
 1 

May 5, 2022. December 24, 2022.  

The Gambler’s Ruin 

John D. Norton 

Prepared for Paradox: Puzzles of Chance and Infinity 

https://sites.pitt.edu/~jdnorton/teaching/paradox/chapters/title.html 

 

The Game Played 

 A gambler plays a game in which, with each round, the gambler wins one unit or loses 

one unit, with the probabilities p and q respectively. The gambler starts with some initial stake S 

and keeps betting, one unit at a time, until the gambler’s total fortune has arrived at a targeted 

maximum M, “winning”; or the gambler has lost the entire fortune, “ruin.” The gambler’s ruin 

problem is to determine the probability of ruin and to estimate how long the play will last. 

 The results below are drawn from William Feller, An Introduction to Probability Theory 

and Its Applications. Vol. 1. 3rd ed. New York: Wiley, 1968. The proofs differ from Feller’s text 

and are my own. 

Main Results 

Condition for a fair game 

(1)  p = q = 1/2 

since then the expectation per bet is 

  p(+1) + q(-1) = 1/2 – 1/2 = 0. 

 

Condition for an unfair game that disadvantages the gambler 

(2)  q > p  and r = q/p > 1 

and the expectation per bet is 

  p(+1) + q(-1) = p – q = - (q – p). 

 

Probability of ruin 

In a fair game: 
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(3)  Pruin(S) = (M-S)/M          Pwin(M-S) = 1 - Pruin(S) = S/M 

If the gambler just seeks to double the stake so that M = 2S, then 

 Pruin = S/2S = 1/2 

If the gambler is more ambitious and seeks a fortune M=10S, then 

 Pruin = 9S/10S = 9/10 

In an unfair game, in which the gambler is disadvantaged: 

(4)  𝑃!"#$(𝑆) =
!!%!"

!!%&
 

A small amount of unfairness in the game is enough to make the chances of ruin very great. In 

American roulette, for odd/even or red/black bets, with a 0 and 00 on the wheel 

  p = 18/38, q = 20/38, so that r = 20/18 = 10/9 

  q-p = 20/38-18/38=1/19 

If a gambler starts with S=50 and seeks to double this fortune to M= 100, then the prospects are 

remote from the chance of 1/2 in the fair game: 

  rM = (10/9)100 = 37,649          rS = (10/9)50 = 194 

  𝑃!"#$ = !
!%!"

!!%&
= '(,*+,%&,+

'(,*+,%&
 = 0.9949 

Thus, if the gambler bets one unit at a time, the chance of ruin is very high. This should be 

compared to the situation if the gambler were to bet the entire stake of S=50 at once. Then  

  Pruin = 20/38 = 0.5263 

which is close to the probability of ruin in a fair game. The practical moral is that, when 

gambling in an unfair game, if you must, make the largest bets possible. 

Large Stakes do not Avoid Ruin 

 That is, large stakes do not help when the gambler plays with many, smaller bets. This is 

the case of a large M, the maximum fortune sought, since M will be large when measured in the 

units of the gambler’s small-sized bets. In this case, the probability of ruin, Pruin(S), admits a 

great simplification. More specifically, “large” means 

rM >> 1 

For then we have 

(4a)   𝑃!"#$ = !
!%!"

!!%&
≈ !!%!"

!!
= 1 − 𝑟%(.%/) 
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That is, the probability of ruin depends only how much the gambler seeks as a net gain, M-S. It is 

independent of how large is the player’s initial stake S. This is bad news for the gambler who 

fixes upon some targeted net gain and hopes that the gain can be achieved with higher 

probability if the gambler starts with a larger stake S. 

 We can see informally how this independence arises. In an unfair game, if the gambler is 

to achieve the targeted net gain M-S, the gain will, with high probability, be achieved early in the 

play and be largely independent of how great is the gambler’s stake. If the gambler fails to 

achieve the targeted gain early in the play, the gambler’s fortune will likely have dropped well 

below the initial stake. Once that has happened, it becomes very much harder to recover. The 

gambler’s fortune will continue to drop and the gambler will continue to lose the initial stake S, 

no matter how large it is. 

 The approximation in (4a) masks the fact that increasing the stake does have a small 

beneficial effect for the gambler. For a fixed targeted net gain amount, it does slightly reduce the 

probability of ruin. However, in the case considered of rM >> 1, the slight reduction is so slight 

as to be negligible. To see this, we can compute a more accurate approximation of (4) as follows. 

(4b)   𝑃!"#$ = !
!%!"

!!%&
= !!%!"

!!
∙ &
&%&/!!

≈ +1 − 𝑟%(.%/), ∙ (1 + 1/𝑟.) 

