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T HE ART OF C O N J E C T U R I N G
PART FOUR

Teachi ng

The Use and Application of the Preceding Doctrine

in Civil, Moral, and Economic Matters

Chapter I. Some preliminaries on the certainty,

probability, necessity, and contingency of things

The certainty of anything is considered either objectively and in itself or suj bec
tively and in relation to us. Objectively, certainty means nothing else than the

truth of the present or future existence of the thing. Subjectively, certainty is

the measure of our knowledge concerning this truth.

In themselves and objectively, all things under the sun, which are, were, or
will be, always have the highest certainty. This is evident concerning past and
present things, since, by the very fact that they are or were, these things cannot
not exist or not have existed. Nor should there be any doubt about future things,

which in like manner, even if not by the necessity of some inevitable fate,[211]
nevertheless by divine foreknowledge and predetermination, cannot not be in
the future. Unless, indeed, whatever will be will occur with certainty, it is not

apparent how the praise of the highest Creator's omniscience and omnipotence
can prevail. Others may dispute how this certainty of future occurrences may

coexist with the contingency and freedom of secondary causes; we do not wish
to deal with matters extraneous to our goal.

Seen in relation to us, the certainty of things is not the same for all things,

but varies in many ways, increasing and decreasing. Those things concerning the
existence or future occurrence of which we can have no doubt — whether because

of revelation, reason, sense, experience, cnxoyia [autopsy, i.e., eyewitness], or
other reasons — enjoy the highest, and absolute, certainty. All other things receive
a less perfect measure of certainty in our minds, greater or less in proportion as

there are more or fewer probabilities that persuade us that the thing is, will be,

Probability, indeed, is degree of certainty, and differs From the latter as a part
differs From the whole. Truly, if complete and absolute certainty, which we

or was.
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represent by the letter u or by I, is supposed, for the sake of argument, to be
composed of five parts or probabilities, of which three argue for the existence or
future existence of some outcome and the others argue against it, then that out

come will be said to have 3a/5 or '/I of certainty.

One thing therefore is called more probable than another if it has a larger part
of certainty, even though in ordinary speech a thing is called probable only if its
probability notably exceeds one-half of certainty. I say notably, for vvhat equals
approximately half of certainty is called doubtful or undecided. Thus that which
has /s of certainty is more probable than that which has /~0, even though neither

one is positively probable.
Something is possibk if it has even a very small part of certainty, impossible

if it has none or infinitely little. Thus something that has /zo or N0 of certainty is

possible.
Something is morally certain if its probability comes so close to complete

certainty that the difference cannot be perceived. By contrast, something is morally
irnposrible if it has only as much certainty as the amount by which moral cer
tainty falls short of complete certainty. Thus if we take something that possesses
"/ i000 of certainty to be morally certain, [212] then something that has only Yiuoa

of certainty will be morally impossible.
Something is necessary if it cannot not exist, now, in the future, or in the

past. This necessity may be physical, hypothetical, or contractual. It is physically
necessary tha.t fire burn, that a triangle have three angles equal to two right angles,

and that a full moon occurring when the moon is at a node be eclipsed. It is bypo
theticully necessary that something, while it exists or has existed, or while it is
assumed to exist or have existed, cannot not exist or not have existed. It is nec

essary in this sense that Peter, whom I know and posit to be writing, is writing.

Finally, there is the contractual or institIItionul necessity by which a gamblerwho
has thrown a six is said to win necessarily if the players have agreed beforehand

A thing that can now, in the future, or in the past not exist is contingent (either
Pee depending on the will of a rational creature, or fortuitous and haphdzurd
[casIIale] depending on accident or fortune). This should be understood with ref
erence to a remote rather than proximate power; nor does contingency always

exclude all necessity even with respect to secondary causes. Let me clarify this by
examples. It is most certain, given the position, velocity, and distance of a die from

the gaming table at the moment when it leaves the hand of the thrower, that the

die cannot fall other than the way it actually does fall. Likewise, given the pres
ent condition of the atmosphere, given the mass, position, motion, direction, and

velocity of the winds, vapors, and clouds, and given the laws of the mechanism
according to which all these things act on each other, tomorrow's weather cannot

that a throw of a six wins.
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be other than what in fact it will be. Indeed, these effects follow from their own
proximate causes no less necessarily than the phenomena of eclipses follow from
the motion of the heavenly bodies. Yet it is customary to count only the eclipses

as necessary and to count the fall of the die and future weather as contingent.

The only reason for this is that those things which, to determine the subsequent

effects, are supposed as given [data], and which indeed are given in nature, are
not yet sufficiently known to us. And even if they were, the study of geometry and

physics has not been sufficiently perfected to enable us to calculate from these

givens [ex datis] their effects, in the way in which eclipses can be computed and

predicted once the principles of astronomy are known. Before astronomy was

brought to this degree of perfection, eclipses themselves, no less than these other
two phenomena, had to be counted among future contingencies. It follows,

therefore, that something can be seen as contingent by one person at one time

which may be necessary to another person [213] (or even the same person) at
another time, after its causes have become known. So contingency also mainly
has reference to our knowledge, insofar as we see no contradiction in something

not existing in the present or future, even if, here and now, by the force of a

proximate cause unknown to us, it may necessarily exist or be produced.

We speak of goodfortune (un bonheur in French, ein Gluck in German) and
badfortune (un malheur in French, ein Ungliick in German) when a good or bad
thing happens to us not just in any way, but when it more probably, or at least

equally probably, might not have happened. Accordingly, fortune is better (or
worse) in proportion as it is less probable that this good (or bad) thing should
have happened. Thus a person who finds a treasure by digging in the ground is
remarkably fortunate, because this happens not once in a thousand times. If

twenty deserters, one of whom is to be hung as an example to the others, com

pete for their lives in a game of chance, then the nineteen who are treated more

kindly by lot are not properly said to be fortunate, but the twentieth, to whose

lot the bad luck falls, is said to be most unfortunate. And your friend who
emerges unharmed from a battle in which few of the combatants were killed
should not be called fortunate, unless perhaps you think this should be said on
account of the preeminence of the good attached to the preservation of life.

Chapter II. O n knowledge and conjecture. O n the art of conjecturing.

On the argumentsfor conj ectures. Some pertinent general axioms.

We are said to know or understand those things that are certain and beyond doubt,

but only to conjecture or have opinions about all other things.
To conjecture about something is to measure its probability. Therefore we

define the art of conj ecture, or stochasti cs, as the art of measuring the probabilities
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oF things as exactly as possible, to the end that, in our judgments and actions, we

may always choose or Follow that which has been found to be better, more sat
isfactory, safer, or more carefully considered. On this alone turns all the wisdom
of the philosopher and all the practical judgment of the statesman.[214]

Probabilities are assessed according to the number together with the weight
of the arguments that in any way prove or indicate that something is, will be, or

has been. By weight I mean probative Force.
These arguments are either internal or external. Internal or, as they are more

commonly called, technical' arguments are taken from the topics — cause, effect,

subject, associated circumstances, sign, or anything else that seems to have a con

nection with the thing to be proved. External and nontechnical arguments appeal
to human authority and testimony. Here is an example. Titius is found slain on

the road. Maevius is accused of having committed the murder. The arguments

for the accusation are: l. It is established that Maevius hated Titius. (This is an
argument from cause, for hatred could have driven him to kill Titius. ) 2. When
Maevius was questioned, he turned pale and answered timidly. (This is an argu
ment from effect, for his pallor and Fear may have resulted from his conscious
ness of having committed the crime.) 3. A sword stained by blood was Found in
Maevius's house. (This is a sign.) 4. On the same day on which Titius was slain
on the road, Maevius passed by that way. (This is a circumstance of place and
time.) 5. Finally, Caius testifies that on the day before the murder was commit
ted disputes had occurred between Titius and Maevius. (This is tests'mony.)

