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REFLECTIONS ON STRINGS

Mark Wilson

There is hardly a paradox without utility. Thoughts that matter little in
themselves may give occasion to more beautiful ones.

—Leibniz!

HOMAS Kuhn, in his influential “A Function for Thought Experi-
ments,”? poses a dilemma:

[In] a real thought experiment, the empirical data upon which it rests must
have been both well-known and generally accepted before the experiment was
even conceived. How, then, relying exclusively upon familiar data, can a
thought experiment lead to new knowledge or to a new understanding of
nature?"

He correctly rejects the thesis that thought experiments invariably operate
to expose prior conceptual confusion. With respect to his chosen example—
Galileo’s “trough paradox”—Kuhn argues that the older conceptions of
motion which Galileo sought to dislodge could in fact be correct within a
possible world simpler than our own. Hence, by normal criteria of self
consistency, “conceptual confusion” cannot be the sole explanation of a
thought experiment’s efficacy. Kuhn accordingly turns to the background
empirical data. Such facts, he argues, may sometimes resist successful
accommodation within our accepted conceptual framework, although we
can be blind to this discrepancy until the thought experiment brings it to
our attention. Kuhn is thus able to link thought experiments to the con-
ceptual changes he later labeled “paradigm shifts.”

This implicit dichotomy between conceptual muddle and empirical ade-
quacy, however, cannot handle the full range of thought experiments which
have arisen in the history of physics. There are cases, one of which I'll
discuss here, which seem fueled almost entirely by considerations of math-
ematical harmony. Typically no question of conceptual confusion per se is
at stake. In our example, it will be the position dislodged by the thought
experiment?® which has the greater claims to rigor and conceptual clarity.
Contrary to Kuhn, overlooked empirical considerations seem unable to
explain the puzzle’s efficacy either. Indeed, many writers will assert, on a

193



194 THOUGHT EXPERIMENTS IN SCIENCE AND PHILOSOPHY

priori grounds, that no empirical data could have any conceivable bearing
on our puzzle.*

In fact, Kuhn would clearly wish not to be saddled with the conceptual
muddle/overlooked data dichotomy, simply because it smacks too much of
the analytic/synthetic distinction which he rejects. Unfortunately, we do
not seem to have yet found the tools in philosophy of language with which
to characterize adequately the workings of most armchair experiments. At
present, we seem forced to utilize distinctions which, in more philosophi-
cally enlightened moments, we would prefer to reject. As matters now
stand, the shortfall inherent in Kuhn's analysis of thought experiments
provides philosophy of language with both a puzzle and an important clue
for future research. My purpose in this note is simply to sketch the key
features of a classic thought experiment which illustrates the undiagnosed
elements neatly.

The outcome of a better account of thought experiments might probably
contribute to a more adequate historiography of science as well. It is
notorious that Kuhn's focus upon “conceptual revolutions” tends to mini-
mize, albeit inadvertently, the importance of the great advances on the
mathematical side of physics realized in the Eighteenth and Nineteenth
centuries. Typically this work is all swept under the rug of “normal sci-
ence.” This dismissal is apt to puzzle anyone who has seriously looked at
what the Nineteenth century physics actually proposed in its physics—
Kelvin’s “vortex atoms”; Abraham’s massless universe, etc.5 Such ideas,
evaluated in terms of crude shock value, seem as “revolutionary” as any-
thing which came before or later. What is true, however, is that such ideas
naturally suggest themselves as one works out the mathematical implica-
tions of continuum physics (thus Kelvin was inspired by Helmholtz’ vortic-
ity theorem). What is left out in Kuhn's picture of science, it seems to me,
1s an awareness of how easily the dogged pursuit of mathematical rigor
alone can lead one naturally into the most novel and unexpected terrain.
The thought experiment I will now describe illustrates this pattern in a
simple® if somewhat circumscribed way.

