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Newton’s equations of motion tell us that a mass at rest at the apex of a dome 

with the shape specified here can spontaneously move. It has been suggested that 

this indeterminism should be discounted since it draws on an incomplete 

rendering of Newtonian physics; or it is “unphysical”; or it employs illicit 

idealizations. I analyze and reject each of these reasons. 

1. Introduction 
 It has been widely recognized for over two decades that, contrary to the long-standing 

lore, Newtonian mechanics is not a deterministic theory. The clarion call came in John Earman’s 

(1986, Ch. III), which recounted the failure of determinism, including the then recent discovery 

by Mather and McGehee of “space invader” systems of interacting particles that spontaneously 

rush into an empty space from spatial infinity. Further, simpler violations of determinism 

emerged. Pérez Laraudogoitia (1996) described an especially simple example of “supertask” 

indeterminism in which a countable infinity of masses confined to a unit interval are 

spontaneously energized; and Norton (1999) described a correspondingly simple example of a 

countable infinity of masses connected by springs that are spontaneously energized. 

 In this developing tradition, the simplest example so far of indeterminism in Newtonian 

physics is what has come to be known as “the dome,” described in Norton (2003, §3). The 

indeterminism involves none of the complications of infinitely many systems interacting or 

masses appearing with unbounded speed from spatial infinity. A mass sits on a dome in a 
                                                
1 My thanks to my co-symposiasts, John Earman and David Malament; to Michael Dickson, 

Bernie Goldstein, Stephan Hartmann, Alexandre Korolev and Dmitri Tymoczko; and to Visiting 

Fellows of the Center for Philosophy of Science: Boris Grozdanoff, Antigone Nounou, Hernan 

Pringe and Stéphanie Ruphy. 
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gravitational field. After remaining motionless for an arbitrary time, it spontaneously moves in 

an arbitrary direction, with these indeterministic motions compatible with Newtonian mechanics. 

 This note will consider whether the dome depends upon some improper maneuver in 

Newtonian theory. I will argue that it does not. Resolving this issue proves to be of unexpected 

philosophical interest. It requires a careful appraisal of three questions: Just what is Newtonian 

theory? What do we mean by the notion “unphysical”? Are some idealizations improper?  

2. The Dome in Brief 

2.1 Description 

 The dome is a radially symmetric surface shown in Figure 1. Its shape is defined by  

h = (2/3g) r3/2                                                                   (1) 

where r is the radial distance coordinate in the surface of the dome, h is the vertical distance 

below the apex at r=0 and g is the constant acceleration of free unit mass in the vertical 

gravitational field surrounding the surface. A point-like, unit mass slides frictionlessly over the 

surface. Initially, at time t=0, it is at rest exactly at the apex. 

 
Figure 1. The Dome 

 

The net force F acting on the unit mass is directed radially outward. It is the component of the 

gravitational force tangent to the surface, which is g sin θ, where θ is the angle between the 

tangent to the surface in the radial direction and the horizontal. Since sin θ = dh/dr, we have 
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F =  g dh/dr = r1/2. Newton’s second law sets this force equal to the acceleration a(t) = d2r/dt2 

and yields the equation of motion of the mass: 

d2r/dt2 = r1/2                                                                  (2) 

The expected solution is 

r(t) = 0                                                                  (3) 

in which the mass simply remains at rest for all times t. Another family of solutions represents 

spontaneous motion at an arbitrary time T in an arbitrary radial direction: 

r(t)  =  (1/144) (t – T)4   for t ≥ T                                    (4) 

       =  0     for t ≤ T 

We see that (4) satisfies (2) if we compute the radial acceleration a(t) = d2r(t)/dt2, which is 

a(t)  =  (1/12) (t – T)2   for t ≥ T                                    (5) 

       =  0     for t ≤ T 

and note that a(t) as given in (5) is the square root of r(t) as given in (4). 

 The dome manifests indeterminism2 in the standard sense that a single past can be 

followed by many futures. The mass may be at rest for all times up to t=0. It then may or may 

not move spontaneously at any time after that.3 

 Elsewhere (Norton, 2003, §3) I have responded to concerns about the moment t=T. 

Briefly, since no net force acts on the mass at t=T, does Newton’s first law obtain? It does, since 

(5) tells us the mass has zero acceleration at t=T. Those who yearn for a first cause to initiate the 

motion should recall that a requirement of a first cause is not a part of Newton’s laws of motion. 

Further, there is no first moment of acceleration at which this first cause might act. The moment 

t=T is the last moment of unaccelerated motion. 

