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 BAS C. VAN FRAASSEN

 QUANTIFICATION AS AN ACT OF MIND*

 This paper presents an algebraic treatment of logic, aiming to further the

 project of a "subjective semantics" for quantification, identity, and

 modality.

 Semantics has largely concentrated on truth and reference, the relation

 of language to the world, and this is part of its usual definition. It has also

 been the discipline which offers theories to explain the logical behavior of

 various sorts of expressions traditionally studied in logic: connectors,

 modalities, quantifiers, abstractors, the identity predicate, and so forth.

 Recently a number of studies have concentrated on the relation between

 language and the states of mind (generally epistemic or doxastic attitudes)

 of its users, to provide such explanations, and the term "semantics" has also

 been used there.' The present study will be among these. Truth and refer-

 ence will be eschewed. Intuitive descriptions of the framework will be given,

 albeit briefly, in terms of mental operations on propositions (regarded there-

 fore as the sort of thing which we can vary or modify in imagination).

 Generality will be part of the aim; neutrality with respect to certain non-

 classical logics will be guarded. The Appendix will show how standard

 semantic analyses can fit into this general framework. The algebraic (lattice-

 with-transformations) analysis of modality, quantification and identity

 given here may therefore be of some interest outside 'subjective semantics'
 as well.

 1. INTUITIVE DESCRIPTION OF ABSTRACTION

 Contemplating the proposition that Socrates is mortal, we can abstract the

 property of (someone's) being mortal, and generalize to produce the prop-

 osition that everyone has this property. Alternative abstractions and gener-

 alizations are possible: the proposition eventually generalized to could be

 that all animals have this property, or that Socrates has every property, or,

 somewhat further afield, that Socrates was, is, and will be mortal. There
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 344 BAS C. VAN FRAASSEN

 must be many alternative abstraction operations and many associated uni-

 versal quantifications.2

 How does abstraction proceed? In one model of the process, the con-

 templated proposition is seen as complex, as having distinct ingredients (e.g.

 the individual concept of Socrates and general concept of mortality) and

 abstraction is a sort of deletion or separation. It will be a basic working

 hypothesis of this paper (suggested by difficulties encountered elsewhere)

 that propositions are au fond the only things the mind works with. There

 are no picture galleries of concrete and abstract individuals in addition to

 the propositions. (One reason: the idea of a picture without propositional

 content, say a picture of Socrates that is not of Socrates walking, or sitting,

 or standing, etc. does not make sense.) A second model of the process of

 abstraction utilizes the ideas of mental variation and invariance. Suppose I

 transform the initial proposition successively into: that Callias is mortal,

 that Gorgias is mortal, ... The abstract (i.e. what is abstracted, what is

 'common' to these propositions) can equally well be represented by the set

 of all these resultant propositions themselves. Generalization then concerns
 what remains invariant under these transformations.

 What are such transformations like? In this example, they preserve logical

 structure: the inferential relations, conjunction and disjunction, perhaps

 much more (how much depends rather on how much logical structure the

 family of propositions has, a question on which our initial opinions ought to

 be minimal).

 The example of variation I gave is a special one, and deceptively limited.

 It lends itself to exposition because we have the linguistic resources to

 describe it in simple terms. That cannot be the whole story. Contemplate a

 battle scene; after studying it for a moment you may conclude that all the

 soldiers are either fighting or wounded. You do not have a name for each

 one. Perhaps you went through it from left to right, saying to yourself "

 "This one is wounded, that one is fighting, this one is wounded but still

 fighting,.. ." Possibly you have the linguistic resources to describe each one
 uniquely in qualitative terms, and if you do, perhaps you have uncon-

 sciously utilized them. But possibly not. Possibly this was a real battle

 scene, and the causal chains between you and it constituted genuine refer-

 ence; but possibly not. Possibly it was a painting or a hallucination, or the

 memory of part of Trajan's Column or just something you imagined. It

 does not seem to matter; you are able to arrive at the general proposition
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 QUANTIFICATION AS AN ACT OF MIND 345

 (whether as conclusion asserted or as possibility contemplated) in any case.

 My second working hypothesis will be that the process of abstraction and

 generalization can always be regarded as like the simple case, in that it can

 be represented by a set of transformations in the same way.

 To conclude this intuitive description, I shall now give a preview of the

 theory to be developed here. The family of propositions will be assumed to

 be closed under arbitrary conjunction and disjunction (not necessarily

 finite) and hence carry an implication relation (in the familiar way: A

 implies B if and only if A is the same as the conjunction of A and B). The

 weakest proposition, implied by all, will be called K and referred to as the

 tautology or the a priori. (Necessity is an independent subject, with it is

 necessary that analyzed in the same way as a universal quantifier.)

 Propositions will be taken as basic, treated as 'black boxes', attributed
 no internal structure. Nor will domains of discourse be utilized, nor anything

 else that exists independently of the propositions. It may be puzzling how

 such a theory can treat of identity and predication, so I shall give a pre-

 liminary sketch. Names (more generally, categorematic terms) appear simply

 as labels for abstractors. Of course if we express a proposition we must do

 so in words, so to explain facts about propositions, we always proceed in

 effect by presenting syntactic analogues. "Tom" is the label of the abstrac-

 tor which, intuitively speaking, abstracts the property being tall from the

 proposition that Tom is tall. Two such abstractors may be correlated;

 intuitively, what the Tom abstractor does to that Tom is tall is just what

 the Harry abstractor does to that Harry is tall. To put it slightly more

 precisely, there is a Harry-for-Tom operation, which turns that Tom is

 tall into that Harry is tall, and this operation (I call it, naturally, a variation)

 allows us to express the relation between these two abstractors. Variations

 are transformations in the sense discussed above: they preserve logical
 structure.

 For any operation f on propositions we define the core off: the set of

 propositions it turns into the tautology. And then, if we define I(f) to be

 the proposition which is the conjunction (possibly transfinite, of the core of

 f, we are able to deduce crude forms of Leibniz' law (roughly put, if f is an

 idempotent transformation, and the conditional operator D has some

 familiar properties, then If implies A D fA and also fA D A). If we now let f

 be a variation like Harry-for-Tom, then I(f) has all the characteristics we

 expect of the proposition that Harry = Tom. And this proposition rarely
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 346 BAS C. VAN FRAASSEN

 has the character of a tautology or contradiction: even if true, even if

 necessary, it is not a priori.

 Predication in general, including lambda-abstraction, is somewhat more

 complicated. The theory will use two mutually complementary guiding

 ideas: a predicate labels a search procedure, which locates propositions;

 equivalently, it labels a coordinate system which coordinatizes a 'local'

 family of propositions. The coordinates (or, search procedure inputs) are

 those abstractors which are labelled by names.

 In this way all logical structure of propositions derives from relations

 among them and operations upon them. This study will be kept so general

 that no prior choice need be made between, for example, classical,

 intuitionistic, or quantum logic.

 2. LOGICS AND ABSTRACTORS

 In its most common sense, a logic is a system of rules for proof and deri-

 vation. There is however a respectable secondary use, common especially in

 writings on quantum logic, in which a logic is an algebra of propositions.

 One example of a logic in this sense, familiar outside quantum logic, is the

 Boolean algebra of sets of possible worlds in a modal model structure; for

 there a proposition is identified with the set of worlds in which it is true.