To apply approximation (4b), assume that we have fixed the targeted amount (M-S) that the 

gambler seeks to win. If the gambler increases the stake S and keeps this targeted net gain fixed, 

then M must be increased correspondingly. However an increase in M corresponds to a decrease 

in the factor (1 + 1/rM) and an associated decrease in the probability of ruin, Pruin. (This follows 

since r>1, so that increasing M will increase rM and thus reduce the factor (1 + 1/rM).) By 

assumption, however, rM >> 1, so that 1/rM makes a negligible additive contribution to the factor 

(1 + 1/rM). Altering it will not reduce the probability appreciably. 

Duration of play 

The number of bets made by the gambler before winning or ruin has many values with various 

probabilities. The probabilistic expectation D is as follows: 

In a fair game: 

(5)  D(S) = S(M – S) 

If the gambler merely seeks to double the stake, so that M = 2S, then 

  D(S) = S2 



 4 

When S = 50, we have 

  D = 2500 

In an unfair game that disadvantages the gambler: 

(6)  𝐷(𝑆) = /
2%3

− .
2%3

∙ !
"%&

!!%&
 

For the same game with S = 50 and M = 100, but with American roulette odds so that q-p = 

20/38-18/38=2/17, we have 

  𝐷(𝑆) = 45
&/&,

− &55
#
#$
∙ &,+%&
'(,*+,%&

	= 45
&/&,

− &55
#
#$
∙ 0.005126 

    = 950 – 1900 x 0.005126 = 950 – 9.74 = 940.3 

That is, ruin is expected to come much faster than the completion of the fair game, whose 

expected duration is 2,500. 

 This last calculation indicates that in many real cases, the 	first term, in (6), S/(q-p) 

comprises the bulk of the result. More generally, in the common case in which rM >> rS. Then 

the second term in (6) is close to zero and we have 

(6a)  𝐷(𝑆) ≈ /
2%3

 

This result is easy to interpret informally. In an unfair game with q > p, on each unit bet the 

gambler expects to lose on average q – p. Thus, the approximate duration of play in (16) is just: 

Duration is roughly (initial stake S) / (average loss per bet (q-p)) 

for then the gambler loses q-p, over and over, D(S) times, after which all the initial stake is 

exhausted. Notably, this expected duration of play is independent of M. This reflects that fact 

that in these cases, ruin is all but assured. 

 This approximation (6a) is an upper bound since it will always be greater than the value 

in (6), for finite M. This suggests that smaller values of M lead to shorter durations of play 

through the happy circumstance that the gambler may actually win and raise the fortune to M. 

 

Proofs 

Probability of Ruin in Fair Game 

With each gamble, the expected return is zero, so the total expectation is zero. Play ends with 

either winning M-S, with probability Pwin(M-S) or ruin, a loss of -S, with Pruin(S). We have: 
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  Pwin(M-S) + Pruin(S) = 1 

and from the zero expectation 

  (M-S).Pwin(M-S) – S.Pruin(S) = 0 

That is 

  (M-S).(1-Pruin(S)) = S.Pruin(S) 

  (M-S) = Pruin(S) (M-S) + S.Pruin(S) = M.Pruin(S) 

So that  Pruin(S) = (M-S)/M 

 

Probability of Ruin in an Unfair Game that Disadvantages the Gambler 

 In the course of play, the gambler’s fortune will move up and down over many values 

lying between M and zero. Using z to represent this fluctuating fortune, we connect the 

probability of ruin, Pruin(z), for different values of z by considering the two possible outcomes of 

the first bet taken by the gambler who starts with a stake of z: 

  Pruin(z) = P(win, so that z à z+1). Pruin(z+1) 

     + P(lose, so that z à z-1). Pruin(z-1) 

(7)  Pruin(z) = p. Pruin(z+1) + q. Pruin(z-1) 

where z > 0, since otherwise if z=0, z-1 would be an impossible negative value for Pruin(z-1).  

Using 1 = p + q, we can re-express Pruin(z) as: 

  Pruin(z) = p. Pruin(z) + q. Pruin(z) 

Substituting into (7), the difference equation (7) can be rewritten as 

  Pruin(z+1) - Pruin(z) = (q/p) [Pruin(z) - Pruin(z-1)] 

   = r. [Pruin(z) - Pruin(z-1)] 

for z > 0. This set of difference equations is to be solved for 0 £ z £ M. We have the boundary 

conditions: 

 Pruin(0) = 1, since at z=0, the gambler has lost the stake 

 Pruin(M) = 0, since at z=M, the gamblers halts playing with a win. 

