special relativity, might not some other method? Much Qf the lliter.ature on the subjgct
of conventionality of simultaneity has been devoted to investigating such alterr?a.tlve
methods of synchronizing spatially separated clocks and seeking to reveal definitions
equivalent to the setting of a value for € in them. See for example Sdmop (1977) to
get a clear sense that no such convention-free, alternative method 1s likely to be
found. Note that this literature urges the conventionality of the ‘‘one-way’’ velocity
light, that is, the velocity between two spatially separated points. The round trip
velocity is not taken to be conventional since only one clock at the common source
and destination is needed for its measurement.

We return to the conventionality of simultaneity in Section 5.11 to see one of
the most dramatic reversals in debates in the philosophy of space and time. David
Malament has recently derived a theorem in special relativity which, he urges, shows
that the causal relations of special relativity do not leave the simultaneity relation
underdetermined and thus the relation cannot be set conventionally within the causal
theory of time. He shows that the only nontrivial simultaneity relation definable in
terms of the causal relations of special relativity is the familiar standard simultaneity
relation of € = 1/2.

Part Il: Theories and Methods

The purpose of this part is to introduce the methods now used almost exclusively in
recent work in philosophy of space and time. These methods differ from those used
in Part I in several important ways.

1. There is less emphasis on theories of a space and time as a set of law-like
sentences. Rather the theories are approached semantically (see Chapter 3).
Thus the activity of the theorist becomes akin to that of the hobbyist model
builder, who seeks to represent a real sailboat by constructing a model that
captures as many of its properties as possible. The space and time theorist builds
models which are intended to reflect the spatial and temporal properties of
reality. However the theorist’s models are not constructed out of balsa, glue and
string, but out of abstract mathematical entities such as numbers.

2. Theories of space and time—including Newton’s theory of space and time—are
worked into a spacetime formulation. Thus when Newton’s theory is compared
with its relativistic rivals, all the theories are formulated in the same manner,
ensuring that the differences observed are true differences and not accidents of
differing formulations.

3. A major theme of Part I was the separation of the conventional or arbitrary
elements of a theory from the factual or, as we now say, ‘‘physically sig-
nificant’’ elements. A means of effecting automatically this separation is built

into the notions of ‘‘covariance’’ and ‘‘invariance” to be explained here in
Part II.
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5.4 A SIMPLE THEORY OF LINEAR TIME

Let us begin by developing a very simple theory of time whose main purpose is to
illustrate the use of models and the notions of covariance and invariance in a setting
far simpler than the spacetime theories to which we will soon turn. The basic temporal
facts of some physically possible world are that it has infinitely many instants,
extending indefinitely into the past and future. The set of instants 1s homogeneous:
Every instant is exactly like every other. The set is also assumed to be isotropic: The
future and past directions are exactly alike. To capture and make precise these loosely
stated facts, let us develop the following sequence of time theories.

5.4.1 The One Coordinate System Formulation

Let us select as the model for our theory the manifold of all real numbers R.
Each real number in R represents a particular instant (see Figure 5.4). This repre-
sentation relation is a coordination of the instants of the physically possible world
with the mathematical structure R so that the relation is commonly called a coordi-
nate system. We can infer many of the temporal properties of the physically possible
world from the coordination. For example, the fact that there is no greatest real
number represents the fact that there is no last instant, so that the world persists
through indefinitely many instants into the future. Similarly, the denseness of R—the
fact there is always another real number between any two given real numbers—
represents the denseness of time. It models the fact that every temporal interval can
be divided so that indivisible time ‘‘atoms’’ are disallowed.
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5.4.2 The Standard Formulation

Unfortunately we cannot construe every property of R as representing a prop-
erty of the physically possible world. For example R 1is anisotropic; the direction of
increasing real numbers is distinct from that of decreasing real numbers. However,
we posited that the physical instants form an isotropic continuum. Similarly, R is
inhomogeneous; the real number 0 is distinct, for example, from every other number.
However, we posited that the physical instants form a homogeneous continuum.

A simple device enables us to designate systematically which are the physically
significant properties of the models. To deny physical significance to the anisotropy
of R, we expand the coordinations of the physically possible world with R allowed
by the theory. We now allow a new coordination reflected about 0 (see Figure 5.5).
Those instants coordinated with 0, 500, 1000, 1500 and so forth in the original
coordinate system are now coordinated with 0, —500, — 1000, — 1500 and so forth
in the new system. We call the transformation connecting the two coordinate systems
a reflection about 0. If we allow that both the original and reflected coordinate
systems are equally good representations of the continuum of physical instants, then
the anistropy of R no longer enables us to pick out a preferred direction in the
continuum of physical instants. The direction picked out by increasing real numbers
in one coordinate system is the opposite direction to the one picked out by increasing
real numbers in the reflected coordinate system.

Similarly we deny physical significance to the inhomogeneity of R by allowing
all the coordinate systems produced from the original by a translation of the original
coordinate system. For example, in the original coordinate system the instant to
which O is assigned is singled out as special when compared to the one to which 500
is assigned. We can remove this special status by allowing a second coordinate
system in which the latter event is now assigned the value 0. This new coordinate
system is produced by translating the original by 500. Figuratively this amounts to
“‘sliding’”> down by 500 each of the real values coordinated to each instant by the
original coordinate system to form the new coordinate system. See Figure 5.5. We
ensure that the inhomogeneity of R accords no special status to any physical instant
by allowing into the theory all coordinate systems produced by a translation from the
original by any real value. Thus, given any physical instant at all, we can always find
a coordinate system in which that instant is assigned the value 0 or, for that matter,
any other real value you care to name.