 In this example, as also in the standard model for quantum logic, the

 algebra of propositions is a complete lattice of sets. The Appendix will

 illustrate this further for classical and intuitionistic quantification theory.

 Henceforth a logic will be a complete lattice L; its members will be called

 propositions, its partial ordering < implication; its maximal element K the
 a priori. A function which maps L into itself, preserving K, <, complete

 meet A and complete join V, I shall simply call a transformation of L.
 An abstractor on L is any set of transformations of L; if A is a

 proposition and b an abstractor then the b-abstract of A is bA = {gA: g E b}.

 A note on notation: I shall use A, B, C,... for propositions, and a, b, c, ...
 for abstractors, and X, Y, Z, ... for sets of propositions. Later I shall use

 other capital letters for other sets (e.g. of abstractors). For transformations

 I shall use g, h,.... The value of function x for argument A, I denote x(A)
 or xA.

 A (partial) operation t on L will be called abstractive exactly if there

 exists an abstractor b and function op* such that ip(A) = One special
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 QUANTIFICATION AS AN ACT OF MIND 347

 example is the universal quantifier associated with abstractor b, defined as

 VbA = A (bA), that is, the meet of all the propositions gA with g in b.

 Proposition A is called b-invariant exactly if bA = {A} and the abstractor

 b is called destructive ifgA is b-invariant for each g in b and each A in L.

 Notice that if b is destructive, all its members must be idempotent. After all

 these definitions, though they are motivated by Section 1, an example will

 help. Suppose that the transformation g turns any proposition of the type

 that Tom is F into the corresponding one of type that Harry is F, and does

 nothing else. Then ggA = gA, so the very little abstractor tom = {g} is
 destructive.

 3. THE SINGLE UNIVERSAL QUANTIFIER
 (NECESSITY OPERATOR)

 Let b be an abstractor on L and V its associated universal quantifier (sup-

 pressing the subscript). Given that L is a logic, as defined, we deduce

 (3-1) VK = K; ifA <B then VA < VB

 (3-2) ifA X <aB then A {VA: AE X}-< VB
 (3-3) VA <gA ifg E b

 (3-4) VA < VVA if for each g and g' in b there exists g" in b such
 that gg'A = g"A.

 The proviso of (3-4) is satisfied for instance if b is destructive. Proofs of

 these results, which are recognizable as the basic laws of quantification and

 of necessity (in normal modal logic) are immediate from the definitions.

 4. CORRELATED UNIVERSAL QUANTIFIERS

 In familiar logical systems we see many universal quantifiers, not just a

 single one. In Fitch's perspicuous symbolism, [a/Fa] is the property that
 a must have in order for Fa to be true, and U[a/Fa] the assertion that this

 property is universal: everything has it. Clearly [b/Fb] = [alFa] and

 U[b/Fb] = U[a/Fa]. The reason is that Fa and Fb are two propositions
 which are 'congruent' in a certain sense; each can be turned into the other

 by a simple variation.

 Given abstractors a, b, c, . . . there may exist transformations
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 348 BAS C. VAN FRAASSEN

 (a-b), (a-c), (b-c),... such that if A = (a-b)B and B = (b-a)A then
 aA = bB and hence also Va A = VbB. I shall call (a-b) a variation and read it

 as "a for b"; it must itself be a transformation. These transformations, if

 they exist, correlate the abstractors, which then form a correlated abstractor

 system.

 To preserve a contrast in the terminology, I shall call the transformations
 which are members of the abstractors, instantiations. In the case of such

 correlation, the abstractors a, b, c,... must have corresponding members

 ga gb, , . . . such that ga does to A exactly what gb does to B, when
 A = (a-b)B and B = (b-a)A. The cross classified set {ga, gb , g ..} picks
 out one member from each abstractor. To put it differently, the correlation

 establishes an equivalence relation among instantiations: each equivalence
 class is a choice set selecting one instantiation from every abstractor.

 What is this equivalence relationship? Think of each abstractor b as per-

 taining to a single parameter - which may as well also be called b - of

 which the proposition is a function, and whose value is "fixed" in different

 ways by different instantiations. There are then three ways to set

 parameters a and b equal to the same fixed value:

 vary b to a, fix a: ga(a-b)

 vary a to b, fix b: gb(b-a)

 fix a, fix b the same way: gbga.

 The identity of these three procedures I propose as the way to single out the

 correlation relationship. I shall lead up to the definition of a correlated

 abstractor system slowly, by postulating conditions one by one.

 Let an abstractor system be any set G of destructive abstractors which do

 not interfere with each other, in the following sense:

 I. (Non-interference) If h and h' belong to different abstractors
 in G then hh' = h'h.

 Considering the properties of destructivity within abstractors in G and non-

 interference between them, we deduce

 d(4-1) Abstractors in an abstractor system are disjoint.

 The notation "d" is used with an eye on future generalization, to signify

 that destructivity is used in the proof. Next we introduce the variations:
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 QUANTIFICATION AS AN ACT OF MIND 349

 (4-2) A variation from abstractor a to abstractor b is a function a
 from L into L such that for all h in a there exists a member

 h' of b such that hh' = ha.

 An abstractor system G will be called correlatable if for each a and b in G

 there exists a variation (a-b) from a to b such that principles II, III, IV
 below also hold.

 II. (a-b) is idempotent; (a-a) is the identity on L

 III. V A A (b-a)A.

 To state IV we need a further definition applicable in this context.

 (4-3) Instantiations h and h' in UG are called associated in G (by
 the variations (c-d): c, dEU G) exactly if there are abstrac-

 tors a, b in G such that hh' = h(a-b).

 IV. Association in G is an equivalence relation on UG each of
 whose equivalence classes contains exactly one member of
 each abstractor in G.

 The following definition and result will now allow the perspicuous represen-
 tation used in the intuitive discussion above.

 (4-4) If G is a set of abstractors then a correlator of G is a set G *
 of functions mapping G into UG for which there exists a set

 VAR of transformations such that for all a, b in G:

 (4-41) VAR contains exactly one variation (denoted
 (a-b)) from a to b

 (4-42) a = {g(a):gEG*}
 (4-43) g(a)g(b) =g(a)(a-b) =g(b)(b-a).

 (4-5) CORRELATOR THEOREM If an abstractor system is correlatable
 then it has a correlator.

 To prove this define for each h in UG the function gh on G such that gh(a) is

 in a and associated with h, for each a in G. By IV this is well-defined. By the

 reflexivity of association, (4-42) holds; by its definition and symmetry,

 (4-43) as well.

 Henceforth, the discussion will pertain to a correlatable abstractor

This content downloaded from 
����������132.174.255.116 on Tue, 26 Mar 2024 21:55:53 +00:00����������� 

All use subject to https://about.jstor.org/terms



 350 BAS C. VAN FRAASSEN

 system G with set VAR of variations and correlator G* as described. For

 perspicuity I shall write g(a) as ga, and we can then write:

 I*. gg~gb = ifa b
 IV*. gagb =ga(a-b) = gb(b-a)

 (4-6) aA = {gaA :gE G*}

 (4-7) Va A = A {gaA:g E G*}.