We arrive at a set of equations for 0 £ z £ S: 

(8) Pruin(2) - Pruin(1) = r. [Pruin(1) - Pruin(0)] 
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 Pruin(3) - Pruin(2) = r. [Pruin(2) - Pruin(1)] 

 … 

 Pruin(S) - Pruin(S-1) = r. [Pruin(S-1) - Pruin(S-2)] 

Substituting for sequentially for [Pruin(2) - Pruin(1)], [Pruin(3) - Pruin(2)], … and using 

Pruin(0)=1, this set becomes1 

(9) Pruin(1) - Pruin(0) =  [Pruin(1) - 1] 

 Pruin(2) - Pruin(1) = r. [Pruin(1) - 1] 

 Pruin(3) - Pruin(2) = r2. [Pruin(1) - 1] 

 … 

 Pruin(S) - Pruin(S-1) = rS-1. [Pruin(1) - 1] 

Summing these S equations, we have: 

  Pruin(S) - Pruin(0) = (1 + r + r2 + … +  rS-1). [Pruin(1) - 1] 

or 

(9)  Pruin(S) - 1 = (1 + r + r2 + … +  rS-1). [Pruin(1) - 1] 

As long as the game is unfair and r does not equal 1, the geometric series can be summed to give 

(10) 𝑃!"#$(𝑆) − 1 =
!"%&
!%&

[𝑃!"#$(1) − 1] 

To complete the computation of Pruin(S), the value of the remaining variable Pruin(1) needs to be 

found. Its value is introduced into the calculation with the remaining boundary condition, 

Pruin(M) = 0. That is, setting S=M in (10) we have: 

 𝑃!"#$(𝑀) − 1 =
!!%&
!%&

[𝑃!"#$(1) − 1] = 	−1  

Solving for Pruin(1) we have 

(11)  𝑃!"#$(1) − 1 = − !%&
!!%&

 

Substituing (11) into (10), we have 

  𝑃!"#$(𝑆) − 1 =
!"%&
!%&

9− !%&
!!%&

: 

so that 

 
1 The first equation in the set is not derived from the difference equation but is simply a rewriting of Pruin(1) - 
Pruin(0) =  [Pruin(1) - Pruin(0)]. 
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  𝑃!"#$(𝑆) = 1 + !"%&
!%&

9− !%&
!!%&

: = 1 − !"%&
!!%&

= !!%!"

!!%&
 

which completed the proof. 

Probability of Ruin in a Fair Game (Again) 

 This probability can be derived from the difference equations above as long as we only 

use that portion that is compatible with a fair game, with p = q = 1/2, r = 1. We have from (9) 

that 

  Pruin(S) - 1 = (1 + r + r2 + … +  rS-1) . [Pruin(1) - 1] = S . [Pruin(1) - 1] 

To evaluate [Pruin(1) - 1], we use Pruin(M) = 0. Substituting M in this last equation, we have 

  -1 = Pruin(M) – 1 = M . [Pruin(1) - 1] 

so that [Pruin(1) - 1] = -1/M. Substituting in the expression for Pruin(S) – 1 we have 

   Pruin(S) - 1  = S . [-1/M] 

Hence 

  Pruin(S)  = 1 – S/M = (M-S)/M 

which completed the proof. 

 

Expected Duration in an Unfair Game 

 The expected duration is computed by relating the expected duration for a gambler who 

has a stake z and makes one bet. After that one bet, the gambler’s stake has risen to z+1 or fallen 

to z-1, with probability p or q respectively. Allowing that this first bet adds one to the expected 

duration of play, we have, for z>0: 

  D(z) = 1 + p D(z+1) + q D(z-1) 

We assume that the expectation is finite. Using 1 = p + q, we can re-express D(z) as: 

  D(z) = p. D(z) + q. D(z) 

Subtracting, we have 

  p (D(z+1) - D(z)) = q (D(z) - D(z-1)) - 1 

(12)  D(z+1) - D(z) = (q/p) (D(z) - D(z-1)) – 1/p = r (D(z) - D(z-1)) – 1/p 

To solve for D(S), we set up the difference equations with the boundary conditions 

  D(M) = D(0) = 0 
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since, if the gambler’s fortune rises to M or falls to 0, play stops. They are the zero duration 

cases. 

  D(2) – D(1)  = r (D(1) - D(0)) – 1/p = rD(1) – 1/p 

  D(3) – D(2)  = r (D(2) - D(1)) – 1/p 

  … 

  D(S) – D(S-1)  = r (D(S-1) - D(S-2)) – 1/p 

Sequentially substituting terms, we have 

(13)   𝐷(2) − 𝐷(1) = 	𝑟𝐷(1) − &
3
= 	𝑟𝐷(1) − &

3
!%&
!%&

 

  𝐷(3) − 𝐷(2) = 	 𝑟6𝐷(1) − !
3
− &

3
=	𝑟6𝐷(1) − &

3
!%%&
!%&

 

  𝐷(4) − 𝐷(3) = 	 𝑟'𝐷(1) − !%

3
− !