5.4.3 Covariance and Invariance

In sum, the standard formulation of the theory has the original coordinate
system as well as all those produced by the coordinate transformations of reflection
and translation. Let us call these the standard coordinate systems of the theory. The
set of reflections and translations form a group of transformations (see the following
box) which essentially only means that we never leave the set of transformations if we
invert or combine them. It is called the covariance group of the theory. Alternatively,
we say that the theory is covariant under reflections and translations.

The advantage of the standard formulation over the one coordinate system
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formulation is that it enables us to distinguish the physically significant or factual
properties of the theory’s model from the arbitrary ones. Those properties are exactly
the ones that remain the same in all the coordinate systems of the theory. We can state
this important conclusion in another way. By an invariant of a transformation, we
mean something that remains unchanged under the transformation. Thus we arrive at
a principle of paramount importance to all theories of space and time:

The factual or physically significant quantities of a theory of space and time are the
invariants of its covariance group.

All other quantities can be chosen arbitrarily or conventionally. For example, the fact
that one coordinate system assigns the real value 27 to some instant is not invariant
and thus not physically significant. A different coordinate system will in general
assign a different value to the instant. Thus the choice of coordinate system is an
arbitrary or conventional stipulation. However if the difference of coordinate values
of two instants is 100, then it will be =+ 100 in all standard coordinate systems. Thus
we conclude that the absolute value of coordinate differences (i.e., the difference as
a positive number) in standard coordinate systems is invariant and therefore physi-
cally significant. These coordinate differences are interpreted as duration or physical
time elapsed, such as might be read by a physical clock.

The strategy of characterizing geometric structure as the invariants of groups
has a venerable history. It dates back to Felix Klein's ‘‘Erlangen program’’ of the
1870s in which Klein set out to use the strategy to unify the treatment of the diverse
geometries discovered in the nineteenth century.

If the original coordinate systern assigns the real value T to some phys-
ical instant i, then a new coordinate system produced by a reflection
about 0 assigns the new value T’ to i where

T =-T
and a translation by K assigns the new value 7" to i where
T"=T - K.
Combining we can now represent the covariance group of the standard
formulation as the set of all transformations given by
™ = Ar—-K

where A i1s +1 or —1 and X has any real value. Formally this set of
transformations is a group since it satisfies the three conditions:

1. The set contains the identity transformation.
2. Every transformation’s inverse is in the set.
3. The composition of two transformations of the set is in the set.
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5.4.4 The Generally Covariant Formulation

The adoption of a generally covariant formulation of the theory provides a way
of making more explicit just what are the physically significant quantities of the
theory. To arrive at the formulation, we expand the allowed coordinate systems to
include all those which can be transformed to the original system by smooth invertible
transformations on R. Figuratively this means that the allowed transformations of the
theory include not just reflections and ‘‘slidings’’ (translations) of the coordinate
system but just about any arbitrary ‘‘stretching and squeezing’’ which preserves the
smoothness of the coordinate system and the uniqueness of the identification of all
instants. However, we cannot leave the theory in this state for we can no longer
represent duration by coordinate differences. Coordinate differences are certainly no
longer invariant under the arbitrary transformations now allowed. To recover the
ability to represent duration invariantly, we must explicitly introduce a new mathe-
matical structure into the theory.

Consider some very small duration between two instants which have coordinate
values 1000 and 1001 in a standard coordinate system (see Figure 5.6). The coor-
dinate difference—call it ‘‘AT’’—equals 1 and it is the duration between the two
instants. Now introduce a new coordinate system which has been stretched linearly to
double the size of the original system, so that to instants originally assigned values 0,
500, 1000, 1001 and so forth are now assigned values 0, 1000, 2000, 2002 and so
forth. The coordinate difference in the new system between the same two instants—
call it “‘A¢r”’—is now equal to 2. To recover the original duration we must multiply
the new coordinate difference by a scale factor of 1/2. This scale factor is the extra
geometrical structure which we need. Every coordinate system of the generally co-
variant formulation must be supplied with this scale factor to enable assertions about
duration to be made. In general for a small duration between two instants whose
coordinate values differ by Az in some coordinate system we have the invariant result:

New 2002
coordinatw 2000 }at=2

system ¢ Duration = 1/2 x4t
A’,
Measured

duration \ Scale factors
=1 ~— orgmal = | are /

coordinate —
1000 ion _
system T ~ Duration =1xaT

=
73] § LHerreereennen

Physically
possible
world

Figure 5.6 Temporal metric for the linear theory of time.
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Invariant duration = Scale factor X |A{]

The scale factor of a standard coordinate system is unity. It is 1/2 for the linearly
stretched system described here. In some arbitrary coordinate system, the scale factor
will have a value that varies from instant to instant according to how much the
coordinate system has been stretched or squeezed in the transformation from a stan-
dard coordinate system (see Figure 5.7). There is a simple rule—see equation (3) in
the following box—for computing how the scale factor will change under an arbitrary
coordinate transformation. The existence of such a rule means that the scale factor is
a covariant quantity: Once we know its value in one coordinate system we invoke its
characteristic transformation law to find its value in any other coordinate system.
Alternately, such quantities are known as geometric objects. See Figure 5.8 for a
pictorial representation of this transformation law.

