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Simple idealizedmodels seem to provide more understanding than opaque, complex, and hyper-
realistic models. However, an increasing number of scientists are going in the opposite direction
by utilizing opaque machine learning models to make predictions and draw inferences, suggest-
ing that scientists are opting for models that have less potential for understanding. Are scientists
trading understanding for some other epistemic or pragmatic good when they choose a machine
learningmodel?Or are the assumptions behindwhyminimalmodels provide understandingmis-
guided? In this article, using the case of deep neural networks, I argue that it is not the complexity
or black box nature of a model that limits howmuch understanding the model provides. Instead,
it is a lack of scientific and empirical evidence supporting the link that connects a model to the
target phenomenon that primarily prohibits understanding.
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1. Understanding from Minimal and Complex Models

A common view in philosophyof science is that simple idealizedmodels providemore

understanding than complex or hyper-realistic models (Bokulich [2008]; Strevens

[2008]; Kuorikoski and Ylikoski [2015]). Simpler models are easier to understand.

Simpler models are more tractable. Simpler models seem to answer more what-if

or w-questions, and do a better job at highlighting salient difference-makers. More-

over, understanding how a model works seems necessary to understand the phenom-

enon that model seeks to capture.

However, as philosophers are gaining better insight into minimal models, an in-

creasing number of scientists are going in the opposite direction by utilizing deep neu-

ral net (DNN) machine learning algorithms using large data corpuses to create clas-

sifications, make predictions, and draw inferences. One example is the deep patient

model (Miotto et al. [2016]). This model takes as inputs large amounts of patient

medical data and gives as an output a generalizable patient representation that can

be used to predict future medical problems. The model provides surprising results.
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It is able to predict a wide array ofmedical problems, such as schizophrenia, attention-

deficit disorder, and severe diabetes, with a higher degree of accuracy than competing

predictive models. However, with this increased accuracy comes increased opacity.

If we begin from the lessons learned from philosophical work on understanding

andminimalmodels, it appears that scientists are curiously opting formodels that have

less potential to increase understanding. DNNs are opaque to modellers, they are in-

creasingly complex and have less modeller control, and the amount of w-questions

they address are seemingly limited. Are scientists trading understanding for some

other epistemic or pragmatic good when they choose an opaque and complex ma-

chine learning model? Or are the assumptions behind why minimal models provide

understanding misguided? In this article, I argue that model simplicity and transpar-

ency are not needed for understanding phenomena. It is not simply the complexity or

opaqueness of DNN models that limits how much understanding they provide. In-

stead, it is the level of ‘link uncertainty’ present—that is, the extent to which themodel

fails to be empirically supported and adequately linked to the target phenomena—that

prohibits understanding.

To make my argument, I first consider a simple model to illustrate how models

can explain and provide understanding (Section 2) before looking to cases of DNN

models (Sections 4 and 5). I clarify the roles that algorithms play in explaining phe-

nomena and the importance of explanatory questions for understanding (Section 2). I

argue that the principle way that algorithms are back-boxed is by obscuring imple-

mentation at various levels (Section 3). I then argue that it is not the presence of im-

plementation black boxes that prohibits understanding. Instead, it is the level of link

uncertainty present that prohibits understanding (Section 5). In the end, understand-

ing phenomena is not directly dependent on model simplicity and transparency. It

is high levels of link uncertainty that undermines understanding phenomena from

opaque models.
2. Algorithms, Explanatory Questions, and Understanding

The use of algorithms in scientific inquiry is not new. An algorithm is simply a series

of steps or set of rules that carries out an action or solves a problem. Any model that

utilizes a simulation employs an algorithm. Algorithms on their own are not explana-

tions. It is only when algorithmic models are used to answer a question about some

event or phenomenon that they explain. Some examples: How is it possible that the

eye evolved in so many diverse systems? Why is segregation so prevalent? Or what

effect does carbon dioxide have on current and future weather patterns? Other distin-

guishing features of explanation (causal, counter-factual, law-covering, and so on)

are still widely discussed. As a starting point, I will adopt the increasingly common

view that explanation aims at understanding (Strevens [2008]; Grimm [2010];

Potochnik [2011], [2015]; De Regt [2017]; Khalifa [2017]). In a slogan: explaining

why helps us to understand why.
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The exact relationship between understanding and explanation is still the subject of

widespread disagreement. Some question whether explanation is necessary or suffi-

cient for understanding. It may be that one can gain understandingwithout explanation

(Lipton [2009]), or it may be that in addition to explanation, agents need to meet other

epistemic conditions to understand (Grimm [2014]; Hills [2016]; Lawler [2018]; Sul-

livan [2018]). I set these issues aside. The central issue in this article is whether expla-

nations that utilize complex and opaquemodels are unable to provide understanding of

phenomena in virtue of the fact that the model itself is not well understood or back-

boxed.1 My arguments do not so much trade on any positive notion of what under-

standing or explanation is, but on whether, given a lack of information, it is still pos-

sible to gain insight about a phenomenon. I am concerned with what Humphreys

([2004], [2009]) calls ‘epistemic opacity’: the extent to which the process of the model

and its derived output are inaccessible to scientists and modellers.2

Before considering the complex case of DNNs, it is worthwhile to first consider

a simple case to illustrate the way that models explain and provide understanding

of phenomenon.

Thomas Schelling was interested in understanding why so many human popula-

tions are segregated. He created amodel that aims to simulate a neighbourhoodwhere

individuals act on simple preferences in order to see the conditions under which seg-

regation occurs (Schelling [1971]). Schelling’s checkerboard model has been dis-

cussed extensively in philosophy (Grüne-Yanoff [2009]; Mäki [2009]; Rohwer and

Rice [2013]) and in the social sciences (Clark [1991], [1992]; Bobo and Zubrinsky

[1996]). The model is simple. It is a simulation that consists of a grid with two types

of actors, A and B, where both types act on one simple preference—that at least 30%

of their neighbours are the same type. The simulation follows a simple algorithm: if

more than 70% of the actors adjacent to a particular actor are of a different kind, move

that actor to the closest unoccupied space. Repeat until no actors move. The equilib-

rium result, after several iterations, is a segregated board.

