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Standfirst: What counts as real in our most fundamental physical theories? Professor of the 

history and philosophy of science at the University of Pittsburgh, John D. Norton recounts 

Einstein’s struggles with his “hole argument” of 1913. Einstein first thought that the argument 

would compel him to abandon the most distinctive feature of his then incomplete general theory 

of relativity, its general covariance. He escaped his error by reaffirming a powerful method for 

distinguishing physical reality from mathematical redundancy. The elements in a theory that 

correspond to real things in the world are only those that remain unchanged when we alter our 

mathematical descriptions. Norton argues that we now interpret the significance of the hole 

argument as establishing that the events of spacetime do not form what philosophers define as a 

substance, that is, something that can exist independently of other things in the world. We need 

also to specify the times and distances between these events; and only the resulting totality forms 

a spacetime of our physical world.  

 

What is real? What is not real? These simple questions have long exercised philosophers of 

science. Are there quarks? Are there black holes at the centers of galaxies? Really? If they 

weren’t real, wouldn’t the enduring successes of their sciences be something of a miracle? We 

have played this game before. How could there be no Absolute Space, no ether, no phlogiston, 

and no caloric to make sense of how heat flows? We were certain about them all, but then we 

learned that we were wrong. Perhaps we are wrong again. Debates over what is real at the most 

general level of scientific theories do still endure. 
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When differences manifest in nothing observable, that fact has long been taken as a strong 

indication that the differences correspond to nothing real.  In an intriguing episode in the history 

science, a new guide emerged. The theory itself can sometimes help us decide what is real in its 

domain. In 1913, Einstein used his “hole argument” to justify his then mistaken formulation of 

what would become his greatest achievement, the general theory of relativity. Einstein’s original 

analysis was mistaken since he attributed reality to differences that were invisible even to his 

theory. Given the fullest surrounding information, his emerging general theory of relativity could 

not decide which of several possibilities were to be distinguished as the real one. Einstein 

ultimately concluded that his theory could not distinguish which was real because both 

corresponded to the same reality. Thus, both have to be equally real. His analysis provided a new 

and powerful way for us to determine when theoretical differences correspond to nothing real. 

 

The familiar cases: identifying what is real in our mathematical theories 

Perhaps the most familiar example in theories of space of differences that correspond to nothing 

real concerns our choice of coordinate systems. When we lay out a Cartesian coordinate system 

in a Euclidean space, we identify the points of the space with suitable values of the coordinates x, 

y and z. There is a special point in this coordinate system: the “origin,” where x, y and z fall to 

zero. If we are too literal in our reading of these coordinates, we might say that this point is 

special. It has a preferred reality that distinguishes it from every other point in the space. It might 

be, we imagine, that space has a central point that is distinguished uniquely by this zero of the 

coordinates.  It is not just an arbitrary label. 

 

Of course, no one should think that this origin point is in any way different from all the other 

points in a Euclidean space. A formal manipulation is one way to secure this conclusion. A 

simple transformation adds constant values to each of the x, y and z coordinates and has the 

effect of moving – shifting or translating—the origin to a different point in the space. We can 

carry out all our geometric analyses just as well in this new coordinate system using precisely the 

same constructions. The shift of the origin point has made no difference to the geometric facts 

that matter: the distances and angles in geometric figures are unaffected. In Figure 1, the 3-4-5 

right angled triangle keeps the same lengths of its sides and its right angle, no matter where we 

place the origin of the coordinate system. Any special reality attributable to the first origin point 
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must then also be attributed to every other point, since all of them can become the origin of a 

translated coordinate system. The difference in the location of the origin is a difference that 

corresponds to nothing real. 

 

 
Figure 1. Two Cartesian coordinate systems with different origins 

 

 

That shifting the coordinate system made no difference to the important geometric facts of 

matter, was not some a priori fact that somehow comes solely from the mathematics. It is a 

contingent matter that depends on the physical facts of Euclidean geometry: its space is 

homogeneous. No one point more ‘special’ than another. Things can go differently. Sometimes 

one point in a space does have some special physical status. The lines of latitude and longitude 

on the surface of the earth form a coordinate system that has two origin points. One is at the 

North pole and the other is at the South pole. These origin points are factually unique. They 

locate a physical feature of the Earth, the axis of the earth’s rotation. We could shift the lines of 

latitude and longitude so that their origin points would be located elsewhere, as indicated in 

Figure 2. That shift would not change the nature of the two (original) origin points at the North 

and South poles. The facts of a spinning earth ensure the privileged status of these two polar 

points. They remain just where they have always been. In this case, there is a physically 

privileged status for some origin points over others.   
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Figure 2. Original and displaced lines of latitude and longitude 

Source image for globe. 

https://en.wikipedia.org/wiki/File:Taiwan_on_the_globe_%28Southeast_Asia_centered%29.svg 

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. 