 (4-8) CORRELATION THEOREM If A = (a-b)B and B = (b-a)A then
 aA = bB and VaA = VbB.

 The second part of (4-8) follows immediately from the first part, which is

 proved: gaA = ga(a-b)B = gb(b-a)B = gb(b-a)(b-a)A = gb(b-a)A = gbB
 by appeal to IV* and II (idempotency); and finally (4-42).

 For terminological contrast I shall call g' g b .... instantiations.

 Intuitively, ga fixes the value of a at g, "sets a equal to g". Note that the

 variations are also naturally grouped into abstractors:

 (4-9) a+ = {(b-a): bE G}

 with associated universal quantifier Va. This is reminiscent of the substi-

 tution interpretation of quantifiers, with VaA A< VA in view of III. The abstractors a+, b*,... are also destructive, but the Non-Interference prin-

 ciple cannot be expected to hold: (a-c) will not generally commute with

 (c-b). The variational abstraction introduced by (4-9) will play an impor-

 tant role in the analysis of predication.

 5. IMPLICATION OPERATORS AND METHODOLOGY3

 Henceforth G, VAR, and G* will be assumed to be as described above, but

 we shall introduce a new assumption. I shall call logic L pre-implicative
 exactly if it has an operator D("ply") such that A D B = K if and only if

 A < B. Even in quantum logic such an operator exists (the Sasaki hook).
 Given that L is pre-implicative, a transformation will be called normal if it

 preserves D, and an abstractor normal exactly if all its members are. The

 new assumption, made henceforth, is that L is pre-implicative and all mem-
 bers of G normal.
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 QUANTIFICATION AS AN ACT OF MIND 351

 Note that if we define (A B) = (A D B) A (B D A) as usual then

 (A B) = K iff A = B. This helps us to prove a result which is of great use in

 subsequent proofs.

 (5-1) Methodological Lemma. Let r, p be functions defined by
 composition of variations and/or instantiations. Ifgar = gap
 for all g in G* then 7 = p.

 An example of 7 would be gb(b-a)(b-a), which occurred in the proof of

 (4-8); the abstractor a in the Lemma need not be specially chosen, it may

 appear in the description of 7 or p but need not. To prove the Lemma, note

 that ga = gap means that for all A in L,garA = gapA, arid therefore
 (garA gapA) = K. By normality of G, ga(TA pA) = K. If that is so for all

 g in G* then Va(rA = pA) = K; hence (TA = pA) = K as well by III and II.
 But then rA = pA. That being so for all A in L, 7 = p.

 This is at first sight a surprising result; the proof establishes along the

 way that if gA = gaB for all g in G* then A = B. For a putative counter-

 example, let G = {a) and a = {h}. Surely we cannot conclude from hA = hB

 that A = B? But III requires then that hA = VaA < (a-a)A = A, so we have

 hA - A for all A in L. From hA = hB we can conclude (hA = hB) = K, and

 by normality, h(A = B) = K, but by the preceding observation then

 K < (A = B), so A = B. Hence h must be one-to-one. Thus we see that III,

 which looks at first like an ad hoc addition to the theory, actually plays a

 crucial role in determining what a correlated abstractor system is like.

 6. INTERACTION AND VARIATION EQUALITIES

 Although substitution is a ubiquitous operation in logical theory, its seman-

 tic analysis is, as far as I know, found only in bits and pieces scattered

 through the literature.4 Using the Methodological Lemma, I shall here take

 up all questions whose answers are needed to calculate the effect of any

 composition of instantiations and/or variations.

 (6-1) Interaction Equalities
 d(6-1 1) gb(a-b) = (a-b) if a : b
 d(6-12) (a-b)gb =gb
 (6-13) gc(a-b)= (a-b)gc ifc a, c : b.

 The first two are reminiscent of Destructivity (and proved by appeal to it),
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 352 BAS C. VAN FRAASSEN

 the third of Non-Interference. Here is the first proof. For g, in G* and

 a f b, g gb(a-b)A = gbga(a-b)A = gbg1gbA = gbgg0lA = gb'gA =
 ge(a-b)A by successive appeals to I*, IV*, I*, Destructivity, and IV*. The

 Methodological Lemma (5-1) now entails (6-11). The proofs of the others
 are similar.

 (6-2) Variation Equalities
 d(6-21) Triangle Equality (a-b)(b-c) = (a-b)(a-c)
 (6-22) Special Commutation

 (a-b)(c-d) = (c-d)(a-b) if a, b, c, d all distinct
 d(6-23) Triangle Commutation (a-b)(a-c) = (a-c)(a-b)
 d(6-24) Non-Aberration (a-c)(d-c) = (d-c).

 The Triangle Equality, which is the most useful, must be proved for two

 subcases. If a 0 c, we deduce ga(a-b)(b-c) = gagb(b-c) = ggbgc =
 gbgagC = gbga(ac) = gagb(a-c) = ga(a-b)(a-c) for arbitrary g in G* by
 appeal to IV*, I*. By the Methodological Lemma, (6-21) follows. If a = c,

 we claim that (a-b)(b-a) = (a-b). We deduce gj(a-b)(b-a) = gagb(b-a) =
 gagbga = gagagb = gagb = g(a-b) by appeal to IV*, I*, II, for all g in G*;
 and the result by the Methodological Lemma. The proofs for the others are

 similar. Together they cover all combinations which can be reduced. The

 principle of Non-Aberration says in effect that the variational abstractor c+

 is destructive; but I could not resist the mnemonic name.

 7. PARAMETER DEPENDENCE AND SIMULTANEOUS

 VARIATIONs

 One guiding idea of the present theory is that the apparent parameter Tom

 in that Tom is happy should be identified with an abstractor which turns

 that proposition into the property being happy. It is heuristically useful,

 however, to keep the alternative picture of parameter dependence, to think

 of the abstractor as a parameter on which this proposition depends, and the

 members of the abstractor as different ways of fixing the value of the par-

 ameter. (Read "ga" as "set the value of a equal to g".) In that case, we may
 call a proposition which is b-invariant, one for which b is an irrelevant par-

 ameter. Thus b is relevant to A exactly ifgAA #A for some g in G*.
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 QUANTIFICATION AS AN ACT OF MIND 353

 (7-1) Irrelevance Conditions
 d(7-1 1) If a # b, then a is irrelevant to (b-a)A

 d(7-12) a is irrelevant togaA and VaA
 (7-13) If a is irrelevant to A then:

 (7-131) a is irrelevant to (b-c)A provided a # b
 d(7-132) a is irrelevant to gbA and VbA

 (7-133) (b-a)A=A
 (7-134) (b-a)(a-c)A = (b-c)A
 (7-135) Va(a-b)A = VbA

 (7-14) If b is relevant to A then a is relevant to (a-b)A.

 The first of these is implied directly by the first Interaction Equality, the

 second by destructivity. The third (7-131) is implied by the third

 Interaction Equality, the next by Non-Interference. The Methodological

 Lemma can be used to prove (7-133) and (7-134) - consider that if a is irre-

 irrelevant to A then gb(b-a)A = gbgaA = gbA for all g in G*, for example.

 Finally, the last one can be generalized from the fact that g'(a-b)A =

 gagbA = gbgaA = gbA given that A is a-invariant.