In order to comply with the standard notation, let us represent the scale factor
by “‘dT.”’ The scale factor dT (together with all its transforms) is known as a
“‘covector’’ or ‘‘one-form’’ and, with regard to its function in the theory, might also
be called a ‘‘temporal metric’’ since it is responsible for assigning measurable time

15
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factor dT gty
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Figure 5.8 Transformation of scale factor dT.
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durations to the intervals between instants. (For completeness we note a technical
complication. A covector dT assigns positive or negative measures to intervals be-
tween instants according to their directions. Because we want no anisotropy 1n the
continuum of instants. only the absolute values of the measures assigned have phys-
ical significance.)

The generally covariant formulation of the theory has models of the form
<R,dT>. where the angle brackets ‘*<<,>’" denote an ordered pair. Every time we
change coordinate systems we generate a new scale factor d7. Thus the model set of
the theory contains infinitely many models

<R.dT> <R, dT'> <RdT">, . ..

where dT. dT', dT", . . . can all be transformed into one another and thus represent
the one covariant quantity or geometric object. There 1s a natural division of labor
between the two structures of the pair that form the models. The fact that the physical
world can be coordinated with R gives us its topological properties: Briefly, its
instants form a linear continuum with no end points in either direction. Unlike the
standard formulation, the coordination with R gives us no information on the phys-
ically measurable duration between instants. Such information is provided by the
temporal metric dT, the second member of the pair.

The model <R,dT> is typical of those used in theories of time, space and
spacetime. The models of the theories we now turn to all have the general form

<manifold, geometric object, geometric object, . . . >

The first member of the model, the manifold, represents the topology of the time,
space or spacetime in question. Thus it tells us how many dimensions a space has and

Let T be a standard coordinate system and AT the coordinate difference
between two very close instants so that AT is also the duration between
the instants. We now transform to a new coordinate system ¢, which
need not be a standard coordinate system. We have immediately

g’—TAt

Duration of interval = AT = 7

and we can identify dT/dr as the scale factor 4T in the coordinate

system 7. For example, if 1 = T>, then the scale factor is given by dT/dt

= 1/(37%) = 1/(3r**). If we now consider another coordinate system

t" with dT’ equal to dT/dt’, then the chain rule for differentiation,

§= di:, Z—IT gives us the general transformation law for dT:
dt

dT'=7dT (3)

(3) 1s the characteristic transformation law for covectors or one-forms.
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gives us information on its global topology. In the simple linear time theory, time was
globally like a line, extending indefinitely into past and future. However, we might
want to model a time that is cyclical so that the past and future join. We would then
not use R as the manifold, but another one-dimensional manifold that is closed like
a circle. There are many manifolds more complicated than R that the theorist can
choose in building models. The remaining members of the model are the geometric
objects such as 4T that are ‘‘painted’’ onto the canvas of the manifold. They provide
the nontopological properties of the space. Thus if we want to know the time elapsed
between instants, we look to a temporal metric. In a theory of space, we look to a
spatial metric to tell us the distance between two points along some curve. Such a
theory is the subject of the next section.

5.5 EUCLIDEAN SPACE

The theory of a Euclidean space is very similar in structure to the linear time theory.

Let us consider the case of a two-dimensional Euclidean space. The generalization to

the three-dimensional case is entirely straightforward. ,
The theory’s models are built with two-dimensional manifold R?, where R? is

Metric ¥ at (x ,y ) determines
distance between (x.y) and

m neighboring (X +Ax, y +4y)

M"\r
\

\yu +AX, y +4y)—

Coordinate (0,4) (x.y)
system maps
pointp to
air of reals
?x Iy) o
__1.(02) (1.2)

0,0) L(1.0) L(20) (3,0
Two-dimensional W
Euclidean space

Pairs of real numbers form
the two dimensional manifold IR

Figure 5.9 Model of a two-dimensional Euclidean space.
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the manifold whose points are all the pairs of real numbers. Informally we picture the
manifold R? as the set of all pairs of real numbers laid out in a two-dimensional table
that is without holes and that extends indefinitely. That this manifold can be coordi-
nated with a physical Euclidean space reflects the fact that the space has all of its
topological properties (see Figure 5.9). The theory is to be generally covariant.
Therefore we allow any coordination between the physical space that is produced by
a smooth transformation from the original. These transformations include all manner
of translations, rotations, reflections, ‘‘stretchings’’ and ‘‘squeezings’’ that preserve
smoothness of the coordinate system and the uniqueness of the labelling of the points.

Our theory cannot yet determine the distances between the points of the space.
This information is provided by the geometric object vy which is the metric tensor of
the space. This object is defined at every point of R? and encodes the distances from
that point to the points neighboring it. The metric tensor can be used to determine the
length of curves in a Euclidean space by breaking up the curves into a sequence of
- small segments, determining the length of each segment and adding.