There are several possible explanatory questions that one could ask of this model,

and depending on the question, a different explanation is called for. First, one could

ask how the simulation works. To answer this question, one needs to know the details

of the algorithm including expected input and output. The basic algorithm is so sim-

ple that Schelling originally designed this simulation not using a computer, but with

two different types of coins on a checkerboard. Since then, the model has been im-

plemented on computational systems in many different ways and at varying levels

of complexity (Muldoon et al. [2012]). Questions about how the model or algorithm
1 The use of explanation in machine learning often corresponds to justification, such as explaining how a
model operates in order to justify a decision. In this article, I am using explanation in a broader sense, in
terms of explaining a target phenomenon. Models are part of explanations that are answers to questions
that enable understanding of the target phenomenon.

2 The type of opacity I am concerned with is close to Burrell’s ([2016]) use of opacity in regards to the way
algorithms ‘operate at the scale of application’.
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itself works takes our focus away from the phenomenon it bears on. There is a distinc-

tion between understanding and explaining how themodelworks and using thatmodel

to understand a phenomenon of interest. If one is chiefly concerned about explaining

or understanding how a given model is implemented, it is not necessary to know how

the model maps on to some real-world phenomenon. The question of this article, on

the other hand, is to what extent understanding the model is necessary for gaining un-

derstanding of the phenomenon that the model explains.

Schelling himself was interested in explaining phenomena with his model. He

asked whether it is possible that segregation could occur based on individual prefer-

ences alone without institutional racism, thus going beyond the algorithm and toward

understanding possibilities surrounding a real-world phenomenon. In order to explain

how it is possible segregation could occur, the explanation must include how the al-

gorithmicmodel simulates a possible population that could be affected by segregation

by identifying the key mechanism behind the algorithm and how it maps onto a pos-

sible population. In this case, the coins represent people of different races. The empty

spaces represent move-in ready houses. The catalyst for moving is a preference of

nearest-neighbours being the same race. This mapping allows us to interpret the re-

sults of the simulation as identifying a possible causal mechanism of segregation. Ex-

plaining segregation in this fashion is an example of what philosophers of science

have recently called a how-possibly explanation (Rohwer and Rice [2013]; Reutlinger

et al. [2017]). The model is used to explain how it is possible that a neighbourhood

could become segregated through a possible causal mechanism. From this explana-

tion, we are able to gain understanding of the possible mechanisms that could operate

in real-world populations because it isolates key possible causal mechanisms.

However, how-possibly explanations stop short of answering how-actually ques-

tions or why-questions about actual real-world populations (Sullivan and Khalifa

[2019]; van Riel [2015]). If we want to explain and understand why so many real-

world populations are segregated, or why a particular population is segregated, we

need to go beyond mere possibilities. The explanation employing Schelling’s model

must include details about how the algorithm simulates a real population, that is, how

the key features of the algorithm map on to real-world populations. Furthermore, the

explanation needs to include empirical justification of the claim that individual racial

preferences is a salient mechanism that drives real world population moving patterns

(Mäki [2009]; Sullivan and Khalifa [2019]).

Without empirical evidence validating that the possible causes identified by Shell-

ing’s model are actual causes, there is no link connecting the model to the phenome-

non. There is a high level of ‘link uncertainty’, that is, a lack of scientific and empirical

evidence supporting the link that connects the model to the target phenomenon. At the

time Schelling’s model was introduced, it failed to explain or enable understanding

due to the fact that there was no empirical evidence connecting personal preferences

to the causes of actual segregation in real-world populations. It wasn’t until many years

after Schelling’s model was introduced that it was tested empirically, providing some
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limited evidence that individual preferences are an actual cause of segregation, not

merely a possible cause (Clark [1991], [1992]). Indeed, if we suppose instead that

the empirical evidence suggested that all segregation is the result of institutional racism

or individual racial prejudice, so that Schelling’s mechanisms for segregation were

never realized in any real-world system, then we would have no reason to think that

Schelling’s model uncovers any actual causes of segregation, and thus would not be

able to explain segregation or enable any real understanding. Thus, Schelling’s model

only provides understanding in so far as there is there is a link connecting the model to

the phenomenon.

The way of establishing the necessary link is with additional scientific evidence that

supports the connection between the causes or dependencies that the model uncovers

to those causes or dependencies operating in the target phenomenon.What constitutes

the amount and kind of scientific evidence needed to reduce link uncertainty will differ

depending on the phenomenon and the model. In the case of Schelling’s model, link

uncertainty is inversely related to the amount and quality of empirical evidence con-

necting individual preferences to causes of segregation and a lack of evidence that sug-

gests a different overriding causal factor. Importantly, establishing the necessary link

connecting the phenomenon to the model does not thereby replace the need for or the

epistemic value of the model. The model still explains even once the link between the

model and the phenomenon is no longer uncertain. Schelling’s model could still pro-

vide insight into why a population that has the preferences required for the affect to

take place is likely to become segregated. In fact, it is precisely when the link uncer-

tainty is removed that the model is able to explain and provide understanding.

I’ll return to the notion of link uncertainty later. For now, the important takeaway is

that when we consider DNNmodels and how their opacity may prevent understand-

ing of phenomena, we cannot consider themodel in isolation. The focus should not be

unduly placed on how themodel works, but instead consider the explanatory question

we ask of the model, the role that the algorithm ormodel plays in the explanation, and

the amount, quality, and kind of scientific evidence needed in order to connect the

model to the target phenomenon. We now turn to considering model opacity and the

impact black boxes have on understanding.
3. Black Boxes

Black box explanations are also commonplace in scientific inquiry. Many explana-

tions in various domains obscure low level details to explain higher-level causalmech-

anisms or non-causal dependencies. Examples include explanations of universality in

physics and explanations of convergent evolution, among others (Batterman and Rice

[2014]). One can gain understanding of these phenomena without knowing all the de-

tails. A special problem seems to emerge with DNNmodels because the opacity goes

beyond simply back-boxing low-level or irrelevant details. Engineers ormodellers that

design DNN models themselves do not fully know how the model determines the
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output. If themodeller cannot explain how theDNNalgorithmworks, then how can it

be used to explain or understand some phenomenon? In this section, I clarify that the

black box at issue here is one of implementation. I discuss varying levels of imple-

mentation black boxes and the potential impact they have on explaining and under-

standing phenomena.
3.1. Implementation black boxes

One way algorithmic models can be back-boxed is that some level of detail regarding

how the model is implemented is obscured. A modeller may know the broad outline

of the algorithm’s structure without knowing how each step is exactly implemented.