                                                
2 Equation (2) with initial conditions r(0) = dr(0)/dt = 0 fails to satisfy a familiar condition 

sufficient for existence and uniqueness of a solution, a Lipshitz condition. I originally concocted 

the dome example by starting with a text-book example of a violation of a Lipshitz condition; 

and then worked backwards to a plausible physical instantiation. 
3 I have used the fact that Newtonian theory assigns no probabilities to these different outcomes 

as a way of illustrating my claim elsewhere that inductive inference need not be probabilistic. 

See Norton (forthcoming). 
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2.2 Individual versus Collective Indeterminism 

 This manifestation of indeterminism differs from those already in the literature. In the 

case of supertask indeterminism, each component is well-behaved. If a component is set into 

motion, it is because is has been, struck, pushed or pulled by another component. The space 

invader form of indeterminism is odder in the sense that it involves components that pop into 

being “from spatial infinity” with unbounded speeds. However each individual component is 

well-behaved locally. If we look at the motion of any component in some part of spacetime of 

finite spatial and temporal extension, the component will only change its motion if it is struck, 

pushed or pulled by another component. In both supertask and space invader cases, the 

indeterminism only arises when we assemble these many individually well-behaved parts into 

the pathological totality. 

 The dome is unlike this. There is only one component, the mass, and no new interaction 

brings about its spontaneous motion. The only relevant force, the external gravitational field, acts 

on the mass in exactly the same way at the moment of spontaneous excitation as it had in all the 

moments prior. No story in terms of smaller, individually well-behaved parts is possible for why 

the mass changed its state of motion at just the moment of excitation and not at any other. The 

best we can say is that it did because it could and it could because Newton’s laws allow it. 

2.4 Losing Touch 

 As David Malament (manuscript) has shown, if the mass has any non-zero initial velocity 

at r=0, it flies off the dome’s surface. This does not compromise the dome as an example of 

indeterminism in Newtonian theory; indeterminism remains in the case of zero initial velocity. 

 To see that losing touch arises, consider a radial motion h(t), r(t) that lies on the dome’s 

surface, with h and r both strictly increasing with t. It starts at r=0, t=0 with a non-zero initial 

velocity v(0) = dr(0)/dt > 0. The vertical velocity is dh/dt = dh/dr.dr/dt, where we use the fact 

that h can also be expressed as a function of r, since r is strictly increasing with t. It now follows 

that the vertical acceleration is 

d2h/dt2  =  dh/dr. d2r/dt2  + d2h/dr2.(dr/dt)2                                         (6) 

Recalling (1) h = (2/3g) r3/2, we have dh/dr = (1/g).r1/2, so that 

d2h/dr2 = 1/(2gr1/2) 



5 

Thus d2h/dr2 is infinite at the apex h=r=0. So, from the second term of (6), the vertical 

acceleration d2h/dt2 at t=0 must also be infinite, as long as the initial velocity v(0) = dr(0)/dt > 0. 

If the mass is to remain on the surface, it must have an infinitely large vertical acceleration4 at its 

first instant at t=0. That is impossible since the greatest acceleration gravity can provide is g; and 

at the apex it is g.sin 0 = 0. So the mass cannot remain on the surface. 

 We could modify the example slightly. We could replicate the essential properties of the 

dome with a rather extravagantly idealized bead on a wire. The wire of no thickness is formed 

into the profile of the dome and threads an infinitely small bead of unit mass that slides 

frictionlessly along it. The diverging of d2h/dt2 at t=0 shows that the wire must exert an infinite 

reaction force on the bead just at the moment t=0, if the bead is to slide along the wire from the 

apex with an initial velocity greater than zero. We should not dismiss momentarily infinite 

reaction forces. They arise in common examples in Newtonian mechanics. Consider a ball that 

bounces off a hard surface in which we idealize the bounce to be momentary. A momentary, 

infinite reaction force is needed to reverse the direction of the ball instantly. 

 All these difficulties disappear if we posit ab initio the existence of an outward, radially 

directed force field in some space that exerts a force on a unit mass of magnitude r1/2 in the 

radial coordinate r. It then follows automatically that the equation of motion of the unit mass is 

(2) and the indeterminism ensues. If the idea of a force field everywhere directed away from an 

empty point in space is bothersome, a slight modification can put sources at the centers of force. 