 

The Hole Argument: Einstein’s struggle with the realities of general relativity 

Now to Einstein. These sorts of considerations played a major role in his discovery of the general 

theory of relativity. In the years leading up to the theory’s completion in November 1915, he 

faced some difficulty in determining just what was real in his theory. The locus of his conern was 

what he called his “hole argument” [Loch Betrachtung]. A large modern literature has grown 

from Einstein’s early deliberations and his resolution of the initial mistake. 

 

To recount Einstein’s struggles, it is most convenient to use a modernized formulation of his 

general theory of relativity. The theory portrays spacetime as having two elements. The first is a 

four-dimensional manifold of events. They are the individual points-events of spacetime, 

organized into continuous, nestled neighborhoods, as shown in Figure 3. Each event of the 

spacetime manifold is designated by one set of the values of the four-dimensional spacetime 

coordinate system. If such a set is the four real numbers <t, x, y, z>, then a neighborhood of 

surrounding points are just those events whose coordinates differ only slightly from the initial 

point’s coordinates. Greater differences correspond to larger neighborhoods. 
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Figure 3. A manifold of spacetime events 

  

The second element is the metrical structure. A manifold by itself does not tell us the distance in 

space or time elapsed between neighboring events. It does not even tell us which events are to 

the past or future of other events or happening at roughly the same time. The manifold is just a 

huge collection of points organized into neighborhoods. There is no space or time yet.  We might 

image that we can use the differences in the coordinate values to tell us these spatial distances 

and times elapsed. It does not work. In formulating general relativity, Einstein used the newer 

mathematics pioneered in the nineteenth century by Gauss for his theory of curved surfaces. In 

that mathematics, all manner of coordinate systems could be used. The coordinate differences 

between neighboring events can take on a huge range of different values according to the 

coordinate system chosen. That range is far greater than the few numbers that could specify the 

distances in space and times elapsed between events. 

 

The solution is to add the information explicitly in a new mathematical structure that gives, in 

compressed form, all the distances in space and time between neighboring events, as shown in 

Figure 4.  

 



 6 

 
Figure 4. Manifold with the metric added for one point-event 

 

This new structure is called the “metric” or “metric field” or “metric tensor.” If we know these 

distances and times for neighboring events, we can add them up as we move from event to event 

along some path. The addition of these many small quantities along the path will tell us the 

spatial distances between or times elapsed for any pair of events connected by the path we took. 

 

The structure is called “metric” since the information it gives concerns the spaces and times that 

can be measured by ordinary measuring instruments such as rods and clocks. The rods measure 

so-called “proper distance,” which is the physical distance between events not separated in time. 

The clocks measure “proper time,” which is the time elapsed as a clock moves in spacetime 

between past and future events. 

 

The main elements of the general theory of relativity are a spacetime manifold, the metric field 

and any additional matter fields defined on the manifold, such as would represent ordinary 

matter and energy in the spacetime. The relationship between these fields is given by Einstein’s 

celebrated gravitational field equations. They tell us how the presence of matter and energy 

causes spacetime to curve and they determine the ways in which this metric might be spread over 

the manifold of events, so that it conforms with the matter distribution in spacetime. 

 

The distinctive feature, historically, of Einstein’s 1915 theory was its “general covariance.” 

Einstein followed Gauss’ liberalization in the choice of coordinate system usable by the theory. 

The expanded set allowed for all sorts of twists and distortions, even just those that applied only 
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locally, as we shall see below. As we move between the descriptions of some physical spacetime 

provided by different coordinate system, many things will change in the descriptions. Since there 

is just one physical spacetime being described, real elements in the spacetime are just those 

aspects of the descriptions that do not change when we change coordinate systems. These 

unchanging elements are the so-called invariants of the coordinate transformations. The most 

familiar examples are spatial distances between events, as measure by rods, and the time elapsed 

between events as measured by clocks. These have to be invariants since they are measured by 

physical devices, independently of our choice of the coordinate system. Their invariance is akin 

to constancy under changes of Cartesian coodinates of the 3-4-5 triangle in Euclidean space 

discussed earlier. 