But before pursuing our project of showing how these arguments for conjec

tures are appropriately used to measure probabilities, I would first like to set down

some general rules or axioms, which simple reason commonly suggests to a per
son of sound mind, and which the more prudent constantly observe in civil life.

1. Thereis no placefor conj ecturesin mattersin which one may reach complete
certainty. Thus it would be pointless for an astronomer to want to conjecture

about whether a particular full moon will be eclipsed or not from the fact that

two or three are eclipsed every year, since he can find the truth of the matter by
an infallible calculation. Similarly, if a thief responds under questioning that he
sold a stolen item to Sempronius, and Sempronius is present, then it would be

foolish for a judge to want to conjecture about the probability of the assertion

from the face and tone of the speaker, or from the quality of the stolen item, or

from other circumstances of the theft, since he can find out everything easily and
certainly From Sernpronius.

1. Latin: anifrcialis, literally made by arr or technique.
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2. Itis notsufficientto weigh one or another argument. Instead we must bri ng

together [215] all arguments that we can come to know and that seem in any way
to work toward a proof of the thing. For example, three ships set sail from port.

After some time it is reported that one of them has perished by shipwreck. Which
do we conjecture it to be? If I considered only the number of ships, I might con
clude that misfortune might equally well befall any of them. But since I remem
ber that one of them was more eaten away by decay and age than the others, that

it was badly equipped with sails and sail-yards, and also that it was commanded
by a new and inexperienced skipper, I judge that it is surely more probable that
this one perished than the others.

3. We shouldpay attention not only to those arguments that serve to prove a thi ng,

but also to all those that can be adducedfor the contrary, so that, when both groups
have been properly weighed, it may be established which argumentspreponderate. Of
a Friend who has been absent from the country for a very long time it is asked

whether he can be declared dead. The following arguments support the affirrna
tive. Despite every care being taken, nothing has been heard from him for a
whole twenty years. Travelers to Foreign parts are exposed tomany dangersto life

from which those who remain at home are exempt: perhaps, then, he died at sea,

perhaps he was killed on the road, perhaps in battle, perhaps he died from dis
ease or some fall in a place where no one knew him. If he were still alive, he would
now be of an age that few reach even at home. Even if he lived at the ends of India,

he would have written, because he knew that he could expect an inheritance at
home. There are also other arguments. Nevertheless, one should not be satisfied

with these arguments. Instead one should also oppose to them the following

arguments, which support the negative. It is well known that the man was care

less, that he disliked writing, that he slighted his friends. Perhaps he was taken
captive by barbarians so that he could not write. Perhaps he did sometimes write
from India, but the letters were lost either through the bearers' carelessness or

rhrough shipwreck. Finally, we know that many who have been away longer have
returned uninjured in the end.

4. Remote and uni versal arguments are sufscientfor makingjudgments about
universals, but when we make conjectures about individuals, we also need, if they are
at all available, argu ments that are closer and more particular to those indi vi duals.

Thus when we are asked in the abstract how much more probable it is that a
young man of twenty will outlive an old man of sixty rather than vice versa, there

is nothing we can consider besides the difference in age. But when we discuss
specific individuals, say the young man Peter and the old man Paul, we need to

pay attention also to their particular constitutions and to the care [216] that each
one takes of his health. For if Peter were sickly, if he indulged his passions, or if
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he lived intemperately, then Paul, even though he is more advanced in age,
might, with excellent reason, hope to live longer.

5. In matters that are uncertain and open to doubt, we should suspend our actions

unti l we lect rn more. But if the occast'onfor action brooks no delay, then between two

actions we shouidalwuys choose the one that seems more appropriate, safer, more care

fullyy considered, or more probable, even if neither action is such in u positive sense.
Thus when a fire has broken out and you cannot escape unless you jump either

From the highest roof or from some lower story, it will be better to choose the

lower story because it is safer, even though neither choice is safe in an absolute
sense and neither can be made without danger of injury.

6. What may help in some case andean harm in noneis to be preferred to thut
which in no case either helps or harms. Along this same line is our common say
ing, "it may not help, but ir. will do no harm." This follows from the preceding,

for something that can benefit is better, safer, and more desirable, other things
being equal; than something that cannot.

7. We should notjudge the value ofhuman actions by their results, since sometimes
the most foolish actions enjoy the best success, while the most prudent actions

have the worst result. On this the Poet: I uish no success to him who supposes that

deeds should be evaluated by their results.~ A person who undertakes to get three
sixes the first time he rolls three dice is judged to have acted foolishly, even if he
should happen to win. This should be said against the perverse popular judgment
that whoever is more fortunate is more excellent. Indeed, a happy and prosperous

person's crime is often called a virtue. Owen wrote elegantly against this:

Epigrams, Single Book, Section 216
Because what was badly advised fell out happily, Ancus is declared wise,

who just now was foolish;
Because oF what was prudently prepared For, if it turns out badly, Cato

himself, in popular opinion, will be foolish.4

8. In ourjudgments we should be careful not to attri bute more u eight to things
than they have. ¹r should we consider something that is more probable than i ts alter

2. German: Hilfft es nicht, so schadt es nicht.
3. Latin: Careat successibus, opto, quisquis ab eventufacta notanda putat. This line appears in

Ovid, Heroides, II, l. 87.
4. Latin: Quod male consultum cecidit felici ter, Ancus argui tur sapiens, qui modo stultus erat;

I Quod prua'enter erat provisum, si male vortat, Ipse Cato populoj udice stultus eri t. The author is
John Owen or Audoenus (1616 — 83) oF Wales. See J. R. C. Martyn, Audoeni Epigrammatum,
vol. 1: Libri I — III, vol. 2: Libri IV — X (Leiden: Brill, 1976, 1978), and JozeF Ijsewijn, Companion
to Veo-Latin Studies(Amsterdam: Norrh-HoHand, 1977), p. 121.
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natives to be absolutely certain, orforce it on others. For it is necessary that the
confidence we ascribe to any particular thing be proportioned [217] to the degree
of certainty the thing has and also that it be diminished in proportion as the

probability of the thing is diminished. As we commonly say, "everything must.
be taken for what it is worth."~

9. Because, however, it is rurely possible to obtain certainty that is complete in

every respect, necessity und use orduin thut whatis only morully certain be taken as

absolutely certain. It would be useful, accordingly, if definite limits for moral cer
tainty were established by the authority of the magistracy. For instance, it might
be determined whether '/ioo of certainty suffices or whether '"s/iooa is required. Then

a judge would not be able to favor one side, but would have a reference point to
keep constantly in mind in pronouncing a judgment.

Anyone, from daily life, could Formulate for himself many more axioms of
this kind, all of which we might have difficulty remembering outside the partic
ular situation.

Chapter III. Various kinds of arguments and how to assess

their weightsfor computing probabilities of things.