In such a case, there is a black box around implementation; the implementation is

either unknown or illegible to the modeller, the explainer, or the understander.

Consider a simple example of computing factorials. There are different ways one

could implement factorials in a computer system. Two basic methods are an iterative

process and a recursive process. Using the language scheme, each process can be ex-

pressed as shown in Figure 1 (Abelson et al. 1996, pp. 32–4).

Not only is each method syntactically different, but semantically and operationally

different under the hood as well (see Figure 2; also Abelson et al. [1996], pp. 32–4).

Thus, the exact implementation makes a difference to how the simulation and the

computer system operate. However, in many cases it is not important to know exactly

how a simulation or computer system is implemented, as long as the inputs and out-

puts remain the same. If a climate model involves computing factorials, it is unnec-

essary for the modeller to know, or make explicit in explaining climate patterns, how

exactly the factorials were implemented. Details regarding the implementation are un-

necessary for explaining and understanding why a particular climate pattern emerged.

The irrelevance of implementation goes beyond simple computations. Implemen-

tation black boxes are present and similarly irrelevant to understanding the causes of

segregation using Schelling’s checkerboard model. There are countless implementa-

tions of Schelling’s model that follow the same basic higher-level algorithm regard-

ing satisfying neighbourhood preferences. In order to gain understanding of possi-

ble mechanisms of segregation, or actual mechanisms of segregation, one does not

need to know whether Schelling’s model was implemented using a functional, object-

oriented, or actor-based language, even though these implementation differences
Figure 1. Code examples of a recursive and iterative process for computing factorials.
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make a difference to how the computer system operates and executes the algorithm.

More drastically, in Schelling’s case one does not even need to know whether the

model was implemented on a computer system at all or whether it was implemented

on a checkerboard, chessboard or a Go board in order to explain or understand seg-

regation using the model. Thus, implementation back-boxing in itself does not un-

dermine our ability to explain or understand phenomena.

Of course, there are cases where the implementation matters. As argued above, the

question and phenomenon of interest determine the scope of the explanation and level

of detail necessary for success. If the low-level implementation details made a differ-

ence to the high level results of Schelling’s model, then the implementation would

matter for explaining and understanding segregation. However, as it so happens,

these details do not make a difference. On the other hand, if the explanatory question

concerns implementation or why building a model in a particular way is preferable,

then knowledge of the implementation is needed. In the factorial case, one may

choose the iterative process if it is necessary to be able to track the state of the system

at any point in the process, something that is not possible with a recursive implemen-

tation. So while it is possible for implementation black boxes to impede understand-

ing, they are not in principle problematic for explaining or understanding phenomena.
3.2. Levels of implementation black boxes

Implementation black boxes can occur at varying levels, especially in an algorithmic

model. Each step in an algorithm can often be broken down into further sub-steps.

We can talk about the algorithm for the whole task, say the algorithm for computing

factorials, or the algorithm for each of its sub-steps, the sub-steps of its sub-steps, and

so on. In the iterative process for computer factorials (Figure 1), the first sub-step is

fact-iter. Fact-iter has further sub-steps, such as computing multiplication and addi-

tion. In the iterative code example in Figure 1, the fact-iter algorithm is not back-

boxed, but the multiplication and addition algorithms are. One of the goals in design-

ing computer systems is to build modular systems. That way, a division of labour
Figure 2. (a) Recursive process for computing 7! (b) Iterative process for computer 7!.
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among engineers working on varying levels of the system can take place without

each person needing to know how each of the sub-steps (lower-level algorithms)

are implemented.

While some levels of implementation black boxes do not get in the way of under-

standing, there do seem to be other instances of implementation black boxes that

might pose a problem. For some algorithms, not all sub-steps are fixed or comprehen-

sible to the modeller. It can be that in the course of running the simulation, some as-

pect of the algorithm itself changes or updates. In this case, there is less modeller con-

trol since the system is in an evolving state. Being in the dark about how the algorithm

changes or is impacted through the execution of the simulation is just another instance

of an implementation black box: there is something about the implementation of a

higher-level algorithm that is obscured.

Applying this to Schelling’s model, we see that it utilizes these more mid-level im-

plementation black boxes. The coins occupying the squares are moving around

the board and continuously fed back into the program to determine which coin will

move next. There is an updating algorithm that is back-boxed. Each time the simula-

tion runs with different initial conditions, the ordering of movements, and which coins

move, differs. The resulting segregated pattern is not known to the modeller before-

hand because of the underlying complexity of the model. Despite this, the high-level

algorithm stays intact: an iteration of coin movements until at least 30% of neighbours

are of the same type. The result of the algorithm—a segregated board—also stays the

same. In order to gain understanding of segregation using Schelling’s model, you do

not need to peer inside and see the implementation here. We have the same level of

understanding of the mechanisms of segregation whether or not the implementation

black box is removed. The explanation does not rely on the specific movements of,

say, coin-267, but on the macrolevel emergence of a segregated pattern. This is true

even if the algorithm is indeterminate, such that it is not even possible in theory to predict

the resulting segregated pattern because the algorithm involves random choice of which

actors tomove next. Instead, as argued above, it is the link connecting Schelling’smodel

to the phenomenon of segregation that would provide understanding. It is not imple-

mentation back-boxing that gets in the way of understanding, it is link uncertainty.

That said, what if there is nothing about the algorithm that is known? What if

we have the highest-level of implementation back-boxing? This occurs when all

the details of the algorithm are obscured—only the inputs and outputs are known.

