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CHAPTER XL

MISCELLANEOUS PROBLEMS.

I propose to discuss in this chapter the mathematical theory

of a few common mathematical amusements and games. I

might have dealt with them in the first four chapters, but, since

most of them involve mixed geometry and algebra, it is rather

more convenient to deal with them apart from the problems

and puzzles which have been described already; the arrange-

ment is, however, based on convenience rather than on any

logical distinction.

The majority of the questions here enumerated have no

connection one with another, and I jot them down almost at

random.

I shall discuss in succession the Fifteen Puzzle, the Tower

of Hanoiy Chinese Rings, and some miscellaneous Problems

connected with a Pack of Cards.

The Fifteen Puzzle*. Some years ago the so-called

Fifteen Puzzle was on sale in all toy-shops. It consists of a

shallow wooden box—one side being marked as the top—in the

form of a square, and contains fifteen square blocks or counters

numbered 1, 2, 3, ... up to 15. The box will hold just sixteen

such counters, and, as it contains only fifteen, they can be

moved about in the box relatively to one another. Initially

they are put in the box in any order, but leaving the sixteenth

* There are two articles on the subject in the American Journal of

Mathematics, 1879, vol. ii, by Professors Woolsey Johnson and Storey ; but

the whole theory is deducible immediately from the proposition I give in

the text.



CH. Xl] MISCELLANEOUS PROBLEMS 225

cell or small square empty; the puzzle is to move them so

that finally they occupy the position shown in the first of the

annexed figures.

D Top of Box

A Bottom of Box B

We may represent the various stages in the game by sup-

posing that the blank space, occupying the sixteenth cell, is

moved over the board, ending finally where it started.

The route pursued by the blank space may consist partly of

tracks followed and again retraced, which have no efiect on the

arrangement, and partly of closed paths travelled round, which

necessarily are cyclical permutations of an odd number of

counters. No other motion is possible.

Now a cyclical permutation of n letters is equivalent to

n—1 simple interchanges ; accordingly an odd cyclical permu-

tation is equivalent to an even number of simple interchanges.

Hence, if we move the counters so as to bring the blank space

back into the sixteenth cell, the new order must differ fi:om

the initial order by an even number of simple interchanges. If

therefore the order we want to get can be obtained from this

initial order only by an odd number of interchanges, the

problem is incapable of solution ; if it can be obtained by an

even number, the problem is possible.

Thus the order in the second of the diagrams given

above is deducible from that in the first diagram by six

interchanges ; namely, by interchanging the counters 1 and 2,

B. R. 15
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3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12. Hence the one

can be deduced from the other by moving the counters about

in the box.

If however in the second diagram the order of the last

three counters had been 13, 15, 14, then it would have required

seven interchanges of counters to bring them into the order

given in the first diagram. Hence in this case the problem

would be insoluble.

The easiest way of finding the number of simple inter-

changes necessary in order to obtain one given arrangement

from another is to make the transformation by a series of cycles.

For example, suppose that we take the counters in the box in

any definite order, such as taking the successive rows from left

to right, and suppose the original order and the final order to

be respectively

1, 13, 2, 3, 5, 7, 12, 8, 15, 6, 9, 4, 11, 10, 14,

and 11, 2, 3, 4, 5, 6, 7, 1, 9, 10, 13, 12, 8, 14, 15.

We can deduce the second order from the first by 12 simple

interchanges. The simplest way of seeing this is to arrange the

process in three separate cycles as follows :

—

1, 11, 8; 13, 2, 3, 4, 12, 7, 6, 10, 14, 15, 9; 5.

11, 8,1; 2,3,4,12, 7,6,10,14,15, 9,13; 5.

Thus, if in the first row of figures 11 is substituted for 1, then

8 for 11, then 1 for 8, we have made a cyclical interchange of

3 numbers, which is equivalent to 2 simple interchanges (namely,

interchanging 1 and 11, and then 1 and 8). Thus the whole

process is equivalent to one cyclical interchange of 3 numbers,

another of 11 numbers, and anothei of 1 number. Hence it is

equivalent to (2 + 10 + 0) simple interchanges. This is an even

number, and thus one of these orders can be deduced from the

other by moving the counters about in the box.