In sum, the models of the theory are pairs of the form

<R?, y>

Since the theory is generally covariant, infinitely many coordinations will be allowed
between the physical space and the manifold R?. Just as in the case of of the linear
time theory, as we transform from one coordinate system to another, we may have to
modify the scale factors forming vy to retain the invariance of the judgements of length
which it hands down. Thus the model set of the theory will be infinitely large:

The distance Al between a point with coordinates (x,y) and a neigh-
boring point (x+ Ax, y+ Ay) is given by the quadratic form

Al? = 'Yquz + v124xAy + v, AxAy + 'YzzA)’z (4)

where the coefficients vy,, and <,; are equal. The matrix of the four
values of these coefficients

['Yn 'le}

Y21 Y22

represents the quantity vy in the relevant coordinate system. In certain
special coordinate systems—the Cartesian coordinate systems—the co-
efficients reduce to an especially simple form (y;; = v, = 1, v, =
Y21 = 0) and (4) becomes

A7 = Ax* + Ay? 4")
which is a version of Pythagoras’s theorem. A formulation of the theory

of Euclidean space which uses only Cartesian coordinate systems is a
standard formulation of the theory.

204 Philosophy of Space and Time




<R?y>,<R%?y'>,<R%y"™>, ...
The quantities vy, y',y¥” . . . transform into one another under transformation between
different coordinations and jointly represent the one geometric object.

5.6 SYMMETRY PRINCIPLES

Symmetry principles provide a precise way of giving mathematical expression to
important physical properties of space and time. In the theories of linear time and
Euclidean space in Sections 5.4-5.5, symmetry principles express the homogeneity
and isotropy of time and space. In the spacetime theories to follow, symmetry prin-
ciples will also express the relativity principles of the theories.

The idea of symmetry used in analyzing these theories is no different in essence
from the common notion of symmetry applied to everyday objects. One familiar type
of symmetry is the bilateral symmetry exhibited (approximately) by the human form.
To see the symmetry, imagine a transformation that switches the left- and right-hand
sides of the body so that the left hand changes place with the right, the left foot with
the right and so on. This transformation, a reflection about the central plane, is a
symmetry of the human form since it leaves the form unchanged. Another type of
symmetry is rotational symmetry exhibited, for example, by a cylinder. If we rotate
the cylinder any number of degrees about its central axis, the rotated shape will
coincide exactly with the unrotated shape (see Figure 5.10).

These examples illustrate the two essential elements of symmetry. First, one has
a transformation, such as a reflection or rotation. Second, the transformation leaves
something unchanged. The transformation is known as a symmetry transformation or,
more briefly, a symmetry of that thing.

These same ideas can be applied to a Euclidean space as well. As a stepping-
stone to this application, consider a pattern, such as we find on wallpaper. These
patterns can exhibit symmetries. The pattern shown in Figure 5.11 exhibits a reflec-

=

S

Bilateral symmetry Rotational symmetry
of the human form of a cylinder

Figure 5.10 Symmetries of common objects.
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Reflection
about AA

Figure 5.11 Symmetries of a decorative pattern.

tion symmetry since a reflection of the pattern about axis AA leaves the pattern
unchanged. Similarly, the pattern exhibits a rotational symmetry. If the pattern is
rotated by 90 degrees about the point B, then the pattern remains unchanged. In a
Euclidean space <R?,y>, the manifold R? behaves like the paper and the metric v
is like the pattern painted on it. A transformation on this space that leaves the space
unchanged is a symmetry transformation (or just symmetry) of the space. Three types
of symmetry transformations are exhibited by this space as shown in Figure 5.12: a
reflection about any axis, a rotation by any angle about any point, and a translation
by any distance in any direction.

These symmetries of a Euclidean space express the space’s homogeneity and
isotropy. To say the space is homogeneous just means that every point and its
geometry is exactly like every other point and its geometry. Thus if observers ex-
amine the geometry in the vicinity of one point of the space and then translate their
viewpoint to any other point, then the geometry observed should remain unchanged.
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Figure 5.12 Symmetries of a two-dimensional Euclidean space.

But this merely says that any translation on the space leaves the space unchanged.
That is, any translation is a symmetry of the space. Similarly, to say that the space
is isotropic just means that every direction in the space is exactly like every other.

If the covariance group of a formulation of a theory of time, space or
spacetime coincides with the group of its symmetry transformations,
then that formulation is a standard formulation of the theory. A for-
mulation of the theory of Euclidean space restricted to Cartesian coor-
dinate systems is a standard formulation. Standard formulations tend to
be simpler mathematically. However, they can be misleading since
explicit mention of the geometric structures present tends to be simpli-
fied out of the formulation’s equations. Thus the Euclidean metric vy is
rarely mentioned in a standard formulation of the theory of a Euclidean
space.
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Thus if observers examine the geometry of the space as it lies in some direction at any
point and then rotate their viewpoint by any number of degrees, then the geometry
observed in the new direction should be the same. Again this merely says that any
rotation about any point on the space leaves the space unchanged so that all such
rotations are symmetries of the space.

5.7 NEWTONIAN SPACETIME

5.7.1 Transition to a Spacetime Formulation

In this section, let us develop a generally covariant, spacetime formulation of
Newton’s theory of space and time, modified to be compatible with the principle of
relativity. To have such a formulation of the Newtonian theory for work in philosophy
of space and time is very important, even though the new formulation is more
complicated than the traditional one. Much philosophical interest exists in comparing
the Newtonian theory with the theories of special and general relativity. The relativ-
istic theories are presented most clearly in their generally covariant, spacetime
formulations—general relativity necessarily so since no other formulation is known.
For our comparisons to be reliable, we must carry them out on theories formulated in
the same way. Otherwise our conclusions may well pertain not to true differences
between the theories but only to differences between their methods of formulation.
Section 5.10 discusses some of the damage that has been done by failing to use
uniform formulations in such theory comparisons.