In cases where there is only a mapping of inputs to outputs, there is a strong intuition

that the possibility for explanation and understanding is quite limited. Consider hypo-

thetically that if all we knew of Schelling’s model is that it takes in a board with two

different coloured dots dispersed randomly as an input and gives back dots clustered

into segregated patterns as output; it is hard to see how this can be used to explain seg-

regation based on individual preferences, or anything for that matter. Similarly, if a

black box computes factorials and we know nothing about what factorials are, then

our understanding is quite limited. However, if we already know what factorials



Understanding from Machine Learning Models 117
are, then this highest-level black box, for factorials, turns into a simple implementa-

tion black box that is compatible with understanding. This suggests that the level of

the black box, which is coupledwith our background knowledge of themodel and the

phenomenon the model bears on, matters for understanding, in addition to the type of

explanatory question asked and the amount of link uncertainty present. Thus, when

we look to cases of DNNmodels, we need to askwhether we have the highest level of

implementation back-boxing, which is the question we turn to next.
4. The Black Boxes of Deep Neural Networks

Consider the deep patient DNNmodel designed by researchers atMount Sinai (Miotto

et al. [2016]). Themodel builds a generalizable abstract patient representation that can

inform clinical decision making. The model takes as input electronic medical records

represented numerically and gives as output the deep patient representation. In theory,

themodel can be part of a process used for several different tasks including identifying

patients for clinical trials, detecting similarity between patients, and predicting disease.

The researchers’ first focus has been on disease prediction, aiming to show that DNN

models can be applicable to a wide range of disease detection problems instead of be-

ing optimized for one specific disease, such as melanoma (discussed below). Down

the line, researchers hope to build on this model to aid doctors in devising treatment

recommendations. The model was trained on over 700,000 patients, with a subset of

76,214 patients analysed for disease prediction. Each of the patients in the subset had

at least ten records between 1980–2013 and at least one new medical diagnosis in

2014. Themodel tested each patient against seventy-eight different medical problems

ranging from severe diabetes and particular cancers to schizophrenia. Interestingly,

themodelwas able to increase predictive accuracy (the proportion of true results, both

true positives and true negatives, among the total number of examined cases) by 15%.

The deep patient model is quite impressive, especially given its high accuracy for

predicting medical problems like schizophrenia, which can be difficult for physicians

to predict. However, themodel is largely opaque. One of themodellers of deep patient,

Joel Dudley, expressed the point as follows: ‘we can build these models, but we don’t

know how they work’ (Knight [2017]). Is it possible to gain understanding from the

model despite its opacity? As I have been arguing, in order to consider how opacity

limits understanding, we need to isolate the explanatory question of interest, the level

of link uncertainty present, and determine the depth of the black boxes in the deep pa-

tient model, and in DNN models more generally. In what follows, I first consider the

latter and then return to explanatory questions and link uncertainty in Section 5.
4.1. Deep neural network structure

LeCun et al. ([2015], p. 438) define deep-learning architectures broadly as ‘a multi-

layer stack of simplemodules, all (ormost) of which are subject to learning, andmany
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of which compute non-linear input–output mappings’. The basic multilayer structure

of deep neural networks, including the deep patient model, is shown in Figure 3. There

are many different types of DNN models, such as convolutional neural networks

(CNN), recurrent neural networks (RNN), andmultilayer perceptrons (MLP). The ex-

act structure and implementation of each type of DNN varies.3 However, the nuances

of these different techniques do not impact the larger argument concerning opacity

and understanding; thus, the following discussion is a simplified overview of DNNs,

which, in particular, highlights fully connected layers.4 DNNmodels are inspired by

their namesake of neural networks in the brain; however, machine learning research-

ers are not aiming to model or simulate how a human brain works when building the

types of models discussed in this article.5

DNN models consist of an input layer, one or even hundreds of hidden layers

(making the neural net deep), and an output layer. The edges that point from the

nodes of the input layer to the nodes in the first hidden layer represent weights as-

signed to each piece of input data. The nodes of the hidden layer represent an ‘ac-

tivation function’, that is, a non-linear function that takes as input the value of each

of the previous nodes with its associated edge weight (and sometimes a bias value).

The activation function that is often used is sigmoid, but modellers may choose other

non-linear functions such as the hyperbolic tangent function or rectified linear units.

The output of the activation function then serves as the new node input value for the

next hidden layer (Figure 4). The process repeats for each node in each layer, and for

each edge connecting each node in each layer, until it reaches the output layer and

delivers the final output. A DNN with hundreds of hidden layers could have hun-

dreds of millions of connections and adjustable weights. The activation functions,

the number of layers, the input data (and how it is represented), and the number

of nodes in each layer are all determined by the modeller.

DNNs are designed to learn which weights should be assigned to each feature in

order to maximize predictive power and identify patterns in data that are not easily

detectible by humans. While this is quite abstract, it has an intuitive basis. When a

physician diagnoses someone with a particular disease, there are several data points
3 For an accessible overview of different DNN techniques and methods, see (LeCun et al. [2015]; Guo
et al. [2016]). Generally speaking, recurrent neural networks (RNN) are ideal when data is sequentially
ordered, as is the case with natural language or in time series. Convolutional neural networks (CNN), on
the other hand, are often used when data has a clear spatial structure, as is the case with image classifiers
(Shickel et al. [2018]).

4 Different DNN architectures can include different types of layers that play different roles. For example,
CNNs consists of the type of fully connected layers described in the main text, while also first made up of
convolution layers that create feature maps using local connectivity followed by pooling layers that re-
duce the dimensions of the feature maps (Guo et al. [2016]; Shickel et al. [2018]).

5 See (Goodfellow et al. [2016], Chapter 1) for a discussion on how DNNs used in computer science are
inspired by the brain and the limits of this analogy. For a philosophical treatment of these limits, see
(Bailer-Jones and Bailer-Jones [2002]). Alternatively, the field of computational neuroscience does seek
to model the brain and draw inferences using DNNs (Glorot et al. [2011]). See (Buckner [2018]) for a
philosophical argument that DNNs (CNNs in particular) capture processes of the brain. Since this article
is not about brain processing explanations in computational neuroscience, I leave these latter consider-
ations aside.
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that the physician considers and weighs differently. For example, the age of the pa-

tient is no doubt relevant, but presumably less relevant than a known bloodmarker for

the disease. So, just as the physician weighs these pieces of information differently

when making a determination, DNNs tease out the relevant features from the irrele-

vant for the task at hand. The exact representational relationship between the layers,

and the exact functioning of the DNN, will differ depending on the phenomena mod-

elled, type of DNN, and the choice of activation and learning functions. For example,

in a standard image classifier, the first layer analyses the picture in the form of indi-

vidual pixels, with numerical values representing the hue, saturation, and more. The

next layer isolates a collection of pixels that start to pick out higher-level arrange-

ments, such as lines or edges. Each resulting layer gradually picks out higher and

higher-level abstractions until it reaches a classification of the image. In the deep pa-

tient model, the input data consists of electronic medical records of patients, each of

which was pre-processed to identify clinically relevant phenotypes, and normalized

to lie between zero and one. The output of the model provides a more abstract patient

representation where only the most important derived dimensions remain.6
Figure 3. Standard deep neural network structure.
6 Some have compared DNN procedures to other coarse-graining abstraction procedures in physics, such
as renormalization group methods (Mehta and Schwab [unpublished]); see also the information bottle-
neck method and its application to DNNs (Tishby et al. [1999]; Tishby and Zaslavsky [2015]). Despite
the differences in the way that neural nets analyse data, they all seek to tease out what is relevant from the
irrelevant for the task at hand.
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4.2. Deep neural network modelling process