3
− &

3
=	𝑟'𝐷(1) − &

3
!&%&
!%&

 

  … 

  𝐷(𝑆) − 𝐷(𝑆 − 1) = 	 𝑟/%&𝐷(1) − &
3
!"'#%&
!%&

 

The geometric series summations assume that r does not equal zero. Summing these S-1 

equations, we have 

 𝐷(𝑆) − 𝐷(1) = 𝐷(1)[𝑟 +	𝑟6 +⋯+	𝑟/%&] 

    − &
3
. &
!%&

[(𝑟 − 1) +	(𝑟6 − 1) +⋯+	(𝑟/%& − 1)] 

That is 

(14) 𝐷(𝑆) = 𝐷(1)[1 + 𝑟 +	𝑟6 +⋯+	𝑟/%&] 

    − &
3
. &
!%&

[(𝑟 − 1) +	(𝑟6 − 1) +⋯+	(𝑟/%& − 1)] 

Evaluating the two terms in (14), we have 

  𝐷(1)[1 + 𝑟 +	𝑟6 +⋯+	𝑟/%&] = 𝐷(1) !
"%&
!%&

 

and  

  − &
3
. &
!%&

[(𝑟 − 1) +	(𝑟6 − 1) +⋯+	(𝑟/%& − 1)] 

   =− &
3
. &
!%&

[𝑟 + 𝑟6 +⋯+ 𝑟/%& − (𝑆 − 1)]  

   = − &
3
. &
!%&

[1 + 𝑟 + 𝑟6 +⋯+ 𝑟/%& − 𝑆] 

   − &
3
. &
!%&

>!
"%&
!%&

− 𝑆? 
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Combining, (14) becomes 

(15)  𝐷(𝑆) = 𝐷(1) !
"%&
!%&

− &
3
. &
!%&

>!
"%&
!%&

− 𝑆? 

   = >𝐷(1) − &
3
. &
!%&

? !
"%&
!%&

+ &
3
. /
!%&

  

To complete the evaluation, we use the boundary condition D(M) = 0. Substituting M into (15) 

gives 

  0 = 𝐷(𝑀) = >𝐷(1) − &
3
. &
!%&

? !
!%&
!%&

+ &
3
. .
!%&

 

Since this term is zero, we can multiply by!
"%&

!!%&
 to recover 

  0 = 𝐷(𝑀) = >𝐷(1) − &
3
. &
!%&

? !
"%&
!%&

+ &
3
. .
!%&

!"%&
!!%&

  

Subtracting from (15) we have 

  𝐷(𝑆) = &
3
. /
!%&

− &
3
. .
!%&

!"%&
!!%&

= /
2%3

− .
2%3

∙ !
"%&

!!%&
 

which completes the proof. 

 

Expected Duration of Play in a Fair Game 

 The derivation proceeds as above, but with the assumption that p = q = 1/2 and r = 1. 

Then the difference equations simplify to 

  𝐷(2) − 𝐷(1) = 	𝐷(1) − &
3
 

  𝐷(3) − 𝐷(2) = 	𝐷(1) − 6
3
 

  𝐷(4) − 𝐷(3) = 	𝐷(1) − '
3
 

  … 

  𝐷(𝑆) − 𝐷(𝑆 − 1) = 	𝐷(1) − /%&
3

 

Summing these equations, we have 

  𝐷(𝑆) − 𝐷(1) = (𝑆 − 1)𝐷(1) − &
3
(1 + 2 +⋯+ (𝑆 − 1)) 

   = (𝑆 − 1)𝐷(1) − &
3
/(/%&)

6
 

Using p = 1/2 and rearranging, we have 

(16)  𝐷(𝑆) = 𝑆	𝐷(1) − 𝑆(𝑆 − 1) 
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To evaluate D(1), we use boundary condition D(M) = 0. Substituting M into (16) we have 

  0 = 𝐷(𝑀) = 𝑀	𝐷(1) − 𝑀(𝑀 − 1) 

from which it follows that 

  D(1) = (M-1) 

Substituting this value for D(1) into (16), we recover 

  𝐷(𝑆) = 𝑆(𝑀 − 1) − 𝑆(𝑆 − 1) = 𝑆(𝑀 − 𝑆) 

which completed the proof. 

Notes 

 Through calculations not shown here, we can affirm that the expected limiting relations 

hold between the results for fair and unfair games. That is, the probability of ruin (4) for an 

unfair game approaches the probability of ruin (3) for a fair game in the limit of r goes to 1. The 

expected duration of play for an unfair game (6) approaches the expected duration of play for a 

fair game (5) in the limit of r goes to 1. 
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