Examination of the various arguments from which opinions or conjectures are

formed reveals a threefold distinction among them:

some arguments exist necessari ly and indicute contingently,
some exist contingently andindicute necessarily,

some both exist contingently and indicate contingently

This distinction can be explained by examples. My brother has not written
me for a long time; I am not sure whether his laziness or business is to blame,

and I fear he may even have died. There are three arguments for his not having
written: laziness, death, and business. The first of these exists necessarily (by a

hypothetical necessity; I take it as known that my brother is lazy), but indicates

contingently, for it could be that his laziness did not prevent him From writing.
The second argument exists contingently (for my brother could still be alive)
[218] but indicates necessarily, for a dead man cannot write. The third argument
both exists contingently and indicates contingently, for he might or might not

have any business, and, if he does, it might or might not be enough to prevent
him from writing. Another example: according to the rules of a game, a dice player

5. German: hen muff ein j edes in sei nem berth ssnd Unwerth beruhen tesssen.
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wins if he throws a seven with two dice. I want to conjecture how much hope he

has of winning. Here the argument For his winning is a throw of seven, which
indicates necessarily(the necessity established, to be sure, by the contract entered
into by the players) but exists only contingently, since points other than seven

may fall.
Besides this distinction among arguments, we can observe another: some argu

ments are pure, others are mixed. Pure arguments prove a thing in some cases in
such a way that they prove nothing positively in other cases. Mixed arguments

prove a thing in some cases in such a way that they prove the contrary in the

other cases. Exasnple: suppose someone in a milling crowd is stabbed with a
sword and it is established by the testimony of reliable witnesses looking on From
a distance that the perpetrator of the crime had on a black cloak; suppose fur
ther that among the crowd Gracchus along with three others is found wearing a

cloak of this color. This cloak will be an argument For murder committed by
Gracchus, but a mixed argument, since in one case it proves his guilt but in three
cases his innocence, depending on whether he or one of the other three is the

perpetrator; for one of the latter could not be the perpetrator without Gracchus
by that very fact being innocent. If, however, in a subsequent interrogation Grac

chus turns pale, his pallor is a pure argument: it proves Gracchus's guilt if it results
from a guilty conscience; but it does not, on the other hand, prove his innocence
if it has another origin. For it is possible that Gracchus could turn pale for

another reason and still be the murderer.

It is clear from the foregoing that any argument's power of proof depends
upon the number of cases in which the argument can exist or not exist, indicate

or not indicate, or even indicate the contrary. So the degree of certainty, or

probability, that the argument generates can be Found from these cases by the
doctrine of Part I, just as the lots of dice players are found in games of chance.
In order to show this, let b represent the number of cases in which it may hap

pen that some argument [219] exists, c the number in which it may happen that
the argument does not exist, and a = b + c the number of both [types of cases].
Similarly, let P represent the number oF cases in which it may happen that an
argument indicates, p the number in which the argument does not indicate or

indicates the contrary, and (x +P = p the number oF both. I assume that all cases

are equally possible, or can happen with equal ease. Otherwise a correction
must be made. For any case that happens more easily than the others as many
more cases must be counted as it more easily happens. For example, in place of

a case three times as easy I count three cases each of which may happen as easily

1. First, then, consider an argument that exists contingently and indicates nec
essarily. In our notation there are b cases in which it can exist and indicate the

as the rest.
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thing (or 1), and c cases in which it can not exist and hence can indicate nothing.
By Corollary 1 of Proposition III of Part I this is worth [(b . 1) + (c . 0)]la = bla
so that such an argument proves bla of the thing, or of its certainty.

2. Next let the argument exist necessarily and indicate contingently. By hy

pothesis there will beP cases in which it can happen that it indicates the thing
andencases in which it does not indicate anything or indicates the contrary. This
now makes theargument's Force For proving the thing [(p . 1) + ()r. 0)]/tx= p/e.
Therefore, an argument of this kind proves P/n of certainty of the thing,
and also, if theargument is mixed, it proves(as is clear in the same way) [(p 1)
+ (P 0)]/(x= p/u of certainty of the contrary.

3. If an argument exists contingently and indicates contingently, I assume first

that it exists, in which case it can be shown, as above, to proveP/n of the thing,
and in addition, if it is mixed, g/e of the contrary. Then since there are b cases
in which it exists, and c cases in which it does not exist and so can prove noth

ing, the argument will be worth [(b P/n) + (c 0)]/a = bgla(x For proving the
thing, and if it is mixed it will be worth [(b g/ot) + (c 0)]la = bylacy. For prov
ing the contrary. [220]

4. Again, suppose several arguments are assembled for the proof of the same
thing, and denoted as follows:

Numbers of arguments

F irst Second Third Fourth F rfth etc.

a d g p s et c.

b e h q t et c.

c f i r u e t c .

Then the force of proof resulting from the concurrence of all the arguments is

estimated as follows. First let all the arguments be pure. Then, as we have seen,
the weight of the first argument considered alone will be bla = (a — c)/a. (This
stands forP/tx if the argument indicates contingently, or for bPlaa if it also exists
contingently.) Now consider another argument which in e or d f cases proves
the thing (or 1), and infcases proves nothing, so that the weight of the first argu

ment alone, which has been shown to be(a — c)/a, remains effective; the weight
from both arguments together will be

Total

Proving

Not proving or proving contrary

6. In these mathematical expressions, the smaller Fractions in the numerators are actually
printed as the ratios P: ct and p: ct.
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)d — f))+f ( ) — 1 

d ad ad

of the thing. Let a third argument be added; there will be h or g — i cases that

prove the thing, and i cases in which the argument is null and only the two ear
lier arguments retain their power of proof by themselves,(ad — cf )/ad, whence
the force of all three is judged to be

((g- )1]. ' 'f'1
ad J adg — cfi cfi

g adg adg

(

And so on successively if there are further arguments at hand. From this it is clear
that all the arguments taken together lead to a probability that falls short of

absolute certainty of the thing, or unity, by that part of unity that is obtained by

dividing the product of the nonproving cases by the product of all the cases in
all the arguments.

5. Next let all the arguments be mixed. Since the number of proving cases in
the first argument is b, in the second e, and the third h, etc., and the number

proving the contrary, c,f, i, etc., the probability of the thing is to the probability
of the contrary as b is to c on the strength of the first argument alone, as e is to

f on the strength of the second alone, and as h is to i on the strength of the third
alone, etc. Hence it is sufficiently evident that the total force of proof resulting

from the concurrence of all the arguments may be[221] composed of the forces
of all the arguments taken singly, that is, that the probability of the thing to the

probability of its contrary is in the ratio of beh etc. to cfi etc. Hence the absolute

probability of the thing is beh/(beh + cfi), and the absolute probability of the con
trary is cfi/(beh+ cfi).

6. On the other hand, let some of the arguments be pure (say the first three)
and some mixed (say the two others). Consider first the pure ones alone, which
by section 4 prove (adg — cfi)/adg of the certainty of the thing, falling short of
unity by cfi/adg. There are, as it were, adg — cfi cases in which these three argu
ments together prove the thing, or unity, and cfi cases in which they prove noth
ing and consequently give the mixed arguments alone the opportunity to prove

something. But by section 5 above these two mixed arguments prove qt/ (qt+ ru)
of the thing and ru/ (qt+ ru) of the contrary. So rhe probability of the thing result
ing from all the arguments is

(adg — cf)) cfi ~
qt + ru l a agqt + adgru — cfiru cfiru

adg adgqt + adgru adg(qt + ru)
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or 8 to 9.

which falls short of complete certainty or unity by the product of the part cP/kg
(the deficit from unity of the probability of the thing resulting from the pure
arguments alone according to Rule 4) times rul(qr + ru), the absolute probability
of the contrary computed from the mixed arguments by Rule 5 above.