 

The general covariance of Einstein’s new theory opened up new possibilities. They were the very 

ones that led Einstein astray, initially. If we have a description of the metric and other fields in 

one coordinate system, we can create very many more descriptions of same physical spacetime 

just by transformations to different coordinate systems. The transformations that produce these 

new descriptions include the sort of global transformations that we applied to Cartesian 

coordinate systems in Euclidean geometry when we shifted the entire system as a whole. 

However, general covariance allows for a far richer set of transformations; some transformations 

might only shift the metrical structure locally, that is, in some small region of the spacetime. 

 

A metaphor gives a useful mental picture of the scope of the transformations admitted by general 

covariance. We imagine that the point-events of the spacetime manifold are those of a tabletop; 

and that the metric is like a tablecloth spread over its surface. A global transformation would just 

shift the cloth as a whole. A local transformation might arise when we just distort or twist the 

tablecloth in some small area of table’s surface, while leaving the rest of the tablecloth 

unaffected, as shown in Figure 5. 
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Figure 5. A hole transformation 

 

Einstein considered just such a transformation in 1913. The small region in which the distortion 

occurred was taken to be a matter-free hole in the matter distributed over spacetime. The term 

“hole” was literal in his construction. With a few added steps, it was a simple matter for Einstein 

to use this transformation to realize what appeared to be two different metric fields within the 

hole. We can see the difference in Figure 6.  

 

 
Figure 6. A spaceship traverses the hole. 

 

It shows the worldline of a spaceship that passes through the hole; and the same spaceship after 

the transformation. In the two cases, the spaceship passes through different events in the part of 

the spacetime manifold within the hole. That difference appeared to Einstein to be a real physical 

difference. He knew that the two cases were related by a simple transformation, but he could not 

shake the idea that there was still a difference physically between the two cases. 
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All this played out in publications of 1913 and 1914, when Einstein was writing initially in 

collaboration with his mathematician-friend Marcel Grossmann. Together, they published the 

first sketch of what would soon be his final general theory of relativity. Pretty much all of the 

1915 theory was already in the 1913 “Entwurf” (“Sketch”). It lacked one key element. Einstein 

and Grossmann had considered generally covariant gravitational field equations but they had 

rejected them on the mistaken grounds that they were incompatible with Newtonian gravitation 

theory in the limiting case of very weak, static gravitational fields. 

 

Einstein was now in something of a quandary. The idea of generally covariant gravitational field 

equations remained appealing, but they were beyond his reach. He had initially failed to find 

what he deemed serviceable generally covariant gravitational field equations. Might it just be his 

failure to look hard enough for them? No! Einstein soon convinced himself that all generally 

covariant gravitational field equations are physically inadmissible. His theory should not use 

them. It is a conclusion astonishing to modern readers for whom general covariance is the signal 

achievement of Einstein’s final theory! 

 

The support for this now startling conclusion came from his “hole argument.” The construction 

above depends upon the general covariance of the gravitational field equations. It is possible not 

just in the generally covariant theory of 1915 but in any generally covariant theory. It appears to 

show us something very general and very powerful. The striking thing, Einstein felt, about the 

construction sketched above is that there are factual differences within the hole. The spaceship 

(in my modern dramatization) visits different events in the two cases. Those differences, 

however, are quite localized. The two cases do not differ at all outside the hole.  

 

This, Einstein concluded, was a failure of determinism. Given the fullest specification of the 

everything outside the hole, in its past, future and elsewhere, generally covariant gravitational 

field equations would fail to specify physical facts within the hole. In 1913, Einstein conceived 

determinism as the same as causality. He could then lament that generally covariant gravitational 

field equations lead to violations of causality. Therefore, he concluded general covariance was 

not a physical possibility.  
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Einstein’s escape  

Einstein’s Entwurf theory was by modern lights a malformed theory and, at a visceral level, 

Einstein knew it. As the months and then years passed, he continued to try to convince himself 

that all was well with this flawed theory. By November 1915, the failures of the theory had so 

mounted that Einstein took a major step. He abandoned his gravitational field equations of 1913 

and, in four, rapid-fire communications to the Prussian Academy in that November, arrived at the 

generally covariant gravitational field equations of the modern theory. In the third of these 

communications, Einstein reported the greatest moment of his scientific life: he found that his 

new theory now accounted exactly for the anomalous motion of the planet Mercury. 

