n this point, cf. also the article by Kottler, §3, cited on p. 23.

(36]
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with respect to a comoving body (rest volume). We define d—‘:/— = p, as the true
0

density of the electricity; this is a scalar by definition. Hence

dx\'
po (V = 1293s4)

is a contravariant four-vector, which we reformulate by defining the density p of the
electricity, referred to a coordinate system, by the equation

pydvy = pdV
Using the equation
dV,ds = J-g-dV -dt
from §4, we obtain
d, 1 _dx,

pO df _-g d[ ’
i.e., the contravariant vector of the electric current.
We reduce the electromagnetic field to a special, contravariant tensor of second

rank @uv (a six-vector), and form the “dual” contravariant tensor of second rank ¢ ;w

by the method explained in Part II, §3 (formula 42). According to formula 40 in §3
of Part II, the divergence of a special contravariant tensor of second rank is

1« 9, —.
ey a8k

As a generalization of the Maxwell-Lorentz field equations, we set up the equations
0 dx

23 - * = _”v’ =
(23) > axv(\/ & P) = P— (dt = dxg)
d .

@ ¥ 2E o) - 0

the covariance of which is self-evident. If we set
7 V—9- ®5=29., "—'9‘%1"-5,,: V—9 9=29,;
and V—9- ¢=—¢C, P-g'¢sc=—@,:y—9'9’u=_@u
Pa T
then the system of equations (23), written out in a more detailed manner, takes the
form
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Up to the choice of the units, these equations coincide with Maxwell’s first system.
In constructing the second system, one has first to bear in mind that to

the components %, 9,9,—6,—C,—C
zr Wyr E3 z?

y? 3

of V-89, -
there correspond the components

-_ @37 _ @y, - @s’ @:) 'byi '5:
of the complement fuv (Part I, §3, formulas 41a). For the case where no gravita-
tional field is present, this yields the second system, i.e., equation (24) in the form

3, , 2€, 109,
2zt —Fa =0

¢t oz ct at ¢ 9z
This proves that the equations we have set up really constitute a generalization
of the equations of the ordinary theory of relativity.

§7. Can the Gravitational Field Be Reduced to a Scalar?

In view of the undeniable complexity of the theory of gravitation propounded here,
we must ask ourselves in earnest whether the conception that has, until now, been the
6nly one advanced, according to which the gravitational field is reduced to a scalar
®, is the only one that is reasonable and justified. I will briefly explain why we
think that this question must be answered in the negative.

When one characterizes the gravitational feld by a scalar, a path presents itself
that is completely analogous with that which we followed in the foregoing. One sets
up the equation of motion of the material point in Hamiltonian form

5{ [®as} = 0,
where ds is the four-dimensional line element from the ordinary theory of relativity

and O is a scalar, and then proceeds wholly by analogy with the foregoing, without
having to give up the ordinary theory of relativity.

{41}

[42]
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Here, too, the material process of an arbitrary kind is characterized by a stress-
energy tensor Tuv. But with this conception it is a scalar that determines the
interaction between the gravitational field and the material process. As Mr. Laue
pointed out to me, this scalar can only be

2 T=
m

which I will call the “Laue scalar.”!” Here too one can then do justice to the law of
the equivalence of inertial and gravitational mass up to a certain degree. For Mr.
Laue drew my attention to the fact that for a closed system

[Pav = [T,dr.

From this, one can see that according to this conception too the gravity of a closed
system is determined by its total energy. _

But the gravity of systems that are not closed would depend on the orthogonal
stresses T, etc. to which the system is subjected. This leads to consequences that
seem to me unacceptable, as shall be demonstrated with the example of cavity
radiation.