7. Now if, besides the arguments that tend to prove a thing, other pure argu
ments for the contrary arise, then both categories of arguments must be weighed

separately according to the preceding rules so as to establish the ratio that holds

between the probability of the thing and the probability of the contrary. Here it
should be noted that, if the arguments adduced on each side are strong enough,
it may happen that the absolute probability of each side significantly exceeds
half of certainty, that is, that both of the contraries are rendered probable, though

relatively speaking one is less probable than the other. Thus it can happen that
one thing has /~ of certainty, while its contrary has ~/~; in this way both contraries
will be probable, yet the first less probable than its contrary, in the ratio N to /4,

I cannot conceal here that I foresee many problems in particular applications

of these [222] rules that could cause frequent delusions unless one proceeds

cautiously in discerning arguments. For sometimes arguments can seem distinct
that in fact are one and the same. Or, vice versa, those that are distinct can seem

to be one. Sometimes what is posited in one argument plainly overturns a con

In illustration of this, I will give an example or two. Suppose that in the above

example involving Gracchus the credible witnesses who saw the crowd observed
also that the murderer had red hair. Gracchus along with two others was seen to

have red hair, but neither of the other two was wearing a black cloak. Here a

person would certainly be reasoning ineptly if, from the evidence that besides
Gracchus three people wore black cloaks and that besides him two had red hair,
he wanted to conclude that the probability of Gracchus's guilt to the probability
of his innocence, by section 5, is in the ratio compounded from one-third and
one-half, that is, in the ratio of one-sixth, so that he is much more likely to be

innocent than guilty. For properly speaking there are not two arguments here but

only one and the same, appealing to two circumstances, the color of clothing and
the color of hair. Since these circumstances coincide only in the person of Grac

chus, they argue with certainty that only he could be the murderer.

Another example. There is a question whether or not a certain written con

tract has been fraudulently predated. The argument for the negative might be that

the document has been signed by a notary, that is, a sworn public official, who
is not likely to have committed any fraud since he could not have done so with

out seriously jeopardizing his fortune and honor (and for this reason not one
notary in fifty is found who would dare to commit such a malfeasance). The

trary argument.
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arguments for the affirmative might be that this notary has a very bad reputa

tion, that he stood to make a lucrative profit from the fraud, and especially that

he is attesting to things that have no probability (as if, for example, he had writ
ten that a certain person had entrusted 10,000 gold pieces to another at a time

when, by the judgment of all, altogether his possessions could not have been
worth more than 100 ). Here, if you were to consider by itself the argument
from the character of the person who signed the document, you might judge the
probability of the [223] document's authenticity as if it were worth 'o/so of cer
tainty. But if you weigh the arguments to the contrary, you will be forced to

admit that it is hardly possible that the document has not been falsified, and
to consider the commission of fraud morally certain, meaning that it has for ex
ample "'/iooo of certainty. We should not, however, use the method of section 7

to conclude from this that the probability of authenticity and the probability of
fraud are in a ratio of '/oo to "/iooo, that is, that they are in a ratio close to equal

ity. For when I posit that the fidelity of the notary is in disrepute, by this very
fact I posit that he is not to be included with the case of the 49 honest notaries

who abhor fraud, but that he is himself the 50th who does not take his oath to
heart and conducts himself faithlessly in office. This is what completely obviates
or destroys the force of the argument that might otherwise have proved the

authenticity of the document.

Chapter IV. On a double method of f inding the numbers of cases.

How the method based on experiment should be understood.

A remarkable problem posed concerning this method, etc,

It was shown in the preceding chapter how, from the numbers of cases in which

arguments For things can exist or not exist, indicate or not indicate, or also indi
cate the contrary, and from the forces of proving proportionate to them, the

probabilities of things can be reduced to calculation and evaluated. From this it
resulted that the only thing needed for correctly forming conjectures on any mat

ter is to determine the numbers of these cases accurately and then to determine
how much more easily some can happen than others. But here we come to a halt,

for this can hardly ever be done. Indeed, it can hardly be done anywhere except
in games of chance. The originators of these games took pains to Inake them

equitable by arranging that the numbers of cases resulting in profit or loss be def
inite and known and that all the cases happen equally easily. But this by no means
takes place with most other effects that depend on the operation of nature or on

human will. So, for example, [224] the numbers oF cases in dice are known: for
a single die there are manifestly as many cases as the die has faces. Moreover these
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all have equal tendencies to occur; because of the similarity of the faces and the

uniform weight of the die, there is no reason why one of the faces should be more

prone to fall than another — as would be the case if the faces had dissimilar shapes
or if a die were composed of heavier material in one part than another. In the
same way the numbers of cases for drawing white or black slips of paper from an
urn are known. It is also known that they are all equally possible, because, with

out doubt, the number of slips of each type is known and determined and there

is no reason why one of them should be drawn from the urn rather than another.
But what mortal, I ask, may determine, for example, the number of diseases,

as if they were just as many cases, which may invade at any age the innumerable

parts of the human body and which imply our death? And who can determine
how much more easily one disease may kill than another — the plague compared
to dropsy, dropsy compared to fever! Who, then, can Form conjectures on the

future state of life and death on this basis? Likewise who will count the innu

merable cases of the changes to which the air is subject every day and on this basis

conjecture its Future constitution after a month, not to say after a year? Again,

who has a sufficient perspective on the nature of the human mind or on the won
derful structure of the body so that they would dare to determine the cases in which

this or rhat player may win or lose in games that depend in whole or in part on

the shrewdness or the agility of the players? In these and similar situations, since

they may depend on causes that are entirely hidden and that would forever mock

our diligence by an innumerable variety of combinations, it would clearly be mad
to want to learn anything in this way.

Nevertheless, another way is open to us by which we may obtain what is sought.

What cannot be ascertained a priori, may at least be found out a posteriori from

the resultsmanytimes observed in similar situations, since it should be presumed
that something can happen or not happen in the future in as many cases as it was

observed to happen or not to happen in similar circumstances in the past. If, for

example, there once existed three hundred people of the same age and body type
as Titius now has, and you observed that two hundred of them died before the
end of a decade, while the rest [225] lived longer, you could safely enough con
clude that there are twice as many cases in which Titius also may die within a

decade as there are cases in which he may live beyond a decade. Likewise if some
one for several years past should have observed the weather and noted how many

times it was clear or rainy or if someone should have very frequently watched
two players at a game and should have seen how many times this or that player

won, just by doing so one would have discovered the ratio that probably exists
between the numbers of cases in which the same outcomes can happen or not

happen in the Future in circumstances similar to the previous ones.
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Thisempiricalway of determining the number of cases by experiments is
neither new nor uncommon. The author of The Art of Thinking,7 a man of great

acuteness and talent, made a similar recommendation in Chapter 12 and fol
lowing of the last part [Part IV], and everyone consistently does the same thing
in daily practice. Neither should it escape anyone that to judge in this way con
cerning some Future event it would not suffice to take one or another experi

ment, but a great abundance of experiments would be required, given that even
the most foolish person, by some instinct of nature, alone and with no previous

instruction (which is truly astonishing), has discovered that the more observa
tions of this sort are made, the less danger there will be of error. But although