In the 1740’s, Jean d’Alembert and Leonhard Euler both worked on the
theory of the vibrating string’, such as found in a guitar or violin. They
both agreed on the proper equation for the system (discovered by
d’Alembert); their “thought experiment” puzzled about what should hap-
pen, according to their equation, if a string was released from a plucked
initial position, that is, with a triangular starting configuration. This
problem had already been raised in 1713 by Brook Taylor who concluded
that “the adjusting process [was] beyond the scope of mathematical de-
scription.” Most general histories of mathematics include some discussion
of the Euler/d’Alembert dispute, usually with emphasis on the role the
problem played in the slow historical progression to the modern treatment
of function.® With respect to issues of functionality, d’Alembert seems
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unduly dogmatic, proceeding “on grounds so arbitrary that it would be
unjust to metaphysics to call them metaphysics.”® Our concern, however,
is with another side of the dispute, where d’Alembert seems (almost) totally
reasonable. In fact, with the most minimal modifications, one can find
defenses of d’Alembert’s position in many modern texts, without much
indication that any alternative view is viable.!! Nonetheless these same
texts frequently apply theory in ways compatible only with Euler’s more
liberal stance. Without prior warning, a modern physics student can be
easily brought to feel the bite of the d’Alembert/Euler puzzle. I will accord-
ingly present the thought experiment in contemporary terms, dropping
purely historical aspects of the original dispute.

Our problem is perhaps the simplest of a broad class of cases where an
unexpected disharmony arises between analytical and geometrical descrip-
tions of nature. Galileo optimistically announced the new era of mathemat-
ical treatments of nature in these famous words from Il Saggiature:

Philosophy is written in this great book which is always open before our
eyes—I mean the universe—but it cannot be understood unless one first learns
the language and distinguishes the characters in which it is written. It is a
mathematical language and the characters are triangles, circles and other
geometrical figures, without which it cannot be understood by the human
mind; without which one would vainly wander through a dark labyrinth.}?

Galileo’s beloved triangles lead to unexpected difficulties in many physical
contexts. Euler’s equations for non-viscous fluids are expressed in terms
of the derivative of the local velocity of the substance. A solid obstacle
placed in the stream will cause the fluid to flow around it. When the fluid
rejoins itself in the wake of the obstacle, the flow from each side will have
acquired different velocities, leading to a line of velocity discontinuity in the
wake.13 This means that the original equations, which predicted this flow,
must be nonsensical (through lack of a well defined velocity derivative) at the
line of discontinuity. So a combination of natural geometrical assumptions
plus our analytic description (Euler’s equations) lead to a breakdown in the
conditions necessary for the validity of the equations. In this case we can
conclude that Euler’s equations do not have unlimited validity. Our string case
begins with a conflict of this kind, but the resolution is rather different.!4

The dispute between d’Alembert and Euler likewise involves the unex-
pected failure of a necessary derivative. In his first paper, d’Alembert
looked at a small section of a stretched string and applied a differential
form of Newton’s Second Law:

pdy
df-P <4 dx,

where P is the density (assumed constant) and y is the transverse displace-
ment of the string. Under plausible assumptions about the tension T of the
string, d’Alembert found the magnitude of the force to be
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The resulting equation is nonlinear and hard to solve, but if the slope of
the string remains small,
dy 2
dx

can be dismissed as negligible. Setting % = % as we derive the ubiquitous

(one dimensional, linear) wave equation: -g—i%

D’Alembert’s achievement here was of great historical importance, be-
cause of the early introduction of a partial differential equation and the
light it sheds on Newton’s Second Law, (a.k.a. the Momentum Principle).!s
Although one finds a repetition of this derivation in most introductory
texts, conceptually it is rather confusing. In particular, d’Alembert has
assumed that the operative forces will always push portions of the string
vertically back and forth in the y-direction. Why shouldn’t the string
sometimes displace longitudinally in the x-direction as well? A more sat-
1sfactory approach will allow such motions, but its derivation will call upon
more sophisticated physical principles.!6

D’Alembert also found the general solution for his equation, which Euler
subsequently improved through a representation in terms of initial condi-
tions, viz.

x+ct

1 1
y®) = g gtx + ety + gxet)]+ o [ hiz)dz

where g is the string’s initial configuration and h its initial velocity.
Apparently, Euler was inspired to seek such a presentation through anal-
ogy with the data requirements of ordinary differential equations, a per-
ceptive if not totally trustworthy insight. Now the “thought experiment” is
this: what happens if one released a string plucked at spot A from rest?
Suppose the string is infinitely long.!”