Imagine a source mass point that exerts a short-range, attractive force of magnitude 

f(s)  =  (L-s)1/2 for s ≤ L 

       =  0           for s > L 

on a unit mass at distance s from the source. If we locate the unit mass at position r=0 on some 

straight line and the attracting mass at r=L, then the unit mass is attracted by a force of 

magnitude r1/2 in the interval 0 ≤ r < L. Or, in Coulomb electrostatics, imagine a sphere of 

                                                
4 In the case of the spontaneous motion (4), the expression (8) becomes indeterminate at t=0, 

since its second term becomes 0/0. Other arguments show that the vertical acceleration d2h/dt2 at 

t=T is zero. Combining (1) with (4) we find that h varies with (t-T)6 in the interval t ≥ T, so that 

d2h/dt2 varies with (t-T)4, which vanishes at t=T. 
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positive charge in three dimensional space whose density is proportional to 1/r1/2, for r a radial 

coordinate. It turns out that the force acting on a unit test charge is outwardly directed from the 

singular point in the distribution at r=0 and proportional to r1/2. 

 Finally, if we just consider motions governed by the equation of motion (2), then it can be 

shown that, for the case of non-zero initial velocity v(0) = dr(0)/dt > 0, there is a unique solution 

of the equations of motion (2). See Appendix. 

3. What’s Wrong with the Dome? 
 Many believe that the dome somehow lies outside what is proper in Newtonian theory. 

Three distinct bases for this judgment are described below, along with my reasons for finding 

them unconvincing. 

3.1. Does the Dome Employ an Incomplete Formulation of Newtonian 

Physics? 

 The proposal is that Newton’s three laws are an incomplete formulation of Newtonian 

theory. The intent of Newtonian theorists was that their theory would be deterministic and all the 

traditional Newtonian systems are deterministic. Therefore any formulation of Newtonian theory 

that admits indeterministic motions is incomplete and must be strengthened to preclude them. 

 My first and final reaction to this proposal is that we must distinguish what the canonical 

formulation of Newtonian theory entails from what its proponents may mistakenly think their 

theory entails. The dome conforms to Newton’s laws; so the dome is a Newtonian system. The 

old lore was mistaken in holding that simple systems like the mass on the dome will be 

deterministic in Newtonian theory. 

 There are two complications. First, strengthening Newton’s theory is not straightforward. 

We need to find some additional postulate to supplement the three laws, a “fourth law.” But what 

can in be? Merely asserting as the fourth law that determinism holds is inadequate. The three 

laws allow competing, indeterministic motions. That form of the fourth law is not telling us 

which of the competing motions, if any, are to be admitted into the theory. As we strengthen the 

fourth law to pick among them, we risk restricting the theory excessively and precluding systems 

that are unobjectionable; or we may have such a narrow formulation of the fourth law that it is 
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tailored to resolving indeterminism only in special cases. While the proposals are preliminary,5 I 

have seen none yet that can resolve these problems. 6 

 Second, it is hard to determine what Newtonian theory properly is. So it is hard to know 

if a proposed fourth law properly belongs in it. What Newtonian theory is, cannot be established 

by an experiment, since Newtonian theory is a false theory; and it cannot be determined by 

mathematical demonstration, since Newtonian theory is not defined as a theorem of some 

grander system. Perhaps the best we can say is weak: Newtonian theory is delineated historically 

by the community of physicists. They have the right to add a fourth law to Newtonian theory, 

creating an older three-law and a newer four-law version. We should object, however, to the 

decree that the original three-law version is no version at all; for, through most of its history, the 

community of Newtonians took the three laws by themselves to define the theory. 

3.2 Is the Dome “Unphysical”? 
 Another common reaction to the indeterminism of the dome is that it is “unphysical” and 

hence can be dismissed. This reaction may have many groundings. Perhaps most important is a 

sense that Newtonian theory is true, well enough, of our ordinary world and that ordinary world 

just doesn’t admit masses that spontaneously set themselves into motion. 

