The details for those who want them:
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Compare corresponding lengths on two curves and find
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The condition for the motion to be force free, excepting the constraint to a surface f(z,y, z),
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is

(z(s),y(s),2(s)) (az,ay,a;) is orthogonal to
has extremal length the surface tangent vector (£,7, ()

The condition follows since the variation ¢ [ ds must vanish if the curve is extremal in length (a
geodesic);
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same start
and finish
d .. .. ..
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(26 + - -- )|‘:§:rt =0 vanishes in general if
since (Z, 4, £) orthogonal
(&, Q)(start) = (&,1,¢)(end) = 0 to (£, ¢)

The orthogonality of (&,4,Z) to (§,n,¢) implies the orthogonality of (as,ay,a;) to (§,n,¢) because
constrained motion has constant kinetic energy, and hence s  t.
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