It is obvious that, if the initial order is the same as the

required order except that the last three counters are in the

order 15, 14, 13, it would require one interchange to put them

in the order 13, 14, 15 ; hence the problem is insoluble.

If however the box is turned through a right angle, so as
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to make AD the top, this rotation will be equivalent to 13

simple interchanges. For, if we keep the sixteenth square

always blank, then such a rotation would change any order

such as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

to 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3, 12, 8, 4,

which is equivalent to 13 simple interchanges. Hence it will

change the arrangement from one where a solution is impossible

to one where it is possible, and vice versa.

Again, even if the initial order is one which makes a

solution impossible, yet if the first cell and not the last is left

blank it will be possible to arrange the fifteen counters in their

natural order. For, if we represent the blank cell by 6, this

will be equivalent to changing the order

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, b,

to 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15:

this is a cyclical interchange of 16 things and therefore is

equivalent to 15 simple interchanges. Hence it will change

the arrangement from one where a solution is impossible to

one where it is possible, and vice versa.

So, too, if it were permissible to turn the 6 and the 9 upside

down, thus changing them to 9 and 6 respectively, this would be

equivalent to one simple interchange, and therefore would change

an arrangement where a solution is impossible to one where

it is possible.

It is evident that the above principles are applicable equally

to a rectangular box containing mn cells or spaces and mn — 1

counters which are numbered. Of course m may be equal to n.

If such a box is turned through a right angle, and m and n are

both even, it will be equivalent to mn — 3 simple interchanges

—

and thus will change an impossible position to a possible one,

and vice versa—but unless both m and n are even the rotation

is equivalent to only an even number of interchanges. Similarly,

if either m or n is even, and it is impossible to solve the problem

when the last cell is left blank, then it will be possible to solve

it by leaving the first cell blank.

15-2



228 MISCELLANEOUS PROBLEMS [CH. XI

The problem may be made more difficult by limiting the

possible movements by fixing bars inside the box which will

prevent the movement of a counter transverse to their directions.

We can conceive also of a similar cubical puzzle, but we could

not work it practically except by sections.

The Tower of Hanoi. I may mention next the ingenious

puzzle known as the Tower of Hano'i. It was brought out in

1883 by M. Glaus (Lucas).

It consists of three pegs fastened to a stand, and of eight

circular discs of wood or cardboard each of which has a hole in

the middle through which a peg can be passed. These discs

are of different radii, and initially they are placed all on one

peg, so that the biggest is at the bottom, and the radii of the

successive discs decrease as we ascend : thus the smallest disc

is at the top. This arrangement is called the Tower. The

problem is to shift the discs from one peg to another in such

a way that a disc shall never rest on one smaller than itself,

and finally to transfer the tower {i.e. all the discs in their proper

order) fi:om the peg on which they initially rested to one of the

other pegs.

The method of effecting this is as follows, (i) If initially

there are n discs on the peg -4, the first operation is to transfer

gradually the top n — 1 discs fi-om the peg A to the peg B,

leaving the peg G vacant : suppose that this requires x separate

transfers, (ii) Next, move the bottom disc to the peg G.

(iii) Then, reversing the first process, transfer gradually the

n — 1 discs from B to G, which will necessitate oo transfers.

Hence, if it requires x transfers of simple discs to move a tower

of n — 1 discs, then it will require 2a; + 1 separate transfers of

single discs to move a tower of n discs. Now with 2 discs it

requires 3 transfers, i.e. 2^—1 transfers ; hence with 3 discs the

number of transfers required will be 2 (2^ — 1) 4- 1, that is, 2^ — 1.

Proceeding in this way we see that with a tower of n discs it

will require 2** — 1 transfers of single discs to effect the complete

transfer. Thus the eight discs of the puzzle will require 255

single transfers. It will be noticed that every alternate move