 The proof of (7-14) is interesting. Suppose a is not relevant to (a-b)A.

 Then (b-a)(a-b)A = (a-b)A by (7-133). But also (b-a)(a-b)A =
 (b-b)A = A by (7-134) and II. Hence (a-b)A = A. But then gbA =
 gb(a-b)A = (a-b)A by Interaction Equality (6-11), provided a 0 b; and
 hence gbA = A. Thus b is irrelevant to A. Note that (7-14) also holds

 trivially for a = b.

 A quick final note on why (a-b) will not generally commute with (b-c)

 or with (c-a). For suppose that b but not a is relevant to A. Then

 (a-b)(c-a)A = (a-b)A by Irrelevance Condition (7-133). But
 (c-a)(a-b)A = (c-b)A by (7-134). Since a is relevant to (a-b)A by (7-14)
 and not relevant to (c-b)A by (7-131), always provided these parameters

 are distinct, we conclude that the two resulting propositions are not the

 same, so the operations do not commute. Similar remarks apply to

 (a-b)(b-c).

 (7-2) Simultaneous Variation If al,... , an are distinct abstractors,
 then (bl-el). . . (bn--e)(en-an)... (el-al)A is the same
 proposition for any choice of distinct parameters el, . . . , en

 which are irrelevant to A, and distinct from al, .. , an and
 b,,... ,bn.
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 354 BAS C. VAN FRAASSEN

 The resultant proposition may be thought of as produced by a simultaneous

 variation of ai to bi (i = 1,..., n). The analogue for syntactic substitution
 is well-known.

 For the proof suppose that el,.. ., e,, are distinct and irrelevant to A;

 and e,... , e, also form a set of n distinct abstractors irrelevant to A, and

 that al,... , an are distinct from each other and from ei and e i(i = 1,... , n)

 and bl, .. , b, are distinct from ei and ei (i = 1,..., n). For easy reference
 consider:

 = (bi-e')...(bn-e')
 7 = (e'-en)... (el-el)

 8 = (e,-al)... (en-- an).

 Our aim will be to prove both:

 (7-21) flPyA = (bl-e')... (b,-en)(e-a,,) ... (e'-a,)A
 (7-22) P37yA = (bi-e) . .. (bn-en)(en-a) . . . (el-a)A

 whence the result follows. To prove the first note that

 (7-23) 7yA = (en-en) ... (el-el)(el-al) ... (en-an)A
 = (en-e,)... (e'-e2)(e'-aj)(e2-a2) ...(en-an)A

 by Irrelevance Condition (7-134). Now e' may be identical with e2, never-
 theless, we may commute (e'-al) with (e2-a2), either by Special Commu-

 tation or by Triangle Commutation. Similarly for e3,. . , e"n, so (el-a1) can
 moved all the way to the right hand side just before A:

 (7-231) 76A = (e -en) . . (e--e2)e2-a2) ... (en-an)(el-al)A.

 We now simply repeat this whole process until we have

 (7-24) 76A = (e-an) . .(el-al)A
 and now (7-21) follows at once.

 Next we consider Py(6A). We note that since e', ... , e, were irrelevant

 to A, ei can be relevant to SA only if ei = ej for some j. But if e' = el, for

 example, e' will be irrelevant to (el-e1)6A unless el = el as well, which is
 impossible since el # en. Similarly for 2, 3, ..., n - 1. So el is irrelevant to

 (en,,--en,-) .... (el-el)SA. Thus we have
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 (7-25) ry((6A) = (bl--el) ... (bn-en)(e'-en) ... (el-el) A
 = (be-e).. (bAn--e'-1)(bn-en)(en'--en-1)...

 ... (e'-el) A

 by Irrelevance Condition (7-134) again. Now (bn-en)(e,'--en-1) commutes:

 en 0 en-; if en = e,,-i then by Triangle Equality and Triangle Commutation;
 if en = e,'4- then either by Special or Triangle Commutation. And so forth

 for n - 2, n - 3,..., 1. Hence (bn-en) can be moved all the way to the
 right, before SA:

 (7-26) Py6A = (b,-el) . . (bn-1-en-1)(en'--e ) . .
 ... (e'-el)(b-en )SA.

 Because bn is also distinct from all the e4, we can repeat the whole process

 for e'.-, and so forth; and so we arrive at:

 (7-27) Py6A = (bi-e,) . . . (bn-en)6A.

 Finally, 6 can be commuted at will by Special Commutation; hence (7-27)

 implies the desired (7-22).

 The theorem allows the introduction by definition of partial functions

 that effect simultaneous variation of parameters. Let a replacement be any

 map a of G into G; there will then be for each s in Gna corresponding

 simultaneous variation operator o' which varies s(i) to us(i), for

 i= 1,...,n.
 (7-3) If a is a replacement on G and s in Gn then oa is the (partial)

 operator on L such that oaA = (as(l)--e) ...
 (os(n)-en)(en-s(n)) ... (el-s(1))A where el,... , en are par-
 ameters irrelevant to A and distinct from each other and

 from us(l),... , us(n), s(l),... , s(n); and ouA is undefined
 if no such parameters are available.

 That os is well-defined follows from the preceding theorem. The following
 theorem converts suitable sequences of ordinary variations into a single
 simultaneous variation.

 (7-4) Variation Conversion If al,..., an are distinct then there
 exists a replacement a such that (bn-a,) ... (bl-ax)A =
 o(a,,....,an)A for every proposition A in L for which there
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 exist n parameters irrelevant to A and distinct from each

 other and from a, . . . , an, b,..., bn.

 Let us suppose that el,. . . , en are irrelevant to A and distinct from

 a,..., a, b, . .. , b,. Let a = (bn-an) ... (bl-al).
 First of all we check whether b, = a2. If it is we replace bl by b2, by

 Triangle Equality, and then commute by Triangle Commutation. If

 not, we move (bl-al) to the left, by Special or Triangle Commutation; then

 ask whether bl = a3 and repeat the process. Eventually (bl-al) is on the far
 left, if it survives at all. We now repeat the entire process, until we have
 turned a t into

 a' = (b?-a,)... (bN-an)

 where b! = aj only if i =j, which will happen in a finite number of steps;
 moreover, aA = a'A for all propositions A. Consider now, for suitably

 chosen ei:

 3 = (b'-el) . . . (b-en) = (e-a) . . . (ei-a).

 We assert that aA = a'A = P3yA; moreover, by definition, Py = oa where
 u(ai) = bi for i = 1,... , n. Since en is distinct from en-, ,, . ., el it follows

 by an Irrelevance Condition and its irrelevance to A, that en is irrelevant to

 (en-l-an-1) ... (el-al)A; so we can collapse (bn-en)(en-an) into (bn-an) by

 an Irrelevance Condition. This commutes now with (en-1-an-,) by the fact
 that bn an-1 and an # en- 1; similarly for the others, so (bn,-an) can be
 moved all the way to the right in PyA. We now repeat the whole process

 with (b'-1-en-1), and go on to the next. Hence we see that the Variation
 Equalities and Irrelevance Conditions allow us to equate a'A with PA as

 required.

 With these results we have achieved our main objectives in the theory of

 variation (substitution). Further results would be desirable. I conjecture that

 if a and p are two replacements and there are at least 2n parameters irre-

 levant to A, then (ap)'A = oP'p'A, as the correct theorem for composition
 of simultaneous variations.