5.7.2 Formation

The Newtonian spacetime theory is produced by combining the theory of linear
time with that of Euclidean geometry and just a little further structure. We begin with
a Newtonian universe and take ‘‘snapshots’’ of its contents at all instants. These
snapshots are simply three-dimensional Euclidean spaces (although for the figures we
continue to suppress the third dimension and represent the space as a two-dimensional
Euclidean space). Since each snapshot is taken at a different time, each of them can
comprise an instant in the linear time theory. We construct the Newtonian four-
dimensional spacetime by taking each of the three-dimensional Euclidean spaces and
“‘stacking them up’’ in a linear continuum (see Figure 5.13). If we picture the
spacetime as a deck of cards, then the geometry on each card (instantaneous snapshot)
is given by a Euclidean metric y. The temporal structure, as we proceed through the
deck from card to card (instant to instant), is given by the temporal metric d7T.

The deck of cards pictured shows us exactly where the theory as described so
far is incomplete. Many ways are possible to stack up cards, as shown in Figure 5.13.
Which is the right one? If we have points A, B, C . . . at rest in the space, then an
acceptable stacking is one that places the points A, B, C . . . in each instant exactly
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on top of one another so that points at rest can be pictured as straight lines penetrating
vertically through the stack. Moving points can also be represented as lines that
penetrate obliquely through the stack. (To see this, imagine a point which moves from
A to B to C as time proceeds from O to 1 to 2. It will be represented by a line that
intersects A on the snapshot at time O, B at 1 and C at 2.) In particular, we will
represent points that move uniformly in a given direction—that is, move inertially—as
straight lines penetrating the stack obliquely.

The stack of instants forms a four-dimensional manifold, each of whose points
1s an event, a point in space at a given time. Each instant is a three-dimensional
surface in that manifold, technically a ‘‘hypersurface.’’ These hypersurfaces are sets
of simultaneous events, so they are called ‘‘hypersurface of simultaneity.’’ The lines
representing moving and motionless points are their worldlines. The encode the entire
history of each point’s motion.

5.7.3 Principle of Relativity

The spacetime theory as described so far incorporates absolute rest. In assuming
that there is only one correct way to stack the instantaneous snapshots, we have
singled out the points A, B, C of Figure 5.13 as absolutely at rest. In section 5.1, we
discussed the principle of relativity in terms of interpenetrating absolute and relative
spaces. In the spacetime context, such spaces are represented by frames of reference.
Consider the points of a relative space. Each point will be a worldline penetrating the
stack of instants. The totality of points of the space will thus be represented by a dense
bundle of worldlines penetrating the stack. If the space is an inertial space, then the
corresponding bundle will be a bundle of straight lines as shown in Figure 5.14 and
will be called an inertial frame of reference.

In effect Newton supposed that one of these inertial frames of reference was
special and represented an absolute state of rest. Thus for him the only correct
stacking of the surfaces of simultaneity would be one that aligned the points of this
absolute frame. The principle of relativity requires that all inertial frames are to be
equivalent so that all inertial states of motion are equivalent. Geometrically this
amounts to saying that all directions in spacetime picked out by inertial frames are
equivalent. Thus if we consider two inertial frames, such as in Figure 5.14, we should
not think of either as having properties different from the other. Unfortunately,
because of the limitations of drawing pictures of inertial frames, one frame is drawn
as penetrating the stack vertically and the other obliquely. This difference is not
reflected in the actual geometric structure of a Newtonian spacetime.

The situation is closely analogous to the isotropy of a Euclidean space. All
directions in such a space are equivalent. However if we draw a picture of these
directions, such as in Figure 5.15, one points up the page in the O-degree direction
and another across it in the 90-degree direction. Since a Euclidean space admits
rotations as a symmetry, we can erase any suggestion that a given direction in the
space is preferred by rotating the space so that the given direction is at the O-degree
position and noting that the space is unchanged.
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Figure 5.14 Inertial transformation in a Newtonian spacetime.
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Similarly, the rules for stacking the deck of hypersurfaces of simultaneity must
allow us to restack the deck so that it is aligned according to any inertial frame of
reference. This means that any frame can be transformed to the zero velocity state.
Let us call the transformation that maps inertial frames into inertial frames, shown in
Figure 5.14, an ‘‘inertial transformation.’’ Figuratively it corresponds to realigning
the hypersurfaces of simultaneity in a manner akin to jogging a deck of cards. What
we have concluded is that an inertial transformation cannot change the spacetime in
the same way that a rotation does not change a Euclidean space, so that the picking
out of any inertial frame as uniquely at rest is a purely arbitrary stipulation. That is,
the principle of relativity is a symmetry principle:

Principle of relativity in a Newtonian Spacetime: An inertial transformation is a
symmetry of a Newtonian spacetime; it leaves the spacetime unchanged.