this is naturally known to everyone, the demonstration by which it can be
inferred from the principles of the art Iof conjecturing] is hardly known at all,
and, accordingly, it is incumbent upon us to expound it here. But I would

consider that I had not achieved enough if I limited myself to demonstrating

this one thing, of which no one is ignorant. Something else remains to think

about, which perhaps no one has considered up to this poin~. It remains, namely,
to ask whether, as the number of observations increases, so the probability

increases of obtaining the true ratio between the numbers of cases in which some

event can happen and not happen, such that this probability may eventually
exceed any given degree of certainty. Or whether, instead, the problem has an
asymptote, so to speak, whether, that is, there is some degree of certainty that

may never be exceeded no matter how far the number of observations is multi

plied, so that, for example, we may never be certain that we have discovered the
true ratio of cases with more than a half or two-thirds or three-fourths parts of

certainty.
To give an example of whar. I have in mind, suppose [226] that there are hid

den in an urn, unknown to you, three thousand white tokens and two thousand

black, and that, in order to investigate their number by experiments, you take out

one token after another (but each time putting back the one that you have taken

out before you choose the following one, lest the number of tokens in the urn
be diminished) and you observe how many times a white token comes out and

how many times a black one. It is asked whether you can do this so many times

that it becomes ten, a hundred, a thousand, etc. times more probable(that is, that

in the end it becomes morally certain) that the numbers of times in which you
have chosen a white and in which you have chosen a black will have to each other
the same ratio of three to two that the numbers of tokens or of cases secretly enjoy

than some other different ratio. Unless, indeed, this happens, I confess it will be

7. That is, Antoine Arnauld in the well-known Port Royal logic.
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all over with our effort to investigate the numbers of cases by experiments. But
if it does happen and if in the end moral certainty is acquired in this way (how
this will actually happen I will show in the following chapter), we will have found
the numbers of cases a posteriori almost as certainly as if they were known to us

a priori. This, surely, in the practice of civil life (where, by Axiom 9 of Chapter 2,
what is morally certain is taken as absolutely certain ), more than suffices for
directing our conjectures in any contingent matter no less scientifically than in

games of chance. And indeed, if in place of the urn we substitute, for example,
the air or a human body, which contain within themselves the germ toms'tern]
of various changes in the weather or diseases just as an urn contains tokens, we

will be able in just the same way to determine by observation how much more

easily in these subjects this or that event may happen.

Lest, however, these things be misunderstood, it must be carefully noted that

to determine by experiments to be taken precisely or as an indivisible (for, if it
were, then the opposite would occur, and it would become kss probable that the

true ratio had been found as more observations were taken). Rather, the ratio

should be defined within some range, that is, contained within two limits, which
can be made as narrow as anyone might want. Indeed, if, in the example of the

tokens just discussed, we take two ratios, say "/zo0 and "/zs0, or s"/2000 and /aoso,

etc., of which one is just larger and the other just smaller than the ratio of three

to two, it may be shown that it can become more probable than any given prob
ability that the ratio found by many repeated experiments [227] will fall within
these limits around the ratio of three to two rather than outside.

This, therefore, is the problem that I have proposed to publish in this place,
after I have already concealed it For twenty years. Both its novelty and its great

utility combined with its equally great difficulty can add to the weight and value
of all the other chapters of this theory. But before I convey its solution, let me

remove a few objections that certain learned men have raised.s

1. They object first that the ratio of tokens is different from the ratio of dis

eases or changes in the air: the former have a determinate number, the latter an

indeterminate and varying one. I reply to this that both are posited to be equally
uncertain and indeterminate with respect to our knowledge. On the other hand,

that either is indeterminate in itself and with respect to its nature can no more be

conceived by us than it can be conceived that the same thing at the same time is

both created and not created by the Author of nature: for whatever God has done,

God has, by that very deed, also determined at the same time.

we do not wish the ratio between the numbers of cases that we have undertaken

8. These argumenrs appear in very similar form in correspondence from Leibniz ro Bernoulli.
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2. Second, they object that the number of tokens is finite, but the number of
diseases etc., infinite. Response: It is more nearly astonishingly large than infinite,
but even if it were actually infinite, it is known that there can be a determinate

ratio even between two infinites, a ratio that can be expressed by finite numbers,

either exactly or at least as closely any anyone might want. Certainly, the cir

cumference of a circle has a determinate ratio to its diameter. Even if this ratio
cannot be expressed accurately except by the cyclic numbers of Ludolph con
tinued in infinitum, nevertheless it has been defined within limits sufficiently
narrow For use by Archimedes, Metio, and Ludolph himself. Whence nothing
prevents the ratio between two infinites from being expressed by finite numbers
very closely and also determined by finite numbers of experiments.

3. Third, they add that the number of diseases does not always remain the
same, but that new diseases spring up daily. Response: We cannot deny that the

numbers of diseases multiply with the passage of time, and anyone who wanted

to draw an inference from today's observations to the antediluvian times of the
Patriarchs would surely stray very far from the truth. But from this it only follows
that new [228] observations should be made in the meanwhile, just as would
happen with the tokens, if their numbers in the urn were assumed to change.

Chapter V. Solution of the preceding prot lent

So that I may bring Forth the body of a lengthy demonstration with the greatest

possible brevity and clarity, I shall undertake to reduce it all to abstract mathe

matics, separating out from it the following lemmas. Once these have been
shown, the rest will be simple application.

Lemma L Assume a series of numbers 0, 1, 2, 3, 4, etc. starting from noth

ing or zero and following in natural order, of which the last and greatest is called
r + s, and some intermediate number r, and the numbers that surround it imme
diately on either side r + 1 and r — 1. If this series is continued onward until the

farthest term whatsoever is some multiple of the number r + s, for instance nr + ns,

and if the intermediate r and the adjacent numbers r + 1 and r — 1 are increased

in the same ratio, so that in their places appear nr, nr + n, and nr — n, then the

series itself posited at the beginning:

0,1,2,3,4, . . . , r — 1,r, r+ 1 , . . . , r +s

will be changed into

0, 1, 2, 3, 4,.. . , nr — n,.. . , n r , . . . , n r+ n , . . . , n r+ ns.
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In this way, indeed, the terms of the series will be multiplied, both those that
come between the middle nr and either of its bounds nr + n or nr — n, and those

that extend onward from these bounds to the outermost terms, nr + ns or 0.

Never, however (no matter how large n is assumed to be), will the number of
terms beyond the larger bound nr + n exceed more than s — 1 times, nor will the
number of terms beyond the smaller bound nr — n exceed more than r — 1 times,

the number of those terms that are included between the middle term nr and

either bound, nr + n or nr — n. For when the subtraction is made, it is clear that

from the larger bound to the extreme bound nr + ns there is an interval of ns — n
terms; and from the smaller bound to the other extreme 0 there is an interval of

nr — n terms; and from the intermediate number to either bound an interval

of n terms. And, indeed, it is always true that (ns — n): n:: (s — 1): 1; and (nr — n):
n:: (r — 1): 1, whence it is established, etc. [229]

Lemmtt 2. Every integral power of a binomial r + s is expressed by one more

term than the number of units in the index of the power. Thus a square is com

posed of 3 terms, a cube of 4, a biquadrate of 5, and so forth, as is known.