 8. THE SINGLE IDENTITY

 Names are labels of abstractors. Which proposition is the proposition that

 Cicero = Tully ? Let us put it another way: identity theory has certain laws
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 - can these laws be deduced for a suitably chosen identification of the

 identity propositions?

 Suppose that f is any function mapping L into L. With a nod in the

 direction of algebraic kernels, let us define the core off to be the set

 {A EL : fA = K } and the identity proposition of f, call it I(f), to be the
 meet of its core:

 (8-1) If = A{AEL :fA = K}.

 Thus I(f) is, intuitively, the conjunction of all the propositions which f

 turns into the a priori.

 Recall that a transformation is called normal if it preserves the ply oper-

 ation. Iff is a normal, idempotent transformation we can argue: f(A D fA) =

 (fA D ffA) = (fA D fA) = K, hence I(f) < A fA which already looks like
 one quarter of Leibniz's law.

 (8-2) Single Identity Theorem Iff is an idempotent normal trans-
 formation of L then

 (8-21) I(f) < A ifff(A) = K
 (8-22) I(f)<A DfA;I(f) fA DA
 (8-23) provided K D A = A for all A in L,

 I(f) = A { fA : A E L}
 (8-24) provided A A (A D B) < B for all A, B in L,

 I(f) AA -<fA; I(f) A fA < A.

 One half of (8-21) follows at once from (8-1). Suppose then that I(f) < A;

 then f(I(f)) fA. But f(I(f)) = fA{A : fA = K) = K, because f is a trans-
 formation. The first half of (8-22) was proved above; similarly f(fA D A) =

 ffA D fA = fA D fA = K so by (8-21) the second half follows.

 Half of the identity in (8-23) follows from (8-22). To prove the other

 half, it suffices to show that if B is in the core of f, then some proposition

 (A =fA) implies B. But f(I(f)) = K by (8-21), so (I(f) =f(I(f)) = (I(f) =
 K) = I(f) by the assumed properties of ply; and if B is in the core of f, this

 does indeed imply B.

 By (8-22), I(f) A DfA, so I(f) AA < (A D fA) A AafA by the
 assumed property of ply; similarly for the other half of (8-24).

 Again, even the Sasaki hook of quantum logic has the properties assumed
 in the provisos; on the other hand the Sasaki hook and the classical counter-

 factual conditional both lack the intuitionistic property that A < B D C if

 and only ifAA A B < C, which I have therefore not assumed anywhere.
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 9. CORRELATED IDENTITIES

 To prove the Methodological Lemma we assumed that all instantiations are
 normal. Henceforth we shall also assume that all variations are normal, and

 abbreviate "I(a-b)" to "Iab". Intuitively speaking we wish to establish that

 Iab can be thought of as a proposition asserting that a certain equivalence
 relationship holds between abstractors a and b. This relationship should be

 so tight that Iab implies, and is implied by, the 'indiscernability' of a and b
 - the equivalence of any proposition with the result of varying a to b on

 that proposition. In addition, we do not want lab to be a priori except when

 a, b really are one and the same abstractor.

 (9-1) Iab <A iff (a-b)A = K

 (9-2) lac < (c-b)lab

 (9-3) - If a, b, c are distinct then lac - B only if lac - VbB

 d(9-4) (c-b)Iab < lac provided a =: b.

 These results show that lab really can be thought of as a proposition truly

 dependent on parameters a and b. We do not want (9-4) to hold if a = b, for

 Ibb ought not generally to imply Iac. Here (9-1) merely restates (8-21). This
 entails that (9-2) requires only that (a-c)(c-b)Iab = K, which follows if
 (a-c)(c-b)A = K whenever (a-b)A = K. By the Triangle Equality,
 (a-c)(c-b)A = (a-c)(a-b)A, and transformations turn K into K, so if
 (a-b)A = K then so is (a-c)(a-b)A; hence the result.

 To prove (9-3), which we need as a Lemma for (9-4), note that when

 a, b, c are distinct, (a-c)B = K entails (a-c)gbB = gb(a-c)B = gbK = K by
 the Interaction Equalities, and use (9-1).

 The proof of (9-4) is somewhat more interesting. This is trivial if c is the

 same as a or b, so assume they are all distinct. We must show that

 A {(c-b)A :(a-b)A = K)} A {B:(a-c)B = K)

 which will follow if for each B in the core of (a-c) there exists a

 proposition B* such that (a-b)B* = K and (c-b)B* < B.
 So suppose that (a-c)B = K and set B* = (b-c)VbB. Then (c-b)B* =

 (c-b)(b-c)VbB = VbB < B by the Irrelevance Conditions and III. Secondly,
 (a-b)B* = (a-b)(b-c)VbB = (a-b)(a-c)VbB by the Triangle Equality. But
 because (a-c)B = K, so is (a-c)VbB by (9-3) above, hence
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 (a-b)B* = (a-b)K = K. The Irrelevance Conditions used in the proof
 required destructivity.

 Now we can turn to some more familiar properties:

 (9-5) laa =K

 (9-6) lab = Iba

 d(9-7) lab < (Ibc D Iac)

 (9-8) provided AA (A B) <0B for all A, B in L: lab Ibc < lac

 (9-9) If lab = K then a and b are the same abstractor.

 For the first note that only K belongs to the core of (a-a). To prove the

 second it suffices to show that (a-b) and (b-a) have the same core. Sup-

 pose that (a-b)A = K. Then gb(b-a)A = ga(a-b)A = gaK = K by IV*, for
 any g in G*. Hence Vb(b-a)A = K; so also by III, (b-a)A = K.

 By the Single Identity Theorem, lab < (Ibc D (a-b)Ibc) < (Ibc D Iac)
 provided a 0 b, by (9-2), d(9-4), and (9-6). We conclude (9-7) which holds

 trivially when a and b are the same. Finally, using the Single Identity

 Theorem and the proviso of (9-8) we deduce lab A Ibc < (a-b)Ibc < lac
 when a # b; and conclude (9-8) which again holds trivially if a, b are the
 same.

 To prove (9-9), we appeal to the disjointness of distinct abstractors in a

 correlated abstractor system. If lab = K, then (A = (a-b)A) = K for all A in
 L (using only (8-22) of the Single Identity Theorem). Hence (a-b)A = A for

 all A in L. Because lab = Iba we conclude similarly that (b-a)A = A for all

 A in L. Thus gaA = ge(a-b)A = gb(b-a)A = gbA, for any g in G* and A in L.
 Hence the abstractors a and b have the same members and so are

 identical.

 Results (11-10)-(l 1-12) will give some more information about identity.

 10. PREDICATION: LOCAL COORDINATES AND SEARCH
 PROCEDURES

 When A is not b-invariant, we can also think of abstractor b as a parameter

 (whose variation affects A) and call A dependent on b or b relevant to A. Of

 course, A may be dependent on two, three, or more parameters. The prop-

 osition Peter is older than Paul depends on the parameters Peter and Paul,
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 and so does that Paul is older than Peter. There is no asymmetry in this

 remark; nor in any relations between the two propositions. Nor is there, in

 our theory, any internal structure attributed to the propositions which

 could explain the apparent asymmetry in this description. Hence we must

 locate the source of the apparent asymmetry solely in the method of

 description.