5.7.4 Modeis of a Newtonian Spacetime

To summarize, the models of a Newtonian spacetime are quadruples
<M,dT .h,V>,

where M is a four-dimensional manifold each of whose points represents an event.
This manifold is sliced into instants, that is, hypersurfaces of simultaneous events.
The measurable time elapsed as we move from instant to instants is given by the
temporal metric d7. Each of the hypersurfaces of simultaneity is a Euclidean space
with its own Euclidean metric +y; the structure 4 combines all of them into a single
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geometric object. Finally we need a structure which will dictate the allowed ways of
stacking instants. That structure is the affine structure V of the spacetime. The affine
structure specifies which of all the curves in the four-dimensional manifold M are the
straight lines. (Notice that neither structure introduced so far—neither the Euclidean
metric of each hypersurface of simultaneity nor the temporal metric—gives us any
way of determining which are the straight lines that penetrate through the hypersur-
faces.) We require that the instants be stacked in such a way that the trajectories of
inertially moving points coincide with the straight lines of the manifold’s affine
structure. This rule will be compatible with the principle of relativity, if we require
that the affine structure V, as well as temporal and spatial metrics 4T and h, admit
inertial transformations as symmetry transformations.

We recover a standard formulation of Newtonian spacetime theory by
adopting standard coordinates T from the linear time theory and X, Y and
Z from Euclidean geometry and combine them to form a coordination
between the Newtonian spacetime and R*. The straight lines of the
affine structure V are now just what you would expect: the set of all lines
given by the linear relations between the coordinates including T = aX
= bY = cZ, for all real values a, b and ¢. A typical inertial frame is
given by the set of all such straight lines parallel to the T axis. An
inertial transformation that transforms this frame to a frame moving at
velocity V in the X direction is given by

' =T, X' =X-VT, Y' =7, Z'=Z

5.8 SPECIAL RELATIVITY
5.8.1 Relativity of Simultaneity

Einstein developed his special theory of relativity in 1905 axiomatically as the
consequences of two postulates: the principle of relativity and what we now call the
light postulate. The latter postulate asserts that the velocity of light has the same
constant value (¢ = 300,000 kmv/sec) in all inertial spaces. On first acquaintance, it
seems that no theory free of logical contradiction could be based on these postulates.
How could the velocity of light remain the same in all inertial spaces? Surely if we
transform to inertial spaces moving successively faster in the direction of a light ray,
the light ray’s velocity must be diminished as we catch up with it until it is finally
brought to a standstill. The light postulate asserts that we can never catch the light
ray. No matter how fast we go in chasing it, it always moves away from us at the same
speed, 300,000 knvsec. What Einstein realized was that this state of affairs was
possible if we were prepared to forgo some commonly assumed properties of space
and time. One of the most important concerned simultaneity. In the Newtonian theory
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it had been assumed that two events either were or were not simultaneous. In special
relativity, things ceased to be so simple.

Consider Einstein’s standard simultaneity relation defined in Section 5.3. As-
sume that clocks A and B of Figures 5.2 and 5.3 have been synchronized by Einstein’s
light signaling procedure so that they are in standard synchrony (at least according to
an observer at rest with respect to them). If we now transform our viewpoint to an
inertial space in which clocks A and B are moving together in the direction from A to
B, we no longer agree that the two clocks are in standard synchrony. In the new
inertial space, the light signal will have to traverse a greater distance on its outward
journey than on its return journey. For on the outward journey it must catch a B-clock
that fiees from it, whereas on the return journey the A-clock rushes forward to meet
it. If the light postulate is correct and the speed of light has the same constant value
in the new inertial space in both directions, then the outward journey must take more
time than the return journey, so that the event of the reflection of the signal at B cannot
happen midway between its emission and return at A—at least according to an
observer in the new inertial space. That is, the clocks cannot be in standard synchrony
in the new inertial space.

Thus in special relativity judgements of whether two clocks are in standard
synchrony and, therefore, whether two events are simultaneous depend on the choice
of inertial space to which the judgements are referred. This result is known as the
relativity of simultaneity. It should not be confused with the conventionality of si-
multaneity discussed in Section 5.3. The relativity of simultaneity applies even after
a particular definition of simultaneity has been chosen, such as standard € = 1/2
simultaneity above,and arises when we change inertial spaces. The conventionality of
simultaneity arises within a single inertial space.

5.8.2 Minkowski Spacetimes and the Lorentz
Transformation

The four-dimensional spacetime formulation of special relativity was discov-
ered by Hermann Minkowski in 1907. Its spacetimes are called Minkowski space-
times in his honor. A Minkowski spacetime is much like a Newtonian spacetime.
Both are based on four-dimensional manifolds of events. Moving points in each are
curves, and points moving inertially are straight lines, so that inertial frames of
reference are still bundles of parallel straight lines. However, the most prominent
landmark of a Newtonian spacetime, its unique divisibility into hypersurfaces of
simultaneity, is not present in a Minkowski spacetime. For the relativity of simul-
taneity entails that each inertial frame defines a different slicing of the spacetime
into hypersurfaces of simultaneous events. A hypersurface of simultaneity of a
given inertial frame of reference is said to be orthogonal to the curves of the frame.