                                                
5 Korolev (manuscript) suggests that a tacit presumption of Newtonian physics is that the 

differential equations of motion derived from it satisfy a Lipschitz condition. A Lipschitz 

condition is a sufficient condition mathematically for differential equations to have a unique 

solution. Since it is only sufficient, it may be too strong. Tymoczko (manuscript) has proposed 

that the informal import of Newton’s first law are not fully expressed by the condition of 

vanishing acceleration at an instant if the net force vanishes at that instant. Rather the law asserts 

in addition that this inertial motion continues over a non-vanishing time interval provided that 

inertial motion does not in turn trigger further forces. That leaves open the question of whether 

determinism is preserved if the continuing motion does trigger further forces. 
6 Alper and Bridger (2000) in effect assert that energy and momentum conservation has been a 

tacit fourth law of Newtonian physics that would preclude indeterministic supertask systems 

from counting as properly Newtonian. 
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 In short my response is that a careful examination of just what “unphysical” may mean 

fails to license the idea that the dome is unphysical in a way that would allow us to excise it from 

Newtonian physics. The principal difficulty is that the dome is intended to explore the properties 

of Newtonian theory, not the actual world. As a false theory, Newtonian theory can certainly 

have consequences that do not agree with ordinary expectations, especially if the background 

conditions are artfully contrived. 

 The sense of what is “unphysical” or “physical” is quite fundamental to the intuitions of 

physicists. At the same time, it is primitive notion that has not attracted further explication. I 

have been able to distinguish four senses, two of which are relevant to the dome: 

 

(a) Unphysical as gauge (overdescription). For descriptive convenience, a theory may admit 

more structures than are in the world, such as the origin of a coordinate system in a Euclidean 

space. It is plainly unphysical to think of this origin as the preferred center of the space. I do not 

think this is the sense of unphysical at issue with the dome, since the motions described do not 

arise from arbitrary choices made as descriptive conveniences. 

 

(b) Unphysical as false. In this usage, a theory makes a prediction that is false and quite far from 

approximations to the actual. A classical electrodynamical analysis of heat radiation predicts the 

“ultraviolet catastrophe,” that heat radiation at equilibrium has an infinite energy density. This 

prediction in unphysical in that it directly contradicts the finite energy densities found in 

experiment. The remedy is to renounce the offending theory as a false theory; or at least false in 

the domain in which the failed prediction was made. 

 If this is the sense of unphysical that is at issue with the dome, then it gives us no license 

to absolve Newtonian theory of indeterminism. At best it would tell us that Newtonian theory is 

just a false theory. It is no basis for concluding that the theory does not entail the prediction. 

 However we do not even have a falsified prediction. The dome is not intended to 

represent a real physical system. The dome is purely an idealization within Newtonian theory. 

On our best understanding of the world, there can be no such system. For an essential part of the 

set up is to locate the mass exactly at the apex of the dome and exactly at rest. Quantum 

mechanics assures us that cannot be done. What the dome illustrates is indeterminism within 

Newtonian theory in an idealized system we do not expect to be realized in the world. 
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(c) Unphysical as pathological. In this third case, a physical theory is used to generate 

conclusions that actually turn out to contradict the original theory. Of course a consistent theory 

cannot entail conclusions that contradict it. However such conclusions can be deduced if we add 

logically incompatible assumptions to a consistent theory. The “ultraviolet catastrophe” 

mentioned above is an example. In electrodynamical theory, we assume that there are finite E 

and B fields at every point in space. We add the supposition that the radiation field has come to 

thermal equilibrium as described in statistical physics. We infer that, were such a state possible, 

it would have an infinite energy density. But that would only happen if the E and B fields 

diverge, contrary to the assumption of the theory. 

 A second illustration arises in general relativity from the incautious treatment of 

singularities as events in a manifold with metrical structure, whereupon they become unphysical. 

For at curvature singularities, the metrical structure becomes singular, in contradiction with the 

regular behavior presumed by the theory. 

 This sense is not relevant to the dome since its indeterminism does not contradict 

Newtonian laws. 

 

(d) Unphysical through under description. A theory may under describe or under constrain a 

system’s properties, so that the theory admits solutions that do not apply to the system. It is 

standard practice to dismiss these superfluous solutions as “unphysical.” For example, consider a 

ball that bounces in a perfectly elastic collision with a hard floor. If its speed just before the 

bounce is u and v just after, the conservation of kinetic energy requires u2=v2. Taking square 

roots, we have that u=v or u=–v. We discard the first of the two solutions as “unphysical” since it 

corresponds to the ball penetrating the floor without impediment. 

 Other, weightier examples arise in time symmetric electrodynamical theories. They admit 

the time-reversed solutions in which waves collapse onto charges, energizing them. These 

solutions are dismissed as “unphysical,” since a tacit assumption is that we are only concerned 

with outwardly direction radiation. 