The process of creating a DNN model starts with a training and learning phase, fol-

lowed by validation and testing. Training, testing and validation are part of the mod-

elling process that results in a model that can be applied to novel cases with success.

A fundamental statistical assumption behind this procedure is the inductive learning

hypothesis: that if amodel fits well over a sufficiently large set of training examples, it

will also fit well over other unobserved or new examples.7 It is in the training phase

that the machine learns and makes adjustments to the weights of each connection

throughout the network.8 The way in which the model ‘learns’which weights are op-

timal and corrects for error is through the backpropagation process, also determined

by the modeller. This involves correcting for errors, often using stochastic gradient
Figure 4. Computing the value of a single node in the subsequent layer.
7 In machine learning, the word ‘hypothesis’ is often used interchangeably with ‘model’. A hypothesis is a
function described by the set of weights that is presumed to capture the phenomenon. The ‘target func-
tion’ is the function that will truly capture the phenomenon. Often the target function is an ideal that is not
reachable; the goal is to settle on a hypothesis that is as close to the ideal target function as possible (see
Mitchell [1997]).

8 In more complex DNN models, a bias parameter is also included in the weighted sum and can be mod-
ified through the learning process.
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descent, to get the desired results. For example, in the case of a supervised learning

image classifier, training data is labelled with the correct value, and themachine works

through the backpropagation process to reduce error and settle on a set of weights that

best captures the phenomenon.

After the model is trained, validation and testing are required to ensure the model

is generalizable. The modeller determines what regularization methods to employ in

order to avoid overfitting the data. For example, one regularization technique called

dropout randomly omits a certain number of weights or activations (edges or nodes).

The thought is that such a method can control against the model learning any odd

particularities of the training data that would prevent generalizability (Baldi and

Sadowski [2013]; Wan et al. [2013]). The modeller then tests the accuracy of the

model with data different from the training phase. If all goes well, then the modeller

has a model that is able to generalize over the intended use cases. Importantly, model-

lers are notworking completely in the dark. They rely on fundamental statistical assump-

tions and theories to ensure that the resulting model is generalizable.9 Depending on the

size and type of dataset, different statistical guidelines are utilized. For example, testing

and training data should have a similar distribution to ensure statistical validity.10

The result of the modelling process produces a DNN model that follows its own

algorithm that it learned through the modelling process. The modelling process is

what determines the set of steps or rules that the resulting model will follow with

any new input data it receives.
4.3. Levels of deep neural network black boxes

As argued in Section 3, the level of the black box plays a central role in determining

how much understanding is possible. Is the level of back-boxing of DNNs problem-

atic for understanding? It should be clear from the above discussion that DNNs are

not back-boxed at the highest level either during the modelling process, or in the re-

sulting model.

First, the modelling process of DNNs involve basic implementation back-boxing.

Themodeller is often workingwith higher-level function calls where the exact imple-

mentation is unknown. For example, the modeller does not know how the sigmoid or

gradient descent function is implemented, and would simply make a function call,

like ‘sig(. . .)’ when using the functionality to implement the activation functions

for the nodes in each hidden layer. As argued above, this type of implementation

back-boxing does not hinder understanding phenomena. However, the implementa-

tion black boxes are deeper still. As the computer learns different weights for each

data point, the output from each layer changes and serves as a new input for the next

layer throughout the execution of the program. The modeller cannot predict which
9 See (Cristianini [2010]) for a discussion on the history and use of statistical methods in machine learning.
10 For a discussion of statistical guidelines, see (Mitchell [1997], especially Chapter 5).
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data points will be most salient, nor can the modeller interpret the ways in which the

machine settled on certain weights for certain pieces of data given the complexity and

high number of data points. The implementation back-boxing is increased when reg-

ularization methods like dropout are applied. The modeller does not even know

which weights or activations will be deployed in a given iteration. Thus, the modeller

does not have direct control over assigning weights to specific data points. In fact,

usually the process starts with randomly assigned weights, with the system making

changes through various iterations. However, the modeller relies on a wealth of

knowledge and research about what methods to follow to build a generalizable model

for the task at hand. So, while the modeller does not have direct control over the mod-

elling process, a contrast case with Schelling’s model, still the process is not back-

boxed at the highest level, such that it would prevent understanding of the phenom-

enon the resulting model aims to capture.

Once the model is trained, the modeller still has a general idea of how the finalized

model works in virtue of having knowledge about how the model was trained and

validated. However, it is only through indirect means that the modeller can investi-

gate whether the model is picking up on what seems to be the most relevant features

for the task at hand. For example, in an image classifier the modeller can deploy sa-

liency maps where the model highlights certain areas of the image that was found to

be the most relevant for its calculation. This goes a long way in determining the suit-

ability of the model. Consider that there can be cases where the model focuses on as-

pects of the image that are clear proxies and not real difference makers, such as the

time of day for a tank classifier, or the snowy background for a dog versus wolf clas-

sifier (Ribeiro et al. [2016]). Saliency maps can help us identify cases like this and

rule the model unsuitable. Indirect methods like saliency maps still consist only of

general approximations, not detailed assessments, with several low-level and mid-

level dependencies remaining obscured. However, different types of saliency testing

are enough to satisfy our need to know the high level details of how the model works

to open the door to understanding the phenomenon the model bears on.