TN

FIGURE 1
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Euler’s solution tells us that two half sized copies will depart to the left
and right:

< @@

FIGURE 2

We get the table-top figure in the period when the two little triangles
overlap. If the string is fixed at two points, Euler’s solution predicts (in a
manner to be discussed later):

© (e)

FIGURE 3

This may be surprising; what about the sine wave forms which plucked
guitar strings are supposed to display? Real life strings are subject to
further damping forces which we didn’t include in our force calculations;
such forces can reduce the string quickly to an approximately sin wave
configuration. But without damping forces, d’Alembert’s string can’t lose
energy and will follow its jerky pattern forever.

The predictions we have just made were based upon Euler’s solution to
the wave equation. But look again at the differential equation itself; it
seems torequire that at every spot x the operative force on the string should
be proportional to

a2y

dx?’
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But at the plucked spot (and at both subsequently moving corners) this
quantity is not defined because even

dy

dx
is undefined. So Euler’s plucked string “solution” seems to violate—or, at
least, render nonsensical—the very equation it was supposed to solve!
Worse yet, the total effective force making the string move must be con-
centrated at the problematic corners (there is no force where the string is
straight). Yet it is exactly here that d’Alembert’s equation doesn't apply.
Furthermore, the corner must be experiencing an infinite acceleration, or
else the applied force would be zero.!® So it looks as if Euler is relying upon
a differential equation that completely misdescribes all relevant forces
acting upon the string. This, in essence, is d’Alembert’s objection to Euler.
It is easy to see, incidentally, that the same objection applies to strings with
shapes less extreme than our corners, e.g., joined parabolas with continu-
ous first derivatives but jumps in the second derivative. Much of the actual
discussion between d’Alembert and Euler concerned these smoother cases.

Before considering how d’Alembert’s objections can be answered, we
should first ask why Euler (or anyone else) should care. His own explicit
considerations frequently hinge upon expedience—the wave forms which
are easiest to study happen to violate d’Alembert’s strictures. Jan
Mikusinski supplies a modern defense of this nature:

We could say that in reality the string never bends at an acute angle and

[y(x,t)] can always be regarded as a function with continuous second deriva-

tives... In practice, however, such bends often lie within the limits of measure-

ment error: consequently it is unprofitable to consider minute details,
particularly since their introduction to the calculation would complicate it
greatly without making the final result any more accurate. Under such condi-

tions it is even desirable to neglect in the calculations slight disturbances
which are not essential to the characterization of the whole phenomenon.!®

In particular, in Euler’s study of reflection waves such as echoes (see
below), it proved most convenient to study the movement of very simple
shapes violating d’Alembert’s smoothness requirements.?’ In fact, Euler
actually employed a primitive version of the d-function in such a context.

Euler’s position can be strengthened in a variety of ways. If one had a
solid triangle to work with, why couldn’t one mold the string into the
forbidden initial position? Real life strings possess some stiffness which
resist bending, but such forces were not included in our differential equa-
tion. Hence the string has no mechanism to straighten itself out. This
argument is closely allied to the fluid mechanics paradox discussed above
(the analogy is even closer for the assignment of geometric boundary
conditions to the two dimensional wave equation, such as applies to a
stretched membrane).

One of the great early successes of the wave equation was its ability to
successfully describe wave reflection from a fixed end point, a problem
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which had puzzled physicists for some time. Suppose a wave 1s traveling
towards an end point A.