As we know, for radiation in a vacuum, the scalar P vanishes. If the radiation
is enclosed in a massless reflecting box, then its walls experience tensile stresses, as
the result of which the system—taken as a whole—possesses a gravitational mass

f Pdr comresponding to the energy E of the radiation.

i v S But instead of enclosing the radiation in a hollow box, I now
| W‘ imagine that it is bounded
; | 1. by the reflecting walls of a firmly fixed shaft S,
g 2. by two reflecting walls W, and W, that can be displaced
' vertically and that are rigidly tied to each other by a rod.
W, In that case, the gravitational mass f Pdr of the movable
system amounts only to one-third of the value obtained in the

case of a box moving as a whole. Thus, in order to lift the

- radiation against a gravitational field, one would have to apply only one-third of the

work that one would have to apply in the previously considered case of the radiation
enclosed in a box. This seems unacceptable to me.

Of course, I must admit that, for me, the most effective argument for the rejection
of such a theory rests on the conviction that relativity holds not only with respect to

17Cf. Part T, §1, last formula.
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orthogonal linear substitutions but also with respect to a much wider group of
substitutions. But already the mere fact that we were not able to find the (most
general) group of substitutions associated with our gravitational equations makes it
unjustifiable for us to press this argument.



{47]
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I

Mathematical Part
by Marcel Grossman

The mathematical tools for developing the vector analysis of a gravitational field,
which is characterized by the invariance of the line element

ds? = Zg“vdxﬂdxv,
uv

derive from Christoffel’s fundamental paper on the transformation of quadratic
differential forms.! Taking Christoffel’s results as their starting point, Ricci and Levi-
Civiti* developed their methods of the absolute differential calculus—ie., a
differential calculus that is independent of the coordinate system—which permit our
giving an invariant form to the differential equations of mathematical physics. But

since the vector amalysis of a Euclidean space referred to arbitrary curvilinear -

coordinates is formally identical with the vector analysis of an arbitrary manifold
specified by its line element, the extension of the vector-analytical conceptions that
Minkowski, Sommerfeld, Laue, et al. worked out for the theory of relativity in recent
years to the general theory of Einstein’s expounded above does not present any
difficulty.

With some practice, the general vector analysis obtained in this way is as simple
to handle as the special vector analysis of three- or four-dimensional Euclidean space;
in fact, the greater generality of its conceptions lends it a clarity that is lacking often
enough in the special case.

.. The theory of special tensors (§3) has been treated to the full in a paper by
Kottler,? published while this work was in progress; the treatment is based on the
theory of integral forms, something that is not possible in the general case.

Since more detailed mathematical investigations will have to be done in -

connection with Einstein’s theory of gravitation, and especially in connection with the
problem of the differential equations of the gravitational field, a systematic
presentation of the general vector analysis might be in order. I have purposely not
employed geometrical aids because, in my opinion, they contribute very little to an
intuitive understanding of the conceptions of vector analysis.

IChristoffel, “Uber die Transformation der homogenen Differentialausdriicke zweiten
Grades,” J. £ Math. 70 (1869): 46.

2Ricci et Levi-Civita, “Méthodes de calcul différentiel absolu et leurs application.”
Math. Ann. 54 (1901): 125.

3Kottler, “Uber die Raumzeitlinien der Minkowskischen Welt.” Wien. Ber. 121 (1912).
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i =18.._@.+V’<}.
Ta-Xﬂﬁg.,,‘@,‘ ,,%@axv‘@ 8o O,) S 8, gm{p ®,k|.

But the last term of this sum is equal to
k o )
2o, - piffe - )

Flo i~ 2\ox, ox, ox, e

Hence, we end up with

_v.1. 090 ~. _ 1 %,

i.e., the left side of the investigated equation, up to the factor i Thus, if that
Vg
equation is divided by g, then its left side represents the o-component of a
covariant vector, and is, therefore, in fact, covariant. For that reason, the content of
those four equations can also be expressed thus:
The divergence of the (contravariant) stress-energy tensor of the material flow
or of the physical process vanishes.