Lemma 3. In any power of this binomial (at least in any power of which the
index is equal to the binomial r + s= t, or to a multiple of it, that is, nr + ns= nt),
if some terms precede and others follow some term M, such that the number of

all the preceding terms to the number of all the following terms is, reciprocally,
as s to r (or, equivalently, if in that term the numbers of dimensions of the let
ters r and s are directly as the quantities r and s themselves), then that term will
be the largest of all the terms in that power, and the terms nearer it on either side

will be larger than the terms farther away on the same side. But this same term

M will have a smaller ratio to the terms closer to it than those nearer terms (in
an equal interval of terms) have to the farther terms.

Demonstration. 1. It is known among mathematicians that the nt power of the

binomial r + s, that is, (r + s)"', is expressed by this series:

n t „ , 1 nt(nt — 1) „, 2 nt(nt — 1)(nt — 2), 3 3

nt+ rsnt — 1 + snt.

In this progression one part of the binomial, namely r, decreases its dimensions
gradually, while the other part, s, increases its dimensions. Moreover, the coeffi
cients of the second and second to last terms are ntl1, of the third and third to
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last terms nt (nt — 1)/(1 2), of the fourth and fourth to last nt(nt — 1)(nt — 2)l
(1 2 . 3), and so forth. And because the number of all the terms except M, by
Lemma 2, is nt = nr + ns, but, by hypothesis, the number of terms preceding M
to the number of terms following it is as s to r; it follows that the number ofterms

preceding term M will be ns, and the number following it will be nr. Whence,
from the law of the progression, the term M becomes

nt(nt — 1)(nt — 2)... (nt — ns+ 1) „„„, nt ( nt — 1)(nt — 2)... (nr+ 1)
1 2 3 4 . . . ns 1 2 3 4 . . . ns

or

nt(nt — 1)(nt — 2)... (nt — nr+ 1) „„„, nt ( nt — 1)(nt — 2)... (ns+ 1)
1 2-3 . 4 . ..nr 1 2 3 4 . . . nr

Similarly the adjacent terms are, [230]

nt (nt — 1)(nt — 2)... (nr+ 2)
1. 2 3 4 . . . (ns-1)

nt(nt — 1)(nt — 2)... (ns+ 2)
1 2 3 4. . . ( n r — 1)

to the right

and the following are, to the left: ' ' '
' ' r "'+ s" '

to the rig nt(nt — 1)(nt — 2)... (ns+ r"" s"'+

nt(nt — 1)(nt — 2)... (nr+ 3) rgr+2 ns — 2

1 2 3 4 . . . ( n s -2 )

1.2 3 4 . . . (nr — 2)

from which, once an appropriate reduction has been made both of the coeffi
cients and of the pure terms, by common divisors, it follows that the ratio of the

term M to the next term to the left is as (nr + 1)s to ns . r, and the latter to the
following, as (nr + 2)s to (ns — 1) r, etc. Similarly, the term M to the next term to
the right will be as (ns + 1) r to nr s; and the latter to the Following, as(ns + 2) r
to (nr — 1)s, etc. But (nr+ 1)s [= nrs+ s] ) ns r [= nrs], and (nr+ 2)s [= nrs+ 2s]
) (ns — 1)r [= nrs — r], etc. Moreover, (ns+ 1)r [= nrs+ r] ) nr s [= nrs], and (ns
+ 2) r [= (nrs + 2r)] > (nr — 1)s [= nrs — s], etc., as is clear. Therefore the term M
is larger than the next term to either side, the latter is larger than the farther one

on the same side, etc. Q.E.D.
2. The ratio (nr + 1)/ns is smaller than the ratio (nr + 2)/(ns — 1), as is

clear. Therefore when the common ratio sir is *added* [addita], (nr+ 1) s/(ns r) (
(nr + 2) s/(ns — 1) r. Similarly, the ratio (ns + 1)/nr ( (ns + 2)l(nr — 1), as is trans
parent. Thus when the common ratio r/s is *added*, so too the ratio (ns + 1) r/
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(nr . s) ( (ns + 2)r/(nr — 1)s). But (nr + 1)s/(ns r) is the ratio that the term M
has to the next term to the left; and (nr + 2) s/(ns — 1) r is the ratio which the
latter has to the following. Likewise, (ns + 1) r/(nr . s) is the ratio that the term M

has to the next term to the right; and (ns + 2) r/(nr — 1)s is the ratio that the
latter has to the following term as has just been shown. The same can be con
cluded ex uequo for all the others. Whence the maximum term M has to a term

nearer it on either side a smaller ratio than (in a equal interval of terms) the nearer
has to a further on the same side. Q.E.D. [231]

Lemma O'. In a power of a binomial with index nt, the number n can be con
ceived to be so large that the largest term M acquires a ratio to the terms L and

A, which are at an interval of n terms to the left and right of it that is larger than

any given ratio.

Demonstration. Since in the preceding lemma the term M was Found to be

nt(nt — 1)(nt — 2)... (nr+ 1)
1 2 3 4 . . . ns

or

nt(nt — 1)(nt — 2)... (ns+ 1)
1 .2 3 4 . . . n r

it follows from the law of the progression (adding n to the last factor of the coef
ficient in the numerator and subtracting it from the last factor in the denomi

nator; also increasing one of the letters r and s by n dimensions and decreasing

the other) that the term

L on the left is:

A on the right is:

nt(nt — 1)(nt — 2)... (nr + n + 1)

nt(nt — 1)(nt — 2)... (ns+ n+ 1)
1 2.3 4 . . . (ns — n)

1 2 3 4 . . . (nr — n)

whence, when the appropriate reduction by common divisors is made, there results:

PI (n r+ n)(nr+ n — 1)(nr+ n — 2)... (nr+ 1) X s"
I. (ns — n + 1)(ns — n + 2)(ns — n + 3) ... ns X r"

M (ns + n)(ns + n — 1)(ns + n — 2) ... (ns + 1) X r"
A (nr — n + 1)(nr — n + 2)(nr — n + 3) ... nr X s
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or, if the dimensions of the quantities r" and s" are evenly distributed among the

individual Factors (there being the same number of dimensions as factors),

M (nrs+ ns)(nrs+ ns — s)(nrs+ ns — 2s)... nrs+ s
L (nrs — nr+ r)(nrs — nr+ 2r)(nrs — nr+ 3r)... nrs

M (n rs+ nr)(nrs+ nr — r)(nrs+ nr — 2r)... (nrs+ r)
A (nrs — ns+ s)(nrs — ns+ 2s)(nrs — ns+ 3s)... nrs

But these ratios are infinitely large when the number n is posited to be infinite.