/-\___
A
FIGURE 4

D’Alembert and Euler constructed an imaginary continuation of the
string beyond A thus:

FIGURE 5

Notice that the entire figure satisfies the wave equation everywhere. As
the original wave form moves right past A, the imaginary inverted wave
on ones left and becomes “real.” This technique can be used to successfully
predict a wide variety of reflection behavior. The key to its success lies in
keeping the wave equation true everywhere. But consider point A. Some
force, undescribed in the wave equation, must be responsible for keeping
A fixed. D’Alembert, if he is to be consistent, must object to the foregoing
treatment of reflection if his objection to corner solutions is sound. But then
his theory will be robbed of its greatest success! Accordingly, if we overlook
the wave equation’s lapse at A, we should pardon the corner as well.?!

Finally, if we were to return to the original wave equation, without the
simplification that

we would find that it almost always converts smooth initial configurations
(i.e., with the right number of derivatives) into configurations which lack
them.?? In short, objectionable corners will spontaneously form even from
initial conditions which lack them. Such behaviors are called “shocks” after
the related phenomenon in gas dynamics. The unavoidability of such
behavior was not realized until a 1848 paper of Stokes (and he was
mistakenly talked out of it by Kelvin).23 The theory was taken up in earnest
by Riemann, Rankine and Huginiot and has continued to attract the
interest of eminent mathematicians to this day. The deepest reasons for
allowing Euler’s corners stem from the requirement that physics must
accommodate shock waves, although neither d’Alembert nor Euler were
aware of such considerations. With d’Alembert’s linear form of the wave
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equation, shocks do not form spontaneously but once created, Euler’s
general solution describes how they will move.

But merely having a motivation for a set of solutions doesn't entitle one
to them. To get a sense of where we now stand vis d vis our thought
experiment, let us ask ourselves whether the string might assume a
configuration with no derivatives anywhere, as in Weierstrauss’ famous
construction. If we allow the possibility, Euler’s general solution will move
it along the string just as easily as it moves the corner configuration. This
possibility may sound completely wild, although some writers have sug-
gested that Brownian motion might knock the string into such a shape.®
But it is hard to see how the logic of Euler’s position prevents such
possibilities.

I might parenthetically interject that historically the majority of math-
ematicians were converted to Euler’s corner solutions through their almost
surpetitious appearance in the guise of Fourier series.?® Such considera-
tions are rather extraneous to the logic of the dispute however.

How did Euler justify his solutions? His own answer is rather unclear—
he claims that the sharp corners wouldn’t behave very differently from a
legitimate, smoothly rounded corner:

If one were to dull the corner in the [problematic] derivative an infinitesimal
amount and properly rejoin the two points, one would be able to evade the
source of all these difficulties. The change which this would bring to the
original line will be infinitely small and will change nothing in the original
state of the string nor that which determines its motion.?8

As it stands, this sounds like a justification for neglecting strings with
corners, on the grounds that their omission would make no difference. In
fact, as we saw in the Mikusinski quote above, it is often very hard to
determine whether a scientific author is defending a class of solutions as
idealized approximations to the world’s true solutions or claiming that the
extension class represents the proper set of real solutions. Each position
requires defenses of quite different sorts. For idealization, one must show
that one’s “idealizations” remain close, in some sense, to the behavior of
the real solutions. For extension, one must try to reformulate one’s under-
lying physical principles so that the extension class becomes a natural
product of these principles. Although it is virtually certain that, if pressed,
Euler would favor the extension view—see the quote from Truesdell
below—he nonetheless frequently accepts justifications more in line with
an idealization defense.