 As analogy, consider the search procedure: start at the intersection of the

 equator and the Greenwich meridian, go miles north and miles west.
 Different points are reached depending on whether I apply input (5, 3) or

 input (3, 5). Of course there is no asymmetry either in the points them-
 selves or in the relations between them. A predicate has as semantic corre-

 late such a search procedure. It will be clear from the example that under

 suitable circumstances, a search procedure is essentially the same thing as an

 assignment of coordinates. A predicate has as semantic correlate a local

 coordinate system for propositions. The proposition usually designated as

 Rab is the one which has coordinates (a, b) in coordinate system R. I shall

 now make this analogy precise.

 Recall the variational abstract a'A = {(b-a)A : b E G}. You can get to an
 any proposition in that family, from A, by means of a single variation. In

 case b is irrelevant to A, then (b-a)A has the same sort of privileged positio

 position in the abstract, and at = ba)A. Let us call such a variational
 abstract a local family (of propositions) of complexity 1. It will be the range

 of something associated with a predicate of degree 1, what I shall call a

 selector of degree 1. This is a function which, if you give it input b, pro-

 duces (b-a)A. It coordinatizes its range by means of the family G of

 abstractors: (b-a)A is the proposition in its range which has coordinate b.

 Consider now the family of propositions we can get from A by varying

 a or b or both. This should be called a local family of complexity 2 (pro-

 vided both a and b are relevant to A). Since the variation of a and b may be

 simultaneous (from f(a, b) to f(b, a) for example) the description cannot

 look as simple as a'bt (see the Simultaneous Variation Theorem 7-2).
 When X is a set of propositions a'X will be the set {(b-a)A : A E X and
 b EG}. Now we can define:

 (10-1) Class X of propositions is a local family of complexity n
 exactly if there exists a proposition A and distinct abstractors

 a,... a, all relevant to A such that X = U{e... e

 at(A): el,..., en distinct and irrelevant to A}.
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 If X is as described, a typical member looks like this, with el,..., e, dis-

 tinct from al,.. . , a, (because of the irrelevance):

 (10-2) (bi-el) . . . (bn-en)(cn-an) . . . (cl-al)A = B.

 In this case we shall say that A determines X (or, is a determinant of X) via

 a, . . . , an. When at least one abstractor is irrelevant to A, I shall call {A} a

 local family of complexity zero. Finally, it will be clear that the existence of

 a local family of complexity n requires G to have at least 2n members.

 Let us now take a look at the selectors, whose ranges these local families

 are meant to be. A selector f of degree 3, for example, will map triples of

 abstractors in G into propositions; I shall write f(a, b, c) for its value at

 triple (a, b, c). We then want the proposition f(a', b, c) to be (a'-a)f(a, b, c)

 but more generally,f(a', b', c') the simultaneous variation of a, b, c to

 a', b', c'. Of course the triple (a', b', c') itself is produced from (a, b, c) by a

 simple pointwise replacement, that is, a function a of G into itself for which

 we define u((a, b, c)) = (o(a), u(b), u(c)). So if s is an n-ary sequence of

 abstractors, and fa selector of degree n, we want f(us) to be produced from

 f(s) by a simultaneous variation which 'duplicates' replacement o.

 (10-4) Function f of Gn into L is a selector of degree n exactly if

 there exists a sequence s = (al, . . . , an) in Gn (an origin off)
 such that a1, . . . , an are all distinct and for all replacements

 a on G,f(os) = usf(s).

 If not all members of s are relevant to f(s) then f will have the same range as

 (and be definable from) a selector of lesser degree (see below). The equation

 at the end of (10-4) is stipulated to hold only if both sides are defined.

 (10-5) Selector Abstraction Definition. If a,... , an are all distinct

 then Xa. . . a,,. A is the selector fof degree n with origin
 (a, ... , a,) such that f(a,. . . , a,) = A.

 The definitions are such that the existence of selectors in general is obvious,

 and the existence of ali ... an A also quickly established under suitable con-
 ditions. The claim that a selector coordinates its range, a local family of

 related complexity, depends on the relative completeness of our theory of
 variations.

 (10-6) Selector Abstraction. If a1,..., a, are distinct and relevant
 to A, and there are at least 2n distinct parameters irrelevant
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 to A, then Xal... an A exists, and its range is the local family

 of complexity n determined by A via al,..., a, .

 If we define the function f(s) = A and f(as) = aof(s), with s = (al, .., ),
 and the assumptions of the theorem hold, then f is well-defined on the

 whole of Gn, into L. Hence f is selector with origin (al,. . , an), and by
 (10-5) this is Xal ...anA. The local family in question is

 X = U{et ... enan ... atA :el, .. , e, distinct and irrelevant
 to A}.

 To begin, f(s) = o*f(s) = (s(1)-e) ... (os(n)--e)(en-an) ... (el-al)f(s)
 and f(s) = A, so this has form (10-2) and belongs to X. Hence the range of f

 is included in X. Secondly, suppose B is as described in (10-2). We have to

 show that B = oSA for some replacement a; then B = f(as) and so in the
 range off. Let us write

 a = (cn-an) . . .(cl-al)
 = (b,-el)... (bn-en).

 Note that because of their irrelevance, el, . . . , en are distinct from

 al,...0,an-
 The clue to what j3aA is, is that the ei can have become relevant to aA

 only if there are some of them among the ci. Hence we proceed as follows:

 Check (bn-en). If en 4 cj for any j, then en is irrelevant to aA, and so by an

 Irrelevance Condition, (bn-en) may be discarded. If en = ej for some j, move

 (bn-en) in 3ot to the right until it reaches the first such case, by Special and
 Triangle Commutation, so that Pa has been turned into

 .. (bn-en)(en-aj)(cj_,-ai-) . . .(c-a).

 By Triangle Equality (bn-en)(en-aj) becomes (bn-en)(bn-aj), which com-
 mutes, so we move (bN-en) still further to the right, repeating this process.

 Finally (bn-en) is at the very far right; now en is clearly irrelevant to A, and
 so at this point (b,,-e,) may be discarded altogether. To put it briefly:

 (bn-en) may be moved to the right, turning each cj which equals en into bn,
 and then finally discarded. Now we have a new expression:

 a = (bi-el) . . .(bn-,-en-)(c-an) . . . (cl-al).

 We simply repeat the whole process with (bn-1-en-), and so forth. Thus in
 n moves, we have come to
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 an = (cI-a) . . . (cn-a1)

 That t, A n= (aa...I )A for some a follows now by Variation Conversion
 given that al, ... , a,, are relevant to A and there exist at least 2n parameters
 irrelevant to A, hence at least n such which are distinct from c,. . . , cn as

 well. We conclude that X is the range of f

 (10-7) Selector Collapse. Iff is a selector of degree n and origin

 s = (al, ... , an) andai is irrelevant to f(s), then there exists
 a selector of degree n - 1 with the same range asf

 It is not difficult to prove in addition a sort of converse to (10-7): new

 selectors of higher degree can be manufactured by selector abstraction using

 irrelevant parameters.