 

While he celebrated this great triumph, a now rueful Einstein had the awkward job of explaining 

to his correspondents and readers what went wrong with his earlier analysis of the hole 

argument. His solution was that he had mistaken the realities within the hole. When his 

transformation reassigned metrical properties to events in the hole, the difference was a 

difference that made no difference physically. There was nothing in any possible observations 

that could pick apart the original and transformation solutions. There was no reality in the theory 

that distinguished points of manifold beyond the spatio-temporal metrical properties assigned to 

them by the metric. 

 

In this sense, Einstein’s transformation was akin to the shifting of the Cartesian coordinate 

system in the example above. Einstein, however, had mistakenly treated it as we would the 

shifting of the lines of latitude and longitude over the surface of the earth. The particular lines of 

latitude and longitude are chosen because their origins reflect the physically meaningful location 

of the Earth’s North and South poles. Shifting these origins undoes this important physical 

connection. In this aspect, they are unlike the origin of the Cartesian coordinate system. 

 

The transformation between the two descriptions in the hole argument corresponds to no real 

changes in the physical spacetime. It may appear that the spaceship passes through different 

spacetime events in the two cases. But that is illusory. We cannot associate a point in the 

mathematical manifold with a real event in the physical spacetime independently of the metrical 

properties present at that event. When we transform between the two cases, we also move the 



 11 

metrical properties assigned to the points in the manifold. As a result, the spaceship passes 

through the same physical events in the two cases, even though it appears otherwise in a simple 

reading of the two descriptions. In short, all physical facts depicted by mathematical structures 

within the hole are same. There is no failure of determinism since there are no physical facts left 

underdetermined within the hole 

 

What we learned 

 

Einstein’s struggles with his hole argument has left us with an important legacy that has proven 

fertile still today. It happens quite often that a physical theory can give us two closely related 

solutions of its fundamental equations. How are we to know whether they represent the same 

reality, just described differently, or whether they represent two distinct realities? The decision 

between the two cases has to be made on physical grounds. The case of general relativity is 

typical. It is a physical question not one of simple mathematics. It must be decided by physical 

criteria. 

 

Einstein’s analysis gave us two criteria for the decision. 

 

The first had long been recognized. Whereas the two solutions may be different mathematically, 

is there anything observational that distinguishes them? If not, we have our first basis for 

concluding that the mathematical differences do not correspond to any differences in reality. This 

criterion lay behind the enduring awkwardness of Newton’s conception of Absolute Rest. 

Nothing observable could pick out that state of rest from many possible inertial motions. 

 

The second criterion was new and powerful. In the case of the hole argument, it was not just that 

we could observe no difference, that is, that nothing observable distinguished to two cases. The 

theory itself was unable find enough of a difference for it to be able to pin down any supposed 

reality that might separate the two cases. For as we saw above, even when given the fullest 

specification of everything outside the hole, Einstein’s theory could not decide which of the 

possible extensions into the hole was the right one. 
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Einstein’s problem in discerning what is real is an instance of a familiar problem in modern 

physics. Under the guise of “gauge transformations,” we are able to produce multiple solutions 

of a theory that differ in ways analogous to those Einstein found. Do they reflect a difference in 

what is real? To answer we can now ask: “Does anything observable separate the two cases? Can 

relations of determination with the theory privilege one of them?” If the answer to both is no, 

then we have a strong basis for concluding that nothing real separates the two cases. 

 

The outcome of Einstein’s deliberations on the hole argument also tells us something about the 

spacetime events of theories like general relativity. It is tempting to image that the events in the 

mathematical spacetime manifold correspond to specific physical events without further 

qualification. If this independence were the case, then problems ensue. A generally covariant 

theory like general relativity allows us to take the metrical properties that happen to belong to 

one spacetime event and reassignment to others. What would result, we now learn through the 

example of the hole argument, is that the theory becomes indeterministic. It can no longer 

determine which metrical properties belong to which events. The escape—Einstein’s solution—is 

to accept that we cannot associate points in the mathematical spacetime manifold with real 

events in the physical spacetime without also considering the metrical properties associated with 

the event. That is, an essential part of the identity of a spacetime event resides in its spatial and 

temporal distances from other events. It is not the event it is without these spaces and time. There 

are no events without spaces and times. 

 

Reading: Norton, John D., Oliver Pooley, and James Read, "The Hole Argument", The Stanford 
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URL = <https://plato.stanford.edu/archives/sum2023/entries/spacetime-holearg/>. 
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