2. Differential Tensors of a Manifold Given by Its Line Element

The problem of constructing the differential equations of a gravifational field (Part
1, §5) draws one’s attention to the differential invariants and differential covariants
of the quadratic-differential form - -

ds? = ngdx“dxv.
v

In the sense of our general vector analysis, the theory of these differential
covariants leads to the differential tensors that are given with a gravitational field.
The complete system of these differential tensors (with respect to arbitrary
transformations) goes back to a covariant differential tensor of fourth rank found by
Riemann'? and, independently of him, by Christoffel,’> which we shall call the
Riemann differential tensor, and which reads as follows:

1{ Pgm . Pay 8 P

2\ox,0x,  Ox0x, ox0x,  O%0x,

(43) Ry, = (k,m) =

RRiemann, Ges. Werke, p. 270.
BChristoffel, L.c., p. 54.
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{71 Ll7 )

By means of covariant algebraic and differential operations we obtain the
complete system of differential tensors (thus also the differential invariants) of the
manifold from the Riemann differential tensor and the discriminant tensor (§3,
formula 38).

The (ik, Im) are also called the Christoffel four-index symbols of the first kind.
In addition to these, of importance are also the four-index symbols of the second kind

im
p

o e Sty

k k

X m axl [

p
which are related to the former in the following way:
{ip, Im} = Yy, (ik, Im), or, when solved,
k

(45)
(ik, Im) = 3" g, {ip, Im}.
P

In general vector analysis, the four-index symbols of the second kind take on the
meaning of the components of a mixed tensor that is covariant of third rank and
contravariant of first rank.'4

The extraordinary importance of these conceptions for the differential geomerry'>
of a manifold that is given by its line element makes it a priori probable that these
general differential tensors may also be of importance for the problem of the
differential equations of a gravitational field. To begin with, it is, in fact, possible
to specify a covariant differential tensor of second rank and second order G,, that
could enter into those equations, namely,

. (46) G = Y Yy (ik, Im) = ¥ {ik, km}.
K k

It tums out, however, that in the special case of the infinitely weak, static
gravitational field this tensor does rot reduce to the expression A@. We must
therefore leave open the question to what extent the general theory of the differential
tensors associated with a gravitational field is connected with the problem of the

This follows from the first of equations 45.
5The identical vanishing of the tensor Ry, constitutes a necessary and sufficient

condition for the differential form's being transformable to the form E dx,-z.
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gravitational equations. Such a connection would have to exist insofar as the
gravitational equations are to permit arbitrary substitutions; but in that case, it seems
that it would be impossible to find second-order differential equations. On the other
hand, if it were established that the gravitational equations permit only a particular
group of transformations, then it would be understandable if one could not manage
with the differential tensors yielded by the general theory. As has been explained in
the physical part, we are not able to take a stand on these questions.—

3. On the Derivation of the Gravitational Equations

The derivation of the gravitational equations described by Einstein (Part I, §5) is
carried out step by step in the following way:
We start out from the term that is definitely to be expected in the energy balance,

dg oy
@ U=y P (\/' ﬂv)
aﬂp.\' a a IXB B
and reformulate it by integrating by parts 16 In this way we obtain
dy,, og dy,, o
U= pv “ouv | _ w . Suv
%;v axa(‘/—Y“BBB ox ] aﬁz,;v"/g“ﬂaxﬂ 0x,0x,
The first sum on the right-hand side has the desired form of a sum of differential
quotients and shall be denoted by A, so that we have

%) 0Y,, g

48 A= — — A L
( ) o o a% ax“(@YQﬁ A Ox

We once again integrate by parts in the second sum on the right-hand side. The
identity will then take the form

dy,, og 98, 9 oy
U=4 - w28 —ow . Y y BV
a;,,v ao(“— Yas 73 ax,,] ,; %, ox, V8 Yep o1,

The first of the sums obtained on the right-hand side can be written as a sum of

differentials and shall be denoted by

i
@) B2 % [‘F Yot on, aim]

afuv a
We differentiate in the second sum. Then we get

16 The derivation of the identity we are seeking becomes simpler, without affecting the
result, if we put the factor /g inside the differentiation sign.
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