 To prove this theorem note that the existence of f entails that for each

 bl, . . ., bn there exist parameters el,..., en irrelevant to f(al . . ,, an) and
 distinct from a,, . . . , a,, b, . . . , bn. Since possibly bi = eg, there exist at

 least 2n parameters irrelevant to f(a, - -,, a) = f(s). Assume that a4 is irre- levant to it as well, and define f' to be the selector of degree n - 1 with

 origin so = (al,... , ai, ai+1,. .. , an) which has value f(s) at that origin.
 Because of the availability of irrelevant parameters, the conditions defining

 f' are well-defined themselves, so f' exists. We claim now that it has the

 same range as f This will clearly be the case if for all a, o'f '(so) = oaf(s), i.e.

 oSof(s) = o*f(s). Hence we need the lemma:

 (10-71) If ai is irrelevant to A; el, . ., en are distinct and irrelevant
 to A; a1,..., an are mutually distinct; and el,... , en are
 distinct from a,, . . . , an, bl, . . . , b, then (bi-e1) ...

 (bn-en)(en-an) . . (el-al)A = (bi-e) ...

 (--e-)(b+ l-ei+1)... (bn-en)(e,-an)...
 (ei+ 1-al+1)0(ei-I-a,--) . . . (el-a1)A.

 Given the distinctness of the parameters and initial irrelevance, ai is still irre-
 levant to (ei-l--a,)-)... (el-al)A; hence (eg-a,) can be discarded without

 effect by an Irrelevance Condition. Having done that we note that ei is dis-
 tinct from all the other parameters involved and initially irrelevant to A.
 Hence it is still irrelevant to

 (b+l-eal)A
 (e1-a1)A
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 and so (bi-ei) can also be discarded. Thus our conclusion follows.

 These results establish the main claims concerning coordinatization of

 local families of propositions by selectors. Note in passing that if the con-

 jecture at the end of Section 7 is correct then, if f is a selector, f(us) =

 uo(f(s)) for all sequences s, in its domain, not just its designated origin.

 (In that case, every sequence of the right length is an origin off.) The
 dependence of these results on the availability of a sufficient number of

 irrelevant parameters (correlated abstractors) is worrying in the absence of

 embedding results, but there is not much point in proving them at our

 present level of generality.

 11. FIRST-ORDER SYNTAX WITH IDENTITY

 Let us consider a syntax with connectives &, D, predicates F of various

 finite degrees, sentence constants t, f, p, q, . . .; individual constants a, b, j,

 ...; variables (for binding)x,y, z, .. .; universal quantifiers (x), (y),
 (z), ...; special identity predicate =. Given a logic with a correlated abstrac-

 tor system G (with correlator G*) and ply operator D, we hope to interpret

 the syntax by assigning each well-formed expression E a semantic value

 IEI, as follows.

 (11-1) Itl =K; Ifl =A; IpEL;...

 (11-2) IA & BI = IAI A IBI; IAD BI = IAI D IBI

 (11-3) la1 is a member of G (abbreviate IlI to a)

 (11-4) IFI is a selector on G with the same degree as predicate F,
 which is origin-normal (see (11-8) below)

 (11-5) I = = lab

 (11-6) IFd,...1I= IFl(al,...,an)
 (11-7) I(x)(x/d)AI = ValAI.

 With respect to (11-7) a consistency question arises: for (x)(x/1)Fd is the

 same expression as (x)(x/b)Fb, so we need to be guaranteed that VaIFaI =
 Vb IFbl. Related to this is the question what the semantic value of, say
 (x)(x=d D dt is; obviously there will in general exist a selector i such that
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 i(a, b) = Iab. The following definition and two simple results, in addition to

 all our general results on variation, will bear on this:

 (11-8) Selector f with origin s = (a, . . . , a,) is origin normal
 exactly if at most a, . . ., an are relevant to f(s).

 (11-9) If a, b, c are distinct and f is an origin normal selector of

 degree 2 then gaf(a, b) = gef(c, b) and Vaf(a, b) = Vef(c, b).
 (11-10) If a and b are distinct, then g'lab = Igb

 Note that (11-10) entails also the special case of (11-9) with f(a, b) = lab.
 To prove these, suppose without real sacrifice of generality that (e, b) is

 the origin off in (11-8); then gaf(a, b) = ga(a-e)f(e, b) = gagef(e, b) =
 gef(e, b) because, unless a=e, it is not relevant to f(e, b), by origin

 normality, hence not relevant to gef(e, b). Secondly, we prove for (11-10) as
 first lemma:

 (1 1-11) galab = gaA{A (a-b)A: AE L}
 = A{gaA -g'(a-b)A : AE L}
 = A{gaA EgagbA :A EL}
 = gaAA gbA : A EL }
 = gajgb

 whence the conclusion follows via the second lemma:

 (11-12) If a and b are distinct then a is irrelevant to Igb.

 Assume a # b and suppose Igb < B, hence gbB = K. Then gbgaB = gagbB =

 gaK = K, so Igb - gaB. We conclude specifically that Igb h galgb. Secondly,

 suppose Igb < A, so gbA = K; but gbaA bA {gbfA :g, E G*} = A{gbgaA :g, EG*} = A{ggbA :g, EG*} = A{gK :gE G*} = K; hence

 Igb VGaA. But since ga is a transformation, it follows then that galgb <
 gaVaA = VaA (a-a)A = A. We conclude specifically that galgb J gb.
 Combining the two conclusions, we find that Igb is a-invariant.

 As an illustration consider the sentence (x)(x = b D Fx). Provided b and

 d are distinct constants, this sentence is identical with (x)(x/d)(J = D FJ).
 Upon interpretation it has semantic value Va(lab Df(a)) =
 A{ga(lab D f(a)) :g E G*} = A{Ilgb D gaf(a) :g E G*} via our just obtained
 results. In view of (11-9), we could abbreviate "gaf(a)", "gbf(b)", etc.

 uniformly to "f(g)". So it would not be unnatural to introduce yet one
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 366 BAS C. VAN FRAASSEN

 more picture (incompatible but complimentary to the abstractors and par-

 ameters pictures) in which the variables x, y, ... stand for the functions g in

 the correlator G*. At the moment our interpretation of the syntax does not

 extend to formulas with free variables; but this suggestion would lead to

 the interpretation of (x = b) as Igb, (y = b) as Ig', Fz as gcf(c), or more

 perspicuously f(g2); and so forth. It is clear that if we did want to give some

 interpretation to free variables, it would be quite different from that for

 names. It should also be remarked that different names could be assigned

 the same abstractor (I[l = 11I), in which case the corresponding identity
 statement would have K as semantic value. But the leeway provided by the

 present theory is that different names can be assigned different semantic

 values without prejudice to the truth value of the identity statement. The

 fact that it is true (perhaps even necessary) but not a priori that Cicero is

 Tully would be reflected in the fact that the filter of true propositions in L

 includes (I I"Cicero"I I"Tully"I), although I"Cicero"I and I"Tully"l are
 different abstractors, so that the identity proposition would still not have

 the status of the a priori.

 APPENDIX: TRANSFORMATION SEMANTICS AT AN

 INTERMEDIATE STAGE OF ABSTRACTNESS

 Models and model structures encountered in familiar semantic analyses of

 modal logic and of classical and intuitionistic quantifier logic, furnish

 examples of the logics (i.e. proposition algebras) with abstractors studied in

 this paper. These examples are not simplified by looking upon them this

 way, but they guarantee a certain kind of completeness for us.