 This discarding of superfluous solutions as unphysical seems to be closest to what is 

intended in the declaration that the dome is unphysical. For its import is that the dome can 

somehow be excised from Newtonian theory, without discarding the full theory. However this 
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fourth category cannot be applied to the dome, since it requires that there is a target system we 

seek to describe of which we have independent knowledge. That independent knowledge is used 

to determine that some solutions are superfluous and may be discarded. In the case of the 

bouncing ball, those further conditions come from our knowledge that the floor is impenetrable, 

an aspect of the target system not captured in the equality, u2=v2. To get physically meaningful 

solutions, we must implement that impenetrability by requiring that u and v have opposite signs. 

 In the case of the dome, there is no target system of which we can have independent 

knowledge. As we have seen, the dome cannot exist in the world. It is a creation that resides 

entirely within Newtonian theory. So we have no means of judging that some solutions delivered 

by the theory are superfluous and should be discarded. 

3.3 Does the Dome Use Inadmissible Idealizations? 
 The concern is that the idealizations required by the dome may be so extreme as to be 

inadmissible, so that the dome displays no inherent indeterminism in Newtonian theory, but only 

the pathology of an inadmissible idealization. There are many idealizations that we could 

identify as suspect. The mass is a point, so it has zero extension in space and infinite density. It 

slides frictionlessly over a perfectly even surface. The curvature of the surface diverges at the 

apex.7 The mass must be placed at perfect rest exactly at the apex. The surface is assumed 

perfectly rigid so that it does not deform under the weight of the mass.8 

 In short my response will be that, while some idealizations may be inadmissible in certain 

circumstances, those used in the dome are admissible. Each of them can be found in one form or 

another in standard texts in Newtonian theory. For example, while the surface admits a curvature 

singularity at its apex, the tangent to the surface is everywhere defined. Hence it is more 

differentiable than another surface routinely appearing in Newtonian texts, a tabletop with a 

sharp edge formed by the intersection of two flat surfaces. At the edge, both curvature and 

tangent are undefined. 
                                                
7 Malament (manuscript) finds this idealization no more troublesome than others routinely 

employed in Newtonian theory. 
8 Korolev (manuscript) notes that allowing any elastic deformation of the surface would destroy 

the shape needed at the apex for indeterminism to obtain. 



11 

 The complaints leveled against the idealizations of the dome seem to arise through a 

process of reasoning backward. The real goal is to disallow indeterminism. So when the dome 

manifests indeterminism, the strategy is to see if dismissal of its idealizations will defeat the 

indeterminism. That is simply an oblique way of imposing determinism as an extra law of 

Newtonian physics. 

 We can distinguish two types of failure of idealization, external and internal. I will argue 

that neither failure arises in the case of the dome. 

 The external failures arise when a theory tries to describe a system that is specified 

independently from the theory and the idealization strays too far from the target system. That 

form of failure is not relevant to the dome since there is no externally specified target system. 

 Internal failures arise when there is difficulty intrinsic to the relationship of the 

idealization to the theory. The strongest way this can arise is if we idealize to the extent that we 

contradict the theory. For example, in a theory that prohibits propagations faster than light, we 

cannot idealize bodies as perfectly rigid, in so far as perfect rigidity allows infinitely fast 

propagations through the bodies. This form of failure is not present in the dome. 

 A weaker internal failure may arise when idealizations are recovered as the limit of more 

realistic structures. A point mass is the limit of successively smaller, perfectly spherical masses 

of correspondingly greater density. We may be tempted to say that if some property changes 

discontinuously when the limit is taken, we have an inadmissible idealization. A sharp table edge 

is the limit of a smoothly beveled table edge with successively smaller bevels. A mass sliding off 

the horizontal table will be projected in a parabolic arc. As we consider successively smaller 

bevels, so that the limit of a sharp edge is approached, the parabolic arcs of the mass projected 

will approach that of the mass projected over the sharp edge. In the sequence of systems of 

successively smaller bevels, the property of the limit system agrees with the limit of the 

properties of the systems with successively smaller bevels. That commutation assures us the 

idealization is benign. 

 Now consider domes with finite curvatures at their apexes. A point mass will remain on 

their apexes indefinitely, according to Newtonian theory. Thus, as the curvature become 

arbitrarily large, determinism will prevail. Yet when we arrive at the limit of infinite curvature, 

only then does indeterminism enter. The property of the limit system does not agree with the 
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limit of the properties of the sequence of systems leading up to the limit system. Does this mean 

that the idealization of infinite curvature is inadmissible? 