The transformation between inertial frames of reference in special relativity is
called a Lorentz transformation. The relativity of simultaneity makes it more com-
plicated than in the Newtonian case shown in Figure 5.14. For in the Lorentz trans-
formation, the slicing of the spacetime into hypersurfaces of simultaneity must be
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Figure 5.16 The Lorentz transformation.

adjusted to the new frame so that the hypersurfaces of the slicing remain orthogonal
to it. The transformation is pictured in Figure 5.16. Where the inertial transformation
of a Newtonian spacetime is mechanically akin to ‘‘jogging a deck of cards,’’ the
Lorentz transformation is mechanically akin to ‘‘squashing the garden fence lattice.”’

Finally we note that the Lorentz transformation is a symmetry of the Minkowski
spacetime so that the principle of relativity holds just as it does in the Newtonian
spacetime of the previous section.

In a standard formulation of special relativity, the standard coordinates
X, Y, Z and T correspond to space and time measurements made by
instruments at rest in the frame whose worldlines are the T curves. The
Lorentz transformation, which transforms this frame to one moving at
velocity V in the X direction, is given by

T = (T — VX/c?) X' =BX — VD) Y=Y Z =2

where

B=1VI - V&
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5.8.3 Light Cone and Causal Structures of a Minkowski
Spacetime

An infinite number of curves pass through any given event of a Minkowski
spacetime. The light cone structure of the Minkowski spacetime at that event is
simply the division of the curves at that event into three classes: those that represent

1. points moving at velocity c, the velocity of light (“‘light-like’”);
2. points moving at velocity less than ¢ (*‘time-like’’);
3. points moving at velocity greater than ¢ (‘‘space-like’’).

The name ‘‘light cone’’ arises from the fact that the light-like curves form a cone
through the event as shown in Figure 5.17. The time-like curves all fall within the
cone and the space-like curves outside the cone. The light cone structure of the entire
Minkowski spacetime is the specification at every event of the above three-way
division.

Time-like curves can be the worldlines of massive particles. Light-like curves can
be worldlines of light signals. The usual assumption in special relativity is that no
causal process such as a particle or signal can travel faster than light so that space-like
curves cannot be the worldlines of any particle or signal. Under this assumption, the
light cone structure takes on special significance for the philosophy of space and time,
for it is equivalent to the causal structure of the spacetime. More precisely, if we know
the light cone structure of the spacetime then we can construct an exhaustive catalog
of which pairs of events can causally interact with one another in the spacetime. We
do this by finding all pairs of events which could be connected by the trajectory of a
particle or signal, that is, by a curve that is everywhere time-like or light-like (see
Figure 5.18). The resulting catalog is the causal structure of the spacetime. Conversely,
if we know this catalog, then we can reconstruct the light cone structure.

5.8.4 The Minkowski Metric

As a spacetime theory, the Newtonian theory is rather complicated. It requires
three distinct structures to be specified: dT, h and V. As a spacetime theory, special
relativity is far simpler. The functions of the three Newtonian structures is per-
formed by just one, the Minkowski metric m. Thus models of special relativity are
of the form

<M,n>

where M is a four-dimensional manifold and m a Minkowski metric. The properties
of m are very similar to those of a Euclidean metric vy (see the following box) since
7 also assigns lengths—called ‘‘intervals’’—to curves. The metric 1 picks out which
are the time-like, space-like and light-like curves by the intervals it assigns to them.
It assigns a zero interval to light-like curves. It assigns a positive interval to time-like
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Events A and B can
causally interact
since they can be
connected by a curve
that is everywhere
time-like or light-like

X 00X D0

Time X Events A and C cannot
7~ causally interact since
A every curve that
connects them is
space-like somewhere
X XXX XXX
Space

Minkowski Spacetime

Figure 5.18 Light cone structure determines causal structure.

In a standard coordinate system X, Y, Z, T of special relativity, the
Minkowski metric is associated with the differential form

As? = AT> — AX? — AY? - AZ? (5")

which is fully analogous to the differential form (4) of the Euclidean
theory. The differences between the metrics of the two theories derive
entirely from the differences in sign between forms (4’) and (5'). The
transition to the generally covariant formulation introduces four arbi-
trary spacetime coordinates, x°, x', x*, x* and the equation (5') gener-
alizes to

As® = "'loo(AXo)2 + 'ﬂmAxOAx‘ + ...+ lesszAxs + T\BB(AXS)Z &)

which is analogous to (4). The explicit representation of the metric m is
the symmetric matrix of coefficients m,,, where i,k = 0, 1, 2, 3.
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curves. This interval is the time elapsed as measured by a clock moving with the
particle represented by the curve. The Minkowski metric assigns an imaginary inter-
val to space-like curves. The absolute value of this interval is the spatial length of the
curve should the curve lie fully in a hypersurface of simultaneity.

5.9 GENERAL RELATIVITY

5.9.1 Physical Foundations

General relativity is Einstein’s relativistic gravitation theory and is a modifica-
tion of special relativity that incorporates gravitation. It was completed by him in
1915 and is probably his greatest contribution to physics. The novelty of the theory
is the way that gravitation is treated. Prior to general relativity, it was customary to
think of a gravitational field as a distinct entity that could be added to a spacetime.
Thus gravitation-free spaces were possible. In general relativity, the gravitational
field is combined with the same structure that determines lengths and times so that a
gravitation-free space is no longer possible.