Putting all this together, when Dudley says ‘we can build these models, but we

don’t know how they work’, he is saying that, on the one hand, we know enough

about themodelling process (the higher-level algorithms that train and create the deep

patient model) such that one can build a model—and make intelligent changes to

improve output and prediction. On the other hand, the fact that there still remains

low-level ‘reasoning’ and implementation black boxes in the resulting deep patient

model—even after indirect saliency testing—undermines understanding. Thus, there

is a lingering concern that even though black boxes of DNN models are not at the

highest level, still the understanding we gain from these models is limited because

of the lower-level opacity in the DNN model itself. In the next section, I argue that

when we focus on the types of explanatory questions we can ask of the models,

the lingering problems for understanding that remain are not foremost due to the im-

plementation black boxes, but because there is a certain level of link uncertainty.
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5. Understanding, Explanation, and Link Uncertainty

Recall that the way that models explain depends in part on the explanatory question

asked. In Section 2, three different types of questions were introduced: questions di-

rected at how the model works, how-possibly questions about a target phenomenon,

andwhy or how-actually questions concerning a real-world phenomenon or target sys-

tem. We saw with Schelling’s model that implementation black boxes are compatible

with understanding possibilities surrounding target systems and compatible with how-

actually andwhy questions surrounding target systems. On the other hand, not surpris-

ingly, implementation black boxes can inhibit understanding of how themodel works.

Similarly, there are several questions that we could ask of DNNmodels, each with

varying degrees of answerability. For example, in the deep patient case, we could ask

questions about the structure of the model and how it works. We could ask simple

classificatory questions, such as: Which disease is patient x likely to develop? We

could also ask explanatory questions of the model, like the one the researchers were

after: how is it possible to use a single model to predict a variety of diseases instead of

relying on several models each designed for one disease? We could also ask more

pointed questions: why is patient x predicted to develop disease y? Why are certain

medical indicators associated with high risk for developing disease y?

The main challenge is whether the various implementation black boxes that pre-

vent us from explaining and understanding certain aspects about how the model

works also prohibit explaining and understanding the phenomenon the model bears

on. As we saw with Schelling’s model, explanation and understanding of real-world

segregation was only possible when the link connecting the model to the phenome-

non was established, in other words by eliminating link uncertainty. On the contrary,

knowing more about the model implementation did not increase understanding. It is

my contention that the same is true with DNNs.
5.1. Deep neural networks and how-possibility explanations

The deep patient model provides us with how-possibly explanations. Recall that a

how-possibly explanation simply highlights a possibility concerning the causes or de-

pendencies of some phenomenon; it falls short of explaining how the target phenom-

ena actually is caused or the actual dependences concerning the phenomenon. The

deep patient model can explain the researchers’ main motivation—answering how

it is possible to predict disease development for a range of diseases—simply by ap-

pealing to the input data and the higher-level workings of the model discussed in the

previous section. The model can also be used to explain how it is possible to predict

schizophrenia (or any of the other seventy-seventy medical problems) through past

medical records alone. Simply having a highly predictive model, and knowing the

high-level emerging properties of the model, uncovers that it is possible to use a ma-

chine learning representation for disease prediction. Importantly, it is not necessary to
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look inside the implementation black box to answer these types of how-possibly

questions. All that is needed is the higher-level understanding of how the system is

able to identify high-level patterns within data.

With Schelling’s model, peering inside the black box and examining how each

coin moves around the board does not improve our understanding of how it is possi-

ble segregation can occur based on individual preferences alone. Similarly, with the

deep patient model, learning more about the exact fine-grained weights of different

data points, and the exact way the machine learning algorithm settles on and applies

certain weights, does not improve our understanding of how it is possible schizophre-

nia can be predicted and correlated with features found in medical records.11

However, things do seem to change when we move from a how-possibly explana-

tion to a how-actually explanation or a more pointed why question. It does seem as

thoughwe cannot give a satisfying explanation for why a particular patient developed

a particular medical problem using the deep patient model. After all, the model does

not speak to why a certain marker is linked to a disease. Moreover, it also seems that

we are unable to get a satisfying explanation for why it is actually the case that certain

indicators reliably go hand in hand with a given disease using the deep patient model.

Pointing to the gradient descent algorithm does not give us the right sort of insight

here. We want some indication that the model is picking out the real difference mak-

ers for identifying a given disease and not proxies, general rules of thumb, or artefacts

within a particular dataset. While it is tempting to attribute this gap in understand-

ing to the implementation black box of the deep patient model, we should not take

the bait.
5.2. Deep neural networks and link uncertainty

Recall that link uncertainty constitutes a lack of scientific and empirical evidence sup-

porting the link connecting the model to the target phenomenon. In the case of

Schelling’s model, link uncertainty was reduced after empirical evidence suggested

that in real world populations individual preferenceswere a considerable causal factor

that governed moving choices in segregated cities.

In the deep patient case, the model is greatly informed by existing empirical evi-

dence concerning diseases. The modellers made particular determinations of which

medical problems to include in their predictions and which ones to exclude. For ex-

ample, they did not seek predictions of HIV because of the large behavioural aspect to

the disease (Miotto et al. [2016], p. 5). Having prior knowledge about which records
11 A worry that someone might have here is that since the knowledge of how a given DNN is trained is
generally applicable to all (or most) DNN models, that this knowledge is epistemically independent
from understanding a target phenomenon. However, generality qua generality does not make something
epistemically independent. In this case, it seems that it is precisely because of the generality of the
knowledge that it can help to uncover how-possibly explanations. The core of how Schelling’s model
works is also generally applicable to any type clustering behaviour. It is because of this general appli-
cability that it serves as a possible explanation for segregation.
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are salient for medical diagnosis helped lead to the success of the model. However,

gaps in medical knowledge still exist. Part of the reason for building the deep patient

model is because the level of uncertainty about why certain patients develop certain

medical problems remains high. Link uncertainty is prevalent. This is highlighted by

the ways the model did not meet expectations. For example, the modellers found that

themodel had trouble predicting certain diseases that otherwise should have been pre-

dicted with ease, such as diabetes mellitus without complications. Their hypothesis

was that since the screening process of diabetes often occurs during routine check-

ups, the frequency of those tests was not a valid discriminating factor. This suggests

that the model in part tracks proxies of disease development, such as previous phy-

sicians’ decisions to carry out a diagnostic test. Given this, there is still link uncer-

tainty that prevents understanding of real-world instances of disease development.