In particular, Lagrange in 1759 worked out an atomistic model of the
string and “derived” d’Alembert’s equation in a limit as the number of
masses go to infinity. He claimed—and Euler applauded him for it—that
this showed corners could appear in the limit because the lines between
the atom'’s centers in each finite model were polygonal. Of course, one could
prove that a circle has corners by this sort of argument. In Gallavotti’s
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vigorous modern presentation of Lagrange’s model, one emerges with
infinitely differential (C) strings in the limit—a requirement which would
sustain d’Alembert even at his most “unreasonable.” Obviously, the mere
taking of “limits,” without further checks, gives one great leeway to intro-
duce or suppress all sorts of desired qualities.?” If one really believes in a
Boscovitchean atomistic universe—as Lagrange and Euler did not—then
some more plausible finite model might be used to justify the wave equation
as an idealization. But if one keeps to a continuum view of physics,
Lagrange’s derivation represents a step backwards from d’Alembert’s.

The presumption that classical mechanics should be founded upon a
point mass foundation is encountered frequently in philosophical circles
and textbook presentations. However, the mere fact that the real world
breaks up into atoms does not entail that the classical world must, espe-
cially if the only way that classical macroscopic materials such as strings
can then be granted their expected classical properties is to acquiesce in
“limiting case” arguments of dubious character. Many of the objections of
Duhem et al. against loose appeals to “molecular” models in Nineteenth
century physics were concerned with this lack of rigor and, as such, remain
sound.?®

A more promising approach in the “idealization” tradition is to blame the
problem on the dissipation and/or stiffness terms we left out of the equa-
tion. Such terms keep real strings rounded (sometimes) but we can neglect
them in an “idealization” if their contribution is small. The classic work in
this vein is by L. Oleinik. It is hard to see why nature will always conspire
to include such ameliorating terms however.

Behind some of Euler’s considerations is the presumption that his exten-
sion solutions will always be close in behavior to regular solutions. In the
case of shocks, this is not true—shocks move through the string faster and
force entropy changes which smooth solutions do not.

It might be expected that d’Alembert at least would have favored the
“idealization” view. Actually he did not; he claimed that initial shapes with
corners must be “the most ordinary, and perhaps the only ones that have
ever existed for vibrating strings.”? His considered opinion was that his
own equation was worthless for describing nature! This was a general
theme of his:

Geometry, which should only obey physics, when united to the latter some-
times commands it. If it happens that a question which we wish to examine
18 too complicated to permit all its elements to enter into the analytical relation
which we wish to set up, we separate the more inconvenient elements and
substitute for them other elements less troublesome, but also less real. We are
then surprised to arrive, notwithstanding our painful labor, at a result con-
tradicted by nature, as if after we have disguised, truncated or mutilated it,
a purely mechanical combination will return it to us.®

As Truesdell remarks, d’Alembert seemed to work out equations only to
prove the worthlessness of an analytical description of nature.



202 THOUGHT EXPERIMENTS IN SCIENCE AND PHILOSOPHY

In any case, Euler clearly favors the extension view, despite his occa-
sional lapses, into “idealization.” Truesdell comments:

The modern answer [to our thought experiment] is that the basic field laws
are integral equations: at points where their solutions are sufficiently smooth,
these integral equations are equivalent to differential equations, but at singu-
lar loci they give rise to algebraic conditions which restrict the limiting values
of the solutions of the differential equations as the singularity is approached.
This is the only basic idea of continuum physics which Euler did not
have...[His official response is inadequate but] in practice Euler actually uses
a quite different idea. Once he has the general solution, he discards the
differential equation altogether. That is, Euler takes the functional equation,
rather than the differential equation, as the complete mathematical statement
of the physical principles of wave propagation, apart from boundary and initial
conditions... We may formalize his approach as Euler's extension principle for
physical laws: In regions of sufficient smoothness physical laws are to be stated
by differential equations; let their general solution by arbitrary functions be
regarded known; then it is the resulting functional equations, with the arbi-
trary functions perhaps only piecewise smooth, which are to be taken as the
general mathematical statement of the original physical laws. Because of the
now customary and more general method of integral equations, this extension
principle has only historical interest. But from it we see that Euler, in addition
to being the first to conceive a field theory ruled by partial differential
equations, was also the first to realize that these equations can fail to be
sufficient.’!