 Al. Normal Modal Logic. This example can also be found, with some

 elaboration, in my Formal Semantics and Logic, Ch. V, section 2b.

 An alethic possible world model structure (briefly, ms) is a couple

 M = (K, R) with K a non-empty set (the worlds) and R a reflexive relation

 on K (the access or relative possibility relation). A proposition of M is any

 set of worlds, hence the propositions form the complete lattice (Boolean

 algebra) of subsets of K. This 'logic' (of propositions in M) has the special

 operations - A = K-A; A D B = , A U B; OA = {a E K : R(a) _ A} where
 R(a), the access sphere of a, is the set {1 E K : aR3}. Conjunction and dis-
 junction of propositions are of course set intersection and union.
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 QUANTIFICATION AS AN ACT OF MIND 367

 Let us now see if there exists an abstractor m on this logic such that

 DA = VmA. First of all define a point transformation on K to be a function
 f ofK into K such that aRf(a) for all a in K. Because R is reflexive, it fol-

 lows that R(a) = {f(a): f is a point transformation on K }.
 For each point transformation f define the function f* on propositions

 by the condition f*A = {a E K : f(a) E A}. Then f* is a transformation of

 the logic, in our sense, because if A c_ B then f*A c_ f*B; f*(nX) =
 n{f *A :A EX} and f*(UX) = U{f*A :A EX}. In addition f*(-A)=
 {a E K :f(c) Q A} = K-f *A = -f *A; and hence also f *(A D B) =
 f*A D f*B, so these transformations are also ply-normal.

 Let the abstraction m be the set of all these functions f*. Then VmA =

 A{f*A : fa point transformation}. Hence at E VmA iff for each f, aE f*A,

 i.e. for each f,f(a) EA, and therefore, by our previous remarks, iff

 R(a) c_ A. Hence VmA = OA as claimed.

 A2. Algebraic Treatment of Quantification over a Domain. Here I shall

 consider a semantic analysis of quantifiers in logics, such as classical and

 intuitionistic logic, whose models can be regarded as complete lattices of

 propositions, but utilizing variables ranging over a universe or domain of
 discourse.

 We begin with a complete lattice Lo of simple propositions. In the classi-

 cal case, this is a Boolean algebra, in the intuitionistic case a Heyting

 algebra. Secondly we specify a domain D (a non-empty set), thirdly a set

 VAR of variables (intuitively, they take values in D). Now the propositions

 are the family L of functions which map DVAR into Lo. The explanation of

 this scheme in the classical case is that a sequence or function s which gives

 value s(b) to variable b in domain D, may satisfy or not satisfy a proposition

 A. In this case Lo = {T, F} and "s satisfies A" is equated with "A(s) = T".

 The simple propositions form the two-element Boolean algebra in this case.

 Generalizing this, we think of proposition A as an entity dependent on cer-

 tain variables; when the values of those variables are fixed by s, then A

 becomes the simple proposition A(s). Thus a simple proposition is one
 which is not dependent on what values the variables take. In the intuition-

 istic case, with Kripke's semantic analysis, Lo is the family of all sets X of

 worlds such that, if a E X and aR3, then 0 is also in X (R-closed set). When

 R is reflexive and transitive, those R-closed sets form a Heyting algebra.

 What operations are there on L? To begin with we can 'lift' operations
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 368 BAS C. VAN FRAASSEN

 from Lo to L. Thus we set (AAi)(s) = A Ai (s) and (VAi)(s) = VAi(s) and
 A < B iffA(s) < B(s) for all s. Next, if Lo has an n-ary operation t (such as

 ~ or D) we define similarly (A1,... , An)(s) = p(Al(s), ,An(s)). In this
 way L receives a structure which is the same as Lo in all those respects that

 affect logic. (So if a given deductive logic was sound and complete with

 respect to Lo - or to class {L, L', . .} - it will also be sound and com-
 plete with respect to L - or respectively, to class {L1, L2, ..}.
 Next we can introduce special operations on L, namely quantifiers. The

 most obvious one is the universal quantifier: for a E VAR we define

 (VaA)(s) = A{A(e IIa)s :e ED}

 where (e II a)s = s' iff s'(a) = e and s'(b) = s(b) for all variables b other than

 a. But now we also define an operation on propositions:

 ((e I a)A)(s) = A((e I a)s)

 and define the abstractor ai = {(e I a) : e ED}, whereupon the universal
 quantifier can be redefined in two steps:

 dA = {(el a)A: eE D} (VaA) =A dA.

 It may be noted at once, in the terminology of the body of this paper, that

 a is a destructive abstractor and if a 4 b then a does not interfere with b. To
 study their correlation, we introduce the function:

 (ab)s = s' iffs'(b) = s'(a) and s1(c) = s(c) for c # b.

 ((a-b)A)(s) = A((b)s)

 It is easy to see that (e I a)(a-b)A(s) = A((b)(e II a)s) and that the sequence
 (ab)(e II a)s is just the result of changing both s(a) and s(b) to e. Hence we
 have

 (e I a)(a-b) = (e I b)(b-a) = (e I a)(e I b)

 which is the required instance of postulate IV*. Verification that both (e-a)

 and (a-b) are transformations which preserve all the structure of L which

 was lifted from Lo, is routine.

 Princeton University
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 NOTES

 * National Science Foundation support for this research is hereby gratefully acknowl-
 edged. I also wish to thank Stig Kanger, whose lectures on modal quantification theory
 at the Victoria University of Wellington, July 1981, gave me new insight into its
 algebraic structure; Richmond Thomason for helping me to clarify crucial ideas about
 predication, and Dana Scott for pointing me to Halmos' work which in turn gave me
 the right desiderata for the theory of variation (substitution).
 ' Probabilistic semantics provides probably the best worked out examples of a sub-
 jective semantics. See Van Fraassen (1981) and references therein.
 2 Restricted and other generalized quantifiers need to be explored, and also higher
 order quantification; it appears so far that the present treatment can provide a natural
 setting for their study.

 3 In this section, to prove the Methodological Lemma, I use the assumption that there
 exists an operator D such that A D B = K if and only if A B. In discussion with Nuel
 Belnap it became clear that a weaker assumption suffices: that there exists in L a
 proposition T (intuitively, the truth, the logically strongest true proposition) such that
 T < A D B if and only if A < B. This bears on the question whether relevance logics can
 be accommodated within this approach.

 4 Substitution (of which variation is the algebraic counterpart here) has always been a
 difficult subject, which one is content to explore no further than necessary for the
 purpose at hand. For various approaches, see Curry, Halmos (especially pp. 104-108),
 and Van Fraassen (1971; especially Ch. 2 section 2 and Ch. 4, sections 1 and 5).
 5 The reader is requested to refrain pro tem from any opinions as to what a prop-
 osition is. The notion of a 'general' object 'dependent' on parameters does not have
 any status in the standard ontology of today. Compare Locke's 'general' triangle which
 'becomes' a 'specific' triangle when two sides and their inscribed angle are specified, or
 the lizard, which is to be found in the Sahara and the Gobi, though no single lizard is.
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