Then the numbers 1, 2, 3, etc, vanish before n and nr ~ n ~ 1, 2, 3, etc. and
ns + n + 1, 2, 3, etc. have the same value as nr + n and ns + n. After division

by n, we have: [232]

M (r s+ s)(rs+ s)(rs+ s)... rs
L ( rs — r)(rs — r)(rs — r)... rs

M (rs + r)(rs + r)(rs + r)... rs)
A (rs -s )(rs-s)(rs-s)... rs)

These quantities are compounded, clearly, from as many ratios(rs+ s) l(rs — r) or
(rs + r)l(rs — s) as there are Factors. But the number of factors is n, that is, infi
nite, since between the first, nr + n or ns + n, and the last, nr + 1 or ns + 1, the

difference is n — 1. Therefore, these ratios are the ratios (rs + s)l(rs — r) and (rs + r) I
(rs — s) multiplied times themselves infinitely many times [t'nfinituplicatae]~ or,
accordingly, simply infinite. If you doubt this consequence, consider infinitely
many things continuously proportional in the ratio of rs+ s to rs — r, or rs+ r to

rs — s. Then the first to the third will have the ratio dupli cata, the first to the fourth

in the ratio tripli cettet, to the fifth in the ratio quadruplicata, etc. and to the last

in the ratio (rs + s)l(rs — r) or (rs + r) l(rs — s) infinitely many times itself [infini
tuplicataj. It is established, however, that the ratio of the first to the last is infi
nitely large, because the last = 0 (see the Corollary to our Sixth Proposition of
our De Seri ebus Infinitis).' Therefore it is also established that the ratio (rs + s) I
(rs — r) or (rs + r) l(rs — s) infinitely many times itself is infinite. Consequently, it has

9. In this and the following sentences Bernoulli uses the classical and medieval terms, which
distinguish operauons on ratios from those on fracrions. In the following sentences duplieata is
equivalent ro "squared" in modern terms, triplieata is "cubed," and IIuadruplieata is "ro the fourrh
power."

10. This appears on p. 244 in the same volume: "VI. In Progress. Geometr. deereseente A, IJ,
C D, E pervenitur tandem ad terminum E qttovis eIato Z minorem.... Coroll. Hinc in Progr.
Geomer. decrescenre in infinitum conrinuara ulrimus terminus esr 0, per Prop. I."
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been shown that, in an infinitely high power of the binomial, the maximum term

M to the terms L and A has a ratio larger than any assignable ratio. Q.E.D.

Lemma, 5. Given what has been posited in the preceding lemmas, n can be
taken to be so large that the sum of all the terms between the middle and max

imum term M and the bounds L and A inclusively has to the sum of all the
remaining terms outside the bounds L and A a ratio larger than any given ratio.

Demonstration. Of the terms between the maximum M and the bound to the
left L, let the second from the maximum be called F, the third G, the fourth H,
and so forth; and outside the bound let the second from it be called P, the third
Q, the fourth R, and so Forth. Then since MIF < LIP, FIG < Pl Q, and G/H <
Q/R, etc., by the second part of Lemma 3, it follows also that MIL < FIP < GIQ
< HIR, etc. Since, when n is taken to be an infinite number, the ratio MIL is infi
nitely large, by [233] Lemma 4, a fortiori the other ratios FIP, GIQ, HIR, etc.
will also be infinite; and, because of this, (F+ G+ H+ etc.)l(P+ Q+ R+ etc.) will
also be infinite, that is, all the terms contained between the maximum M and

the bound L will be infinitely greater than just as many terms extending imme
diately beyond L. And since the number of all the terms outside the bound L
does not exceed all the terms between the bound and the maximum M more

than t — 1 times (that is, only a finite number of times), by Lemma 1, and since
these terms become smaller the farther they are from the bound, by the first part
of Lemma 3, therefore all the terms together between M and L (even if M is not
counted) will infinitely exceed all the terms beyond L taken together. It may be
shown similarly, on the other side, that all the terms included between M and A

are infinitely greater than all the terms extending beyond A (of which the nurn
ber, by Lemma 1, does not exceed the number between M and A by more than

r — 1 times). Whence, finally, all the terms contained between the two bounds L

and A (even if you exclude the maximum M) will similarly infinitely exceed all
the terms altogether outside, and all the more so when the maximum term is

included. Q.E.D.

Scholium. It may be objected against Lemmas 4 and 5, by those who are not
accustomed to speculations about the infinite, that in the case of an infinite num

ber n, even iF the Factors in the expressions for the ratios M/L and M/A, namely

nr~ n w 1,2 ,3 , etc.,andns~ n ~ 1, 2 , 3 e t c . ,havethesamevalueasnr ~ n

and ns +- n, because the numbers 1, 2, 3, etc. vanish from the individual factors

in the ratio, it could neverthdess happen that, when all of these are taken together
or multiplied into each other, they might (on account of the infinite number of

factors), growininfinitum, thus infinitely diminishing that is, rendering finite
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the ratio equal to the ratio (rs + s) l(rs — r) or (rs + r) l(rs — s) multiplied into itself
infinitely many times. I cannot reply to this uneasiness better than by showing

how to assign an actually finite number to n, or a finite power to the binomial,

so that the sum of the terms within the bounds L and A will have to the sum of
terms outside a ratio larger than any given ratio however large — which I desig
nate by the letter c. When this has been shown, it will be seen that the objection

necessarily also collapses.[234]
To this end I take any ratio of greater inequality, which, however, is less

than the ratio (rs+ s) l(rs — r) (for the terms to the left side), for example, the ratio
(rs + s) /rs or (r + 1) I r, and I multiply it times itself sufficiently many times (say
m times) to make it equal to or greater than the ratio of c(s — 1) to 1, that is, so
that (r + 1) /r > c(s — 1). How many times that should be can quickly be as
certained using logarithms. Taking the logarithms of the quantities yields m log
(r + 1) — rn log r > log [c(s — 1)]. Dividing, I immediately have m > log [c(s — 1)] /
[log (r+ 1) — log r].

Once this is found, I continue: in the series of fractions or Factors (nrs + ns)/
(nrs — nr+ r) . (nrs+ ns — s)l(nrs — nr+ 2r) . (nrs+ ns — 2s)l(nrs — nr+ 3r)... (nrs
+ s)lnrs, the multiplication of which, by Lemma 4, yields the ratio M/L, it may
be observed that the individual fractions are less than (rs + s)l(rs — r), in such a
way that they continually approach nearer to it as n is taken larger. Consequently,

any of them at some time becomes equal to (rs + s)lrs = (r + 1)lr. So let us see
how great a value of n must be taken so that the fraction whose position in the

series is m is equal to (r + 1)/r. It is clear From the law of the progression that the
fraction in the mth position is: (nrs+ ns — ms+ s) l(nrs — nr + mr), which, equated
to the fraction (r + 1)lr, gives n = m + (ms — s)l(r+ 1), whence nt = mt+ (rnst — st)l
(r + 1). I say that this is the index of the power to which the binomial r + s should
be raised for the maximum term M to exceed the bound L more than c (s — 1)
times. Now because the fraction in the mth position, given this value of the
number n, becomes equal to (r + 1)lr, and by hypothesis the fraction (r + 1)/r
multiplied by itself m times, that is, (r + 1) /r, b y construction equals or
exceeds c(s — 1), [235] it follows that this fraction multiplied times all the pre
ceding Fractions will exceed c(s — 1) even more, since each preceding fraction is
greater than (r + 1)lr. Therefore the result will exceed c(s — 1) even more when
it is multiplied together as before with all the following Fractions, since each of
them at least exceeds a ratio of equality. But the product of all these fractions

is the ratio of M to L; therefore it is completely established that the term M

exceeds the bound L more than c(s — 1) times. But it has already been shown that
M/L < F/P < G/Q < H/R. Hence, by still more the second term from the max
imurn M will exceed the second from the bound L by more than c(s — 1) times,
and by still more the third will exceed the third, etc. So in the end all the terms
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between the maximum M and the bound L will exceed more than c(s — 1) times
the same number of terms starting from the largest terms outside this bound.

Similarly, they will exceed more than c times that many terms taken s — 1 times.

Therefore, even more obviously, they will exceed more than c times all the terms
outside the bound L, of which there are only s — 1 times as many more.