The chain of ideas that led Einstein to general relativity began in 1907 when he
was struck by a remarkable property of gravitation known since the time of Galileo.
When a gravitational field deflects the motion of a body, the amount of deflection is
independent of the nature of the body and, in particular, the mass of the body. This
property is a very special property of gravitational fields and is not shared, for
example, by electric fields. If the motion of a charged body 1s deflected by an electric
field, then the greater the charge on the body, the larger the deflection. It was as
though the trajectories of bodies falling in a gravitational field were already laid out
in spacetime and any falling body would have to follow them, whatever its mass.
Now a Minkowski spacetime just happens to have trajectories with exactly this
property. These are the trajectories of inertially moving points, the straight time-like
worldlines defined by the Minkowski metric. Any body moving inertially in a
Minkowski spacetime follows these trajectories in a way that is independent of the
mass of the body. Since these trajectories have exactly the unique, characteristic
property of gravitation, Einstein was drawn to conjecture that a Minkowski spacetime
was actually already a special case of a spacetime with a gravitational field and that
spacetimes with more general gravitational fields could be constructed not by adding
further structures to the spacetime but by modifying what was already there.

5.9.2 Principle of Equivalence

This conjecture was formulated and justified in a vivid manner in a thought
experiment. Einstein imagined a physicist enclosed in a box in the supposedly
gravitation-free- space of special relativity. He then imagined that the box was accel-
erated uniformly in some direction. All free objects in the box would fall to one side
with the same acceleration. The observing physicist, Einstein argued, could explain

Philosophy of Space and Time 218



this phenomenon in two equally good ways. He could say that the box was acceler-
ated. Alternately, because of the special property of gravity, he could say that the box
was unaccelerated but that a homogeneous gravitational field was acting on the box.
Einstein’s ‘‘principle of equivalence’’ asserts that the two states of affairs—uniform
acceleration in a gravitation-free space and a homogeneous gravitational field—are
fully equivalent or, in our words, exactly the same state of affairs. Reduced to its
briefest form, the thought experiment shows us that supposedly gravitation-free spe-
cial relativity already incorporates gravitation—to see that gravitation is already there,
transform to a uniformly accelerated space to make a homogeneous gravitation field
manifest.

5.9.3 Generalizing Special Relativity

What characterizes the gravitational fields of special relativity is the following
property: If two test bodies have initial velocities 1dentical in magnitude and direc-
tion, they will continue to move so that the distance between them remains the same
(see Figure 5.19). We are interested in more general gravitational fields such as those
produced by the earth. In these more general cases, the distance between the above
two bodies would not remain constant but would converge or diverge as the bodies
fell. To construct general relativity, Einstein replaced the Minkowski metric m of
special relativity with a more general metric g which would allow this convergence
or divergence. In the new theory, unrestrained particles still follow the straight
time-like curves of the spacetime, just as they did in a Minkowski spacetime. How-
ever the ‘‘straight’’ lines defined by the new more general metric g no longer behave
in the way that we expect straight lines to behave. For example, two ‘‘straight’’ lines
that are initially parallel need not remain at a constant distance from one another as

Distance
A between
trajectories
decreases
Distance ?
between
trajectories
is constant
Initially paraliel inertial Initially paraliel inertial
trajectories in a Minkowski trajectories in a spacetime
spacetime of special relativity of general relativity

Figure 5.19 [Inertial trajectories in special and general relativity.
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we proceed along them (see Figure 5.19). Such results are typical in the geometry of
curved surfaces, such as the surface of a sphere, and the mathematical techniques
used in general relativity were originally developed in the context of problems of
curved surfaces. As a result, talk of ‘‘curvature’’ is common and we routinely dis-
tinguish the ‘‘flat”’ spacetime of special relativity from the ‘‘curved’’ spacetimes of
general relativity.

In sum, the models of general relativity have the form

<M.,g>

where M is a four-dimensional manifold and g is a generalization of the Minkowski
metric 7. Since every distinct distribution of masses in the universe produces a
distinct gravitational field, there will be very many different models in the theory. In
particular, a nonuniform matter distribution will produce a nonuniform gravitational
field. As a result, the models of general relativity will, in general, have no nontrivial
symmetries, so that we cannot formulate relativity principles of the type seen in the
flat Newtonian spacetime theory and special relativity.

Part lll: Applications

5.10 CONFUSIONS OVER COVARIANCE

Misunderstandings of the significance of the covariance group of a theory have been
responsible for more than their fair share of confusions in philosophy of space and
time. Let us review two important examples.

5.10.1 The Generalization of the Principle of Relativity

One of Einstein’s best known claims for his general theory of relativity is that
it extends the principle of special relativity to accelerated motion. We noted in the
previous section that the spacetimes of general relativity admit no nontrivial symme-
tries in general, so that we cannot formulate a relativity principle of the type formu-
lated in Newtonian theory or special relativity. Thus Einstein’s claim has proved
increasingly difficult to defend and its defense has required stratagems of increasing
complexity. (Friedman 1983 makes the case against the claim especially clear.) The
simplest and most common argument for the claim is not a good one. It merely notes
that general relativity is a generally covariant theory. However, general covariance by
itself cannot sustain the claimed generalization of the principle of relativity since
every spacetime theory we have examined in this chapter has been given generally
covariant formulation. They cannot all satisfy a generalized principle of relativity!

The illusion that general covariance and an extension of the principle of rela-
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