 It does not. The failure is merely of one idealization to approximate another. That there 

can be discontinuous changes in the properties of systems when limits are taken is a 

commonplace and no reason for discounting the system approached in the limit. To give one 

illustration, it has long been recognized in statics that the stresses in a loaded horizontal beam 

supported at either end are determinate, as long as we model the beam as having some finite 

elasticity, no matter how small. In the limiting case, however, when the beam becomes perfectly 

rigid, the forces are indeterminate. We do not infer from this that the rigid case is no Newtonian 

structure at all. We merely allow that it is a different case with qualitatively different properties 

that cannot always be recovered by taking limits in elastic systems. 

 Elsewhere (Norton, 2004, §2.2.3) I have described an idealized helicopter rotor. As its 

speed is halved and its size doubled, the non-zero lift L it generates remains the same. In the 

limit of infinitely many doublings, we have an infinite rotor at rest that still generates lift L; or 

we would, if we mistakenly insist that its properties must agree with those arising in the limiting 

process. 

4. Conclusion 
 The suggestion that the dome is “unphysical” is especially noteworthy. This notion has 

attracted much less attention among philosophers of science than is commensurate with its 

importance for physicists. For them, the notion of “physical” functions as a powerful guide and 

filter, with an authority that is almost as oracle-like as it is unanalyzed. In Section 3.2, I gave 

deflationary analysis, portraying the notion as the coalescence of four related ideas, each of 

which is unremarkable when examined in isolation. It will be interesting to see if further analysis 

bears out this deflationary view or if there is something of greater epistemic moment at hand. 

 

Appendix: Unique Solution of the Equation of Motion 

d2r(t)/dt2 = r(t)1/2 for Initial Conditions r(0)=0, v(0) = dr(0)/dt > 0 
 The equation  

d2r/dt2 = r1/2                                                                  (2) 
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has a unique solution for the boundary condition r(0) = 0 and dr(0)/dt = v(0) > 0. This is 

established by showing that any solution r(t) of (2) with these boundary conditions must satisfy 

the integral condition (A4) and that (A4) admits a unique solution. 

 If the solution satisfies v(0) > 0 and is continuous and twice differentiable, then v(t) must 

remain positive for some time interval following the instant t=0. Hence r(t) is strictly increasing 

in t in this interval, so that v is a function of r. The demonstration of existence and uniqueness 

will be limited to this interval. (That is sufficient, since once the system has left r=0, it enters 

regions in which a Lipshitz condition is satisfied.) 

 This solution r(t) must satisfy (2) rewritten as 

r1/2  =  d2r/dt2  =  dv/dt  =  dv/dr . dr/dt  =  v . dv/dr  =  (1/2).(dv2/dt)                    (A1) 

where we have used the fact that v is a function of r. Its first integral is 

v2(r) - v2(0)  =  (4/3) r3/2                                                       (A2) 

which is equivalent to 

v  =  dr/dt  =  (v2(0) + (4/3) r3/2)1/2                                           (A3) 

(A3) can be integrated to yield 

! 
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"                                                (A4) 

Any solution r(t) must satisfy (A4) and is unique for each v(0). Since the integrand of (A4) is 

always positive, it follows that t is a unique, strictly increasing function of r. Hence the function 

t(r) is invertible to the unique function r(t), in which r is a strictly increasing function of t. 

Therefore also dt/dr > 0 and v(t) = dr/dt > 0 in the interval of the solution. 

 By reversing the calculations of (A1) to (A4) we can affirm that this unique r(t) does 

solve (2). Finally, the solution cannot be more than twice differentiable at t=0. Differentiating 

(2), we have d3r(t)/dt3 = (1/2r(t)1/2). dr/dt. At t=0, dr/dt > 0 and r=0, so this third derivative 

diverges. 

 Finally, even though (2) has a unique solution with r=0, v(0)>0, it does not satisfy a 

Lipshitz condition with this boundary condition. (A Lipshitz condition is sufficient but not 

necessary for existence of a unique solution.) To see this, rewrite (2) as  

dr(t)/dt = v(t)     dv(t) = r(t)1/2 

A Lipshitz condition is satisfied in a region surrounding the points r=0, v=v(0) if there exists a K 

such that for every pair of values in the region (t, r1, v1) and (t, r2, v2) 
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(v1 – v2)2  +  (r11/2 – r21/2)2  ≤  K2 [(v1 – v2)2  +  (r1 – r2)2] 

This can be rewritten as 
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No value of K can make this inequality hold. Since, for each K, its first term can be made to 

vanish by choosing v1=v2; and its second term can be made negative by choosing values of r1 

and r2 close enough to 0. 
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