For the terms to the right, I proceed in the same way, I take the ratio

(s + 1)/s ( (rs + r)l(rs — s), I set (s + 1) Is ' > c(r — 1), and I find that m > log
[c(r — 1)]/[log (s + 1) — log s]. Next, in the series of fractions (nrs + nr) l(nrs — ns+ s)
(nrs + nr — r) l(nrs — ns + 2s) . (nrs + nr — 2r) l(nrs — ns + 3s)... (nrs + r) In rs,

which signify the ratio M/A, I suppose that the fraction in the mth position,
namely (nrs + nr — mr + r)l(nrs — ns + ms), is equal to (s + 1)ls, and from this I
find that n = m + (mr — r)l(s + 1), and hence that nt = mt + (mrt — rt)l(s + 1).
This having been done, it is similarly shown, as before, that, when the binomial
r + s is taken to this power, its maximum term M exceeds the bound A more than

c(r — 1) times. Consequently also, all the terms included between the maximum
M and the bound A exceed by more than c times all the terms outside this bound,
of which there are only r — 1 times more. Thus finally, in the end, we conclude
that when the binomial r + s is raised to the power of which the index is equal to
the larger of these two quantities, [236] mt+ (mst — st)l(r + 1) and mt+ (mrt — rt)l
(s + 1), then the sum of the terms included between the two bounds L and A
exceeds by much more than c times the sum of the terms beyond the bounds

on both sides. Therefore a finite power has been found that has the desired
property. Q.E.D.

Principal Proposition. Finally, there follows the proposirion For the sake of
which all this has been said, but whose demonstration can now be given with

only the application of the foregoing lemmas. To avoid tedious circumlocution,
I will call the cases in which a certain event can happenfecund orfertile. I will
call sterile those cases in which the event can not happen. I will also call experi

mentsfecund orfertile in which one of the fertile cases is discovered to occur;
and I will call nonfecund or sterile those in which one of the sterile cases is

observed to happen. Let the number of fertile cases and the number of sterile
cases have exactly or approximately the ratio rls, and let the number of fertile cases

to all the cases be in the ratio rl (r + s) or rlt, which ratio is bounded by the lim
its (r + 1) lt and (r — 1) lt. It is to be shown that so many experiments can be taken

that it becomes any given number of times (say c times) more likely [verisimil
ius] that the number of fertile observations will fall between these bounds than
outside them, that is, that the ratio of the number of fertile to the number of all

the observations will have a ratio that is neither more than (r + 1)/t nor less than
(r- 1)lt,
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Demonstration. Let nt be the number of observations to be taken, and let us

ask how great is the expectation or how great is the probability that they will all
be fecund except for, first, none, then 1, 2, 3, 4, etc. sterile. But since in any

observation I exhibit there are, by hypothesis, t cases, and of them r are fecund

and s sterile, and the single cases of one observation can be combined with the

single cases of the other, and those combined can be joined again with the sin
gle cases of the third, fourth, etc., it is easy to see that this situation fits the Rule
in the Notes appended to the end of Proposition [237] XIII [sic, should be XII]
in Part I, and its Corollary 2, which contains a general formula, with the help of
which it is seen that the expectation of no sterile observations is r"': t"', of one

(nt/I) r"' s: t"', of two [nt(nt — 1)l(I 2)]r"' ss: t"', ofthree [nt(nt — 1)(nt — 2)l

(1 2 . 3)]r"' s: t "' , and so forth. Consequently, omitting the common
denominator t"', the degrees of probability or the numbers of cases in which it
can happen that all the experiments are fecund, or all except 1 sterile one, or all

except 2, 3, 4, etc. are expressed in order by

nt „, I nt(nt — 1) „, q nt(nt — 1)(nt — 2) „ 3 3

1 1 2 1 2 3

Now these, in fact, are the terms of the power nt of the binomial r + s, investi

gated just now in our lemmas. Then all the rest is completely evident.
Indeed, it is clear from the nature of the progression that the number of cases

that combine ns sterile experiments with nr fecund ones is the maximum term

M, or the term that ns terms precede and nr Follow, by Lemma 3. It is also clear
that the numbers of those cases in which either nr + n or nr — n fecund exper

iments occur with the others sterile are represented by the terms L and A of the

power, which are n terms From the maximum term M on either side. Con
sequently, the sum of the cases in which not more than nr + n nor fewer than
nr — n experiments happen to be Fecund is expressed by the sum of the terms of
the power contained between the bounds L and A. The sum of the remaining

cases, in which either more or fewer fecund experiments are found, is expressed

by the sum of the other terms that are beyond the bounds L and A. Whence,
since the power of the binomial can be taken to be so great that the sum of the

of the others beyond these bounds, by Lemrnas 4 and 5 it follows that enough
observations can be taken that the sum of the cases in which the number of fer

tile observations happens to have a ratio to the number of all observations that

is within the bounds (nr + n) lnt and [238] (nr — n) lnt, or (r + 1) It and (r — 1) lt,
will exceed the sum of the remaining cases by more than c times. In other words,
it is rendered more than c times more probable that the ratio of the number of

terms included between the bounds L and A exceeds more than c times the sum



PART FQUR 339

fertile observations to the number of all the observations will fall within the

bounds (r + 1)/t and (r — 1)/t than that it will fall outside. Q.E.D.
In the application of numbers to these results, it is self-evident that the

larger the numbers r, $, and t in the same ratio to each other, the more the bounds

(r + 1)/t and (r — 1)/t to the ratio r/t can be tightened. Therefore, if the ratio
between the numbers of cases r/$, to be determined by experiments, is, say, a

three-halves ratio, I do not use 3 and 2 For r and $, but rather 30 and 20, or 300

and 200, etc. It might be sufficient to set r = 30, $ = 20, and t = r + $ = 50, so
that the bounds become (r + 1)/t = 31/50, and (r — 1)/t = 29/50. Moreover, let
c = 1000. Then by the preceding in the Scholium, for the terms to

the left:
log [c($ — 1)] 4 .2787536

log (r+ 1) — log r 1 4 2405
m> < 301

nt = mt+ < 24,728
r+1

log [c (r — 1)] 4.4623980
log ($+ 1) — log $21 1893

nt = mt+
' = 25,550.

m> < 211the right:

$+ 1

Whence, by what has been demonstrated, it is inferred that if 25,550 experi

ments are taken, it will be more than 1000 times more likely [veri$imiliu$] that

the ratio of the number of fertile observations to the number of all the obser

vations will fall between these bounds, 31/50 and 29/50, than outside them. On

the same understanding, if c is set equal to 10,000 or 100,000, it may be seen
that it will be more than ten thousand times more probable, if there are 31,258

experiments, and more than a hundred thousand times more probable, [239] if
there are 36,966, and so forth to infinity, continually adding to the 25,550
another 5708 experiments. Whence at last this remarkable result is seen to Fol

low, that if the observations of all events were continued for the whole of eternity

(with the probability finally transformed into perfect certainty ) then everything
in the world would be observed to happen in fixed ratios and with a constant law

of alternation. Thus in even the most accidental and fortuitous we would be

bound to acknowledge a certain quasi-necessity and, so to speak, fatality. I do

not know whether or not Plato already wished to assert this result in his dogma
of the universal return of things to their former positions [apocata$ta$i$], in which
he predicted that after the unrolling of innumerable centuries everything would

return to its original state.