The deep patient model is still able to provide how-possibly explanations and

understanding of possibilities. More than this it points to possible correlations that

are worthy of future scientific and empirical research. It is the patterns that the deep

patient model indicates that gives researches hypotheses to test and gain additional

evidence for the strength of these patterns in real-world cases. Exploring these hy-

potheses further would reduce the link uncertainty and increase the level of under-

standing the deep patient model could provide on disease development. The type

of scientific evidence needed to reduce the link uncertainty, in this case, could consist

of building additional statistical models that makes the deep patient results more ro-

bust, conducting clinical trials, or conducting various longitudinal studies. The scien-

tific standards of evidence for the domain in question determines how to establish an

acceptable link connecting the model to the phenomenon. The stronger the link, the

greater possible understanding the model can provide.

As we saw with Schelling’s model, once the link uncertainty is resolved, the addi-

tional empirical evidence does not replace the usefulness of the model to explain and

enable understanding. So too in the deep patient case, once the link uncertainty is re-

solved, the deep patient model is able to explain and enable understanding of disease

development. Indeed, it is precisely because of reducing link uncertainty that this un-

derstanding is possible. For example, physicians can use the model, along with the

link connecting the model to the phenomenon, to explain and enable understanding

for patients about their risk factors.
5.3. Differences in understanding; differences in link uncertainty

In order to strengthen the case that it is the level of link uncertainty present that pro-

hibits explanation and understanding of phenomenon, and not model opacity, in what

follows I will consider two additional DNNmodels that have the same level of model

opacity and back-boxing, but differ in their level of link uncertainty. Onemodel has a

lower level of link uncertainty compared to the deep patient model, the other has a

higher level of link uncertainty compared the deep patient model.
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Consider a DNN model that identifies cases of melanoma (Esteva et al. [2017]).

The model works similarly to the deep patient model except that instead of medical

records, images of melanoma and healthy moles serve as inputs to the system. The

model is trainedwith semi-supervision, where the training set includes accurate labels

of the images, and is then applied to a novel set of images to classify. The results of the

model are significant, with the researchers claiming it outperforms dermatologists at

classification.

The important point for our purposes is that the melanoma DNN model has the

same level of implementation back-boxing as the deep patient model. And like the

deep patient model, there are several explanatory questions that might be interesting

to ask of the model, each with varying levels of answerability. Some of these ques-

tions are how-possibly questions and some of these questions are more pointed why-

and how-actually questions. However, compared to the deep patient model, the link

uncertainty is greatly reduced. The level of scientific justification and background

knowledge linking the appearance of moles to instances of melanoma is extensive.

Visual appearance serves as the leading deciding factor for initial medical interven-

tion, and for explaining why these interventions were made, such as explaining why

a mole is more likely to be cancerous, or why a particular mole should be biopsied.

The DNNmodel uses the visual appearance of the mole and immediate surrounding

skin to identify problematic skin lesions. In the process, correlations between appear-

ances of moles and the likelihood of the mole being healthy is found. The model can

help physicians gain understanding about why certain medical interventions are rel-

evant, and using the model can help explain medical interventions to patients. More-

over, the model can discover new visual patterns that are highly correlated with

health or disease. This can further understanding, especially once these newly dis-

covered patterns undergo further investigation.

Implementation black boxes do not get in the way of understanding phenomena in

the melanoma case because the model is operating within a background of existing

scientific understanding. So, although we do not understand all the low level details

about how the model works, and even though the model is complex in its data-points,

we gain understanding of skin classification nonetheless. There are limits to themodel.

The model was trained primarily on white skin, for example, and thus is unreliable on

other skin tones. This raises important medical ethical questions; however, the limited

scope does not take away from the understanding that we gain using the model. Un-

derstanding is narrowed to a population subset, which is common inmedical sciences.

Just like many other scientific models, the usefulness of the model depends on the tar-

get system and the explanandum. If certain parameters change, the givenmodel ceases

to be the right model for explaining.

Lastly, consider the other extreme: a DNNmodel that has even greater link uncer-

tainty compared to the deep patient case. Researchers developed a facial recognition

model that seeks to identify the sexual orientation of individuals (Wang and Kosinski

[2018]). Thismodel uses roughly the samemethod as themelanomamodel. The input



Understanding from Machine Learning Models 127
data consisted of images of heterosexual men and women along with images of

openly self-identifying gay men and lesbians. The images were of exclusively white

American men and women taken from dating websites where users documented their

orientation. The model is able to give striking accuracy in identifying sexual orien-

tation when the model had five images of the same person. In the scenario where the

model was presented with two faces, one of which was an image of someone who

self-identified as gay and the other an image of someonewho self-identified as straight,

the model had a 91% labelling accuracy rate for men and 83% for women.12

The same level of implementation back-boxing is present in this DNN model as

with the deep patient and the melanoma model. What differs is the level of link un-

certainty. The researchers built the model for two scientific purposes. First, to see

whether it was possible to identify an individual’s sexual orientation based on facial

features alone. Second, to add evidential support for the parental hormone theory

(PHT), an origin theory for sexual orientation. According to the theory, same-gender

sexual orientation stems from the underexposure of male foetuses and over-exposure

of female foetuses to prenatal androgens. Such a theory predicts gay and lesbian in-

dividuals would display gender atypical features (LeVay [2017]).

Just like with the deep patient case and the melanoma case, there are how-possibly

explanations that the model can answer.13 One such question is how it is possible to

determine, just by facial features alone, someone’s openly self-identified sexual ori-

entation. However, the researchers take this how-possibly evidence and argue further

that the model serves as supporting evidence for existing scientific theories, such as

the PHT theory, and theories connecting facial morphology to psychological traits

and processes. Wang and Kosinski ([2018], p. 254) say that
12 The
13 Seve

articl
sever
how-
(Blas
[. . .] identifying links between facial features and psychological traits by em-
ploying methodology similar to the one used here could boost our understanding
of the origins and nature of a broad range of psychological traits, preferences, and
psychological processes.
However, we should be very careful here. Theway to gain understanding of the actual

relationship between facial features and psychological traits, and the origins of

sexual-orientation, involves answering a how-actually or a pointed why question that

this model, and models like it, cannot answer without resolving the requisite empir-

ical questions and link uncertainties. In this case, the link uncertainty is vast. As the

researchers themselves note, many of the features that the model tracks are cultural

features, such as certain grooming patterns, and dating-profile picture conventions.