Unfortunately one cannot generally rely upon general solutions for extend-
ing differential equations, for they are rarely forthcoming. A popular
modern technique relies upon integration by parts (or Green’s theorem) to
extend a large family of equations. Let us restrict our attention to a string
with fixed ends A and B. Multiply the wave equation by an arbitrary
smooth function @ which vanishes (along with its derivatives) at A and B
and integrate. Note that @ is not required to be a solution of the wave
equation itself. Result:

Pl ey _1dy )
fa fto g[dx2‘c2dt2] dedx =0

Integrating by parts and dropping terms vanishing because of @ and y’s
behavior at A and B, we get

bt ora2p 1 420
way z:z-?wldtdx-o

The differential operator has been transferred over to the unproblematic
. Any regular solution y will make this formula true for all admissible @.
If we now allow the class of “weak solutions” to include any y with this
property, whether it is a regular “strong” solution or not, we will have
extended the wave equation in a rigorous way which will now encompass
Euler’s corner solutions. In fact, if distributions are introduced in the
manner of Laurent Schwartz, the old wave equation can be reinterpreted
as a distributional equation in exactly our new “weak solution” sense.
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As this stands, this all seems like a formalistic trick, although the
technique can be linked to the venerable Principle of Virtual Work in
mechanics.®? In nonlinear cases, however, this extension destroys the
unique dependence of solutions upon initial conditions and one will need
to find extra conditions, often derived from surprising sources (e.g. ther-
modynamics) to pick out the right weak solution.®

The most common reaction to these problems is to maintain that it is
fundamentally a mistake to try to formulate physical laws in terms of
differential equations at all, but one should begin with integral forms
instead, a result upsetting to certain philosophical opinions. Actually a
problem as simple as billiard ball impact gives independent motivation for
such a change. In such a situation, “F=ma” cannot make sense because the
acceleration is not defined at the moment of impact ti. One must instead
say that the total force exerted over an interval of time (t,, t,) containing
ti must equal the total change of momentum experienced in the same
interval, 1.e.

t1 t1
J‘ Fdt=m dx
to dt to

where
t
[£]°

represents the jump in velocity between t, and t;. Specializing to our string,
we write

ty a t
I%T[%]Zdbbe[%% . dy

If y is a regular smooth solution, the duBois-Reymond Lemma allows us
to convert this to the familiar differential form; otherwise we get the “jump
condition”

][]

This is the “algebraic condition” Truesdell alludes to above.3®

Unfortunately, this change in foundations means that we no longer have
enough equations to set a determinate, “well posed” physical problem in
the case of the nonlinear string. Just as in the “weak solution” treatment,
we must cast about for further conditions to isolate a unique solution. In
general, the technicalities involved are fearsome,? but in the context of
our string, thermodynamics provides an appropriate missing condition,
viz. the Clausius-Duhem inequality (closely related to the Second Law of
Thermodynamics). I find it quite remarkable that the resolution of a
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“mechanical” seeming problem like the movement of a string should force
one to introduce thermodynamic ideas, where this addition is required by
simple considerations of equation counting. In short, classical continuum
mechanics does not have the “closure” one might naively expect. Again
some of Duhem'’s hostility towards point mass mechanics seems to stem
from related considerations. As such, the evolution of the mechanics of
strings neatly illustrates my initial contention that considerations of math-
ematical harmony alone can force great changes in the foundations of a
discipline. And there is nothing in our history that could not have been
foreseen by a mathematician (with the combined brilliance of Euler and
Riemann) firmly ensconced in his or her armchair. Clifford Truesdell
labeled Euler’s rejection of the principle (derived from Leibniz) that “nature
does not make jumps” “the greatest advance in scientific methodology in
the entire century.”®” This may rather overstate our problem’s importance,
but it is clear that we cannot understand the efficacy of thought experi-
ments until we can account for the flood of changes that derive from this
innocuous seeming puzzle.3
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