Both these features have no relationship to androgens and facial morphology, thus
accuracy metric used here is AUC accuracy or the receiver operating characteristic curve.
ral critiques by academic researchers emerged online following the release ofWang and Kosinski’s
e (for example, Bergstrom and West [unpublished]; Mattson [unpublished]). The critiques raise
al scientific drawbacks of the study that suggests that the model even falls short of answering
possibly questions. Such models have also inspired artistic critiques concerning privacy and bias
[2013]).
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severing the connection between the model and the phenomenon concerning the ac-

tual causes of sexual orientation. Furthermore, the idealized assumptions underlying

the model—that sexual orientation is binary and static, that those who are openly

gay on social media are representative of thewhole gay population, and ignoring gen-

der and racial variance—distort important difference makers in real-world popula-

tions (Miller [2018]). To make matters worse, existing scientific and social-scientific

evidence either speaks against PHT theory, and against a dependency relation be-

tween facial features and sexual orientation or other personality traits (LeVay [1996],

[2017]; Mustanski et al. [2002]; Magnet [2011]), or speaks against gender atypical

traits being the driving factor (Valentova et al. [2014]). Given the problems with link-

ing this model to actual real-world phenomena, the model is not able to provide un-

derstanding of how innate facial features reflect sexual orientation or other personality

traits, let alone provide understanding of why differences in sexual orientation de-

velop. The model, however, could be used to explain and enable understanding, even

with its level of model opacity, if the surrounding scientific evidence did actually sug-

gest that there was a link between facial features and origins of sexual orientation.

I want to stress here that the lack of understanding is not due to implementation or

model illegibility. The level of implementation back-boxing is the same in the deep

patient case, the melanoma case, and sexual orientation case. If what I have been ar-

guing here is right—that there is clear difference between the satisfying level of ex-

planations and understandingwe can get from each of these threemodels—then there

is something other than implementation back-boxing that governs the level of under-

standing themodels provide. I have argued that the difference in each of thesemodels

is the level of link uncertainty (the amount, kind, and quality of scientific and empir-

ical evidence supporting the link connecting the model to the target-phenomenon)

that is present.
6. Conclusion

Are scientists trading understanding for some other epistemic or pragmatic good

when they choose an opaque DNN? Not quite. DNN models are able to provide how-

possibly explanations of various phenomena that, just like many minimal models,

are the first steps to determining which causal mechanisms or dependency relations

should be explored further. Moreover, I have argued that so long as we do not have

complete back-boxing at the highest level, understanding is possible from opaque

models, so long as there is an adequate link connecting the model to the phenomenon

of interest. Since DNNs are not back-boxed at the highest level, the central question

that remains—whether a particular DNN can explain or enable understanding of the

phenomenon it bears on—comes down to a question of link uncertainty.

This general claim about the importance of removing link uncertainty in order to gain

understanding stretches beyond the cases of minimal and complex models. For exam-

ple, Strevens ([2017]) argues that black box explanations in convergent evolution
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fail to provide adequate explanations or understanding. When making his argument,

he specifically appeals to not knowingwhether certain aspects unique to each species’

evolutionary history made a difference to the evolved behaviour (and he suspects that

it does).What I have been arguing here suggests that the problem is not with the black

box surrounding the implementation of how a particular species evolved, but that the

empirical link between the convergent evolution model and individual populations is

in some sense uncertain. If the link uncertainty is resolved, our explanations of phe-

nomena and the understanding we gain from these explanations can tolerate imple-

mentation back-boxing.

Much more can be said on what precisely it takes for there to be an adequate link

connecting a model to the phenomenon of interest. The cases discussed in this article

indicate that that the stronger the connection we have between themodel and the phe-

nomenon, the greater the understanding. Moreover, the cases discussed here require

an empirical connection that involves going outside of the model in question. On the

other hand, model-based explanations that aim to explain mathematical or structural

dependences may require something other than empirical evidence to connect the

model to the phenomenon of interest. I leave this question for future work.

Before ending, I want to call attention to three possible worries. First, what if there

are no explanatory questions that a given DNN model can answer? Indeed, many

DNN models address simple classification tasks, like identifying a number from a

handwritten note. One could reasonably argue that there are no explanatory questions

one could ask of such a model; only mere prediction is possible.14 Maybe so. What I

have been arguing for in this article is that the complexity and black box nature of

DNNmodels does not prevent understanding of phenomena. There may be other rea-

sons that many DNN models cannot provide understanding of phenomena. For in-

stance, it might be that there are no explanatory questions the model can answer or

that somemodels aremere predictive tools, but these are different considerations than

the opacity and complexity issue one taken up here.

Second, one might worry whether the scientific evidence that connects the model

to the phenomenon of interest is what constitutes our understanding such that the

model itself no longer plays any epistemic role in our understanding. I have taken some

steps to address this worry by highlighting the way in which the model is still neces-

sary to explain even oncewe resolve link uncertainty. However, there is a deeper ques-

tion about whether models, in general, are temporary tools to be discarded once we

gain more empirical insight about the phenomenon. But even if models are mere tem-

porary tools, the pointmade here—that getting better insight into how themodelworks

is not necessary to gain better understanding of the phenomena it bears on—still

stands.
14 That said, even in the simple handwritten number classifier case, computational neuroscientists seek an-
swers to contrastive explanatory questions between the way machines learn versus humans (Lake et al.
[2015]). This type of question, however, differs from those discussed in this article.
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Lastly, all the cases I have discussed here, including Schelling’s model, have a level

of inductive risk.15 Diagnosing medical conditions involves high stakes. Schelling’s

model and facial recognition models can perpetuate harmful stereotypes and lead to

greater marginalization of oppressed groups. Thus, there is a deeper question about

how these risks and social values in general impact the level of explanatory under-

standingwe can gain from thesemodels.16While I focus in this article simply on black

boxes, the way that inductive and ethical risk impacts explanatory understanding de-

serves greater attention.
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